Any experimental courses offered by BCB can be found at:
registrar.iastate.edu/faculty-staff/courses/explistings/ (http://
www.registrar.iastate.edu/faculty-staff/courses/explistings)

Courses primarily for undergraduates:

BCB 444: Bioinformatic Analysis
(Cross-listed with BCBS, BIOL, COM S, CPR E, GEN). (4-0) Cr. 4. F.
Prereq: MATH 165 and Introductory Statistics (STAT 101, STAT 104, STAT 105,
STAT 201, or STAT 330).
Broad overview of bioinformatics with a significant problem-solving
component, including hands-on practice using computational tools to
solve a variety of biological problems. Topics include: bioinformatic data
processing, Python programming, genome assembly, database search,
sequence alignment, gene prediction, next-generation sequencing,
comparative and functional genomics, and systems biology.

BCB 490: Independent Study
Cr. 1-5. Repeatable, maximum of 9 credits. F.S.S.
Prereq: Permission of instructor

Courses primarily for graduate students, open to qualified
undergraduates:

BCB 544: Fundamentals of Bioinformatics
(Cross-listed with COM S, CPR E, GDCB). (4-0) Cr. 4. F.
Prereq: MATH 165 or STAT 401 or equivalent
A practical, hands-on overview of how to apply bioinformatics to
biological research. Recommended for biologists desiring to gain
computational molecular biology skills. Topics include: sequence
analysis, genomics, proteomics, phylogenetic analyses, ontology
enrichment, systems biology, data visualization and emergent
technologies.

BCB 567: Bioinformatics I (Bioinformatics Algorithms)
(Cross-listed with COM S, CPR E). (3-0) Cr. 3.
Prereq: COM S 228; COM S 330; credit or enrollment in BIOL 315, STAT 430
Biology as an information science. A review of the algorithmic principles
that are driving the advances in bioinformatics and computational
biology.

BCB 568: Bioinformatics II (Statistical Bioinformatics)
(Cross-listed with COM S, GDCB, STAT). (3-0) Cr. 3. S.
Prereq: BCB 567 or (BIOL 315 and STAT 430), credit or enrollment in GEN 409
Statistical models for sequence data, including applications in genome
annotation, motif discovery, variant discovery, molecular phylogeny, gene
expression analysis, and metagenomics. Statistical topics include model
building, inference, hypothesis testing, and simple experimental design,
including for big data/complex models.

BCB 569: Bioinformatics III (Structural Bioinformatics)
(Cross-listed with BBMB, COM S, CPR E, GDCB). (3-0) Cr. 3. F.
Prereq: BCB 567, BBMB 316, GEN 409, STAT 430
Molecular structures including genes and gene products: protein,
DNA and RNA structure. Structure determination methods, structural
refinement, structure representation, comparison of structures,
visualization, and modeling. Molecular and cellular structure from
imaging. Analysis and prediction of protein secondary, tertiary, and
higher order structure, disorder, protein-protein and protein-nucleic
acid interactions, protein localization and function, bridging between
molecular and cellular structures. Molecular evolution.

BCB 570: Bioinformatics IV (Systems Biology)
(Cross-listed with COM S, CPR E, GDCB, STAT). (3-0) Cr. 3. S.
Prereq: BCB 567 or COM S 311, COM S 228, GEN 409, STAT 430
Algorithmic and statistical approaches in computational functional
genomics and systems biology. Analysis of high throughput biological
data obtained using system-wide measurements. Topological analysis,
module discovery, and comparative analysis of gene and protein
networks. Modeling, analysis, and inference of transcriptional regulatory
Dynamic systems and whole-cell models. Ontology-driven, network based,
and probabilistic approaches to information integration.

BCB 585: Fundamentals of Predictive Plant Phenomics
(Cross-listed with GDCB, M E). Cr. 4. F.
Prereq: Acceptance into the P3 program or instructor permission.
Principles of engineering, data analysis, and plant sciences and their
interplay applied to predictive plant phenomics. Transport phenomena,
sensor design, image analysis, graph models, network data analysis,
fundamentals of genomics and phenomics. Multidisciplinary laboratory
exercises. None

BCB 590: Special Topics
Cr. arr. Repeatable.
Prereq: Permission of instructor
BCB 593: Workshop in Bioinformatics and Computational Biology
(1-0) Cr. 1. Repeatable. F.S.
Current topics in bioinformatics and computational biology research. Lectures by off-campus experts. Students read background literature, attend preparatory seminars, attend all lectures, meet with lecturers.

BCB 598: Cooperative Education
Cr. R. Repeatable. F.S.S.S.
Prereq: Permission of the program chair
Off-campus work periods for graduate students in the field of bioinformatics and computational biology.

BCB 599: Creative Component
Cr. arr.

Courses for graduate students:

BCB 660: Selected Topics in Bioinformatics and Computational Biology
(3-0) Cr. 1-4. Repeatable, maximum of 4 times. F.S.S.S.
Prereq: Permission of Instructor
Topics of interest in the major research areas of computational molecular biology, including genomics, structural genomics, functional genomics, and computational systems biology.

BCB 690: Student Seminar in Bioinformatics and Computational Biology
Cr. 1. Repeatable. S.
Student research presentations.

BCB 691: Faculty Seminar in Bioinformatics and Computational Biology
(1-0) Cr. 1. Repeatable.
Faculty research series.

BCB 697: Graduate Research Rotation
Cr. arr. Repeatable. F.S.S.S.
Graduate research projects performed under the supervision of selected faculty members in the Bioinformatics and Computational Biology major.

BCB 699: Research
Cr. arr. Repeatable.