Courses primarily for undergraduates:

GEOL 100: The Earth
(3-0) Cr. 3. F.S.S.
How does the earth work, what is it made of, and how does it change through time? Plate tectonics, Earth materials, landforms, structures, climate, and natural resources. Emphasis on the observations and hypotheses used to interpret earth system processes. Students may also enroll in Geol 100L.

GEOL 100L: The Earth: Laboratory
(0-2) Cr. 1. F.S.
Prereq: Credit or enrollment in GEOL 100
Students will gain understanding of how Earth processes affect their lives and how they affect the Earth, and of the complex nature of the Earth and its processes. They will gain a deep knowledge of the methods used to understand the time scales and rates of Earth processes also through an applied research experience on groundwater and surface water.

GEOL 101: Environmental Geology: Earth in Crisis
(Cross-listed with ENV S). (3-0) Cr. 3. F.S.S.
An introduction to geologic processes and the consequences of human activity from local to global scales. Discussion of human population growth, resource depletion, pollution and waste disposal, global warming and ozone depletion, desertification, and geologic hazards such as earthquakes, landslides, flooding, and volcanism. Summer - online only.

GEOL 102: History of the Earth
(3-0) Cr. 3. S.
Prereq: GEOL 100 or GEOL 201
The Earth’s physical and biological evolution; concepts of global tectonics. Methods used to decipher earth history. Students majoring in geology must also enroll in Geol 102L.

GEOL 102L: History of the Earth: Laboratory
(0-2) Cr. 1. S.
Prereq: Credit or enrollment in GEOL 102
Introduction to the use of sedimentary rocks and fossils in reconstructing the Earth’s history.

GEOL 103: Age of Dinosaurs
Cr. 1. F.
Introduction to the diversity of dinosaur species. Discussion of basic evolutionary theory and interpretation of fossil evidence. Overview of Mesozoic Earth history including paleogeographic and paleoclimate reconstructions. Course available via the World Wide Web.

GEOL 105: Gems and Gemstones
(2-0) Cr. 1. F.
Offered in second half of the semester. Introduction to gems and gemstones, physical and optical properties of gems and gemstones, explanation of where gems come from and how they are found, how to distinguish between synthetic and naturally occurring gems, how the value of gems are determined, and the history of famous gems.

GEOL 106: Earth and Space Science for Elementary Education Majors
(Cross-listed with ASTRO). (2-0) Cr. 2. F.S.
Prereq: Major in elementary or early childhood education.
Fundamental concepts of Earth and Space Science, including the solar system, weather and climate, water and soils, plate tectonics, and geologic hazards. Online course format.

GEOL 106L: Earth and Space Science for Elementary Education Majors: Laboratory
(Cross-listed with ASTRO). (0-2) Cr. 1. F.S.
Prereq: Restricted to elementary and early childhood education majors; to be taken concurrently with GEOL 106/ASTRO 106
Inquiry-based lab exploring fundamental concepts of Earth and Space Science, including the solar system, weather and climate, water and soils, plate tectonics, and geologic hazards. Must be taken concurrently with GEOL/ASTRO 106.

GEOL 108: Introduction to Oceanography
(Cross-listed with ENV S). (3-0) Cr. 3. F.

GEOL 111: Geological Disasters
(Cross-listed with ENV S). (1-0) Cr. 1. F.S.S.
Introduction to the catastrophic geologic processes that disrupt ecosystems and human activity. Includes a discussion on the role of plate tectonics, the hydrologic cycle, and humans as the driving forces behind selected case studies on volcanic eruptions, earthquakes, tsunamis, landslides, and floods. Summer and fall - online only.
GEOL 112: Geoscience Orientation
(Cross-listed with MTEOR). (1-0) Cr. 1. F.
Orientation course for students enrolled in the Earth, Wind and Fire Learning Community. Provides an introduction to Iowa State University and meteorology, geology, and Earth science programs for students enrolled in the department's learning community. Activities include academic and social activities, talks and presentations on academic success, resume writing, and study abroad, as well as research talks by faculty members.

GEOL 113: Spring Geoscience Orientation for Earth, Wind and Fire Learning Community
(Cross-listed with MTEOR). (1-0) Cr. 1. S.
Spring orientation course for students enrolled in the "Earth, Wind and Fire" Learning Community. Develop and apply quantitative, data-analysis, management, and communication skills on an authentic research project in a team to focus on professionalism and resilience. Introduction to interview strategies and the importance of creating a professional image on social media. Academic and social events, plus two field trips.

GEOL 160: Water Resources of the World
(Cross-listed with AGRON, ENV S, MTEOR). (3-0) Cr. 3. S.
Study of the occurrence, history, development, and management of world water resources. Basic hydrologic principles including climate, surface water, groundwater, and water quality. Historical and current perspectives on water policy, use, and the role of water in society and the environment. Meets International Perspectives Requirement.

GEOL 201: Geology for Engineers and Environmental Scientists
(2-2) Cr. 3. F.
Introduction to Earth materials and processes with emphasis on engineering and environmental applications.

GEOL 290: Independent Study
Cr. 1-3. Repeatable.
Prereq: Permission of instructor
Independent study for freshman and sophomore students.

GEOL 298: Cooperative Education
Cr. R. F.S.SS.
Prereq: GEOL 100 or GEOL 201, GEOL 100L, GEOL 102, GEOL 102L, and permission of the department cooperative education coordinator; sophomore classification
Required of all cooperative education students. Students must register for this course prior to commencing the work period.

GEOL 302: Summer Field Studies
Cr. 6. SS.
Prereq: GEOL 102, GEOL 356, GEOL 368
Geologic mapping; structural, stratigraphic, sedimentologic, metamorphic, geomorphic, and environmental analyses. Study areas in the Bighorn Basin and Wind River Range and excursions to Yellowstone and Grand Teton National Parks. A 6-week summer field course required of all geology majors.

GEOL 306: Geology Field Course
Cr. 1-2. Repeatable, maximum of 2 times. F.S.
Prereq: GEOL 100 or GEOL 201
Weekly seminar introduces students to a selected geological region or theme that is visited on a required ten-day field excursion. Introduction to field-safety leadership.

GEOL 315: Mineralogy and Earth Materials
(3-0) Cr. 3. F.
Prereq: GEOL 100 or GEOL 201, CHEM 177
Introduction to mineral classification, elementary crystal chemistry, crystal growth and morphology, mineral stability, and mineral associations.

GEOL 315L: Laboratory in Mineralogy and Earth Materials
(0-3) Cr. 1. F.
Prereq: GEOL 100 or GEOL 201
Mineral identification methods, especially hand-specimen identification.

GEOL 316: Optical Mineralogy
(1-2) Cr. 2. F.
Prereq: GEOL 100 or GEOL 201, CHEM 177, credit or enrollment in GEOL 315
Laboratory problems in mineral-identification methods utilizing optical microscopic techniques.

GEOL 324: Energy and the Environment
(Cross-listed with ENSCI, ENV S, MTEOR). (3-0) Cr. 3. S.
Prereq: CHEM 163 or CHEM 177, MATH 140
Exploration of the origin of Earth’s energy resources and the environmental and climatic impacts of energy acquisition and consumption. Renewable and non-renewable energy resources within an Earth-system context. Various environmentally-relevant topics such as water quality and availability, habitat destruction, greenhouse-gas emissions, and health and safety hazards to wildlife and human communities.
GEOL 356: Structural Geology and Tectonics
(3-3) Cr. 4. S.
Prereq: GEOL 100 or GEOL 201; PHYS 111
Principles of stress, strain, and rheology. Brittle and ductile behavior of rocks. Mechanics of formation, description, and classification of fractures, faults, folds, foliation, and lineation. From micro-structures to tectonic processes. Laboratory includes application of learned concepts to real-world scenarios, geometrical techniques to solve structural problems.

GEOL 365: Igneous and Metamorphic Petrology
(2-3) Cr. 3. S.
Prereq: GEOL 315, GEOL 315L, GEOL 316
Nature and origin of igneous and metamorphic rocks. Emphasis on important rock-forming environments and processes and their influence on rock characteristics. Laboratory includes thin section study of rock textures and mineralogy and the interpretation of these features.

GEOL 368: Sedimentary Geology
(3-3) Cr. 4. F.
Prereq: GEOL 102
Exploration of the interplay between weathering, sedimentation, sea-level change, tectonics, and life through time that creates sedimentary rocks and stratigraphic packages. Understanding of the historical development of sedimentary geology through the development of petrography, paleontology, deep earth sampling, geophysical technologies, and geochemistry. Field and laboratory problem sets illuminate lecture material.

GEOL 398: Cooperative Education
Cr. R. F.S.S.
Prereq: GEOL 100 or GEOL 201, GEOL 100L, GEOL 102, GEOL 102L, and permission of the department cooperative education coordinator; junior classification
Required of all cooperative education students. Students must register for this course prior to commencing each work period.

GEOL 402: Watershed Hydrology
(Dual-listed with GEOL 502). (Cross-listed with ENSCI, MTEOR, NREM).
(2-3) Cr. 3. F.
Prereq: Four courses in physical or biological sciences or engineering; junior standing
Examination of watersheds as systems, emphasizing the surface components of the hydrologic cycle. Combines qualitative understanding of hydrological processes and uncertainty with quantitative representation. Laboratory emphasizes field investigation and measurement of watershed processes.

GEOL 409: Field Methods in Hydrogeology
(Dual-listed with GEOL 509). (Cross-listed with ENSCI). (0-4) Cr. 3. Alt. SS., offered even-numbered years.
Prereq: GEOL/ENSCI 402 or GEOL/ENSCI 411 or CE 473
Introduction to field methods used in groundwater investigations. In-field implementation of pumping tests, slug tests, monitoring well installation and drilling techniques, geochemical and water quality sampling, seepage meters, minipiezometers, stream gaging, and electronic instrumentation for data collection. Field trips to investigate water resource, water quality, and remediation projects.

GEOL 411: Hydrogeology
(Dual-listed with GEOL 511). (Cross-listed with ENSCI). (3-2) Cr. 4. F.
Prereq: Four courses in biological or physical sciences
Physical principles of groundwater flow, nature and origin of aquifers and confining units, well hydraulics, groundwater modeling, and contaminant transport. Lab emphasizes applied field and laboratory methods for hydrogeological investigations.

GEOL 414: Applied Groundwater Flow Modeling
(Dual-listed with GEOL 514). (Cross-listed with ENSCI). (2-2) Cr. 3. Alt. S., offered even-numbered years.
Prereq: GEOL 411 or CE 473; MATH 165 or MATH 181
Introduction to the principles of modeling groundwater flow systems. Finite-difference and analytic-element methods, spreadsheet models, boundary conditions, calibration, sensitivity analysis, parameter estimation, particle tracking, and post-audit analysis. Application of MODFLOW to regional flow-system analysis. Computer laboratory emphasizes assigned problems that illustrate topics discussed in the course.

GEOL 415: Paleoclimatology
(Dual-listed with GEOL 515). (Cross-listed with ENSCI). (3-0) Cr. 3. Alt. S., offered odd-numbered years.
Prereq: Four courses in biological or physical science
Introduction to mechanisms that drive climate, including the interplay between oceanic and atmospheric circulation and fluctuation in Earth’s orbital parameters. Examination and analysis of past climate records ranging from historical documentation to ecological and geochemical proxies (e.g. tree ring analysis; O and C isotopes of skeletal carbonates and soils). Dating methods used to constrain and correlate climatic periods; utility of computer models to reconstruct past climates and predict future climate change. Emphasis placed on paleoclimatology and paleoecology of the late Quaternary (last ~1 million years).
GEOL 416: Hydrologic Modeling and Analysis
(Dual-listed with GEOL 516). (Cross-listed with ENSCI, MTEOR). (2-3) Cr. 3.
Alt. S., offered odd-numbered years.
Prereq: Four courses in Earth science, meteorology, or engineering; junior standing
Study of the basic principles of hydrologic modeling, including rainfall-runoff analysis, lumped and distributed modeling, conceptual and physical models, parameter estimation and sensitivity analysis, input and validation data, uncertainty analysis, and the use of models in surface water hydrology. A range of common models are applied to study hydrologic topics such as flood forecasting and land use change impacts. Previous experience with Matlab or other programming language is needed.

GEOL 419: Aqueous and Environmental Geochemistry
(Dual-listed with GEOL 519). (Cross-listed with ENSCI). (2-2) Cr. 3. S.
Prereq: CHEM 178, CHEM 178L; junior classification
Geochemistry of natural waters and water-rock interactions. Acid-base equilibria, carbonate chemistry and buffer systems, mineral dissolution and precipitation, sorption, ion exchange, and redox reactions. Introduction to thermodynamics and kinetics. Laboratory emphasizes chemical analysis of waters and computer modeling.

GEOL 420: Mineral Resources
(Dual-listed with GEOL 520). (2-3) Cr. 3. Alt. F., offered even-numbered years.
Prereq: GEOL 365
Geology and geochemistry of non-metallic and metallic ore deposits. Major processes that concentrate metals in the Earth. Geochemical conditions of ore formation using stable-isotope and fluid-inclusion studies. Laboratory emphasizes the study of metallic ores.

GEOL 426: Stable Isotopes in the Environment
(Dual-listed with GEOL 526). (Cross-listed with ENSCI). (3-0) Cr. 3. Alt. S., offered even-numbered years.
Prereq: Four courses in biological or physical science
Introduction to the theory, methods and applications of stable isotopes. Primary focus on the origin, natural abundance, and fractionation of carbon, hydrogen, oxygen, nitrogen isotopes. Applications of isotopic occurrence for elucidation of physical, chemical, biological, and environmental processes. Effects of plant physiology, photosynthesis, trophic structure, diffusion, evaporation, chemical precipitation, soil and atmospheric processes, and environmental factors on isotope abundance.

GEOL 444: Petroleum Geoscience and Engineering
(Dual-listed with GEOL 544). (2-2) Cr. 3. Alt. S., offered even-numbered years.
The geoscience and engineering aspects of exploration, development, and production of hydrocarbon resources around the world, as well as the historical and legal frameworks through which the industry has developed. Broader discussions of safety, risk, uncertainty, cost, and integrity as relevant to the petroleum industry.

GEOL 451: Applied and Environmental Geophysics
(Dual-listed with GEOL 551). (Cross-listed with ENSCI). (2-2) Cr. 3. Alt. S., offered odd-numbered years.
Prereq: GEOL 100 or GEOL 201, algebra and trigonometry
Seismic, gravity, magnetic, resistivity, electromagnetic, and ground-penetrating radar techniques for shallow subsurface investigations and imaging. Data interpretation methods. Lab emphasizes computer interpretation packages. Field work with seismic - and resistivity-imaging systems and radar.

GEOL 452: GIS for Geoscientists
(Dual-listed with GEOL 552). (Cross-listed with AGRON, ENSCI). (2-2) Cr. 3. F.S.
Prereq: GEOL 100, GEOL 201 or equivalent
Introduction to geographic information systems (GIS) with particular emphasis on geoscientific data. Uses ESRI's ArcGIS Desktop Software and extension modules. Emphasizes typical GIS operations and analyses in the geosciences to prepare students for advanced GIS courses.

GEOL 457: Seismic Methods in Geology, Engineering, and Petroleum Exploration
(Dual-listed with GEOL 557). (2-2) Cr. 3. Alt. S., offered even-numbered years.
Prereq: GEOL 100 or GEOL 201, algebra and trigonometry
Physics of elastic-wave propagation. Seismic surveys in environmental imaging, engineering, and petroleum exploration. Reflection and refraction techniques. Data collection, processing, and geological interpretation. Field work with state-of-the-art equipment.

GEOL 474: Glacial and Quaternary Geology
(Dual-listed with GEOL 574). (2-2) Cr. 3. Alt. S., offered odd-numbered years.
Prereq: GEOL 100 or GEOL 201 or equivalent experience
The study of glaciers and glacial processes. Discussion of glaciology, glacial sediment transport, glacial landforms, and Quaternary history. Laboratory emphasizes topographic map interpretation and the Quaternary landscapes of Iowa.
GEOL 479: Surficial Processes
(Dual-listed with GEOL 579). (Cross-listed with ENSCI). (2-3) Cr. 3. F.
Prereq: GEOL 100 and GEOL 100L; or GEOL 201; or equivalent experience.
The study of physical processes that shape Earth’s surface. Topics include weathering, sediment transport, and landform genesis with emphasis on fluvial, glacial, hillslope, eolian, and coastal processes. Applications to engineering and environmental problems. Laboratory includes topographic map interpretation and local field trips.

GEOL 487: Microbial Ecology
(Dual-listed with GEOL 587). (Cross-listed with BIOL, ENSCI, MICRO). (3-0) Cr. 3. F.
Prereq: Six credits in biology and 6 credits in chemistry
Introduction to major functional groups of autotrophic and heterotrophic microorganisms and their roles in natural and environmental systems. Consequences of microbial activity on water chemistry, weathering, and precipitation/dissolution reactions will be emphasized.

GEOL 488: GIS for Geoscientists II
(Dual-listed with GEOL 588). (Cross-listed with AGRON, ENSCI). (2-2) Cr. 3. Alt. S., offered odd-numbered years.
Prereq: GIS course, such as GEOL 452, CRP 451, CRP 452, NREM 345, NREM 446, AE 408 or equivalent
GIS course with focus on the spatial analysis and modeling of raster data and triangulated irregular network (TIN) data. Uses ArcGIS and various extensions, such as Spatial Analyst, 3D Analyst, and ArcScene. Includes practical exercises during lectures, lab exercises, homework assignments, and (for GEOL 588) a class project.

GEOL 489: Survey of Remote Sensing Technologies
(Dual-listed with GEOL 589). (Cross-listed with E E, MTEOR, NREM). (3-0) Cr. 3. F.
Prereq: Four courses in physical or biological sciences or engineering
Electromagnetic-radiation principles, active and passive sensors, multispectral and hyperspectral sensors, imaging radar, SAR, thermal imaging, lidar. Examples of applications. Also offered online S.

GEOL 489L: Satellite Remote Sensing Laboratory
(Dual-listed with GEOL 589L). (Cross-listed with E E, MTEOR, NREM). (0-3) Cr. 1. F.
Prereq: Completion or concurrent enrollment in MTEOR/GEOL/NREM/EE 489/589
Processing and analysis of satellite sensor data (optical and radar).
Provides practical applications in an environmental context.

GEOL 490: Independent Study
Cr. 1-3. Repeatable, maximum of 9 credits.
Prereq: 6 credits in geology and permission of instructor
Independent study for senior students. No more than 9 credits of Geol 490 may be counted toward graduation.

GEOL 495: Undergraduate Seminar
Cr. 1. F.S.
Prereq: Junior or senior classification
Weekly seminar on topics of current research interest.

GEOL 498: Cooperative Education
Cr. R. F.S.S.
Prereq: Geol 100 or GEOL 201, GEOL 100L, GEOL 102, GEOL 102L, and permission of the department cooperative education coordinator; senior classification
Required of all cooperative education students. Students must register for this course prior to commencing each work period.

Courses primarily for graduate students, open to qualified undergraduates:

GEOL 502: Watershed Hydrology
(Dual-listed with GEOL 402). (Cross-listed with ENSCI, MTEOR, NREM). (2-3) Cr. 3. F.
Prereq: Four courses in physical or biological sciences or engineering; junior standing
Examination of watersheds as systems, emphasizing the surface components of the hydrologic cycle. Combines qualitative understanding of hydrological processes and uncertainty with quantitative representation. Laboratory emphasizes field investigation and measurement of watershed processes.

GEOL 506: Geology Field Course
Cr. 1-2. Repeatable, maximum of 2 times. F.S.
Prereq: Graduate classification
Weekly seminar introduces students to a selected geological region or theme that is visited on a required ten-day field excursion. Graduate students are expected to assist in field teaching and safety leadership.

GEOL 507: Midwestern Geology Field Trip
Cr. 1. Repeatable, maximum of 4 times. F.
Prereq: GEOL 365
On-site inspection of various ore deposits, mining operations, and terrains dominated by igneous or metamorphic rocks. Offered on a satisfactory-fail basis only.
GEOL 509: Field Methods in Hydrogeology
(Dual-listed with GEOL 409). (Cross-listed with ENSCI). (0-4) Cr. 3. Alt. SS., offered even-numbered years.
Prereq: GEOL/ENSCI 402 or GEOL/ENSCI 411 or C E 473
Introduction to field methods used in groundwater investigations. In-field implementation of pumping tests, slug tests, monitoring well installation and drilling techniques, geochemical and water quality sampling, seepage meters, minipiezometers, stream gaging, and electronic instrumentation for data collection. Field trips to investigate water resource, water quality, and remediation projects.

GEOL 511: Hydrogeology
(Dual-listed with GEOL 411). (Cross-listed with ENSCI). (3-2) Cr. 4. F.
Prereq: Four courses in biological or physical sciences
Physical principles of groundwater flow, nature and origin of aquifers and confining units, well hydraulics, groundwater modeling, and contaminant transport. Lab emphasizes applied field and laboratory methods for hydrogeological investigations.

GEOL 514: Applied Groundwater Flow Modeling
(Dual-listed with GEOL 414). (Cross-listed with ENSCI). (2-2) Cr. 3. Alt. S., offered even-numbered years.
Prereq: GEOL 411 or C E 473; MATH 165 or MATH 181
Introduction to the principles of modeling groundwater flow systems. Finite-difference and analytic-element methods, spreadsheet models, boundary conditions, calibration, sensitivity analysis, parameter estimation, particle tracking, and post-audit analysis. Application of MODFLOW to regional flow-system analysis. Computer laboratory emphasizes assigned problems that illustrate topics discussed in the course.

GEOL 515: Paleoclimatology
(Dual-listed with GEOL 415). (Cross-listed with ENSCI). (3-0) Cr. 3. Alt. S., offered odd-numbered years.
Prereq: Four courses in biological or physical science
Introduction to mechanisms that drive climate, including the interplay between oceanic and atmospheric circulation and fluctuation in Earth's orbital parameters. Examination and analysis of past climate records ranging from historical documentation to ecological and geochemical proxies (e.g. tree ring analysis; O and C isotopes of skeletal carbonates and soils). Dating methods used to constrain and correlate climatic periods; utility of computer models to reconstruct past climates and predict future climate change. Emphasis placed on paleoclimatology and paleoecology of the late Quaternary (last ~ 1 million years).

GEOL 516: Hydrologic Modeling and Analysis
(Dual-listed with GEOL 416). (Cross-listed with ENSCI, MTEOR). (2-3) Cr. 3. Alt. S., offered odd-numbered years.
Prereq: Four courses in earth science, meteorology, or engineering; junior standing
Study of the basic principles of hydrologic modeling, including rainfall-runoff analysis, lumped and distributed modeling, conceptual and physical models, parameter estimation and sensitivity analysis, input and validation data, uncertainty analysis, and the use of models in surface water hydrology. A range of common models are applied to study hydrologic topics such as flood forecasting and land use change impacts. Previous experience with Matlab or other programming language is needed.

GEOL 519: Aqueous and Environmental Geochemistry
(Dual-listed with GEOL 419). (Cross-listed with ENSCI). (2-2) Cr. 3. S.
Prereq: CHEM 178, CHEM 178L; junior classification
Introduction to the theory, methods and applications of stable isotopes. Primary focus on the origin, natural abundance, and fractionation of carbon, hydrogen, oxygen, nitrogen isotopes. Applications of isotopic occurrence for elucidation of physical, chemical, biological, and environmental processes. Effects of plant physiology, photosynthesis, trophic structure, diffusion, evaporation, chemical precipitation, soil and atmospheric processes, and environmental factors on isotope abundance.
GEOL 544: Petroleum Geoscience and Engineering
(Dual-listed with GEOL 444). (2-2) Cr. 3. Alt. S., offered even-numbered years.
The geoscience and engineering aspects of exploration, development,
and production of hydrocarbon resources around the world, as well as
the historical and legal frameworks through which the industry has
developed. Broader discussions of safety, risk, uncertainty, cost, and
integrity as relevant to the petroleum industry.

GEOL 551: Applied and Environmental Geophysics
(Dual-listed with GEOL 451). (Cross-listed with ENSCI). (2-2) Cr. 3. Alt. S.,
offered odd-numbered years.
Prereq: GEOL 100 or GEOL 201, algebra and trigonometry
Seismic, gravity, magnetic, resistivity, electromagnetic, and ground-
penetrating radar techniques for shallow subsurface investigations
and imaging. Data interpretation methods. Lab emphasizes computer
interpretation packages. Field work with seismic - and resistivity-imaging
systems and radar.

GEOL 552: GIS for Geoscientists
(Dual-listed with GEOL 452). (Cross-listed with AGRON, ENSCI). (2-2) Cr. 3.
F.S.
Prereq: GEOL 100, GEOL 201 or equivalent
Introduction to geographic information systems (GIS) with particular
emphasis on geoscientific data. Uses ESRI’s ArcGIS Desktop Software
and extension modules. Emphasizes typical GIS operations and analyses
in the geosciences to prepare students for advanced GIS courses.

GEOL 555: Environmental Soil Mineralogy
(Cross-listed with AGRON). (3-0) Cr. 3. Alt. S., offered odd-numbered
years.
Prereq: AGRON 473, CHEM 178. Recommend: GEOL 311
Structure and behavior of clay minerals, humic substances and biochar
in soil environments, with emphasis on reactions and environmental
implications.

GEOL 557: Seismic Methods in Geology, Engineering, and Petroleum
Exploration
(Dual-listed with GEOL 457). (2-2) Cr. 3. Alt. S., offered even-numbered
years.
Prereq: GEOL 100 or GEOL 201, algebra and trigonometry
Physics of elastic-wave propagation. Seismic surveys in environmental
imaging, engineering, and petroleum exploration. Reflection and
refraction techniques. Data collection, processing, and geological
interpretation. Field work with state-of-the-art equipment.

GEOL 558: Introduction to the 3D Visualization of Scientific Data
(Cross-listed with COM S, HCI). (2-2) Cr. 3. Alt. F., offered even-numbered
years.
Prereq: Graduate-student standing in the mathematical or natural sciences or
engineering. basic programming knowledge
Introduction to visualizing scientific information with 3D computer
graphics and their foundation in human perception. Overview of different
visualization techniques and examples of 3D visualization projects from
different disciplines (natural sciences, medicine, and engineering). Class
project in interactive 3D visualization using the ParaView, Mayavi, TVTK,
VTK or a similar system.

GEOL 574: Glacial and Quaternary Geology
(Dual-listed with GEOL 474). (2-2) Cr. 3. Alt. S., offered odd-numbered
years.
Prereq: GEOL 100 or GEOL 201 or equivalent experience
The study of glaciers and glacial processes. Discussion of glaciology,
glacial sediment transport, glacial landforms, and Quaternary history.
Laboratory emphasizes topographic map interpretation and the
Quaternary landscapes of Iowa.

GEOL 579: Surficial Processes
(Dual-listed with GEOL 479). (Cross-listed with ENSCI). (2-3) Cr. 3. F.
Prereq: GEOL 100 and GEOL 100L, or GEOL 201; or equivalent experience.
The study of physical processes that shape Earth’s surface. Topics
include weathering, sediment transport, and landform genesis with
emphasis on fluvial, glacial, hillslope, eolian, and coastal processes.
Applications to engineering and environmental problems. Laboratory
includes topographic map interpretation and local field trips.

GEOL 587: Microbial Ecology
(Dual-listed with GEOL 487). (Cross-listed with EEOB, ENSCI, MICRO).
(3-0) Cr. 3. F.
Prereq: Six credits in biology and 6 credits in chemistry
Introduction to major functional groups of autotrophic and heterotrophic
microorganisms and their roles in natural and environmental systems.
Consequences of microbial activity on water chemistry, weathering, and
precipitation/dissolution reactions will be emphasized.

GEOL 588: GIS for Geoscientists II
(Dual-listed with GEOL 488). (Cross-listed with AGRON, ENSCI). (2-2) Cr. 3.
Alt. S., offered odd-numbered years.
Prereq: GIS course, such as GEOL 452, CRP 451, CRP 452, NREM 345, NREM
446, AE 408 or equivalent
GIS course with focus on the spatial analysis and modeling of raster
data and triangulated irregular network (TIN) data. Uses ArcGIS and
various extensions, such as Spatial Analyst, 3D Analyst, and ArcScene.
Includes practical exercises during lectures, lab exercises, homework
assignments, and (for GEOL 588) a class project.
GEOL 589: Survey of Remote Sensing Technologies
(Dual-listed with GEOL 489). (Cross-listed with EE, MTEOR, NREM). (3-0)
Cr. 3. F.
Prereq: Four courses in physical or biological sciences or engineering Electromagnetic-radiation principles, active and passive sensors, multispectral and hyperspectral sensors, imaging radar, SAR, thermal imaging, lidar. Examples of applications. Also offered online S.

GEOL 589L: Satellite Remote Sensing Laboratory
(Dual-listed with GEOL 489L). (Cross-listed with EE, MTEOR, NREM). (0-3)
Cr. 1. F.
Prereq: Completion or concurrent enrollment in MTEOR/GEOL/NREM/EE 489/589 Processing and analysis of satellite sensor data (optical and radar). Provides practical applications in an environmental context.

GEOL 590: Special Topics
Cr. 1-3. Repeatable.
Prereq: Permission of instructor
GEOL 590A: Special Topics: Surficial Processes
Cr. 1-3. Repeatable.
Prereq: Permission of instructor
GEOL 590B: Special Topics: Stratigraphy
Cr. 1-3. Repeatable.
Prereq: Permission of instructor
GEOL 590C: Special Topics: Sedimentation
Cr. 1-3. Repeatable.
Prereq: Permission of instructor
GEOL 590D: Special Topics: Paleontology
Cr. 1-3. Repeatable.
Prereq: Permission of instructor
GEOL 590E: Special Topics: Petrology
Cr. 1-3. Repeatable.
Prereq: Permission of instructor
GEOL 590F: Special Topics: Structural Geology
Cr. 1-3. Repeatable.
Prereq: Permission of instructor
GEOL 590G: Special Topics: Geochemistry
Cr. 1-3. Repeatable.
Prereq: Permission of instructor
GEOL 590H: Special Topics: Hydrogeology
Cr. 1-3. Repeatable.
Prereq: Permission of instructor
GEOL 590I: Special Topics: Earth Science
Cr. 1-3. Repeatable.
Prereq: Permission of instructor
GEOL 590J: Special Topics: Mineral Resources
Cr. 1-3. Repeatable.
Prereq: Permission of instructor
GEOL 590K: Special Topics: Geophysics
Cr. 1-3. Repeatable.
Prereq: Permission of instructor
GEOL 590L: Special Topics: Mineralogy
Cr. 1-3. Repeatable.
Prereq: Permission of instructor
GEOL 590M: Special Topics: Tectonics
Cr. 1-3. Repeatable.
Prereq: Permission of instructor
GEOL 590N: Special Topics: Paleoeocology and Paleoclimatology
Cr. 1-3. Repeatable.
Prereq: Permission of instructor
GEOL 590O: Special Topics: Isotope Geochemistry
Cr. 1-3. Repeatable.
Prereq: Permission of instructor
GEOL 590P: Special Topics: Computational Methods and GIS
Cr. 1-3. Repeatable.
Prereq: Permission of instructor
GEOL 590R: Special Topics: Surface Hydrology
Cr. 1-3. Repeatable.
Prereq: Permission of instructor
GEOL 590S: Special Topics: Oceanography
Cr. 1-3. Repeatable.
Prereq: Permission of instructor
GEOL 595: Graduate Seminar
(Cross-listed with MTEOR). Cr. 1. Repeatable. F.S.
Prereq: Senior or graduate classification
Weekly seminar on topics of current research interest. All students seeking a graduate degree in geology must enroll during each semester of residence. Students pursuing a non-thesis option for the M.S. in Earth Science must enroll for one semester. Offered on a satisfactory-fail basis only.
GEOL 595A: Graduate Seminar: Presentation Required
(Cross-listed with MTEOR). (1-0) Cr. 1. Repeatable. F.S.
Prereq: Senior or graduate classification
Weekly seminar on topics of current research interest. All students seeking a graduate degree in geology must enroll during each semester of residence. Students pursuing a non-thesis option for the M.S. in Earth Science must enroll for one semester. Offered on a satisfactory-fail basis only.

GEOL 595B: Graduate Seminar: Attendance Only
(Cross-listed with MTEOR). Cr. R. Repeatable. F.S.
Prereq: Senior or graduate classification
Attendance only. Weekly seminar on topics of current research interest. All students seeking a graduate degree in geology must enroll during each semester of residence. Students pursuing a non-thesis option for the M.S. in Earth Science must enroll for one semester. Offered on a satisfactory-fail basis only.

GEOL 599: Creative Component
Cr. arr. Repeatable.

Courses for graduate students:

GEOL 610: Advanced Seminar
Cr. 1-3. Repeatable. F.S.
Prereq: Graduate standing and permission of instructor

GEOL 610A: Advanced Seminar: Earth Materials
Cr. 1-3. Repeatable. F.S.
Prereq: Graduate standing and permission of instructor

GEOL 610B: Advanced Seminar: Economic Geology
Cr. 1-3. Repeatable. F.S.
Prereq: Graduate standing and permission of instructor

GEOL 610C: Advanced Seminar: Environmental Geochemistry
Cr. 1-3. Repeatable. F.S.
Prereq: Graduate standing and permission of instructor

GEOL 610D: Advanced Seminar: Geophysics
Cr. 1-3. Repeatable. F.S.
Prereq: Graduate standing and permission of instructor

GEOL 610E: Advanced Seminar: Geotectonics
Cr. 1-3. Repeatable. F.S.
Prereq: Graduate standing and permission of instructor

GEOL 610F: Advanced Seminar: Hydrogeology
Cr. 1-3. Repeatable. F.S.
Prereq: Graduate standing and permission of instructor

GEOL 610G: Advanced Seminar: Surficial Processes
Cr. 1-3. Repeatable. F.S.
Prereq: Graduate standing and permission of instructor

GEOL 610H: Advanced Seminar: Sedimentation and Stratigraphy
Cr. 1-3. Repeatable. F.S.
Prereq: Graduate standing and permission of instructor

GEOL 610I: Advanced Seminar: Paleoeology and Paleoclimatology
Cr. 1-3. Repeatable. F.S.
Prereq: Graduate standing and permission of instructor

GEOL 610J: Advanced Seminar: Isotope Geochemistry
Cr. 1-3. Repeatable. F.S.
Prereq: Graduate standing and permission of instructor

GEOL 610K: Advanced Seminar: Computational Methods and GIS
Cr. 1-3. Repeatable. F.S.
Prereq: Graduate standing and permission of instructor

GEOL 699: Research
Cr. arr. Repeatable.

GEOL 699A: Research: Surficial Processes
Cr. arr. Repeatable.

GEOL 699B: Research: Stratigraphy
Cr. arr. Repeatable.

GEOL 699C: Research: Sedimentation
Cr. arr. Repeatable.

GEOL 699D: Research: Paleontology
Cr. arr. Repeatable.

GEOL 699E: Research: Petrology
Cr. arr. Repeatable.

GEOL 699F: Research: Structural Geology
Cr. arr. Repeatable.

GEOL 699G: Research: Geochemistry
Cr. arr. Repeatable.

GEOL 699H: Research: Hydrogeology
Cr. arr. Repeatable.

GEOL 699I: Research: Earth Science
Cr. arr. Repeatable.

GEOL 699J: Research: Mineral Resources
Cr. arr. Repeatable.

GEOL 699K: Research: Geophysics
Cr. arr. Repeatable.

GEOL 699L: Research: Mineralogy
Cr. arr. Repeatable.
GEOL 699M: Research: Tectonics
Cr. arr. Repeatable.

GEOL 699N: Research: Paleoeocology and Paleoclimatology
Cr. arr. Repeatable.

GEOL 699O: Research: Isotope Geochemistry
Cr. arr. Repeatable.

GEOL 699P: Research: Computational Methods and GIS
Cr. arr. Repeatable.

GEOL 699R: Research: Surface Hydrology
Cr. arr. Repeatable.

GEOL 699S: Research: Geoscience Education
Cr. arr. Repeatable.