INDUSTRIAL ENGINEERING

Administered by the Department of Industrial and Manufacturing Systems Engineering

For the undergraduate curriculum in industrial engineering leading to the degree bachelor of science. The Industrial Engineering Program of this curriculum is accredited by the Engineering Accreditation Commission of ABET, http://www.abet.org/.

The Industrial Engineering (IE) Program educates its future graduates to accomplish its educational objectives in their early careers. Specifically, the IE curriculum prepares its majors so that, within a few years after graduation, graduates’ attainments are

1. industrial engineering decisions that result in well-reasoned, value-added solutions.
2. communications with stakeholders that are informative, persuasive, and constructive.
3. contributions to team goals through effective team interactions and leadership.
4. new skills and knowledge that advance professional practice and enable career advancement.

Details on industrial engineering program outcomes that foster the attainment of these objectives are available at appropriate sections of: www.imse.iastate.edu (http://www.imse.iastate.edu)

The industrial engineering undergraduate curriculum provides students with fundamental knowledge in mathematics and science, engineering science, social science, and humanities as well as professional industrial engineering course work. Management electives provide students with an opportunity to become familiar with modern business practices that they will encounter in their career. A senior capstone design course provides students with an opportunity to solve open-ended industrial problems with an industrial partner. The cooperative education program provides students with real world experience in the profession and a good perspective on career choices. Students are encouraged to participate in international experiences through exchange programs and industrial internships.

Qualified juniors and seniors interested in graduate studies may apply to the Graduate College to concurrently pursue both B.S. and M.S. or M.Eng. degrees in Industrial Engineering, or B.S. and M.B.A. degrees.

Engineering Sales

The Engineering Sales Minor is multidisciplinary and open to undergraduates in the College of Engineering. The minor is earned by completing 15 credits including:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>I E 450</td>
<td>Technical Sales for Engineers I</td>
<td>3</td>
</tr>
<tr>
<td>I E 451</td>
<td>Technical Sales for Engineers II</td>
<td>3</td>
</tr>
<tr>
<td>MKT 340</td>
<td>Principles of Marketing</td>
<td>3</td>
</tr>
<tr>
<td>MKT 343</td>
<td>Personal Sales</td>
<td>3</td>
</tr>
<tr>
<td>I E 305</td>
<td>Engineering Economic Analysis</td>
<td>3</td>
</tr>
<tr>
<td>FIN 301</td>
<td>Principles of Finance</td>
<td></td>
</tr>
</tbody>
</table>

Total Credits 15

The minor must include at least 9 credits that are not used to meet any other department, college, or university requirement.

Curriculum in Industrial Engineering

Administered by the Department of Industrial and Manufacturing Systems Engineering.

Leading to the degree bachelor of science.

Total credits required: 122 cr. See also Basic Program and Special Programs. Grades of C or better are required for any transfer credit course that is applied to the degree program but will not be calculated into the ISU cumulative GPA, Basic Program GPA or Core GPA. Note: Department does not allow Pass/Not Pass credits to be used to meet graduation requirements.

International Perspectives: 3 cr. 1
U.S. Diversity: 3 cr. 1
Communication Proficiency/Library requirements:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGL 150</td>
<td>Critical Thinking and Communication (C or better in this course)</td>
<td>3</td>
</tr>
<tr>
<td>ENGL 250</td>
<td>Written, Oral, Visual, and Electronic Composition (C or better in this course)</td>
<td>3</td>
</tr>
<tr>
<td>LIB 160</td>
<td>Information Literacy</td>
<td>1</td>
</tr>
</tbody>
</table>

Remaining Communication courses: 6 cr.

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGL 314</td>
<td>Technical Communication</td>
<td>3</td>
</tr>
<tr>
<td>SP CM 212</td>
<td>Fundamentals of Public Speaking</td>
<td>3</td>
</tr>
</tbody>
</table>

Total Credits 6

Social Sciences and Humanities Electives: 12 cr. 2
Six of twelve credits must be from 200-level or above courses. Six credits must be sequential or related courses.

Basic Program: 27 cr. 3
A minimum GPA of 2.00 required for this set of courses, including any transfer courses (please note that transfer course grades will not be calculated into the Basic Program GPA). See Requirement for Entry into Professional Program in College of Engineering Overview section.

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 167</td>
<td>General Chemistry for Engineering Students</td>
<td>4</td>
</tr>
<tr>
<td>ENGL 150</td>
<td>Critical Thinking and Communication</td>
<td>3</td>
</tr>
<tr>
<td>ENGL 250</td>
<td>Written, Oral, Visual, and Electronic Composition</td>
<td>3</td>
</tr>
<tr>
<td>ENGR 101</td>
<td>Engineering Orientation</td>
<td>R</td>
</tr>
<tr>
<td>I E 148</td>
<td>Information Engineering</td>
<td>3</td>
</tr>
<tr>
<td>LIB 160</td>
<td>Information Literacy</td>
<td>1</td>
</tr>
<tr>
<td>MATH 165</td>
<td>Calculus I</td>
<td>4</td>
</tr>
<tr>
<td>MATH 166</td>
<td>Calculus II</td>
<td>4</td>
</tr>
<tr>
<td>PHYS 221</td>
<td>Introduction to Classical Physics I</td>
<td>5</td>
</tr>
</tbody>
</table>

Total Credits 27

Math and Physical Science: 17 cr.

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 265</td>
<td>Calculus III</td>
<td>4</td>
</tr>
<tr>
<td>MATH 267</td>
<td>Elementary Differential Equations and Laplace Transforms</td>
<td>4</td>
</tr>
<tr>
<td>PHYS 222</td>
<td>Introduction to Classical Physics II</td>
<td>5</td>
</tr>
<tr>
<td>STAT 231</td>
<td>Probability and Statistical Inference for Engineers</td>
<td>4</td>
</tr>
</tbody>
</table>

Total Credits 17
Industrial Engineering Core: 34 cr.
A minimum GPA of 2.00 required for this set of courses, including any transfer courses (please note that transfer course grades will not be calculated into the Core GPA):

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>I E 222</td>
<td>Design & Analysis Methods for System Improvements</td>
<td>3</td>
</tr>
<tr>
<td>I E 248</td>
<td>Engineering System Design, Manufacturing</td>
<td>3</td>
</tr>
<tr>
<td>I E 271</td>
<td>Applied Ergonomics and Work Design</td>
<td>3</td>
</tr>
<tr>
<td>I E 305</td>
<td>Engineering Economic Analysis</td>
<td>3</td>
</tr>
<tr>
<td>I E 312</td>
<td>Optimization</td>
<td>3</td>
</tr>
<tr>
<td>I E 341</td>
<td>Production Systems</td>
<td>3</td>
</tr>
<tr>
<td>I E 348</td>
<td>Solidification Processes</td>
<td>3</td>
</tr>
<tr>
<td>I E 361</td>
<td>Statistical Quality Assurance</td>
<td>3</td>
</tr>
<tr>
<td>I E 413</td>
<td>Stochastic Modeling, Analysis and Simulation</td>
<td>4</td>
</tr>
<tr>
<td>I E 441</td>
<td>Industrial Engineering Design</td>
<td>3</td>
</tr>
<tr>
<td>I E 448</td>
<td>Manufacturing Systems Engineering</td>
<td>3</td>
</tr>
</tbody>
</table>

Total Credits: 34

Other Remaining Courses: 26 cr.
MAT E 273 Principles of Materials Science and Engineering 3
E M 274 Engineering Statics 3
E E 442 Introduction to Circuits and Instruments 2
M E 231 Engineering Thermodynamics I 3
Focus Electives 6
Management Electives 3
Engineering Topic Electives 6

Total Credits: 26

Seminar/Co-op/Internships:
I E 101 Industrial Engineering Profession 3
Optional co-op/internship courses

1. These university requirements will add to the minimum credits of the program unless the university-approved courses are also allowed by the department to meet other course requirements within the degree program.

U.S. diversity and international perspectives courses may not be taken Pass/Not Pass.

3. See Basic Program for Professional Engineering Curricula for accepted substitutions for curriculum designated courses in the Basic Program.

See also the following grid showing course template by semester: 4-Year Plan of Study for Industrial Engineering. (p. 2)

Industrial Engineering Profession

First Year

<table>
<thead>
<tr>
<th>Semester</th>
<th>Course Code</th>
<th>Course Name</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td>I E 148</td>
<td>Design & Analysis Methods for System Improvements</td>
<td>3</td>
</tr>
<tr>
<td>Fall</td>
<td>SSH Elective</td>
<td>SSH Elective</td>
<td>3</td>
</tr>
<tr>
<td>Fall</td>
<td>MATH 165</td>
<td>MATH 165</td>
<td>4</td>
</tr>
<tr>
<td>Fall</td>
<td>CHEM 167</td>
<td>CHEM 167</td>
<td>4</td>
</tr>
</tbody>
</table>

Second Year

<table>
<thead>
<tr>
<th>Semester</th>
<th>Course Code</th>
<th>Course Name</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td>MATH 265</td>
<td>MATH 265</td>
<td>4</td>
</tr>
<tr>
<td>Fall</td>
<td>I E 248</td>
<td>I E 248</td>
<td>3</td>
</tr>
<tr>
<td>Fall</td>
<td>MAT E 273</td>
<td>MAT E 273</td>
<td>3</td>
</tr>
<tr>
<td>Fall</td>
<td>PHYS 222</td>
<td>PHYS 222</td>
<td>5</td>
</tr>
<tr>
<td>Fall</td>
<td>ENGL 250</td>
<td>ENGL 250</td>
<td>3</td>
</tr>
</tbody>
</table>

Total Credits: 18

Third Year

<table>
<thead>
<tr>
<th>Semester</th>
<th>Course Code</th>
<th>Course Name</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td>I E 305</td>
<td>I E 305</td>
<td>3</td>
</tr>
<tr>
<td>Fall</td>
<td>I E 341</td>
<td>I E 341</td>
<td>3</td>
</tr>
<tr>
<td>Fall</td>
<td>I E 312</td>
<td>I E 312</td>
<td>3</td>
</tr>
<tr>
<td>Fall</td>
<td>SP CM 212</td>
<td>SP CM 212</td>
<td>3</td>
</tr>
<tr>
<td>Fall</td>
<td>E M 274</td>
<td>E M 274</td>
<td>3</td>
</tr>
</tbody>
</table>

Total Credits: 15

Fourth Year

<table>
<thead>
<tr>
<th>Semester</th>
<th>Course Code</th>
<th>Course Name</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td>Focus Elective</td>
<td>Focus Elective</td>
<td>3</td>
</tr>
<tr>
<td>Fall</td>
<td>SSH Elective</td>
<td>SSH Elective</td>
<td>3</td>
</tr>
<tr>
<td>Fall</td>
<td>I E 413</td>
<td>I E 413</td>
<td>4</td>
</tr>
<tr>
<td>Fall</td>
<td>ENGL 314</td>
<td>ENGL 314</td>
<td>3</td>
</tr>
<tr>
<td>Fall</td>
<td>M E 231</td>
<td>M E 231</td>
<td>3</td>
</tr>
</tbody>
</table>

Total Credits: 16

Total Credits: 122

Graduate Study

The Department offers programs for the degrees Master of Engineering (M.Eng.), Master of Science (M.S.), and Doctor of Philosophy (Ph.D.) with a major in Industrial Engineering (I.E.). A formal minor is available at the M.S. and Ph.D. levels to graduate students having a major in another department. The M.Eng. degree consists of coursework designed to improve professional expertise in Industrial Engineering. The M.S. and Ph.D. degrees are designed to improve the student’s capability to conduct research as well as their professional expertise.

The prerequisite to major graduate work is the completion of a curriculum similar to that required of undergraduate students in engineering at this institution. Because of the diversity of Industrial Engineering topics, it is possible for a student to qualify for graduate study even though undergraduate or prior graduate training has been in a discipline other than engineering; e.g., mathematics or physics. However, completion of a math sequence of calculus through differential equations is required.

With the help of a Program of Study Committee (P.O.S.C.), a graduate student develops an educational program in areas within Industrial Engineering. Typical areas of concentration include Advanced Manufacturing, Ergonomics/Human Factors, Operations Research/Analytics, and Systems Engineering/Engineering Management.

The Department offers a certificate in Advanced Manufacturing, in collaboration with the Mechanical Engineering Department, which
consists of four graduate courses selected from an approved list in both departments.

For additional information about graduate degree programs, admission criteria, and procedures refer to https://www.imse.iastate.edu/graduate-program/.

Courses primarily for undergraduates:

I E 101: Industrial Engineering Profession
Cr. R. F.S.
(1-0) Introduce students to the industrial engineering profession, its scope, industrial engineering tools, and future trends.

I E 148: Information Engineering
(2-2) Cr. 3. F.S.
Prereq: Credit or enrollment in MATH 143

I E 222: Design & Analysis Methods for System Improvements
(3-0) Cr. 3. S.
Prereq: I E 248; credit or enrollment in I E 271.
Study of system improvement methods and strategies. Specific areas of lean system improvements include continuous improvement, setup reduction, workplace organization, inventory and waste minimization. Methods and strategies to analyze and quantify the impact of changes.

I E 248: Engineering System Design, Manufacturing Processes and Specifications
(2-2) Cr. 3. F.
Prereq: MATH 166 and PHYS 221. Credit or enrollment in I E 101 and MAT E 273.
Introduction to metrology, engineering drawings and specifications. Engineering methods for designing and improving systems. Theory, applications, and quality issues related to machining processes.

I E 271: Applied Ergonomics and Work Design
(3-0) Cr. 3. S.
Prereq: PHYS 221
Basic concepts of ergonomics and work design. Their impact on worker and work place productivity, and cost. Investigations of work physiology, biomechanics, anthropometry, work methods, and their measurement as they relate to the design of human-machine systems.

I E 298: Cooperative Education
Cr. R. F.S.SS.
Prereq: Permission of department and Engineering Career Services
First professional work period in the cooperative education program. Students must register for this course before commencing work.

I E 305: Engineering Economic Analysis
(3-0) Cr. 3. F.S.SS.
Prereq: MATH 166
Economic analysis of engineering decisions under uncertainty. Financial engineering basics including time value of money, cash flow estimation, and asset evaluation. Make versus buy decisions. Comparison of project alternatives accounting for taxation, depreciation, inflation, and risk.

I E 312: Optimization
(3-0) Cr. 3. F.
Prereq: Credit or enrollment in MATH 267.
Concepts, optimization and analysis techniques, and applications of operations research. Formulation of mathematical models for systems, concepts, and methods of improving search, linear programming and sensitivity analysis, network models, and integer programming.

I E 341: Production Systems
(3-0) Cr. 3. F.
Prereq: STAT 231; credit or enrollment in I E 312
Introduction of key concepts in the design and analysis of production systems. Topics include inventory control, forecasting, material requirement planning, project planning and scheduling, operations scheduling, and other production systems such as Just-In-Time (JIT), warehousing, and global supply chains.

I E 348: Solidification Processes
(Cross-listed with MAT E). (2-2) Cr. 3. S.
Prereq: I E 248 and MAT E 273, or MAT E 215
Theory and applications related to metal casting, welding, polymer processing, powder metallurgy, and composites manufacturing.

I E 361: Statistical Quality Assurance
(Cross-listed with STAT). (2-2) Cr. 3. F.S.
Prereq: STAT 231, STAT 301, STAT 326 or STAT 401

I E 396: Summer Internship
Cr. R. Repeatable. SS.
Prereq: Permission of department and Engineering Career Services
Summer professional work period.

I E 397: Engineering Internship
Cr. R. Repeatable. F.S.
Prereq: Permission of department and Engineering Career Services
Second professional work period in the cooperative education program. Students must register for this course before commencing work. Offered on a satisfactory-fail basis only.

I E 398: Cooperative Education
Cr. R. F.S.SS.
Prereq: I E 298, permission of department and Engineering Career Services
Second professional work period in the cooperative education program. Offered on a satisfactory-fail basis only.

I E 403: Introduction to Sustainable Production Systems
(Dual-listed with I E 503). (3-0) Cr. 3.
Prereq: Credit or enrollment I E 341
Quantitative introduction of sustainability concepts in production planning and inventory control. Review of material recovery (recycling) and product/component recovery (remanufacturing) from productivity perspectives. Sustainability rubrics ranging from design and process to systems. Application to multi-echelon networks subject to forward/ backward flow of material and information. Closed-loop supply chains. Comparative study of sustainable vs. traditional models for local and global production systems.
I E 413: Stochastic Modeling, Analysis and Simulation
(4-0) Cr. 4. F.
Prereq: MATH 267, STAT 231
Development and analysis of simulation models using a simulation language. Application to various areas of manufacturing and service systems such as assembly, material handling, and customer queues. Fitting of data to statistical distributions. Introduction to Markov processes and other queuing models.

I E 432: Industrial Automation
(2-3) Cr. 3. S.
Prereq: Phys 222
Overview of electrical circuit theory and its relationship to industrial control systems. Theory and application of transducers in the form of sensors and actuators, with applications in manufacturing, distribution and mechanical systems. Programmable Logic Controllers (PLC), their programming and use for automation solutions. Introduction of automated identification systems such as Radio Frequency Identification (RFID) and Bar Coding technologies.

I E 441: Industrial Engineering Design
(1-6) Cr. 3. F.S.
Prereq: I E 248, I E 271, I E 361; credit or enrollment in I E 341, I E 413, and I E 448
A large, open-ended design project related to an enterprise. Application of engineering design principles including problem definition, analysis, synthesis, and evaluation.

I E 446: Geometric Variability in Manufacturing
(Dual-listed with I E 546). (3-0) Cr. 3.
Prereq: I E 348, or MAT E 216, or M E 324
Assessment, accommodation, and control of geometric variability in manufacturing processes, specifically composites, metalcasting, welding, machining, and powder metallurgy. Techniques include the design of the component, tooling and process plan. The use of contact and noncontact measurement methods to assess variation.

I E 447: Biomedical Design and Manufacturing
(Dual-listed with I E 547). (3-0) Cr. 3.
Prereq: Students with two semesters or less before graduation
Exploration of biology, materials, body mechanics, manufacturing, quality control, and ethics and the intersection of these subjects as they relate to biomedical manufacturing.

I E 448: Manufacturing Systems Engineering
(3-0) Cr. 3. S.
Prereq: I E 248, I E 305
Fixturing and tooling requirements for manufacturing process planning, geometric dimensioning and tolerancing, computer aided inspection, cellular and flexible manufacturing, and facility layout. Lean manufacturing principles and controlled flow production.

I E 449: Computer Aided Design and Manufacturing
(Dual-listed with I E 549). (3-0) Cr. 3.
Prereq: Prereq: I E 248 or similar manufacturing engineering course, MATH 265.
Representation and interpretation of curves, surfaces and solids. Parametric curves and surfaces and solid modeling. Use of CAD software and CAD/CAM integration. Computer numerical control, CNC programming languages, and process planning.

I E 450: Technical Sales for Engineers I
(3-0) Cr. 3. F.
Prereq: Credit or enrollment in I E 305.
Sales process methodology, techniques for building professional relationships, sales automation software, prospecting and account development, market analysis and segmentation, responding to RFQs and RFPs in written and verbal form. Developing technical value propositions and competitive positioning, evaluating organizational decision processes and people, technical marketing strategies, sales closing strategies.

I E 451: Technical Sales for Engineers II
(3-0) Cr. 3. S.
Prereq: I E 450
Case studies and experiential lessons on the development and application of technical sales strategies. Specific topics include developing pricing and distribution strategies, managing a sales staff and channel, developing sales teams and global sales plans, bid and negotiation strategies, time management skills, and implementing sales automation technologies.

I E 466: Multidisciplinary Engineering Design
(Cross-listed with A B E, AER E, B M E, CPR E, E E, ENGR, M E, MAT E). (1-4) Cr. 3. Repeatable. F.S.
Prereq: Student must be within two semesters of graduation and permission of instructor.
Application of team design concepts to projects of a multidisciplinary nature. Concurrent treatment of design, manufacturing and life cycle considerations. Application of design tools such as CAD, CAM and FEM. Design methodologies, project scheduling, cost estimating, quality control, manufacturing processes. Development of a prototype and appropriate documentation in the form of written reports, oral presentations, computer models and engineering drawings.

I E 467: Multidisciplinary Engineering Design II
Prereq: Student must be within two semesters of graduation or receive permission of instructor.
Build and test of a conceptual design. Detail design, manufacturability, test criteria and procedures. Application of design tools such as CAD and CAM and manufacturing techniques such as rapid prototyping. Development and testing of a full-scale prototype with appropriate documentation in the form of design journals, written reports, oral presentations and computer models and engineering drawings.

I E 468: Large-Scale Complex Engineered Systems (LSCES)
(Dual-listed with I E 568). (Cross-listed with AER E). (3-0) Cr. 3. S.
Prereq: senior standing in College of Engineering or permission of AerE 468 instructor
Introduction to the theoretical foundation and methods associated with the design for large-scale complex engineered systems, including objective function formation, design reliability, value-driven design, product robustness, utility theory, economic factors for the formation of a value function and complexity science as a means of detecting unintended consequences in the product behavior.
I E 481: e-Commerce Systems Engineering
(Dual-listed with I E 581). (3-0) Cr. 3.
Prereq: I E 148
Design, analysis, and implementation of e-commerce systems. Information infrastructure, enterprise models, enterprise processes, enterprise views. Data structures and algorithms used in e-commerce systems, SQL, exchange protocols, client/server model, web-based views.

I E 483: Knowledge Discovery and Data Mining
(Dual-listed with I E 583). (3-0) Cr. 3.
Prereq: I E 148, I E 312, and STAT 231
Introduction to data warehouses and knowledge discovery. Techniques for data mining, including probabilistic and statistical methods, genetic algorithms and neural networks, visualization techniques, and mathematical programming. Advanced topics include web-mining and mining of multimedia data. Case studies from both manufacturing and service industries. A computing project is required.

I E 490: Independent Study
Cr. 1-5. Repeatable.
Prereq: Senior classification, permission of instructor
Independent study and work in the areas of industrial engineering design, practice, or research.

I E 490H: Independent Study: Honors
Cr. 1-5. Repeatable.
Prereq: Senior classification, permission of instructor
Independent study and work in the areas of industrial engineering design, practice, or research.

I E 498: Cooperative Education
Cr. R. Repeatable. F.S.S.S.
Prereq: I E 298, permission of department and Engineering Career Services
Third and subsequent professional work periods in the cooperative education program. Students must register for this course before commencing work. Offered on a satisfactory-fail basis only.

Courses primarily for graduate students, open to qualified undergraduates:

I E 501: M.S. Research Basics and Communications
Cr. R. Repeatable.
Prereq: Enrollment in M.S. or M.Eng. program in Industrial Engineering
Principles and practices for research tasks at the M.S. level including proposal writing, presentations, paper preparation, and project management. Offered on a satisfactory-fail basis only.

I E 502: M.S. Research Conduct
Cr. R. Repeatable.
Prereq: Enrollment in M.S. program in Industrial Engineering
Responsible conduct of research at the M.S. level, including ethical issues in peer review, conflicts of interest, mentoring, human subjects and live animals, data management, and collaboration. Offered on a satisfactory-fail basis only.

I E 503: Introduction to Sustainable Production Systems
(Dual-listed with I E 403). (3-0) Cr. 3.
Prereq: Credit or enrollment I E 341
Quantitative introduction of sustainability concepts in production planning and inventory control. Review of material recovery (recycling) and product/component recovery (remanufacturing) from productivity perspectives. Sustainability rubrics ranging from design and process to systems. Application to multi-echelon networks subject to forward/ backward flow of material and information. Closed-loop supply chains. Comparative study of sustainable vs. traditional models for local and global production systems.

I E 508: Design and Analysis of Allocation Mechanisms
(3-0) Cr. 3.
Prereq: I E 312 or MATH 307
Market-based allocation mechanisms from quantitative economic systems perspective. Pricing and costing models designed and analyzed with respect to decentralized decision processes, information requirements, and coordination. Financial Engineering Techniques. Case studies and examples from industries such as regulated utilities, semiconductor manufacturers, and financial engineering services.

I E 510: Network Analysis
(3-0) Cr. 3.
Prereq: I E 312
Formulation and solution of deterministic network flow problems including shortest path, minimum cost flow, and maximum flow. Network and graph formulations of combinatorial problems including assignment, matching, and spanning trees. Introduction to deterministic and stochastic dynamic programming.

I E 513: Analysis of Stochastic Systems
(3-0) Cr. 3.
Prereq: STAT 231
Introduction to modeling and analysis of manufacturing and service systems subject to uncertainty. Topics include the Poisson process, renewal processes, Markov chains, and Brownian motion. Applications to inventory systems, production system design, production scheduling, reliability, and capacity planning.

I E 514: Production Scheduling
(3-0) Cr. 3.
Prereq: I E 312, I E 341
Introduction to the theory of machine shop systems. Complexity results for various systems such as job, flow and open shops. Applications of linear programming, integer programming, network analysis. Enumerative methods for machine sequencing. Introduction to stochastic scheduling.

I E 519: Simulation Modeling and Analysis
(3-0) Cr. 3.
Prereq: COM S 311, STAT 401
Event scheduling, process interaction, and continuous modeling techniques. Probability and statistics related to simulation parameters including run length, inference, design of experiments, variance reduction, and stopping rules. Aspects of simulation languages.
I E 531: Quality Control and Engineering Statistics
(Cross-listed with STAT). (3-0) Cr. 3. Alt. S., offered odd-numbered years.
Prereq: STAT 401; STAT 342 or STAT 447
Statistical methods and theory applicable to problems of industrial process monitoring and improvement. Statistical issues in industrial measurement; Shewhart, CUSUM, and other control charts; feedback control; process characterization studies; estimation of product and process characteristics; acceptance sampling, continuous sampling and sequential sampling; economic and decision theoretic arguments in industrial statistics.

I E 533: Reliability
(Cross-listed with STAT). (3-0) Cr. 3. Alt. S., offered even-numbered years.
Prereq: I E 342 or STAT 432 or STAT 447
Probabilistic modeling and inference in engineering reliability; lifetime models, product limit estimator, probability plotting, maximum likelihood estimation for censored data, Bayesian methods in reliability, system reliability models, competing risk analysis, acceleration models and analysis of accelerated test data; analysis of recurrence data; planning studies to obtain reliability data.

I E 534: Linear Programming
(3-0) Cr. 3.
Prereq: I E 312
Formulation of optimization problems as mathematical models, including linear programming, integer programming concepts, multi-objective optimization, and bilevel optimization. Introduction to classic optimization algorithms, including Simplex, cutting plane, and branch-and-bound. Basic concepts of duality theory and sensitivity analysis. Using computer solvers (Matlab and Gusek) to obtain optimal solutions to optimization models.

I E 537: Reliability and Safety Engineering
(3-0) Cr. 3.
Prereq: STAT 231 or STAT 401

I E 541: Inventory Control and Production Planning
(3-0) Cr. 3.
Prereq: I E 341
Economic Order Quantity, dynamic lot sizing, newsboy, base stock, and (Q,r) models. Material Requirements Planning, Just-In-Time (JIT), variability in production systems, push and pull production systems, aggregate and workforce planning, and capacity management. Supply Chain Contracts.

I E 543: Wind Energy Manufacturing
(3-0) Cr. 3. Alt. S., offered even-numbered years.
Prereq: Undergraduate engineering degree or permission of instructor.
Materials, processes and systems required to produce the major components (blades, towers, nacelles) of megawatt scale wind turbines. Transportation, manufacturing siting and procurement decisions as it relates to these large components in an expanding industry.

I E 545: Rapid Prototyping and Manufacturing
(3-0) Cr. 3.
Prereq: Prereq: I E 248 or similar manufacturing engineering course, Math 265. Undergraduates: Permission of instructor.
Introduction to rapid prototyping processes and other rapid manufacturing methodologies. Operating principles and characteristics of current and developing rapid prototyping processes. Use of rapid prototypes in product design, development, and service. Selection of rapid prototyping systems based on rapid methodologies used in manufacturing processes and rapid tooling approaches.

I E 546: Geometric Variability in Manufacturing
(Dual-listed with I E 446). (3-0) Cr. 3.
Prereq: I E 348, or MAT E 216, or M E 324
Assessment, accommodation, and control of geometric variability in manufacturing processes, specifically composites, metalcasting, welding, machining, and powder metallurgy. Techniques include the design of the component, tooling and process plan. The use of contact and noncontact measurement methods to assess variation.

I E 547: Biomedical Design and Manufacturing
(Dual-listed with I E 447). (3-0) Cr. 3.
Prereq: Students with two semesters or less before graduation
Exploration of biology, materials, body mechanics, manufacturing, quality control, and ethics and the intersection of these subjects as they relate to biomedical manufacturing.

I E 549: Computer Aided Design and Manufacturing
(Dual-listed with I E 449). (3-0) Cr. 3.
Prereq: Prereq: I E 248 or similar manufacturing engineering course, MATH 265.
Introduction to rapid prototyping processes and other rapid manufacturing methodologies. Operating principles and characteristics of current and developing rapid prototyping processes. Use of rapid prototypes in product design, development, and service. Selection of rapid prototyping systems based on rapid methodologies used in manufacturing processes and rapid tooling approaches.

I E 550: Rapid Prototyping and Manufacturing
(3-0) Cr. 3.
Prereq: Prereq: I E 248 or similar manufacturing engineering course, Math 265. Undergraduates: Permission of instructor.
Introduction to rapid prototyping processes and other rapid manufacturing methodologies. Operating principles and characteristics of current and developing rapid prototyping processes. Use of rapid prototypes in product design, development, and service. Selection of rapid prototyping systems based on rapid methodologies used in manufacturing processes and rapid tooling approaches.

I E 551: Continuous Quality Improvement of Process
(3-0) Cr. 3.
Prereq: I E 361
Methods for continuous quality improvement in process analysis. The systems analysis for process improvement model based on W. Edwards Deming. Quality function deployment methods. Case studies of applications to manufacturing and other heavy industries. Use of process analysis computerized programs and tools for design analysis.

I E 553: Engineering Management Theory
(3-0) Cr. 3.
Prereq: STAT 231
Introduction to engineering management (EM) concepts and tools needed to form, develop and manage cross-disciplinary distributed engineering teams working in research and development (R&D). Topics include: Understanding R&D organizations, team and workgroups, job design, organizational effectiveness, and leading technical professionals. Overview of current and emerging research in EM.

I E 554: Decision Analysis in System Design
(3-0) Cr. 3.
Prereq: Course in probability and statistics.
Application of decision theory principles and tools to evaluate alternative complex engineering systems based on technical design requirements. Systems engineering methods are presented, with applications in aerospace, energy, and manufacturing domains. Methods for identifying and mitigating risk and uncertainty are presented.
IE 565: Systems Engineering and Analysis
(Cross-listed with AER E, E E). (3-0) Cr. 3.
Prereq: Coursework in basic statistics
Introduction to organized multidisciplinary approach to designing and developing systems. Concepts, principles, and practice of systems engineering as applied to large integrated systems. Life cycle costing, scheduling, risk management, functional analysis, conceptual and detail design, test and evaluation, and systems engineering planning and organization. Not available for degrees in industrial engineering.

IE 566: Applied Systems Engineering
(3-0) Cr. 3.
Prereq: IE 565
Design for reliability, maintainability, usability, supportability, producibility, disposability, and life cycle costs in the context of the systems engineering process. Students will be required to apply the principles of systems engineering to a project including proposal, program plan, systems engineering management plan, and test and evaluation plan. Not available for degrees in industrial engineering.

IE 568: Large-Scale Complex Engineered Systems (LSCES)
(Dual-listed with IE 468). (Cross-listed with AER E). (3-0) Cr. 3. S.
Prereq: senior standing in College of Engineering or permission of AerE 468 instructor
Introduction to the theoretical foundation and methods associated with the design for large-scale complex engineered systems, including objective function formation, design reliability, value-driven design, product robustness, utility theory, economic factors for the formation of a value function and complexity science as a means of detecting unintended consequences in the product behavior.

IE 570: Systems Engineering and Project Management
(3-0) Cr. 3.
Prereq: Coursework in basic statistics
Systems view of projects and the processes by which they are implemented. Focuses on qualitative and quantitative tools and techniques of project management. Topics will include organizational structure types; project selection methodologies; simulation and optimization; and earned value management. Case studies will be included, and a group project required.

IE 571: Occupational Biomechanics
(3-0) Cr. 3.
Prereq: E M 274, STAT 231

IE 572: Design and Evaluation of Human-Computer Interaction
(3-0) Cr. 3.
Prereq: IE 577 or instructor’s permission
Human factors methods applied to interface requirements, design, prototyping, and evaluation. Concepts related to understanding user characteristics, design principles, usability analysis, methods and techniques for design and evaluation of the interface. The evaluation and design of the information presentation characteristics of a wide variety of interfaces: web sites (e-commerce), mobile applications, and information presentation systems (cockpits, instrumentation, etc.).

IE 576: Human Factors in Product Design
(3-0) Cr. 3.
Prereq: IE 572 or IE 577
Investigation of the human interface to consumer and industrial systems and products, providing a basis for their design and evaluation. Discussions of human factors in the product design process: modeling the human during product use; usability; human factors methods in product design evaluation; user-device interface; safety, warnings, and instructions for products; considerations for human factors in the design of products for international use.

IE 577: Human Factors
(3-0) Cr. 3.
Prereq: IE 271 or graduate classification
Physical and psychological factors affecting human performance in systems. Signal detection theory, human reliability modeling, information theory, and performance shaping applied to safety, reliability, productivity, stress reduction, training, and human/equipment interface design. Laboratory assignments related to system design and operation.

IE 581: e-Commerce Systems Engineering
(Dual-listed with IE 481). (3-0) Cr. 3.
Prereq: IE 148
Design, analysis, and implementation of e-commerce systems. Information infrastructure, enterprise models, enterprise processes, enterprise views. Data structures and algorithms used in e-commerce systems, SQL, exchange protocols, client/server model, web-based views.

IE 582: Enterprise Modeling and Integration
(3-0) Cr. 3.
Prereq: 3 credits in information technology or information systems
The design and analysis of enterprise models to support information engineering of enterprise-wide systems. Representation of system behavior and structure including process modeling, information modeling, and conceptual modeling. Applications in enterprise application integration, enterprise resource planning systems, product data management systems, and manufacturing execution systems.

IE 583: Knowledge Discovery and Data Mining
(Dual-listed with IE 483). (3-0) Cr. 3.
Prereq: IE 148, IE 312, and STAT 231
Introduction to data warehouses and knowledge discovery. Techniques for data mining, including probabilistic and statistical methods, genetic algorithms and neural networks, visualization techniques, and mathematical programming. Advanced topics include web-mining and mining of multimedia data. Case studies from both manufacturing and service industries. A computing project is required.

IE 585: Requirements Engineering
(3-0) Cr. 3.
Prereq: 3 credits in information technology or information systems
Principles and practices for requirements engineering as part of the product development process with emphasis on software systems engineering. Problem definition, problem analysis, requirements analysis, requirements elicitation, validation, specifications. Case studies using requirements engineering methods and techniques.
I E 588: Information Systems for Manufacturing
(3-0) Cr. 3.
Prereq: I E 148, I E 448
Design and implementation of systems for the collection, maintenance, and usage of information needed for manufacturing operations, such as process control, quality, process definition, production definitions, inventory, and plant maintenance. Topics include interfacing with multiple data sources, methods to utilize the information to improve the process, system architectures, and maintaining adequate and accurate data for entities internal and external to the enterprise to achieve best manufacturing practices.

I E 590: Special Topics
Cr. 1-3. Repeatable.
Advanced study of a research topic in the field of industrial engineering.

Courses for graduate students:

I E 601: Ph.D. Research Basics and Communications
Cr. R. Repeatable.
Prereq: Enrollment in Ph.D. program in Industrial Engineering.
Principles and practices for conducting research at the Ph.D. level, including problem definition, proposal writing, presentations, conference proceedings, paper preparation, and project management. Offered on a satisfactory-fail basis only.

I E 602: Ph.D. Research Conduct
Cr. R. Repeatable.
Prereq: Enrollment in Ph.D. program in Industrial Engineering.
Responsible conduct of research at the Ph.D. level, including ethical issues in peer review, conflicts of interest, mentoring, human subjects and live animals, data management, and collaboration. Offered on a satisfactory-fail basis only.

I E 613: Stochastic Production Systems
(3-0) Cr. 3.
Prereq: I E 513
Modeling techniques to evaluate performance and address issues in design, control, and operation of systems. Markov models of single-stage make-to-order and make-to-stock systems. Approximations for non-Markovian systems. Impact of variability on flow lines. Open and closed queuing networks.

I E 631: Nonlinear Programming
(3-0) Cr. 3.
Prereq: I E 534
Develop nonlinear models, convex sets and functions, optimality conditions, Lagrangian duality, unconstrained minimization techniques. Constrained minimization techniques covering penalty and barrier functions, sequential quadratic programming, the reduced gradient method.

I E 632: Integer Programming
(3-0) Cr. 3.
Prereq: I E 534
Integer programming including cutting planes, branch and bound, and Lagrangian relaxation. Introduction to complexity issues and search-based heuristics.

I E 633: Stochastic Programming
(3-0) Cr. 3.
Prereq: I E 513 or STAT 447, I E 534 or equivalent
Mathematical programming with uncertain parameters; modeling risk within optimization; multi-stage recourse and probabilistically constrained modes; solution and approximation algorithms including dual decomposition and progressive hedging; and applications to planning, allocation and design problems.

I E 634: Computational Optimization
(3-0) Cr. 3.
Prereq: I E 534 or equivalent
Theory, algorithm, and computer implementation of optimization models. Simplex, Benders decomposition, computational complexity, mixed integer linear program, linear program with complementarity constraints, inverse optimization, bilevel discrete optimization. CPLEX, Matlab, and Tomlab will be used for computer implementation.

I E 642: Simultaneous Engineering in Manufacturing Systems
(3-0) Cr. 3.
Prereq: I E 549 or M E 415
Current engineering methods for the product life cycle process. Feature-based design, computer-aided process planning, and data-driven product engineering.

I E 671: Research Practicum in Human Factors and Ergonomics
(3-0) Cr. 3. Repeatable.
Prereq: I E 571 or I E 577 or IE 572
Research topic development, literature evaluation, experimental design, use of bioinstrumentation, data collection, basic data interpretation, statistical analysis, manuscript preparation.

I E 681: Cognitive Engineering
(Cross-listed with HCI). (3-0) Cr. 3.
Prereq: I E 572 or I E 577 or PSYCH 516 or HCI/PSYCH 521 or equivalent
Provides an overview of human cognitive capabilities and limitations in the design of products, work places, and large systems. Contexts vary broadly and could range from simple use of mobile devices to an air-traffic control or nuclear plant command center. Course focuses on what we can infer about users’ thoughts and feelings based on what we can measure about their performance and physiological state. Covers the challenge of designing automated systems.

I E 690: Advanced Topics
Cr. 1-3. Repeatable.
Prereq: Permission of the instructor
Advanced topics related to Ph.D. research in industrial engineering under the direction of the instructor.

I E 697: Engineering Internship
Cr. R. Repeatable. F.S.S.
Prereq: Permission of department
Professional work period for a maximum of one semester per academic year. Offered on a satisfactory-fail basis only.

I E 699: Research
Cr. arr. Repeatable.