Computer Science

Major in Computer Science

The curriculum leading to the baccalaureate degree in computer science is designed to prepare students for positions as computer scientists with business, industry, or government, or for graduate study in computer science. The main educational objectives of the computer science program at Iowa State University are that its graduates demonstrate expertise, engagement, and learning within three to five years after graduation.

Expertise: Graduated students should have the ability to establish peer-recognized expertise in the discipline. They should have the ability to articulate this expertise by formulating and solving problems of interest, by creating or deriving value through the application of technology, and by using mathematical foundations, algorithmic principles, and computer science theory in designing, implementing, and evaluating computer-based systems and processes which meet the desired needs of their employers.

Engagement: Graduated students should have the ability to be engaged in the profession through the practice of computer science in industry, academia, or the public sector. They should demonstrate effective teaming and commitment to working with others by applying communications skills and professional knowledge.

Learning: Graduated students should have the ability to engage in sustained learning through graduate work, professional improvement opportunities, and self study so that they can adapt to the role played by information processing in ever-changing areas of science, technology, and society.

Curriculum in Computer Science

Students wishing to pursue the B.S. degree in computer science must first successfully complete the pre-major program consisting of COM S 227, COM S 228, and Math 165; all with a grade of C- or above.

A student seeking a B.S. degree in computer science must satisfy the requirements of the University and College of Liberal Arts and Sciences (see Liberal Arts and Sciences, Curriculum) and the departmental requirements.

The departmental requirements consist of a minimum of 44 credits in computer science credits to a minimum of 13.

13 credits of Natural Science:

At least one Math course from:

MATH 207 Matrices and Linear Algebra 3
MATH 265 Calculus III 4
MATH 266 Elementary Differential Equations 3
MATH 267 Elementary Differential Equations and Laplace Transforms 4
MATH 304 Combinatorics 3
MATH 314 Graph Theory 3
MATH 317 Theory of Linear Algebra 4

13 credits of Natural Science:

This should include at least one of the following 2-course sequences and their labs:

BIOL 211 Principles of Biology I & 211L and Principles of Biology Laboratory I 4
BIOL 212 Principles of Biology II & 212L and Principles of Biology Laboratory II 4
CHEM 177 General Chemistry I & 177L and Laboratory in General Chemistry I 5
CHEM 178 General Chemistry II & 178L and Laboratory in College Chemistry II 4
PHYS 221 Introduction to Classical Physics I 5
PHYS 222 Introduction to Classical Physics II 5

In addition, courses from the following list can be taken to bring the natural science credits to a minimum of 13:
Graduate Study

The department offers graduate programs leading to degrees of Master of Science (MS) and Doctor of Philosophy (PhD) with a major in Computer Science. The Doctor of Philosophy degree may also be earned with computer science as a co-major with some other discipline. Additionally, the department offers a minor for students majoring in other disciplines.

Established research areas include algorithms, artificial intelligence, computational complexity, computer architecture, bioinformatics, computational biology, computer networks, database systems, formal methods, information assurance, machine learning and neural networks, multimedia, operating systems, parallel and distributed computing, programming languages, robotics, and software engineering. There are also numerous opportunities for interdisciplinary research.

Typically, students beginning graduate work in Computer Science have completed a bachelor’s degree or equivalent in Computer Science. However, some students with undergraduate majors in other areas, such as Mathematical, physical, or biological science or engineering become successful graduate students in Computer Science.

For the degree Master of Science, a minimum of 31 semester credits is required. A thesis or a creative component demonstrating research and the ability to organize and express significant ideas in computer science is required.

The purpose of the doctoral program is to train students to do original research in Computer Science. Each student is also required to attain knowledge and proficiency commensurate with a leadership role in the field. The PhD requirements are governed by the student’s program of study committee within established guidelines of the department and the graduate college. They include coursework (demonstrating breadth and depth of knowledge), a research skills requirement, a preliminary examination, and a doctoral dissertation and final oral examination. The department recommends that all graduate students majoring in Computer Science teach as part of their training for an advanced degree.

Courses primarily for undergraduates:

Introduction to the procedures and policies of Iowa State University and the Department of Computer Science, test-outs, honorary societies, etc. Issues relevant to student adjustment to college life will also be discussed. Offered on a satisfactory-fail basis only.

COM S 103. Computer Applications. Cr. 4. F.S.SS.
Introduction to computer literacy and applications. Applications: Windows, Internet browser/HTML, word processing, spreadsheets, database management and presentation software. Literacy: history of computing, structure of computers, telecommunications, computer ethics, computer crime, and history of programming languages. No prior computer experience necessary. Course is offered online only. Students must attend an orientation session the first week of class.

COM S 104. Introduction to Programming. (1.5-1) Cr. 2. F.S.
Offered first 8 weeks and last 8 weeks. Use of personal computer and workstation operating systems and beginning programming. Project-oriented approach to computer operation and programming, including use of tools to aid in programming. Topics from computer history, using basic Windows and Unix tools, program structure, expression, variables, decision and logic, and iteration. No prior computer experience necessary.

COM S 107. Applied Computer Programming. (3-0) Cr. 3. F.S.
Introduction to computer programming for non-majors using a language such as the Visual Basic language. Basics of good programming and algorithm development. Graphical user interfaces.

COM S 108. Applied Computer Programming II. (3-0) Cr. 3. F.S. Prereq: COM S 107 or equivalent
Advanced programming applications in Visual Basic for non-majors. Emphasis on programming projects including sorting, file processing, database processing, web programming, and graphics and animation. Students will learn problem solving techniques and advanced programming skills to build real-world applications.

COM S 113. Introduction to Spreadsheets and Databases. (2-2) Cr. 3. F.S.SS.
Using Microsoft Excel spreadsheets and Microsoft Access databases to input, store, process, manipulate, query, and analyze data for business and industrial applications. Credit in Com S 113 may not be applied toward graduation in the COM S, S E, and CPR E majors. Only one of COM S 102, COM S 103, and COM S 113 may count toward graduation.

Undergraduate Coursework

ANTHR 202 Introduction to Biological Anthropology and Archaeology 3
ANTHR 307 Biological Anthropology 3
BBMB 221 Structure and Reactions in Biochemical Processes 3
BIOL 204 Biodiversity 2
BIOL 258 Human Reproduction 3
BIOL 312 Ecology 4
BIOL 355 Plants and People 3
CHEM 163 College Chemistry I 4
ENT 370 Insect Biology 3
ENV S 324 Energy and the Environment 3
FS HN 167 Introduction to Human Nutrition 3
GEN 313 Principles of Genetics 3
GEN 313L Genetics Laboratory 1
GEN 320 Genetics, Agriculture and Biotechnology 3
GEOL 100 The Earth ** 3
GEOL 101 Environmental Geology: Earth in Crisis 3
GEOL 102 History of the Earth 3
GEOL 105 Gems and Gemstones 1
GEOL 108 Introduction to Oceanography 3
GEOL 201 Geology for Engineers and Environmental Scientists 3
GEOL 451 Applied and Environmental Geophysics 3
MAT E 215 & 215L Introduction to Materials Science and Engineering I and Introduction to Materials Science and Engineering I - Lab 4
MTEOR 206 Introduction to Weather and Climate 3
MTEOR 301 General Meteorology 4
PSYCH 310 Brain and Behavior 3
PHYS 221 or HIGHER 3

Footnotes
* * * CHEM 163 - 231
** GEOL 100-108

The following courses meet the communication proficiency requirement:

ENGL 150 Critical Thinking and Communication 3
ENGL 250 Written, Oral, Visual, and Electronic Composition 3

One of the following

ENGL 302 Business Communication 3
ENGL 305 Creative Writing: Nonfiction 3
ENGL 309 Report and Proposal Writing 3
ENGL 314 Technical Communication 3

The minimum grade accepted in each of the three required English courses is a C-.

Students transferring from other institutions must take at least 45 credits at the 300 level or higher at Iowa State University while resident here; of these at least 15 credits should be in our department.

Students must earn a C- or better in each course in the department which is a prerequisite to a course listed in the student's degree program.

Undergraduate Minor in Computer Science

The Department of Computer Science offers an undergraduate minor in Computer Science. The minor requires at least 19 credits in computer science courses.

COM S 227 Introduction to Object-oriented Programming 4
COM S 228 Introduction to Data Structures 3
COM S 327 Advanced Programming Techniques 3

9 credits in courses 300 level or above 9

Undergraduate Curriculum in Software Engineering

The Department of Computer Science together with the Department of Electrical and Computer Engineering also offer a curriculum leading to an undergraduate degree in software engineering. The software engineering curriculum offers emphasis areas in software engineering principles, process, and practice. Students may also take elective courses in computer engineering and computer science.

See Index, Software Engineering. For curriculum information, see also College of Engineering and College of Liberal Arts and Sciences.
COM S 201. Computer Programming in COBOL.
(3-0) Cr. 3. SS.
Computer programming in COBOL. Emphasis on the design, writing, debugging, and testing of business applications programs in a transaction-oriented environment.

COM S 203. Careers in Computer Science.
Cr. R. F.S.
Computer science as a profession. Introduction to career fields open to computer science majors. Relationship of coursework to careers. Presentations by computer science professionals. Offered on a satisfactory-fail basis only.

(Cross-listed with MIS). (3-1) Cr. 3. F.S. Prereq: MATH 150 or placement into MATH 145/MATH 141/MATH 142 or higher
An introduction to computer programming using an object-oriented programming language. Emphasis on the basics of good programming techniques and style. Extensive practice in designing, implementing, and debugging small programs. Use of abstract data types. Interactive and file I/O. Exceptions/error-handling. This course is not designed for computer science, software engineering, and computer engineering majors. Credit may not be applied toward graduation for both COM S 207/MIS 207 and COM S 227.

(3-1) Cr. 3. S. Prereq: MIS/COM S 207, credit or enrollment in MATH 151, MATH 160, or MATH 165
Intermediate-level programming techniques. Emphasis on designing, writing, testing, debugging, and documenting medium-sized programs. Data structures and their uses. Dynamic memory usage. Inheritance and polymorphism. Algorithm design and efficiency—recursion, searching, and sorting. Event-driven and GUI programming. The software development process. This course is not designed for computer science, software engineering and computer engineering majors. Credit may not be applied toward the major in computer science, software engineering, or computer engineering.

COM S 227. Introduction to Object-oriented Programming.
(3-2) Cr. 4. F.S. Prereq: Placement into MATH 143, 165, or higher; recommended: a previous high school or college course in programming or equivalent experience.
Introduction to object-oriented design and programming techniques. Symbolic and numerical computation, recursion and iteration, modularity procedural and data abstraction, and specifications and subtyping. Object-oriented techniques including encapsulation, inheritance and polymorphism. Imperative programming. Emphasis on principles of programming and object-oriented design through extensive practice in design, writing, running, debugging, and reasoning. Course intended for Com S majors. Credit may not be applied toward graduation for both COM S 207 and COM S 227.

COM S 228. Introduction to Data Structures.
(3-1) Cr. 3. S. Prereq: Minimum of C- in COM S 227, credit or enrollment in MATH 165
An object-oriented approach to data structures and algorithms. Object-oriented analysis, design, and programming, with emphasis on data abstraction, inheritance and subtype polymorphism. Abstract data type specification and correctness. Collections and associated algorithms, such as stacks, queues, lists, trees. Searching and sorting algorithms. Graphs. Data on secondary storage. Analysis of algorithms. Emphasis on object-oriented design, writing and documenting medium-sized programs. This course is designed for majors.

COM S 252. Linux Operating System Essentials.
(3-0) Cr. 3. F. Prereq: COM S 107 or COM S 207 or COM S 227
Introduction to installation, utilization, and administration of Linux systems. Topics include open-source software, package installation and management, shell programming and command-line utilities, process and service management, account management, network configuration, file sharing, interoperability with other computers and operating systems, automation, and system security.

COM S 290. Independent Study.
Cr. arr. F.S. Prereq: Permission of instructor
Offered on a satisfactory-fail basis only.

COM S 290H. Independent Study: Honors.
Cr. arr. F.S. Prereq: Permission of instructor
Offered on a satisfactory-fail basis only.

(3-1) Cr. 3. F.S. Prereq: Minimum of C- in COM S 228
A practical introduction to methods for managing software development. Process models, requirements analysis, structured and object-oriented design, coding, testing, maintenance, cost and schedule estimation, metrics. Programming projects.

COM S 311. Design and Analysis of Algorithms.
(3-1) Cr. 3. F.S. Prereq: Minimum of C- in COM S 228; MATH 166, ENGL 250, and COM S 330 or CPR E 310
Basic techniques for design and analysis of efficient algorithms. Sorting, searching, graph algorithms, computational geometry, string processing and NP-completeness. Design techniques such as dynamic programming and the greedy method. Asymptotic, worst-case, average-case and amortized analyses. Data structures including heaps, hash tables, binary search trees and red-black trees. Programming projects.

COM S 319. Software Construction and User Interfaces.
(Cross-listed with S E). (3-0) Cr. 3. F. Prereq: COM S 228

(3-1) Cr. 3. F.S. Prereq: Minimum of C- in COM S 228, CPR E 281 and ENGL 250
Introduction to computer architecture and organization. Emphasis on evaluation of performance, instruction set architecture, datapath and control, memory-hierarchy design, and pipelining. Assembly language on a simulator.

COM S 327. Advanced Programming Techniques.
(3-0) Cr. 3. F.S. Prereq: COM S 228, credit or enrollment in MATH 166, CPR E 281
Object-oriented programming experience using a language suitable for exploring advanced topics in programming. Topics include memory management, parameter passing, inheritance, compiling, debugging, and maintaining programs. Significant programming projects.

(3-1) Cr. 3. F.S. Prereq: Minimum of C- in COM S 228 and MATH 166; ENGL 250
Concepts in discrete mathematics as applied to computer science. Logic, proof techniques, set theory, relations, graphs, combinatorics, discrete probability and number theory.

(Cross-listed with LING). (3-1) Cr. 3. F.S. Prereq: Minimum of C- in COM S 228, MATH 166, and in COM S 330 or CPR E 310; ENGL 250

(3-0) Cr. 3. F. Prereq: COM S 327, CoReq MATH 207 or MATH 317
Basic algorithms, design, and programming of interactive computer graphics systems and hardware. Topics include 2D and 3D transformations, 3D viewing, visible surface algorithms, collision detection, illumination models, shading, ray tracing, shadows, transparency and texture mapping.

COM S 342. Principles of Programming Languages.
(Cross-listed with S E). (3-1) Cr. 3. F.S. Prereq: Minimum of C- in COM S 228, COM S 330 or CPR E 310
Study of concepts in programming languages and major programming paradigms, especially functional programming. Special emphasis on design tradeoffs that enable students to make sound choices of programming languages for a given software development task. Programming projects.

(Cross-listed with MATH). (3-0) Cr. 3. S. Prereq: MATH 201 or COM S 330
Divisibility, integer representations, primes and divisors, linear diophantine equations, congruences, and multiplicative functions. Applications to cryptography.

COM S 352. Introduction to Operating Systems.
(3-1) Cr. 3. F.S. Prereq: COM S 321, and COM S 327; ENGL 250
Survey of operating system issues. Introduction to hardware and software components including: processors, peripherals, interrupts, management of processes, threads and memory, deadlocks, file systems, protection, virtual machines and system organization, and introduction to distributed operating systems. Programming projects.

COM S 362. Object-Oriented Analysis and Design.
(3-0) Cr. 3. F.S. Prereq: Minimum of C- in COM S 228; ENGL 250
Object-oriented requirements analysis and systems design. Design notations such as the Unified Modeling Language. Design Patterns. Group design and programming with large programming projects.
COM S 363. Introduction to Database Management Systems. (3-0) Cr. 3. F.S. Prereq: Minimum of C- in COM S 228; ENGL 250
Relational, object-oriented, and semi-structured data models and query languages, SQL, ODMG, and XML standards. Database design using entity-relationship model, data dependencies and object definition language. Application development in SQL-like languages and general purpose host languages with application program interfaces. Information integration using data warehouses, mediators and wrappers. Programming Projects.

COM S 396. Cooperative Education. Cr. R. Prereq: Permission of department chair Required of all cooperative students. Students must register for this course prior to commencing each work period.

COM S 401. Projects in Computing Applications. (2-2) Cr. 3. F. Prereq: ENGL 250, SP CM 212, COM S 309, and either COM S 362 or COM S 363
Applications of software development methods (requirements collection and analysis, software design, project management, documentation and testing), programming techniques, database designs and administration, network application programming to solve computing needs in business settings. A study of practical applications of emerging technologies in computing. Emphasis on semester-long team programming projects. Lab assignments. Oral and written reports.

Students work as individuals and teams to complete the planning, design, and implementation of a significant project in the topic area. Oral and written reports.

COM S 402A. Computer Science Senior Project: Multimedia and Computer Gaming I. Cr. 2-3. Repeatable. F.S. Prereq: COM S 437 or permission of the instructor
Students conceive, plan, architect and design a computer game. Students registered in this course will work with students in ARTIS 409. Oral and written reports.

COM S 402B. Computer Science Senior Project: Project Multimedia and Computer Gaming II. (0-4) Cr. 2. Repeatable. F.S. Prereq: COM S 402A
Students implement, test, and present a completed production computer game. Students in this class will work with students in ARTIS 409. Oral and written reports.

COM S 402C. Computer Science Senior Project: Project in Computer Science. (0-6) Cr. 3. Repeatable. F.
Students work as individuals and teams to complete the planning, design, and implementation of a significant project in the topic area. Oral and written reports.

COM S 409. Software Requirements Engineering. (Dual-listed with COM S 509). (Cross-listed with S E) (3-0) Cr. 3. F. Prereq: COM S 309
The requirements engineering process including identification of stakeholders requirements elicitation techniques such as interviews and prototyping, analysis fundamentals, requirements specification, and validation. Use of Models: State-oriented, Function-oriented, and Object-oriented. Documentation for Software Requirements. Informal, semi-formal, and formal representations. Structural, informational, and behavioral requirements. Non-functional requirements. Use of requirements repositories to manage and track requirements through the life cycle. Case studies, software projects, written reports, and oral presentations will be required.

COM S 410. Distributed Software Development. (Dual-listed with COM S 510). (3-0) Cr. 3. F. Prereq: COMS 228, COMS 309, COMS 327
Team with students at foreign universities to develop a software application. Importance of distributed development. Design for distributed development, effective processes for distributed development, and cultural issues in distributed development, organizing for distributed development, communication techniques and skills for distributed development, including oral presentations. Graduate credit requires in-depth study of concepts.

COM S 412. Formal Methods in Software Engineering. (Dual-listed with COM S 512). (Cross-listed with CPR E, S E) (3-0) Cr. 3. S. Prereq: COM S 330 or CPR E 310; COM S 311, STAT 330
A study of formal techniques for model-based specification and verification of software systems. Topics include logics, formalism, graph theory, numerical computations, algorithms, and tools for automatic analysis of systems. Graduate credit requires in-depth study of concepts.

COM S 414. Gerontechnology in Smart Home Environments. (Dual-listed with COM S 514). (3-0) Cr. 3. F. Prereq: COM S 227 or (COM S 207 or Genor 377 or ArtGr 271) or equivalent.
An interdisciplinary course designed for students who are interested in assistive technology, pervasive computing, mobile computing and principles of universal and inclusive design for end users, in particular, the elderly population. Students will work in semester-long projects as interdisciplinary teams to apply knowledge obtained from lectures and mutual presentations. For graduate credit students are required to submit a research report and give an oral presentation.

COM S 417. Software Testing. (Cross-listed with S E). (3-0) Cr. 3. S. Prereq: COM S 309; COM S 330 or CPR E 310; ENGL 250, SP CM 212
Comprehensive study of software testing, principles, methodologies, management strategies and techniques. Test models, test design techniques (black box and white box testing techniques), test adequacy criteria, integration, regression, system testing methods, and software testing tools.

COM S 418. Introduction to Computational Geometry. (Dual-listed with COM S 518). (3-0) Cr. 3. Alt. S., offered odd-numbered years.
Prereq: COM S 311 or permission of instructor
Introduction to data structures, algorithms, and analysis techniques for computational problems that involve geometry. Line segment intersection, polygon triangulation, 2D linear programming, range queries, point location, arrangements and duality, Voronoi diagrams and Delaunay triangulation, convex hulls, robot motion planning, visibility graphs. Other selected topics. Programming assignments.

COM S 421. Logic for Mathematics and Computer Science. (Cross-listed with MATH). (3-0) Cr. 3. S. Prereq: MATH 301 or MATH 307 or MATH 317 or COM S 330
Propositional and predicate logic. Topics selected from Horn logic, equational logic, resolution and unification, foundations of logic programming, reasoning about programs, program specification and verification, model checking and binary decision diagrams, temporal logic and modal logic.

COM S 425. High Performance Computing for Scientific and Engineering Applications. (Cross-listed with CPR E). (3-1) Cr. 3. S. Prereq: COM S 311, COM S 330, ENGL 250, SP CM 212
Introduction to high performance computing platforms including parallel computers and workstation clusters. Discussion of parallel architectures, performance, programming models, and software development issues. Sample applications from science and engineering. Practical issues in high performance computing will be emphasized via a number of programming projects using a variety of programming models and case studies. Oral and written reports.

COM S 426. Introduction to Parallel Algorithms and Programming. (Dual-listed with COM S 526). (Cross-listed with CPR E) (3-2) Cr. 4. F. Prereq: CPR E 308 or COM S 321, CPR E 315 or COM S 311
Models of parallel computation, performance measures, basic parallel constructs and communication primitives, parallel programming using MPI, parallel algorithms for selected problems including sorting, matrix, tree and graph problems, fast Fourier transforms.

COM S 430. Advanced Programming Tools. (3-1) Cr. 3. S. Prereq: COM S 311, COM S 362 or COM S 363, ENGL 250, SP CM 212
Topics in advanced programming techniques and tools widely used by industry (e.g., event-driven programming and graphical user interfaces, standard libraries, client/server architectures and techniques for distributed applications). Emphasis on programming projects in a modern integrated development environment. Oral and written reports.

COM S 433. Computational Models of Nanoscale Self-Assembly. (Dual-listed with COM S 533). (3-0) Cr. 3. S. Prereq: Minimum of C- in COM S 331 or consent of the instructor
Modeling and analysis of natural and engineered systems that spontaneously assemble themselves from small components. Topics include biomolecular self-assembly, tile assembly models, computation via self-assembly, distributed folding, origami models, and self-repair. Emphasis on mathematical methods of describing, simulating, programming, and verifying the behaviors of self-assembling systems. Graduate credit requires a written or oral report on current research.

COM S 437. Computer Game and Media Programming. (3-0) Cr. 3. S. Prereq: COM S 336 or permission of instructor
Students will learn video game programming using current game engine interfaces with real hardware. Particular attention is paid to the console architecture, development environment, tool chains, 2D graphics, 3D graphics, controllers, memory management, and audio systems. Students will complete the course by writing a simple game that runs on console hardware.

COM S 441. Programming Languages. (Dual-listed with COM S 541). (3-1) Cr. F. Prereq: COM S 342 or COM S 440 Survey of the goals and problems of language design. Formal and informal studies of a wide variety of programming language features including type systems. Creative use of functional and declarative programming paradigms.

COM S 444. Introduction to Bioinformatics. (Cross-listed with BCB, CBIO, BIOL, CPR E, GEN). (4-0) Cr. 4. F. Prereq: MATH 165 or STAT 401 or equivalent Broad overview of bioinformatics with a significant problem-solving component, including hands-on practice using computational tools to solve a variety of biological problems. Topics include: database searching, sequence alignment, gene prediction, RNA and protein structure prediction, construction of phylogenetic trees, comparative and functional genomics, systems biology.

COM S 454. Distributed Systems. (Dual-listed with COM S 554). (Cross-listed with CPR E). (3-1) Cr. 3. S. Prereq: COM S 311, COM S 352 (3-1) Cr. 3. Theoretical and practical issues of design and implementation of distributed systems. The client server paradigm, inter-process communications, synchronization and concurrency control, naming, consistency and replication, fault tolerance, and distributed file systems. Graduate credit requires additional in-depth study of concepts. Programming projects and written reports.

COM S 455. Simulation: Algorithms and Implementation. (Dual-listed with COM S 555). (3-0) Cr. 3. Alt. F., offered even-numbered years. Prereq: COM S 311 and COM S 330, STAT 330, ENGL 150, SP CM 212 Introduction to discrete-event simulation with a focus on computer science applications, including performance evaluation of networks and distributed systems. Overview of algorithms and data structures necessary to implement simulation software. Discrete and continuous stochastic models, random number generation, elementary statistics, simulation of queuing and inventory systems. Monte Carlo simulation, point and interval parameter estimation. Graduate credit requires additional in-depth study of concepts. Oral and written reports.

COM S 472. Principles of Artificial Intelligence. (Dual-listed with COM S 572). (3-1) Cr. 3. F. Prereq: COM S 311, COM S 330 or CPR E 310, STAT 330, ENGL 250, SP CM 212, COM S 342 or comparable programming experience Specification, design, implementation, and selected applications of intelligent software agents and multi-agent systems. Computational models of intelligent behavior, including problem solving, knowledge representation, reasoning, planning, decision making, learning, perception, action, communication and interaction. Reactive, deliberative, rational, adaptive, learning and communicative agents and multiagent systems. Artificial intelligence programming. A research project and a written report is required for students enrolled in COM S 572.

COM S 474. Introduction to Machine Learning. (3-1) Cr. 3. Alt. S., offered odd-numbered years. Prereq: COM S 311, COM S 330 or CPR E 310, STAT 330, MATH 165, ENGL 250, SP CM 212, COM S 342 or comparable programming experience Basic principles, techniques, and applications of Machine Learning. Design, analysis, implementation, and applications of learning algorithms. Topics include: statistical learning, pattern classification, function approximation, Bayesian learning, linear models, artificial neural networks, support vector machines, decision trees, instance based learning, probabilistic graphical models, unsupervised learning, selected applications in automated knowledge acquisition, pattern recognition, and data mining.

COM S 477. Problem Solving Techniques for Applied Computer Science. (Dual-listed with COM S 577). (3-0) Cr. 3. Alt. F., offered even-numbered years. Prereq: COM S 228; COM S 330 or CPR E 310, MATH 166, MATH 207 or MATH 317, or consent of the instructor Selected topics in applied mathematics and modern heuristics that have found applications in areas such as geometric modeling, graphics, robotics, vision, human machine interface, speech recognition, computer animation, etc. Homogeneous coordinates and transformations, perspective projection, quaternions and rotations, polynomial interpolation, roots of polynomials, resultants, solution of linear and nonlinear equations, approximation, data fitting, Fourier series and fast Fourier transform, linear programming, nonlinear optimization, Lagrange multipliers, parametric and algebraic curves, curvature, Frenet formulas, Bezier curves. Programming components. A scholarly report is required for graduate credit.

COM S 486. Fundamental Concepts in Computer Networking. (3-0) Cr. S. S. Prereq: COM S 352 An introduction to fundamental concepts in the design and implementation of computer communication infrastructure, and the wired and wireless networks, their protocols, and applications. Layered network architecture in the Internet, applications, transport, Socket APIs, network, and data link layers and their protocols, multimedia networking, and network security.

COM S 487. Network Programming, Applications, and Research Issues. (Dual-listed with COM S 587). (3-0) Cr. S. S. Prereq: COM S 352 or CPR E 489 or equivalent Programming paradigms for building distributed and networking applications, including multiprocessor client-server programming, socket programming, distributed object frameworks and programming suites, and web computing and security. Introduction to some on-going research issues in distributed and networking applications, including peer-to-peer computing, multimedia communications, and mobile computing and networking. A written report and an oral presentation is required for students enrolling in COM S 587.

COM S 490. Independent Study. Cr. arr. F.S. Prereq: 6 credits in computer science, permission of instructor Offered on a satisfactory-fail basis only. No more than 9 credits of COM S 490 may be counted toward graduation.

COM S 490H. Independent Study: Honors. Cr. arr. Repeatable, maximum of 9 credits. F.S. Prereq: 6 credits in computer science, permission of instructor Offered on a satisfactory-fail basis only. No more than 9 credits of COM S 490 may be counted toward graduation.

Courses primarily for graduate students, open to qualified undergraduates:

COM S 502. Complex Adaptive Systems Seminar. (Cross-listed with CAS). (1-0) Cr. 1. F. S. Prereq: Admission to CAS minor Understanding core techniques in artificial life is based on basic readings in complex adaptive systems. Techniques of complex system analysis methods including: evolutionary computation, neural nets, agent based simulations (agent based computational economics). Large-scale simulations are to be emphasized, e.g. power grids, whole ecosystems.

COM S 503. Complex Adaptive Systems Concepts and Techniques. (Cross-listed with CAS). (3-0) Cr. 3. S. Prereq: Admission to CAS minor or related field Survey of complex systems and their analysis. Examples are drawn from engineering, computer science, biology, economics and physics.

COM S 509. Software Requirements Engineering. (Dual-listed with COM S 409). (3-0) Cr. 3. F. Prereq: COM S 309 The requirements engineering process including identification of stakeholders requirements elicitation techniques such as interviews and prototyping, analysis fundamentals, requirements specification, and validation. Use of Models: State-oriented, Function-oriented, and Object-oriented. Documentation for Software Requirements. Informal, semi-formal, and formal representations. Structural, informational, and behavioral requirements. Non-functional requirements. Use of requirements repositories to manage and track requirements through the life cycle. Case studies, software projects, written reports, and oral presentations will be required.
COM S 510. Distributed Software Development.
(Dual-listed with COM S 410). (3-0) Cr. 3. F. Prereq: COMS 228, COMS 309, COMS 327
Team with students at foreign universities to develop a software application.
Importance of distributed development. Design for distributed development,
effective processes for distributed development, and cultural issues in distributed
development, organizing for distributed development, communication techniques
and skills for distributed development, including oral presentations. Graduate credit
requires in-depth study of concepts.

(Cross-listed with CPR E). (3-0) Cr. 3. F. Prereq: COM S 311
A study of basic algorithm design and analysis techniques. Advanced data
structures, amortized analysis and randomized algorithms. Applications to sorting,
graphs, and geometry. NP-completeness and approximation algorithms.

(Dual-listed with COM S 412). (3-0) Cr. 3. S. Prereq: COM S 311, COM S 330
A study of formal techniques for model-based specification and verification of
software systems. Topics include logics, formalisms, graph theory, numerical
computations, algorithms and tools for automatic analysis of systems. Graduate
credit requires in-depth study of concepts.

COM S 514. Gerontechnology in Smart Home Environments.
(Dual-listed with COM S 414). (3-0) Cr. 3. F. Prereq: COM S 227 or (COM S 207
or GERON 377 or ARTGR 271) or equivalent.
An interdisciplinary course designed for students who are interested in assistive
technology, pervasive computing, mobile computing and principles of universal
and inclusive design for end users, in particular, the elderly population. Students
will work in semester-long projects as interdisciplinary teams to apply knowledge
obtained from lectures and mutual presentations. For graduate credit students are
required to submit a research report and give an oral presentation.

(3-0) Cr. 3. F. Prereq: COMS 309 or COM S 311, COM S 342
An introduction to the analysis, design, and testing of software for safety-
critical and high-integrity systems. Analysis techniques, formal verification, fault
identification and recovery, model checking, and certification issues. Emphasizes
a case-based and systematic approach to software’s role in safe systems.

COM S 518. Introduction to Computational Geometry.
(Dual-listed with COM S 418). (3-0) Cr. 3. Alt. S., offered odd-numbered years.
Prereq: COM S 311 or permission of instructor
Introduction to data structures, algorithms, and analysis techniques for
computational problems that involve geometry. Line segment intersection,
polygon triangulation, 2D linear programming, range queries, point location,
arrangements and duality, Voronoi diagrams and Delaunay triangulation, convex
hulls, robot motion planning, visibility graphs. Other selected topics. Programming
assignments.

(Cross-listed with CPR E, MATH). (3-0) Cr. 3. Alt. S., offered odd-numbered years.
Prereq: CPR E 308 or MATH 481; experience in scientific programming;
knowledge of FORTRAN or C
Introduction to parallelization techniques and numerical methods for state-of-the-
art high performance computers. A major component will be a final project in an
area related to each student’s research interests.

(Dual-listed with COM S 426). (Cross-listed with CPR E). (3-2) Cr. 4. F. Prereq:
CPR E 308 or COM S 321, CPR E 315 or COM S 311
Models of parallel computation, performance measures, basic parallel constructs
and communication primitives, parallel programming using MPI, parallel algorithms
for selected problems including sorting, matrix, tree and graph problems, fast
Fourier transforms.

(3-0) Cr. 3. S. Prereq: COM S 331
A systematic study of the fundamental models and analytical methods of
theoretical computer science. Computability, the Church-Turing thesis, decidable
and undecidable problems, and the elements of recursive function theory. Time
complexity, logic, Boolean circuits, and NP-completeness. Role of randomness in
computation.

(Dual-listed with COM S 433). (3-0) Cr. 3. S. Prereq: Minimum of C- in COM S 331
or consent of the instructor
Modeling and analysis of natural and engineered systems that spontaneously
assemble themselves from small components. Topics include biomolecular self-
assembly, tile assembly models, computation via self-assembly, distributed
folding, origami models, and self-repair. Emphasis on mathematical methods
of describing, simulating, programming, and verifying the behaviors of self-
assembly systems. Graduate credit requires a written or oral report on current
research.

COM S 540. Principles and Practice of Compiling.
(Dual-listed with COM S 440). (3-1) Cr. 3. Alt. S., offered odd-numbered years.
Prereq: COM S 331, COM S 342, ENGL 250, SP CM 212
Theory of compiling and implementation issues of programming languages.
Programming projects leading to the construction of a compiler. Projects with
different difficulty levels will be given for 440 and 540. Topics: lexical, syntax and
semantic analyses, syntax-directed translation, runtime environment and library
support. Written reports.

COM S 541. Programming Languages.
(Dual-listed with COM S 441). (3-1) Cr. 3. F. Prereq: COM S 342 or COM S 440
Survey of the goals and problems of language design. Formal and informal
studies of a wide variety of programming language features including type
systems. Creative use of functional and declarative programming paradigms.

COM S 544. Introduction to Bioinformatics.
(Cross-listed with BCB, CPR E, GDCB). (4-0) Cr. 4. F. Prereq: MATH 185 or
STAT 401 or equivalent
Broad overview of bioinformatics with a significant problem-solving component,
including hands-on practical tools to solve a variety of biological problems. Topics include:
database searching, sequence alignment, gene prediction, RNA and protein structure prediction, construction
of phylogenetic trees, comparative, functional genomics, and systems biology.

(Cross-listed with CPR E). (3-0) Cr. 3. Alt. S., offered even-numbered years.
Prereq: COM S 311 and either COM S 228 or COM S 208
Design and analysis of algorithms for applications in computational biology,
pairwise and multiple sequence alignments, approximation algorithms, string
algorithms including in-depth coverage of suffix trees, semi-numerical string
algorithms, algorithms for selected problems in fragment assembly, phylogenetic
trees and protein folding. No background in biology is assumed. Also useful as an
advanced algorithms course in string processing.

(3-0) Cr. 3. Alt. F., offered odd-numbered years. Prereq: COM S 311 and some
knowledge of programming
Discussion and analysis of basic evolutionary principles and the necessary
knowledge in computational biology to solve real world problems. Topics include
character and distance based methods, phylogenetic tree distances, and
consensus methods, and approaches to extract the necessary information from
sequence-databases to build phylogenetic trees.

COM S 551. Computational Techniques for Genome Assembly and Analysis.
(3-0) Cr. 3. Alt. F., offered odd-numbered years. Prereq: COM S 311 and some
knowledge of programming
Introduction to practical sequence assembly and comparison techniques.
Topics include global alignment, local alignment, overlapping alignment, banded
alignment, linear-space alignment, word hashing, DNA-protein alignment, DNA-
cDNA alignment, comparison of two sets of sequences, construction of contigs,
and generation of consensus sequences. Focus on development of sequence
assembly and comparison programs.

(3-0) Cr. 3. F. Prereq: COM S 352
A comparative study of high-level language facilities for process synchronization
and communication. Formal analysis of deadlock, concurrency control and
recovery. Protection issues including capability-based systems, access and flow
control, encryption, and authentication. Additional topics chosen from distributed
operating systems, soft real-time operating systems, and advanced security
issues.

COM S 554. Distributed Systems.
(Dual-listed with COM S 454). (Cross-listed with CPR E). (3-1) Cr. 3. S. Prereq:
COM S 311, COM S 352
(3-1) Cr. 3. Theoretical and practical issues of design and implementation of
distributed systems. The client server paradigm, inter-process communications,
synchronization and concurrency control, naming, consistency and replication,
fault tolerance, and distributed file systems. Graduate credit requires additional in-
depth study of concepts. Programming projects and written reports.
(Dual-listed with COM S 459). (3-0) Cr. 3. Alt. F., offered even-numbered years.
Prereq: COM S 311 and COM S 330, STAT 330, ENGL 150, SP CM 212
Introduction to discrete-event simulation with a focus on computer science
applications, including performance evaluation of networks and distributed
systems. Overview of algorithms and data structures necessary to implement
simulation software. Discrete and continuous stochastic models, random number
generation, elementary statistics, simulation of queuing and inventory systems.
Monte Carlo simulation, point and interval parameter estimation. Graduate credit
requires additional in-depth study of concepts. Oral and written reports.

(3-0) Cr. 3. Alt. S., offered odd-numbered years. Prereq: COM S 331, MATH 307,
and STAT 330
Introduction to the use of stochastic models to study complex systems, including
network communication and distributed systems. Data structures and algorithms
for analyzing discrete-state models expressed in high-level formalisms. State
transition matrices and Markov chain construction and numerical solution,
computation of performance measures, product-form models, approximations,
and advanced techniques.

(Cross-listed with CPR E, M E). (3-0) Cr. 3. F.S. Prereq: M E 421, programming
experience in C
Fundamentals of computer graphics technology. Data structures. Parametric curve
and surface modeling. Solid model representations. Applications in engineering
design, analysis, and manufacturing.

COM S 558. Introduction to the 3D Visualization of Scientific Data.
(Cross-listed with GEOL, HCI). (2-2) Cr. 3. Alt. S., offered odd-numbered years.
Prereq: Graduate standing or understanding in the mathematical or natural sciences.
Introduction to visualizing scientific information with 3D computer graphics
and their foundation in human perception. Overview of different visualization
techniques and examples of 3D visualization projects from different disciplines
natural sciences, medicine, and engineering. Class project in interactive 3D
visualization using the OpenDX, VTK or a similar system.

(Dual-listed with COM S 461). (3-1) Cr. 3. F. Prereq: COM S 311, MATH 250, SP
CM 212.
Models for structured and semistructured data. Algebraic, first order, and user-
oriented query languages. Database schema design. Physical storage, access
modes and query processing. Transaction management, concurrency control,
and crash recovery. Database security. Information integration using data
warehouses, mediators, wrappers, and data mining. Parallel and distributed
databases, and special purpose databases. Students enrolling in COM S 561 will
require additional study of advanced concepts in database systems.

(3-0) Cr. 3. F. Prereq: COM S 461 or COM S 561
Implementation topics and projects are chosen from the following: Storage
architecture, buffer management and caching, access methods, design,
parsing and compilation of query languages and update operations, application
programming interfaces (APIs), user interfaces, query optimization and
processing, and transaction management for relational, object-oriented,
semistructured (XML), and special purpose database models; client-server
architectures, metadata and middleware for database integration, web databases.

(Cross-listed with BCB, CPR E). (3-0) Cr. 3. F. Prereq: COM S 229; COM S 330;
STAT 341; credit or enrollment in BIOL 315, STAT 430
Biology as an information science. Review of algorithms and information
processing. Generative models for sequences. String algorithms. Pairwise
sequence alignment. Multiple sequence alignment. Searching sequence
databases. Genome sequence assembly.

COM S 568. Bioinformatics II (Advanced Genome Informatics).
(Cross-listed with BCB, GDCB, STAT). (3-0) Cr. 3. S. Prereq: BCB 567, BBMB 301,
BIOL 315, STAT 430, credit or enrollment in GEN 411
Advanced sequence models. Basic methods in molecular phylogeny. Hidden
Markov models. Genome annotation. DNA and protein motifs. Introduction to gene
expression analysis.

COM S 569. Bioinformatics III (Structural Genome Informatics).
(Cross-listed with BBMB, BCB, CPR E). (3-0) Cr. 3. F. Prereq: BCB 567, GEN 411,
STAT 430
Algorithmic and statistical approaches in structural genomics including protein,
DNA and RNA structure. Structure determination, refinement, representation,
comparison, visualization, and modeling. Analysis and prediction of protein
secondary and tertiary structure, disorder, protein cores and surfaces, protein-
protein and protein-nucleic acid interactions, protein localization and function.

COM S 570. Bioinformatics IV (Computational Functional Genomics and
Systems Biology).
(Cross-listed with BCB, CPR E, GDCB, STAT). (3-0) Cr. 3. S. Prereq: BCB 567,
BIOL 315, COM S 311 and either 208 or 228, GEN 411, STAT 430
Algorithmic and statistical approaches in computational functional genomics
and systems biology. Elements of experiment design. Analysis of high throughput
gene expression, proteomics, and other datasets obtained using system-wide
measurements. Topological analysis, module discovery, and comparative analysis
of gene and protein networks. Modeling, analysis, simulation and inference
of transcriptional regulatory modules and networks, protein-protein interaction
networks, metabolic networks, cells and systems: Dynamic systems, Boolean,
and probabilistic models. Multi-scale, multi-granularity models. Ontology-driven,
network based, and probabilistic approaches to information integration.

(Dual-listed with COM S 472); (3-1) Cr. 3. F. Prereq: COM S 311, COM S 330 or
CPR E 310, STAT 330, ENGL 250, SP CM 212; COM S 342 or comparable
programming experience
Specification, design, implementation, and selected applications of intelligent
software agents and multi-agent systems. Computational models of intelligent
behavior, including problem solving, knowledge representation, reasoning,
planning, decision making, learning, perception, action, communication and
interaction. Reactive, deliberative, rational, adaptive, learning and communicative
agents and multiagent systems. Artificial intelligence programming. A research
project and a written report is required for students enrolled in COM S 572.

(3-1) Cr. 3. S. Prereq: COM S 311, COM S 362, STAT 330
Algorithmic models of learning. Design, analysis, implementation and applications
of learning algorithms. Learning of concepts, classification rules, functions,
relations, grammars, probability distributions, value functions, models, skills,
behaviors and programs. Agents that learn from observation, examples,
instruction, induction, deduction, reinforcement and interaction. Computational
learning theory. Data mining and knowledge discovery using artificial neural
networks, support vector machines, decision trees, Bayesian networks,
association rules, dimensionality reduction, feature selection and visualization.
Learning from heterogeneous, distributed, dynamic data and knowledge sources.
Learning in multi-agent systems. Selected applications in automated knowledge
aquisition, pattern recognition, program synthesis, bioinformatics and Internet-
based information systems. Oral and written reports.

COM S 574. Intelligent Multiagent Systems.
(3-0) Cr. 3. Alt. F., offered odd-numbered years. Prereq: STAT 330; COM S 331;
COM S 572; COM S 573, COM S 472, or COM S 474
Specification, design, implementation, and applications of multi-agent systems.
Intelligent agent architectures; infrastructures, languages and tools for design
and implementation of distributed multi-agent systems; Multi-agent organizations,
communication, interaction, cooperation, team formation, negotiation, competition,
and learning. Selected topics in decision theory, game theory, contract theory,
bartering and auction theory, and organization theory. Selected topics in knowledge
representation and ontologies. Agent-based systems and the Semantic
Web. Applications in distributed intelligent information networks for information
retrieval, information integration, inference, and discovery from heterogeneous,
autonomous, distributed, dynamic information sources.

COM S 575. Computational Perception.
(Cross-listed with CPR E, HCl). (3-0) Cr. 3. S. Prereq: Graduate standing or
permission of instructor
This class covers statistical and algorithmic methods for sensing, recognizing, and
interpreting the activities of people by a computer. This semester we will focus
on machine perception techniques that facilitate and augment human-computer
interaction. The main goal of the class is to introduce computational perception
on both theoretical and practical levels. Participation in small groups to design,
implement, and evaluate a prototype of a human-computer interaction system that
uses one or more of the techniques covered in the lectures.

(Dual-listed with COM S 477); (3-0) Cr. 3. Alt. F., offered even-numbered years.
Prereq: STAT 208 or CPR E 228, COM S 229, COM S 330 or CPR E 310, MATH 166,
MATH 207 or MATH 317, or consent of the instructor
Selected topics in applied mathematics and modern heuristics that have found
applications in areas such as geometric modeling, graphics, robotics,
vision, human machine interface, speech recognition, computer animation,
etc. Homogeneous coordinates and transformations, perspective projection,
quaternions and rotations, polynomial interpolation, roots of polynomials,
resultants, solution of linear and nonlinear equations, approximation, data
fitting, Fourier series and fast Fourier transform, linear programming, nonlinear
optimization, Lagrange multipliers, parametric and algebraic curves, curvature,
Frenet formulas, Bezier curves. Programming components. A scholarly report
is required for graduate credit.
(Cross-listed with CPR E). (3-0) Cr. 3. F. Prereq: CPR E 381
Quantitative principles of computer architecture design, instruction set design, processor architecture: pipelining and superscalar design, instruction level parallelism, memory organization: cache and virtual memory systems, multiprocessor architecture, cache coherency, interconnection networks and message routing, I/O devices and peripherals.

(Cross-listed with CPR E). (3-0) Cr. 3. Prereq: Background in computer architecture, design, and organization
Introduction to reconfigurable computing, FPGA technology and architectures, spatial computing architectures such as systolic and bit serial adaptive network architectures, static and dynamic rearrangeable interconnection architectures, processor architectures incorporating reconfigurability.

(3-0) Cr. 3. F. Prereq: COM S 511, COM S 552 or CPR E 489
Design and implementation of computer communication networks: layered network architectures, local area networks, data link protocols, distributed routing, transport services, network programming interfaces, network applications, error control, flow/congestion control, interconnection of heterogeneous networks, TCP/IP, ATM networks, multimedia communications, IP and application multicast, overlay networks, network security and web computing.

(Dual-listed with COM S 487). (3-0) Cr. 3. S. Prereq: Com S 352 or CPR E 489 or equivalent.
Programming paradigms for building distributed and networking applications, including multithreaded client-server programming, socket programming, distributed object frameworks and programming suites, and web computing and security. Introduction to some on-going research issues in distributed and networking applications, including peer-to-peer computing, multimedia communications, and mobile computing and networking. A written report and an oral presentation is required for students enrolling in Com S 587.

COM S 590. Special Topics.
Cr. arr. Prereq: Permission of instructor
Offered on a satisfactory-fail basis only.

COM S 592. Research Colloquia.
Cr. 1. F.S. Prereq: Graduate classification
Attend Computer Science Research Colloquia. Written summary is required. Offered on a satisfactory-fail basis only.

COM S 598. Graduate Internship.
Cr. R. F.S.S.S. Prereq: Graduate Classification
Supervised internship working in professional settings appropriate to the student's degree program. Academic work under faculty supervision.

COM S 599. Creative Component.
Cr. 1
Creative component for nonthesis option of Master of Science degree. Offered on a satisfactory-fail basis only.

Courses for graduate students:

COM S 610. Seminar.
Cr. arr.
Offered on a satisfactory-fail basis only.

COM S 611. Advanced Topics in Analysis of Algorithms.
(3-0) Cr. 3. Repeatable. Alt. S., offered odd-numbered years. Prereq: COM S 511, COM S 531
Advanced algorithm analysis and design techniques. Topics include graph algorithms, algebraic algorithms, number-theoretic algorithms, randomized and parallel algorithms. Intractable problems and NP-completeness. Advanced data structures.

COM S 612. Distributed Algorithms.
(3-0) Cr. 3. Alt. S., offered even-numbered years. Prereq: COM S 511 or COM S 531

COM S 625. Issues in Parallel Programming and Performance.
(3-0) Cr. 3. Alt. S., offered odd-numbered years. Prereq: COM S 511
Parallel solutions of numerical and non-numerical problems, implementation of parallel programs on parallel machines, performance and other computational issues in parallel programming.

(Cross-listed with CPR E). (3-0) Cr. 3. Prereq: CPR E 529
Algorithm design for high-performance computing. Parallel algorithms for multidimensional tree data structures, space-filling curves, random number generation, graph partitioning and load balancing. Applications to grid and particle-based methods and computational biology.

(3-0) Cr. 3. Repeatable. Alt. F., offered even-numbered years. Prereq: COM S 531
Advanced study in the quantitative theory of computation. Time and space complexity of algorithmic problems. The structure of P, NP, PH, PSPACE, and other complexity classes, especially with respect to resource-bounded reducibilities and complete problems. Complexity relative to auxiliary information, including oracle computation and relativized classes, randomized algorithms, advice machines, Boolean circuits. Kolmogorov complexity and randomness.

COM S 633. Advanced Topics in Computational Randomness.
(3-0) Cr. 3. Repeatable. Alt. F., offered odd-numbered years. Prereq: COM S 531
Advanced study of the role of randomness in computation. Randomized algorithms, derandomization, and probabilistic complexity classes. Kolmogorov complexity, algorithmic information theory, and algorithmic randomness. Applications chosen from cryptography, interactive proof systems, computational learning, lower bound arguments, mathematical logic, and the organization of complex systems.

COM S 634. Theory of Games, Knowledge and Uncertainty.
(3-0) Cr. 3. Alt. S., offered odd-numbered years. Prereq: COM S 330
Fundamentals of Game Theory: individual decision making, strategic and extensive games, mixed strategies, backward induction, Nash and other equilibrium concepts. Discussion of Auctions and Bargaining. Repeated, Bayesian and evolutionary games. Interactive Epistemology: reasoning about knowledge in multiagent environment, properties of knowledge, agreements, and common knowledge. Reasoning about and representing uncertainty, probabilities, and beliefs. Uncertainty in multiagent environments. Aspects and applications of game theory, knowledge, and uncertainty in other areas, especially Artificial Intelligence and Economics, will be discussed.

COM S 641. Advanced Topics in Programming Language Semantics.
(3-0) Cr. 3. Repeatable. Alt. S., offered even-numbered years. Prereq: COM S 531, COM S 541
Operational and other mathematical models of programming language semantics. Type systems and their soundness. Applications of semantics on areas such as program correctness, language design or translation.

COM S 652. Advanced Topics in Distributed Operating Systems.
(3-0) Cr. 3. Repeatable. Alt. F., offered odd-numbered years. Prereq: COM S 552
Concepts and techniques for network and distributed operating systems: Communications protocols, processes and threads, name and object management, synchronization, consistency and replications for consistent distributed data, fault tolerance, protection and security, distributed file systems, design of reliable software, performance analysis.

(3-0) Cr. 3. Alt. F., offered even-numbered years. Prereq: COM S 228, I E 557/M E 557/CPR E 557/COM S 557

COM S 661. Advanced Topics in Database Systems.
(3-0) Cr. 3. Repeatable. Alt. F., offered even-numbered years. Prereq: COM S 461 or COM S 561
Advanced topics chosen from the following: database design, data models, query systems, query optimization, incomplete information, logic and databases, multimedia databases; temporal, spatial and belief databases, semistructured data, concurrency control, parallel and distributed databases, information retrieval, data warehouses, wrappers, mediators, and data mining.

COM S 672. Advanced Topics in Computational Models of Learning.
(3-0) Cr. 3. Repeatable. Alt. S., offered even-numbered years. Prereq: COM S 572 or COM S 573 or COM S 472 or COM S 474
COM S 673. Advanced Topics in Computational Intelligence.
(3-0) Cr. 3. Repeatable. Alt. S., offered odd-numbered years. Prereq: COM S 572 or COM S 573 or COM S 472 or COM S 474
Advanced applications of artificial intelligence in bioinformatics, distributed intelligent information networks and the Semantic Web. Selected topics in distributed learning, incremental learning, multi-task learning, multi-strategy learning; Graphical models, multi-relational learning, and causal inference; statistical natural language processing; modeling the internet and the web; automated scientific discovery; neural and cognitive modeling.

(Cross-listed with CPR E). (3-0) Cr. 3. Alt. S., offered odd-numbered years. Prereq: CPR E 581. Repeatable with Instructor permission
Current topics in computer architecture design and implementation. Advanced pipelining, cache and memory design techniques. Interaction of algorithms with architecture models and implementations. Tradeoffs in architecture models and implementations.

COM S 686. Advanced Topics in High-Speed Networks.
(3-0) Cr. 3. Alt. S., offered odd-numbered years. Prereq: COM S 586
Advanced topics in IP networks and optical networks. QoS routing and scheduling, multicast, multiprotocol label switching (MPLS), traffic engineering. Optical network architectures, routing and wavelength assignment algorithms, optical multicast, traffic grooming, optical burst switching, lightpath protection/restoration schemes, and IP over WDM.

COM S 699. Research.
Cr. arr. Prereq: Approval of instructor
Offered on a satisfactory-fail basis only.