DATA SCIENCE

Data Science

Data Science is a rapidly growing academic discipline fueled by the proliferation of rich and complex data emerging from activities in science, industry, and governments. As a result, there is strong demand for data science professionals today in Iowa as well as across the nation and globe, and this market is expected to continue to grow in the next decade. The data science programs are intended for students who wish to study the data science discipline for its own sake as well as for students studying any discipline at Iowa State University with the goal of enabling them to work in data science. The courses in the data science program are designed to provide students with the requisite background that would enable them to take jobs with significant data science components, e.g., establishing and operating data analysis pipelines. The capstone will provide an opportunity for students to apply data science concepts to a domain problem while working in a multi-disciplinary team setting.

The Data Science major is intended for students with strong quantitative backgrounds and has the goal of educating students on the technical fundamentals of Data Science, with a focus on developing the knowledge and skills needed to transform data into insights. The major is an excellent opportunity for individuals who want to prepare themselves for the exciting Data Scientist positions that are in high demand today.

The minor in Data Science is intended for students studying any discipline at Iowa State and is designed to give students an in-depth understanding of data science as it is applied to a variety of domains.

The certificate in Data Science is intended for students studying any discipline at Iowa State and is designed to prepare them for future work with significant data science components. The capstone will provide an opportunity for students to apply data science concepts to a domain problem while working in a multi-disciplinary team setting.

Data Science Major

Purpose

This Bachelor's of Science degree program in Data Science is intended for students with strong quantitative backgrounds and has the goal of educating students on the technical fundamentals of data sciences, with a focus on developing the knowledge and skills needed to manage and analyze large-scale, heterogeneous data to address a wide range of problems.

Learning Outcomes

After successfully completing the program, students majoring in Data Science will demonstrate

1. an understanding of and an ability to apply the following data science concepts, tools and methods to data analysis pipelines:
 a. data acquisition
 b. data preprocessing
 c. exploratory data analysis
 d. inferential and predictive thinking, modeling and analysis
 e. computational thinking, data structures, and algorithms
2. an understanding of ethical, legal, societal, and economic concerns in application of data science concepts
3. an ability to visualize, interpret and communicate the output of data analysis pipelines to stakeholders
4. an ability to function on multi-disciplinary teams using concepts and tools from data science

Requirements

The B.S. in Data Science consists of 120 total credit hours including:
1. 39 credits hours in the major core, three credits of which constitute a capstone course that is expected to provide experiential learning;
2. 9 credit hours in one of seven elective tracks to examine applications and theory of data sciences in a specific area; and
3. 23 credit hours of foundation courses. The capstone course will provide an opportunity for students to apply data science concepts to an application area while working in a multi-disciplinary team setting.

Data Science Major Requirements

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>DS 110</td>
<td>Orientation to Data Science</td>
<td>R</td>
</tr>
<tr>
<td>DS 201</td>
<td>Introduction to Data Science</td>
<td>3</td>
</tr>
<tr>
<td>DS 202</td>
<td>Data Acquisition and Exploratory Data Analysis</td>
<td>3</td>
</tr>
<tr>
<td>DS 303</td>
<td>Concepts and Applications of Machine Learning</td>
<td>3</td>
</tr>
<tr>
<td>DS 401</td>
<td>Data Science Capstone</td>
<td>3</td>
</tr>
<tr>
<td>COM S 228</td>
<td>Introduction to Data Structures</td>
<td>3</td>
</tr>
<tr>
<td>COM S 230</td>
<td>Discrete Computational Structures</td>
<td>3</td>
</tr>
<tr>
<td>or CPR E 310</td>
<td>Theoretical Foundations of Computer Engineering</td>
<td></td>
</tr>
<tr>
<td>COM S 311</td>
<td>Introduction to the Design and Analysis of</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Algorithms</td>
<td></td>
</tr>
<tr>
<td>COM S 363</td>
<td>Introduction to Database Management Systems</td>
<td>3</td>
</tr>
<tr>
<td>CPR E 419</td>
<td>Software Tools for Large Scale Data Analysis</td>
<td>4</td>
</tr>
<tr>
<td>STAT 301</td>
<td>Intermediate Statistical Concepts and Methods</td>
<td>4</td>
</tr>
<tr>
<td>STAT 347</td>
<td>Probability and Statistical Theory for Data Science</td>
<td>4</td>
</tr>
<tr>
<td>STAT 457</td>
<td>Applied Categorical Data Analysis</td>
<td>3</td>
</tr>
</tbody>
</table>

At least 9 credits from any ONE of the following seven application emphasis areas:
Big Data 9-10

COM S 424 Introduction to High Performance Computing 3
COM S 426 Introduction to Parallel Algorithms and Programming 4
COM S 435 Algorithms for Large Data Sets: Theory and Practice 3
COM S 454 Distributed Systems 3
COM S 461 Principles and Internals of Database Systems 3
COM S 474 Introduction to Machine Learning 3

Engineering Applications 10

CPR E 388 Embedded Systems II: Mobile Platforms 4
CPR E 425 High Performance Computing for Scientific and Engineering Applications (cross-listed as COM S 425) 3

EE 425 Machine Learning: A Signal Perspective 3
Optimization 9
I E 312 Optimization 3
I E 483 Data Mining 3
I E 487 Big Data Analytics and Optimization 3

Security 9

COM S 421 Logic for Mathematics and Computer Science 3
COM S 453 Privacy Preserving Algorithms and Data Security 3
CPR E 431 Basics of Information System Security 3

Software Analytics 9

COM S 342 Principles of Programming Languages 3
COM S 413 Foundations and Applications of Program Analysis 3
COM S 440 Principles and Practice of Compiling 3
COM S 474 Introduction to Machine Learning 3
CPR E 416 Software Evolution and Maintenance 3

Statistics 9

STAT 402 Statistical Design and the Analysis of Experiments 3
STAT 407 Methods of Multivariate Analysis 3
STAT 421 Survey Sampling Techniques 3
COM S 474 Introduction to Machine Learning 3

Computational Biology 10

BCBIO 322 Introduction to Bioinformatics and Computational Biology 3
BCBIO 402 Fundamentals of Systems Biology and Network Science 3
BCBIO 444 Bioinformatic Analysis 4

COM S 227 Object-oriented Programming 4
MATH 165 Calculus I 4
MATH 166 Calculus II 4
MATH 265 Calculus III 4
MATH 207 Matrices and Linear Algebra 3
STAT 201 Introduction to Statistical Concepts and Methods 4
Foreign Language 3 years in high school or 1 year in college 0 - 8

Natural Science 8
Social Science 9
Arts and Humanities 12

The following courses meet the communication proficiency requirement:

LIB 160 Information Literacy 1
ENGL 150 Critical Thinking and Communication 3
ENGL 250 Written, Oral, Visual, and Electronic Composition 3

One of the following:
ENGL 302 Business Communication 3
ENGL 314 Technical Communication 3
ENGL 332 Visual Communication of Quantitative Information (cross-listed as STAT 332) 3

According to the university-wide Communication Proficiency Grade Requirement, students must demonstrate their communication proficiency by earning a grade of C or better in ENGL 250. The Data Science program requires a C or higher in the upper-level ENGL course (302, 314, or 332).

All students must complete 3 credits of US Diversity and 3 credits of International Perspective courses.

To obtain a bachelor’s degree from the College of Liberal Arts and Sciences, curriculum in liberal arts and sciences, a student must earn at least 45 credits at the 300 level or above taken at a four-year college. All such credits, including courses taken on a pass/not pass basis, may be used to meet this requirement.

B.S., Data Science

Freshman

Fall

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>DS 110</td>
<td>R COM S 228 3</td>
</tr>
<tr>
<td>ENGL 150</td>
<td>3 MATH 166 4</td>
</tr>
<tr>
<td>LIB 160</td>
<td>1 STAT 201 4</td>
</tr>
<tr>
<td>MATH 165</td>
<td>4 Arts and Humanities 3</td>
</tr>
<tr>
<td>COM S 227</td>
<td>4</td>
</tr>
</tbody>
</table>
Data Science Minor

Purpose

The minor in data science is intended for students studying any discipline at Iowa State and is designed to give students an in-depth understanding of data science as it is applied to a variety of domains. The minor in data science will prepare students with the technical and communication skills to enter the workforce as domain experts with data science skills.

Learning Outcomes

After completing the minor in data science, students will demonstrate:

- an ability to apply data science concepts, tools and technologies to data analysis pipelines,
- an understanding of ethical, legal, societal, and economic concerns in application of data science concepts,
- an ability to visualize, interpret and communicate the output of data analysis pipelines to stakeholders, and
- an ability to function on multi-disciplinary teams using concepts and tools from data science.

Requirements

The minor in data science requires the completion of 15 credit hours, including 9 credits from the data science core and 6 credits from approved data science electives.

At least 6 credits must be taken in courses numbered at the 300-level or above.

At least 9 credits used for the minor cannot be used to meet any other department, college or university requirement for the baccalaureate degree except to satisfy the total credit requirement for graduation and to meet credit requirements in courses numbered 300 or above.

Courses for the minor cannot be taken on a pass/not-pass basis.

Course Requirements for Data Science Minor

<table>
<thead>
<tr>
<th>Core Courses (9 credits)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DS 201</td>
</tr>
<tr>
<td>DS 202</td>
</tr>
<tr>
<td>DS 301</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Electives (6 credits)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A B E 316</td>
</tr>
<tr>
<td>BCBIO 322</td>
</tr>
<tr>
<td>COM S 311</td>
</tr>
<tr>
<td>COM S 363</td>
</tr>
<tr>
<td>COM S 424</td>
</tr>
<tr>
<td>COM S 435</td>
</tr>
<tr>
<td>COM S 453X</td>
</tr>
<tr>
<td>COM S 474</td>
</tr>
</tbody>
</table>
Data Science Certificate

Purpose

The certificate in data science is intended for students studying any discipline at Iowa State and is designed to prepare them for future work with significant data science components. The data science certificate is also available to students who have already earned a Baccalaureate degree from Iowa State or elsewhere. The capstone will provide an opportunity for students to apply data science concepts to a domain problem while working in a multi-disciplinary team setting. The certificate in data science will prepare students with the technical and communication skills to enter the workforce as domain experts with data science skills.

Learning Outcomes

After completing the certificate in data science, students will demonstrate:

- an ability to apply data science concepts, tools and technologies to data analysis pipelines,
- an understanding of ethical, legal, societal, and economic concerns in application of data science concepts,
- an ability to visualize, interpret and communicate the output of data analysis pipelines to stakeholders, and
- an ability to function on multi-disciplinary teams using concepts and tools from data science.

Requirements

The certificate in data science requires the completion of 21 credit hours, including 9 credits from the data science core, 9 credits from approved data science electives, and a three-credit data science capstone experience.

At least 9 credits must be taken in courses numbered at the 300-level or above.

At least 9 credits used for the certificate cannot be used to meet any other department, college or university requirement for the baccalaureate degree except to satisfy the total credit requirement for graduation and to meet credit requirements in courses numbered 300 or above.

Courses for the certificate cannot be taken on a pass/not-pass basis.

Course Requirements for Data Science Certificate

Core Courses (9 credits)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>DS 201</td>
<td>Introduction to Data Science (Required)</td>
<td>3</td>
</tr>
<tr>
<td>DS 202</td>
<td>Data Acquisition and Exploratory Data Analysis</td>
<td>3</td>
</tr>
<tr>
<td>DS 301</td>
<td>Applied Data Modeling and Predictive Analysis</td>
<td>3</td>
</tr>
<tr>
<td>STAT 101</td>
<td>Intermediate Statistical Concepts and Methods</td>
<td>4</td>
</tr>
<tr>
<td>STAT 300</td>
<td>Probability and Statistics for Computer Science</td>
<td>3</td>
</tr>
<tr>
<td>STAT 407</td>
<td>Methods of Multivariate Analysis</td>
<td>3</td>
</tr>
<tr>
<td>STAT 430</td>
<td>Empirical Methods for the Computational Sciences</td>
<td>3</td>
</tr>
<tr>
<td>STAT 457</td>
<td>Applied Categorical Data Analysis</td>
<td>3</td>
</tr>
<tr>
<td>STAT 480</td>
<td>Statistical Computing Applications</td>
<td>3</td>
</tr>
</tbody>
</table>

Electives (9 credits)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>A B E 316</td>
<td>Applied Numerical Methods for Agricultural and Biosystems Engineering</td>
<td>3</td>
</tr>
<tr>
<td>BCBIO 322</td>
<td>Introduction to Bioinformatics and Computational Biology</td>
<td>3</td>
</tr>
<tr>
<td>COM S 311</td>
<td>Introduction to the Design and Analysis of Algorithms</td>
<td>3</td>
</tr>
<tr>
<td>COM S 363</td>
<td>Introduction to Database Management Systems</td>
<td>3</td>
</tr>
<tr>
<td>COM S 424</td>
<td>Introduction to High Performance Computing</td>
<td>3</td>
</tr>
<tr>
<td>COM S 435</td>
<td>Algorithms for Large Data Sets: Theory and Practice</td>
<td>3</td>
</tr>
<tr>
<td>COM S 453X</td>
<td>Privacy Preserving Algorithms and Data Security</td>
<td>3</td>
</tr>
<tr>
<td>COM S 474</td>
<td>Introduction to Machine Learning</td>
<td>3</td>
</tr>
<tr>
<td>CRP 251X</td>
<td>Introduction to Geographic Information Systems</td>
<td>3</td>
</tr>
<tr>
<td>CRP 351X</td>
<td>Intermediate Geographic Information Systems</td>
<td>3</td>
</tr>
</tbody>
</table>
C R P 452 Geographic Data Management and Planning Analysis 3
C R P 456 GIS Programming and Automation 3
CPR E 419 Software Tools for Large Scale Data Analysis 4
CPR E 426 Introduction to Parallel Algorithms and Programming 4
ECON 371 Introductory Econometrics 4
ENGL 332 Visual Communication of Quantitative Information 3
FIN 450X Analytical Finance 3
I E 312 Optimization 3
I E 483 Data Mining 3
LING 410X Language as Data 3
MIS 436 Introduction to Business Analytics 3
MIS 446 Advanced Business Analytics 3
MKT 368 Marketing Analytics 3
STAT 301 Intermediate Statistical Concepts and Methods 4
STAT 330 Probability and Statistics for Computer Science 3
STAT 407 Methods of Multivariate Analysis 3
STAT 430 Empirical Methods for the Computational Sciences 3
STAT 457 Applied Categorical Data Analysis 3
STAT 480 Statistical Computing Applications 3
Data Science capstone experience (3 credits)
DS 401 Data Science Capstone 3

Courses primarily for undergraduates:

DS 110: Orientation to Data Science
Cr. R.
Introduction to the procedures and policies of Iowa State University and the Data Science program, test-outs, honorary societies, etc. Issues relevant to student adjustment to college life will also be discussed. Offered on a satisfactory-fail basis only.

DS 201: Introduction to Data Science
Cr. 3. Alt. F., offered irregularly. Alt. S., offered irregularly.
Prereq: 1-1/2 Years of High School Algebra
Data Science concepts and their applications; domain case studies with applications in various fields; overview of data analysis; major components of data analysis pipelines; computing concepts for data science; descriptive data analysis; hands-on data analysis experience; communicating findings to stakeholders, and ethical issues in data science.

DS 202: Data Acquisition and Exploratory Data Analysis
Cr. 3. Alt. F., offered irregularly. Alt. S., offered irregularly.
Prereq: DS 201
Data acquisition: file structures, web-scraping, database access; ethical aspects of data acquisition; types of data displays; numerical and visual summaries of data; pipelines for data analysis: filtering, transformation, aggregation, visualization and (simple) modeling; good practices of displaying data; data exploration cycle; graphics as tools of data exploration; strategies and techniques for data visualizations; basics of reproducibility and repeatability; web-based interactive applets for visual presentation of data and results. Programming exercises.

DS 301: Applied Data Modeling and Predictive Analysis
Cr. 3. Alt. F., offered irregularly. Alt. S., offered irregularly.
Prereq: DS 201, one of STAT 101, 104, 105, 201, 226, 231, 305, 322, 330
Elements of predictive analysis such as training and test sets; feature extraction; survey of algorithmic machine learning techniques, e.g. decision trees, Naïve Bayes, and random forests; survey of data modeling techniques, e.g. linear model and regression analysis; assessment and diagnostics: overfitting, error rates, residual analysis, model assumptions checking; communicating findings to stakeholders in written, oral, verbal and electronic form, and ethical issues in data science. Participation in a multi-disciplinary team project.

DS 303: Concepts and Applications of Machine Learning
Cr. 3.
Prereq: DS 201
Machine learning concepts such as training and test sets; feature extraction; principles of machine learning techniques; regression; pattern recognition methods; unsupervised learning techniques; assessment and diagnostics: overfitting, error rates, residual analysis, model assumptions checking, feature selection; ethical issues in data science; communicating findings to stakeholders in written, oral, visual and electronic form.

DS 401: Data Science Capstone
Cr. 3. Alt. F., offered irregularly. Alt. S., offered irregularly.
Prereq: DS 202X; DS 301X
Students work as individuals and teams to complete the planning, design, and implementation of a significant multi-disciplinary project in data science. Oral and written reports.