GENETICS, DEVELOPMENT AND CELL BIOLOGY

The Department of Genetics, Development and Cell Biology (GDCB) is dedicated to biological discovery and excellence in undergraduate and graduate education. The research and teaching mission of the department is to achieve a greater understanding of fundamental principles of life by focusing on basic cellular and subcellular processes, including genome dynamics, cell function and development, cellular response to environmental and developmental signals, and molecular mechanisms of development. Recognizing that student education is of paramount importance, GDCB strives for excellence in teaching and research. GDCB plays a leading role in undergraduate and graduate training through a variety of activities including traditional courses, undergraduate internships in research laboratories, and advanced graduate seminar and literature-based courses. Innovative approaches to learning are emphasized throughout the curriculum.

Undergraduate Study

The GDCB Department offers undergraduate majors in conjunction with other departments. Students interested in the areas of genetics, development and cell biology should major in Biology, Genetics or Bioinformatics and Computational Biology (BCBio). The Biology Major is administered and offered jointly by the GDCB and EEOB departments. The GDCB faculty, together with those in EEOB and BBMB, administer and offer the Genetics Major. Each of these majors is available through the College of Liberal Arts and Sciences or through the College of Agriculture and Life Sciences. BCBio is administered by GDCB and the Departments of Computer Science and Mathematics, and is available through the college of Liberal Arts and Sciences.

The Biology Major and the Genetics Major prepare students for a wide range of careers in biological sciences. Training in Biology or Genetics may lead to employment in teaching, research, or any of a variety of health-related professions. Some of these careers include biotechnology, human and veterinary medicine, agricultural sciences and life science education. BCBio majors are prepared for careers at the interfaces of biological, informational and computational sciences in the above fields. These majors are also excellent preparation for graduate study in bioinformatics, molecular genetics, cell and developmental biology, neuroscience and related fields. Faculty members in GDCB contribute to the undergraduate courses listed below. The full descriptions of these courses can be found in the Biology, Genetics and BCBio sections of the catalog.

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL 101</td>
<td>Introductory Biology</td>
<td>3</td>
</tr>
<tr>
<td>BIOL 110</td>
<td>Introduction to Biology</td>
<td>1</td>
</tr>
<tr>
<td>BIOL 155</td>
<td>Human Biology</td>
<td>3</td>
</tr>
<tr>
<td>BIOL 211</td>
<td>Principles of Biology I</td>
<td>3</td>
</tr>
<tr>
<td>BIOL 211L</td>
<td>Principles of Biology Laboratory I</td>
<td>1</td>
</tr>
<tr>
<td>BIOL 212</td>
<td>Principles of Biology II</td>
<td>3</td>
</tr>
<tr>
<td>BIOL 212L</td>
<td>Principles of Biology Laboratory II</td>
<td>1</td>
</tr>
<tr>
<td>BIOL 255</td>
<td>Fundamentals of Human Anatomy</td>
<td>3</td>
</tr>
<tr>
<td>BIOL 255L</td>
<td>Fundamentals of Human Anatomy Laboratory</td>
<td>1</td>
</tr>
<tr>
<td>BIOL 256</td>
<td>Fundamentals of Human Physiology</td>
<td>3</td>
</tr>
<tr>
<td>BIOL 256L</td>
<td>Fundamentals of Human Physiology Laboratory</td>
<td>1</td>
</tr>
</tbody>
</table>

Graduate Study

Understanding the genetic blueprint and the functions of cells is critical to virtually all aspects of biology. The basic mission of the Department of Genetics, Development and Cell Biology is to achieve a greater understanding of fundamental principles of life. The GDCB faculty and students conduct hypothesis-driven research into the biology of animals, plants and microbes. While research in GDCB is often based on discovery and analysis of molecular mechanisms of life processes, a true understanding of living organisms will ultimately require the integration of molecular mechanisms in the context of dynamic structural components of the living cell. Thus, research efforts within GDCB use molecular, genetic, biochemical, computational and imaging techniques to study systems at increasingly complex levels of organization.

GDCB faculty contribute to a broad but integrated array of cutting-edge research topics, implementing interactive and multidisciplinary approaches that bridge conventional boundaries, and incorporating experimental and computational biology as complementary approaches. Examples include using genetics and molecular biology to investigate the cellular basis of development, or combining biochemical and computational approaches to study basic subcellular functions, signal transduction or metabolism.

The faculty in the GDCB department train graduate students in several interdepartmental majors/programs including Bioinformatics and Computational Biology, Ecology and Evolutionary Biology, Genetics, Immunobiology, Plant Biology, Interdisciplinary Graduate Studies, Microbiology, Molecular, Cellular and Developmental Biology,
Neuroscience and Toxicology. Graduate work leading to both Master of Science (M.S.) and Doctor of Philosophy (Ph.D.) degrees are available.

Prospective graduate students need a sound background in the physical and biological sciences, as well as Mathematics and English. Interested students should check the links on the GDCB web site (www.gdcb.iastate.edu/) for specific admissions procedures and the latest information about individual faculty and their research programs. The interdepartmental majors and programs require submission of Graduate Record Examination (GRE) aptitude test scores. Advanced GRE scores are recommended. International students whose native language is other than English must also submit TOEFL scores with their application.

Students who are enrolled in the interdepartmental graduate majors and who have affiliations with GDCB are required to actively participate in seminars, research activities, and to show adequate progress and professional development while pursuing their degree. Completion of either the M.S. or Ph.D. degrees requires that research conducted by the student culminates in the writing and presentation of a thesis or dissertation. The Graduate College, the GDCB Faculty, and the individual student's major professor and Program of Study Committee provide requirements and guidelines for study. General information about graduate study requirements can be found at the web site for the Graduate College (www.grad-college.iastate.edu/) and requirements for the interdepartmental majors can be found by following the links from the GDCB web site above. Although not a formal requirement, the GDCB faculty recommends that students pursuing the Ph.D. include teaching experience in their graduate training.

Courses primarily for graduate students, open to qualified undergraduates:

GDCB 505: Entrepreneurship in Science and Technology
(3-0) Cr. 3. Alt. F., offered even-numbered years.
High level success at modern science requires entrepreneurship both in and outside the laboratory. Scientists are in a unique position to not only think, but to thrive, "outside of the box" and take unorthodox approaches to research that lead to positive paradigm shifts in our lives. Exploration of many facets of science, technology, industry and commerce, with frequent guest lectures from entrepreneurs.

GDCB 510: Transmission Genetics
(3-0) Cr. 3. F.
Prereq: GEN 410 or graduate standing
In-depth investigations of modern research practices of transmission genetics. Designed for students interested in genetic research. Topics include: Mendelian genetic analysis, analysis of genetic pathways, mutational analysis of gene function, chromosomal mechanics, genetic mapping, epigenetic inheritance, human genetic analysis.

GDCB 511: Molecular Genetics
(Cross-listed with MCDB), (3-0) Cr. 3. S.
Prereq: BIOL 313 and BBMB 405
The principles of molecular genetics: gene structure and function at the molecular level, including regulation of gene expression, genetic rearrangement, and the organization of genetic information in prokaryotes and eukaryotes.

GDCB 513: Plant Metabolism
(Cross-listed with PLBIO). (2-0) Cr. 2. Alt. F., offered even-numbered years.
Prereq: BIOL 330, PHYS 111, CHEM 331; one semester of biochemistry recommended.
Photosynthesis, respiration, and other aspects of plant metabolism.

GDCB 528: Advances in Molecular Cell Biology
(Cross-listed with MCDB). (3-0) Cr. 3. Alt. F., offered even-numbered years.
Prereq: Courses in general cell biology and biochemistry.
Cell biological processes including cell signaling, cell division, intracellular trafficking, biogenesis of organelles, cell adhesion and motility.

GDCB 533: Advances in Developmental Biology
(Cross-listed with MCDB). (3-0) Cr. 3. Alt. F., offered odd-numbered years.
Prereq: BIOL 314 or Biol 423
Fundamental principles in multicellular development. Emphasis on cellular and molecular regulation of developmental processes, and experimental approaches as illustrated in the current literature.

GDCB 536: Statistical Genetics
(Cross-listed with STAT). (3-0) Cr. 3. Alt. F., offered even-numbered years.
Prereq: STAT 401, STAT 447; GEN 320 or BIOL 313
Statistical models and methods for genetics covering models of population processes: selection, mutation, migration, population structure, and linkage disequilibrium, and inference techniques: genetic mapping, linkage analysis, and quantitative trait analysis. Applications include genetic map construction, gene mapping, genome-wide association studies (GWAS), inference about population structure, phylogenetic tree construction, and forensic and paternity identification.

GDCB 542: Introduction to Molecular Biology Techniques
(Cross-listed with B M S, EEOB, FS HN, HORT, NREM, NUTRS, V MPM, VDPAM). Cr. 1. Repeatable. F.S.SS.
Sessions in basic molecular biology techniques and related procedures. Offered on a satisfactory-fail basis only.

GDCB 542A: Introduction to Molecular Biology Techniques: DNA Techniques
(Cross-listed with B M S, BBMB, EEOB, FS HN, HORT, NREM, NUTRS, V MPM, VDPAM). Cr. 1. Repeatable. F.S.
Prereq: Graduate classification.
Includes genetic engineering procedures, sequencing, PCR, and genotyping. Offered on a satisfactory-fail basis only.

GDCB 542B: Introduction to Molecular Biology Techniques: Protein Techniques
(Cross-listed with B M S, BBMB, EEOB, FS HN, HORT, NREM, NUTRS, V MPM, VDPAM). Cr. 1. Repeatable. S.SS.
Prereq: Graduate classification.
Includes: fermentation, protein isolation, protein purification, SDS-PAGE, Western blotting, NMR, confocal microscopy and laser microdissection, immunophenotyping, and monoclonal antibody production. Sessions in basic molecular biology techniques and related procedures. Offered on a satisfactory-fail basis only.

GDCB 542C: Introduction to Molecular Biology Techniques: Cell Techniques
(Cross-listed with B M S, BBMB, EEOB, FS HN, HORT, NREM, NUTRS, V MPM, VDPAM). Cr. 1. Repeatable. F.S.
Includes: immunophenotyping, ELISA, flow cytometry, microscopic techniques, image analysis, confocal, multiphoton and laser capture microdissection. Offered on a satisfactory-fail basis only.
GDCB 542D: Introduction to Molecular Biology Techniques: Plant Transformation
(Cross-listed with B M S, BBMB, EEOB, FS HN, HORT, NREM, NUTRS, V
MPM, VDPAM). Cr. 1. Repeatable. S.
Includes: Agrobacterium and particle gun-mediated transformation of
potato, Arabidopsis, and maize, and analysis of transformants. Offered
on a satisfactory-fail basis only.

GDCB 542E: Introduction to Molecular Biology Techniques: Proteomics
(Cross-listed with B M S, BBMB, EEOB, FS HN, HORT, NREM, NUTRS, V
MPM, VDPAM). Cr. 1. Repeatable. F.
Includes: two-dimensional electrophoresis, laser scanning, mass
spectrometry, and database searching. Offered on a satisfactory-fail
basis only.

GDCB 542F: Introduction to Molecular Biology Techniques: Metabolomics
(Cross-listed with B M S, BBMB, EEOB, FS HN, HORT, NREM, NUTRS, V
MPM, VDPAM). Cr. 1. Repeatable. F.
Includes: metabolomics and the techniques involved in metabolite
profiling. For non-chemistry majoring students who are seeking analytical
aspects into their biological research projects. Offered on a satisfactory-fail
basis only.

GDCB 542G: Introduction to Molecular Biology Techniques: Genomic
(Cross-listed with B M S, BBMB, EEOB, FS HN, HORT, NREM, NUTRS, V
MPM, VDPAM). Cr. 1. Repeatable. S.
Offered on a satisfactory-fail basis only.

GDCB 544: Fundamentals of Bioinformatics
(Cross-listed with BCB, COM S, CPR E). (4-0) Cr. 4. F.
Prereq: MATH 165 or STAT 401 or equivalent
Survey of key bioinformatics methods, including hands-on use of
computational tools to solve various biological problems. Topics
include: database searching, sequence alignment, gene prediction, RNA
and protein structure prediction, construction of phylogenetic trees,
comparative and functional genomics, and systems biology.

GDCB 545: Plant Molecular, Cell and Developmental Biology
(Cross-listed with MCDB, PLBIO). (3-0) Cr. 3. Alt. F., offered odd-numbered
years.
Prereq: Biol 313, BIOL 314, BIOL 330 or BBMB 405
Plant nuclear and organelle genomes; regulation of gene expression;
hormone signaling; organization, function, and development of plant cells
and subcellular structures; regulation of plant growth and development.

GDCB 556: Cellular, Molecular and Developmental Neuroscience
(Cross-listed with B M S, NEURO). (3-0) Cr. 3. F.
Prereq: BIOL 335 or BIOL 436; physics recommended
Fundamental principles of neuroscience including cellular and molecular
neuroscience, nervous system development, sensory, motor and
regulatory systems.

GDCB 557: Advanced Neuroscience Techniques
(Cross-listed with NEURO). (3-0) Cr. 3. Alt. S., offered odd-numbered
years.
Prereq: Neuro 556 or equivalent course
Research methods and techniques; lectures, laboratory exercises and/or
demonstrations representing individual faculty specialties.

GDCB 568: Bioinformatics II (Advanced Genome Informatics)
(Cross-listed with BCB, COM S, STAT). (3-0) Cr. 3. S.
Prereq: BCB 567 or (BIOL 315 and STAT 430), credit or enrollment in GEN 409
Advanced sequence models. Basic methods in molecular phylogeny.
Hidden Markov models. Genome annotation. DNA and protein motifs.
Introduction to gene expression analysis.

GDCB 570: Bioinformatics IV (Computational Functional Genomics and
Systems Biology)
(Cross-listed with BCB, COM S, CPR E, STAT). (3-0) Cr. 3. S.
Prereq: BCB 567 or COM S 311, COM S 228, GEN 409, STAT 430
Algorithmic and statistical approaches in computational functional
genomics and systems biology. Elements of experiment design. Analysis
of high throughput gene expression, proteomics, and other datasets
obtained using system-wide measurements. Topological analysis,
module discovery, and comparative analysis of gene and protein
networks. Modeling, analysis, simulation and inference of transcriptional
regulatory modules and networks, protein-protein interaction networks,
metabolic networks, cells and systems: Dynamic systems, Boolean, and
probabilistic models. Multi-scale, multi-granularity models. Ontology-
driven, network based, and probabilistic approaches to information
integration.

GDCB 590: Special Topics
Cr. arr. Repeatable.
Prereq: Permission of instructor

Courses for graduate students:

GDCB 661: Current Topics in Neuroscience
(Cross-listed with BBMB, NEURO). (2-0) Cr. 2-3. Repeatable. Alt. S.,
offered even-numbered years.
Prereq: NEURO 556 (or comparable course) or permission of instructor
Topics may include molecular and cellular neuroscience,
neurodevelopment, neuroplasticity, neurodegenerative diseases,
cognitive neuroscience, sensory biology, neural integration, membrane
biophysics, neuroethology, techniques in neurobiology and behavior.

GDCB 690: Seminar in GDCB
Cr. 1. Repeatable.
Research seminars by faculty, invited speakers, and graduate students.
Offered on a satisfactory-fail basis only.

GDCB 691: Faculty Seminar
Cr. 1. Repeatable.
Faculty research series.

GDCB 696: Research Seminar
(Cross-listed with AGRON, BBMB, FOR, HORT, PLBIO). Cr. 1. Repeatable.
F.S.
Research seminars by faculty and graduate students. Offered on a
satisfactory-fail basis only.

GDCB 698: Seminar in Molecular, Cellular, and Developmental Biology
(Cross-listed with BBMB, MCDB, MICRO, V MPM). (2-0) Cr. 1-2.
Repeatable. F.S.
Student and faculty presentations.

GDCB 699: Research
Cr. arr. Repeatable.
Research for thesis or dissertation. Offered on a satisfactory-fail basis only.
GDCB 699I: Research
(Cross-listed with A ECL, ANTHR, EEOB, IA LL). Cr. 1-4. Repeatable.