Contents

3 Academic Calendar

4 The University
 7 Administration of Iowa State University
 8 Admissions and Records
 14 Extended and Continuing Education
 17 Fees and Expenses
 20 Student Financial Aid
 22 Student Housing
 24 Student Services
 29 Student Life
 32 Research Organizations
 37 Academic Life
 52 Designators

53 Colleges and Curricula
 57 College of Agriculture
 71 College of Business
 74 College of Design
 80 College of Education
 86 College of Engineering
 95 College of Family and Consumer Sciences
 102 College of Liberal Arts and Sciences
 107 College of Veterinary Medicine
 110 Graduate College

119 Courses and Programs

357 The Faculty

391 Index
Fall Semester 2001

Classwork begins, Monday, August 27
University holiday, offices closed Monday, September 3
Thanksgiving, classes recessed Monday-Friday, November 19-23
University holidays, offices closed Thursday and Friday, November 22 and 23
Classes resume, Monday, November 26, 7 a.m.
Commencement, Friday and Saturday, December 21 and 22
University holidays, offices closed Monday and Tuesday, December 24 and 25

Fall Semester 2002

Classwork begins, Monday, August 26
University holiday, offices closed Monday, September 2
Thanksgiving, classes recessed Monday-Friday, November 25-29
University holidays, offices closed Thursday and Friday, November 28 and 29
Classes resume, Monday, December 2, 7 a.m.
Commencement, Friday and Saturday, December 20 and 21
University holidays, offices closed Tuesday-Wednesday, December 24 and 25

Spring Semester 2002

University holiday, offices closed Tuesday, January 1
Classwork begins, Monday, January 14
University holiday, offices closed Monday, January 21
Spring break, classes recessed Monday-Friday, March 18-22
Classes resume, Monday, March 25, 7 a.m.
Commencement, Friday and Saturday, May 10 and 11

Spring Semester 2003

University holiday, offices closed Wednesday, January 1
Classwork begins, Monday, January 13
University holiday, offices closed Monday, January 20
Spring break, classes recessed Monday-Friday, March 17-21
Classes resume, Monday, March 24, 7 a.m.
Commencement, Friday and Saturday, May 9 and 10

Summer School 2002

Classwork begins, Session I Monday, May 20
University holiday, offices closed Monday, May 27
Classwork begins, Session II Monday, June 17
University holiday, offices closed Thursday, July 4
Commencement, Saturday, August 10

Summer School 2003

Classwork begins, Session I Monday, May 19
University holiday, offices closed Monday, May 26
Classwork begins, Session II Monday, June 16
University holiday, offices closed Friday, July 4
Commencement, Saturday, August 9
Iowa started an education revolution as the first state to accept the 1862 Morrill Act terms. The act allowed Iowa to sell federal land to finance a new college open to all regardless of wealth, race or gender; offering a practical education in agriculture, engineering and military science as well as classical studies; and sharing research knowledge with all Iowans. Iowa State University officially opened in 1869 and was the first coeducational land-grant school. Iowa State’s mission statement reflects our institutional commitment to these founding qualities.

Mission, role and scope statement

(Approved by the Board of Regents, State of Iowa, November 1989)

Iowa State University of Science and Technology is a public land-grant institution serving the people of the state, the nation, and the world through its interrelated programs of instruction, research, extension, and professional service. With an institutional emphasis upon areas related to science and technology, the University carries out its traditional mission of discovering, developing, disseminating, and preserving knowledge.

Iowa State University provides high quality undergraduate programs across a broad range of disciplines, as befits the institution’s stature as a university. In its dedication to excellence in teaching, the University strives to instill in its students the discernment, intellectual curiosity, knowledge and skills essential for their individual development and their useful contribution to society. A common goal of undergraduate education is to assure that all students, regardless of disciplinary major, acquire literacy in science and technology, an understanding of human and ethical values, an awareness of the intellectual, historical, and artistic foundations of our culture, and a sensitivity to other cultures and to international concerns. Consonant with its role as a teaching and research institution, Iowa State University has a strong commitment to graduate education that, at both the master’s and doctoral levels, emphasizes the development of professional, research, and scholarship skills.

As an integral part of the learning process, Iowa State University fosters the discovery and dissemination of new knowledge by supporting research, scholarship, and creative activity. The University also uses existing knowledge to address problems and issues of concern to the state of Iowa in particular, as well as to the national and global community. The University’s research and scholarly endeavors are supported by public and private resources and are conducted in an environment of open scientific inquiry and academic freedom. Extension, professional service, and continuing education activities are conducted through innovative and effective outreach programs that provide the people of Iowa, and beyond, with practical knowledge and information derived from leading instructional and research efforts at Iowa State University and elsewhere. Through its outreach programs, the University stimulates and encourages progressive change.

Iowa State University enrolls academically qualified students who represent diverse age groups, socioeconomic levels, racial ancestries, ethnic heritages, and international cultures, and who provide a gender balance. Through the use of a variety of educational opportunities, advanced instructional technologies, and student services, the University supports the development of both traditional and non-traditional students, preparing them for citizenship and life-long learning in a rapidly changing world.

Finally, Iowa State University participates in international efforts to alleviate world hunger and poverty, to prepare students and faculty to be productive and responsible citizens of the world, and to contribute to increased cultural, educational, economic, scientific, and socio-political interchange and understanding between and among Iowans and other members of the world community.

Role Statement

The role of Iowa State University is defined by the institution’s status as the state of Iowa’s land-grant university and by its relationship to the other institutions of higher education within Iowa.

- Iowa State University must strive to develop and maintain instruction, research, extension, and professional service programs that fulfill the responsibilities of a major land-grant institution.

- Iowa State University shares with the other public institutions of higher education within Iowa the joint responsibility of providing a full range of high quality educational opportunities. Coordination among these institutions with respect to programs, clientele, and geographic areas is necessary to ensure that the priority needs of all Iowans are addressed and to avoid unnecessary duplication.

- Iowa State has a statewide system for extension education and information dissemination.

- Iowa State continues to be a leading higher education institution with institutional emphasis on science and technology.

- Consistent with its historic role, Iowa State University contributes to the economic development of the state of Iowa by attracting public and private organizations seeking proximity to leading authorities in particular fields, by participating in technology transfer, and by assisting efforts to strengthen and diversify the economic base of Iowa.

- Iowa State University assumes responsibility for helping to protect, maintain and improve Iowa’s natural resources through the discovery and diffusion of knowledge and technology.

Scope Statement Consistent with the university’s role and mission statements, the current scope of Iowa State University is described below.

- Iowa State University of Science and Technology, a broad-based university with an orientation towards science and technology, has sufficient scope and depth in its instruction, research, and extension and professional service functions to enable it to continue to be a distinguished land-grant university. In addition to its undergraduate and graduate work in the physical, biological, mathematical, and social sciences, it will maintain and develop strong undergraduate programs in the arts and humanities, and will offer such master’s and Ph.D. programs in this area as are justified to meet the needs of the state of Iowa and to maintain the overall strength and desirable balance of the university as a whole.

- In Iowa State University’s professional programs, principal emphasis will be given to the maintenance and development of strong programs in the sciences, agriculture, engineering, veterinary medicine, design, education, business, and family and consumer sciences. Interdisciplinary programs are offered that seek to combine the perspectives and methods of more than one discipline to better address the questions and problems confronting Iowa, the nation, and the world. The international efforts of Iowa State University are to be expanded and enhanced.

- Iowa State University will offer no major undergraduate or graduate programs in law, library science, human medicine, dentistry, pharmacy, nursing, hospital administration, occupational therapy, physical therapy, or speech pathology.

- Future programs will be determined by the continuing assessment of existing programs and of developing needs. Programs will be curtailed or eliminated when the assessment of need and resources dictates that the resources could be better used for other programs. The university approaches the addition of new programs with considerable caution. Generally, new programs are fashioned out of existing programs in response to developing needs. But if the university is to remain vital, it must be prepared and able to develop, at appropriate times, new programs that are within its general mission and that meet the changing needs of the students and society.
Iowa State’s values

As Iowa State University works toward creating an environment where continual learning serves the promises of a better world, all members of the university community are called upon to act in harmony with our core values.

- Land-grant values of: access to education and success
- learning, encompassing practical and liberal education
- discovery, encompassing basic and applied research
- engagement, encompassing service and outreach
- excellence
- quest for knowledge
- shared leadership
- integrity
- commitment
- collaboration
- mutual respect
- inclusiveness
- global perspective

Non-discrimination and affirmative action policy

Iowa State University is committed to developing and implementing a program of nondiscrimination and affirmative action, a responsibility the university accepts willingly because it is the right and just thing to do. Because an educational institution exposes the youth of Iowa and of the nation to a multitude of ideas that strongly influence their future development, it is an area of our society where removing barriers is critical. ISU insists on promoting the concept of inclusion and participation.

This commitment is part of a larger commitment to developing a safe and supportive climate for all members of the ISU community in classrooms and laboratories, in offices, in the residence hall system, and throughout the campus. Iowa State University recognizes that a non-discriminatory environment complements a commitment to academic inquiry and intellectual and personal growth.

The goal is to provide a non-discriminatory work environment, a non-discriminatory living and learning environment and a non-discriminatory environment for visitors to the campus. Iowa State University herein recommits itself to comply with all federal and state laws, regulations, and orders, including the policies of the Iowa Board of Regents, which pertain to nondiscrimination and affirmative action. All administrators and personnel providing input into administrative decisions are directed to ensure that all decisions relative to employment, conditions of employment and access to programs and services will be made without regard to race, color, age, religion, national origin, sexual orientation, sex, marital status, disability, or status as a U.S. Vietnam Era Veteran.

Exceptions to this directive may be made in matters involving bona fide occupational qualifications, business necessity, actions designed to eliminate workforce underutilization, and/or where this policy conflicts with federal and state laws, rules, regulations, or orders. Iowa State University does not and will not tolerate unlawful discrimination. Iowa State will recruit, hire, train and promote persons without regard to race, color, religion, sex, national origin, age, disability, veteran status, marital status, or sexual orientation. Iowa State University will base employment decisions so as to further the principle of equal employment opportunity and diversity.

No otherwise qualified person will be denied access to, or participation in, any program, activity, service, or the use of facilities on the basis of factors previously enumerated. Reasonable accommodation will be made to facilitate the participation of persons with disabilities in all such activities consistent with applicable federal and state laws, orders and policies.

Further, all supervisory personnel will be responsible for maintaining an environment that is free of racial, ethnic or sexual abuse and harassment. The University has adopted policies and procedures on Racial and Ethnic Harassment and Sexual Harassment. Copies of these policies and procedures may be obtained from the Affirmative Action Office, at the address listed below. Acts by anyone that adversely affect another person’s employment, conditions of employment, academic standing, receipt of services, and/or participation in, or enjoyment of, any other activity, will be regarded as a violation of university policy and thereby be subject to appropriate disciplinary action. Retaliation against persons filing complaints, for bringing the violation of this policy forward for review, or for assisting in a review, pursuant to a filed complaint or grievance, is prohibited.

Iowa State University’s commitment to nondiscrimination and affirmative action is of the highest priority and is to be adhered to as such. It applies to all university-sponsored programs and activities as well as those that are conducted in cooperation with the university.

Iowa State University has designated Carla Espinoza as the affirmative action officer and assigns overall program responsibility to her as the Director of Affirmative Action. Questions regarding complaints and/or compliance with affirmative action or equal opportunity should be directed to:

Carla Espinoza
Iowa State University
Ames, IA 50011-2038
515-294-7612.

Iowa State’s points of pride

- The first electronic digital computer was designed by Iowa State math and physics professor John Vincent Atanasoff and graduate student Clifford Berry. Their invention, the ABC computer, built in the late 1930s, has been called the most important technological innovation of the 20th century, and is an excellent example of the ongoing spirit of innovation and advancement at Iowa State. Today the Iowa State community benefits from that innovation through Project Vincent, a computing system that provides students with powerful software for class work and research, e-mail access, space for their own Web pages and a speedy on-ramp to the Internet.

- More than 16,000 workstations on campus are networked with access to Internet and vBNS, fast new connections that allow work with complex computer models and links to supercomputers throughout the nation. Excellent computing facilities and Internet services to students have landed Iowa State on Yahoo!Internet Life magazine’s “100 Most Wired Colleges” list.

- The university is a leader in virtual reality research and its C6 is the first six-sided virtual reality theater in the United States, designed and used by artists and engineers. The C6 provides students and companies a world-class facility for research and product development. It is housed in the College of Engineering's new Howe Hall, the first building of the Engineering and Teaching Research Complex to be completed.

As evidence of the university’s reputation for excellence, Iowa State is one of only 62 major research universities in the United States and Canada named to the prestigious Association of American Universities.

Iowa State consistently ranks in the top four percent of the private and public institutions enrolling National Merit Scholars.

At Iowa State, more than 500 student-run organizations and academic clubs offer between 7,000 and 8,000 student leadership positions, allowing students to exercise and develop all of their skills and interests.

Our nationally and internationally renowned professors teach classes for both majors and non-majors, extending students’ opportunities to study with leaders in a variety of disciplines.

- Every state and more than 100 foreign countries are represented in the student body, exposing students to ideas from other cultures both in and out of the classroom.

- Our nearly 2,000 acre, park-like campus includes 161 buildings, many of which are included on the National Register of Historic Places. The campus is rated one of the 25 most beautiful in the nation and is one of only three university campuses in the nation to be named a 1999 Centennial “Medallion Site” by the American Association of Landscape Architects.
The University

- ISU graduates include George Washington Carver, an internationally respected plant scientist; Darleane Hoffman, a 1997 National Medal of Science winner, who discovered the new element 106 - seaborgium; David Nicholas, whose process to more efficiently convert text into digital information resulted in facsimile machines becoming an office staple around the world; Carrie Chapman Catt, who helped women win the right to vote and start the League of Women Voters; and Randy Dvorak, who designed Comiskey Park, home of the Chicago White Sox. Our alumni also include CEO's of Fortune 500 companies, Pulitzer Prize winning journalists, and elected government officials both in the United States and abroad.

Iowa State's history

Iowa State is one of the nation's oldest and most respected land-grant universities. Created by the Iowa General Assembly in 1858, the Iowa Agricultural College and Model Farm was designated the nation's first land-grant college when Iowa became the first state to accept terms of the federal Morrill Act in 1864.

The school, which was the first land-grant institution to be co-educational from the beginning, opened its doors in the fall of 1868. A class of 26 was graduated at the first commencement in 1872. Graduate study was offered almost as soon as classes began, and the first graduate degree was conferred in 1877. Experimentation and research also started early in agriculture, home economics, engineering, science, and veterinary medicine.

As Iowa State adapted the land-grant philosophy to the changing needs of the 20th century, it adopted special teaching responsibilities in science and technology, an extension education program throughout the state, and extensive research interests to advance the frontiers of learning. Since 1958, it has been known as Iowa State University of Science and Technology.

Strategic Plan - to become the best.

Strategic Plan - to become the best land-grant institution in the nation.

The aspiration to become the nation's best land-grant university was set forth in the strategic plans that have guided Iowa State University since 1990, and Iowa State's new plan for 2000-2005 continues this commitment. In addition, Iowa State's new strategic plan reflects the expectations of the Board of Regents, State of Iowa, Strategic Plan and its four key result areas of quality, access, diversity, and accountability.

The Engaged University

In order to become the nation's best land-grant university, Iowa State embraces the concept of engagement as defined by the Kellogg Commission on the Future of State and Land-Grant Universities. Engagement is an evolution and a transformation of traditional outreach. It is two-way outreach; an institution reaching out to provide programs and services to constituents, resulting in a greater connectedness between public universities and the larger society they serve. Intrinsic to engagement is the creation of partnerships with government, business, and the nonprofit world. These partnerships are defined by mutual respect for what each partner brings to the table in addressing the issues that confront us. This definition of engagement encompasses all aspects of our mission—academic and research programs, as well as extension and other outreach programs and services.

Goal 1: Learning - enhance learning through exceptional learner-centered teaching, services, and enrichment opportunities

Iowa State believes that learning is at the heart of our university. It occurs in many contexts and by all members of the community. As a land-grant institution, Iowa State University is among the world leaders in providing post-secondary access. However, access to success through Iowa State University will mark our commitment to enhancing learning, and it will be accomplished by providing exceptional learner-centered teaching, services, and enrichment opportunities; and by paying attention to lifelong learning needs.

Goal 2: Discovery - Promote discovery and innovation characterized by preeminent scholarship, including increasingly interdisciplinary and collaborative activities.

Iowa State believes that discovery and innovation characterized by preeminent scholarship encompassing research, creative activities, teaching/learning, and extension/professional practice, will mark our commitment to discovery, thereby enhancing our national and international distinction. Institutional agility and interdisciplinary collaboration will allow Iowa State to undertake bold visionary initiatives with special attention to ethics and social, economic, and environmental responsibility.

Goal 3: Engagement: Engage with key constituencies through synergistic sharing and partnership of knowledge and expertise to address needs of communities and society.

Iowa’s engaged land-grant university, Iowa State will synergistically devote its knowledge and expertise toward increased responsiveness and productive involvement in improving Iowa’s communities and the larger society, at home and abroad. This will be marked by our commitment to sharing- to enrich and to learn, two-way partnerships with internal and external constituencies to achieve shared goals and to demonstrate the public purposes of Iowa State University.
The laws of the United States and of the State of Iowa provide for resident academic instruction, research, and extension education, and for the management of Iowa State University of Science and Technology. The university and two other state educational institutions of higher learning are governed by the Board of Regents, State of Iowa, which is composed of nine members nominated by the Governor of Iowa and confirmed by the Senate of Iowa. The immediate regulation and direction of the academic, research, and extension activities of the university are delegated by the Board of Regents, State of Iowa, to the president and faculty of the university. The board appoints an executive director with overall responsibility for the administration of the central office of the board located in Des Moines.

Board of Regents, State of Iowa

Owen J. Newlin, President
Frank J. Stork, Executive Director

Terms expire April 30, 2001

Ellengray G. Kennedy..........Bancroft
Roger L. Lande.................Muscatin
Beverly A. SmithWaterloo

Terms expire April 30, 2003

Lisa E. Ahrens................Osage
David J. Fisher...........West Des Moines
Dr. Clarkson L. Kelly, Jr.....Charles City

Terms expire April 30, 2005

David G. NeilLaPorte City
Owen J. NewlinDes Moines
Deborah A. TurnerMason City

Accreditation

Iowa State University is accredited by the Commission on Institutions of Higher Education of the North Central Association of Colleges and Schools.
North Central Association of Colleges and Schools Commission on Institutions of Higher Education
30 N. LaSalle Street, Suite 2400
Chicago, IL 60602-2504
(800) 621-7400; (312) 263-0456;
Fax: (312) 263-7462
www.ncacihe.org

Officers of Administration

President of the University
Rollin C. Richmond, Ph.D., Provost
Warren R. Madden, M.B.A., Vice President for Business and Finance
Murray M. Blackwelder, M.P.A., Vice President for External Affairs
Thomas L. Hill, Ph.D., Vice President for Student Affairs
Richard F. Ross, Ph.D., Dean of the College of Agriculture
Benjamin J. Allen, Ph. D., Dean of the College of Business
Mark C. Engelbrecht, M. Arch., Dean of the College of Design
Walter H. Gmelch, Ph.D., Dean of the College of Education
James L. Melsa, Ph.D., Dean of the College of Engineering
Carol B. Meeks, Ph.D., Dean of the College of Family and Consumer Sciences
Peter F. Rabideau, Ph.D., Dean of the College of Liberal Arts and Sciences
Richard F. Ross, Ph.D., Dean of the College of Veterinary Medicine
James R. Bloedel, M.D., Ph.D., Vice Provost for Research and Advanced Studies
Stanley R. Johnson, Ph.D., Vice Provost for Extension
Howard N. Shapiro, Ph.d., Vice Provost for Undergraduate Programs
Dean of Students
Olivia M. Madison, M.A., Dean of Library Services
Admissions and Registrar

Emeritus Dean of Admissions and Records: Fred C. Schlunz, M.S.

Office of Admissions
Director: Marc Harding, B.A.
Associate Directors: Phil Caffrey, M.S.; Stephanie Salasek, M.S.
Assistant Directors: Diane Bengtson, M.S.E.; Vern E. Hawkins, M.S.; Patricia J. Parker, B.A.

Office of the Registrar
Registrar: Kathleen M. Jones, M.S.
Associate Registrars: Larry Dau, B.S., Laura Doering, M.S.
Assistant Registrars: Robert Bosanac M.A.; Judy Minnick, B.L.S.
Systems Support Specialist: Clare Smith-Larson, B.A.
Communications Coordinator: Charlene Hulsebus, B.S.

Admission
When to Apply
Applicants for the fall semester are encouraged to apply during the fall of the year preceding their entry to Iowa State University. Applications for other terms should be submitted six to nine months in advance of the desired entry date.

Completed applications for admission to the professional curriculum in the College of Veterinary Medicine, together with the required supporting transcripts, must be received by an established deadline. See Index, College of Veterinary Medicine, Application and Admission.

How to Apply
Applications for admission may be obtained by writing the Office of Admissions, Alumni Hall, Iowa State University, Ames, Iowa 50011-2010; by calling 515-294-5836 or 800-262-3810; or by e-mail to admissions@iastate.edu.

Applicants should describe their educational backgrounds and indicate the area in which they plan to study. An application form and detailed information concerning admission will then be sent by the Office of Admissions. Applications are also available on the Web at www.iastate.edu/~adm_info.

Applicants seeking admission for the fall semester may be notified of the action taken on their applications as early as the September preceding enrollment, upon receipt of all application materials. Applicants for other terms will be notified approximately two to three weeks after receipt of all materials. Admission offers are issued for a specific term and are valid only for the term specified.

Visits to the Campus
Visitors to Iowa State University are always welcome!

The Office of Admissions, located in Alumni Hall, is open Monday through Friday from 8 a.m. until 5 p.m., and most Saturday mornings from 9 a.m. until noon. Counselors are available to speak with prospective students and their families about admission, financial aid, housing, student life, and academic programs and opportunities.

Student-guided walking tours of the campus are offered weekdays at 10 a.m. and 2 p.m., and most Saturdays at 10 a.m. Prospective students and parents are encouraged to visit the campus and the Office of Admissions. Arrangements for a campus visit or registration for a special open house program called “Experience Iowa State” can be made electronically at www.iastate.edu/~adm_info/visit or by calling the Office of Admissions at 515-294-5836 or 800-262-3810.

Admissions policies are established by the Faculty Senate. Admission decisions are made by the admissions officers in accordance with these policies.

Undergraduate Admission into Degree Programs Directly from High School

Students who seek admission must meet the following requirements and also any special requirements for the college or curriculum of their choice.

Applicants must submit an application for admission, together with a $20 application fee ($50 for international students), and have their secondary school provide an official transcript of their academic record, including credits and grades, rank in class, and certification of graduation.

Applicants must also arrange to have their scores from either the ACT Assessment (ACT) or the Scholastic Assessment Test (SAT I) reported to Iowa State directly from the testing agency. The Test of English as a Foreign Language (TOEFL) is also required of applicants whose first language is not English, if their scores on the ACT or SAT are not adequate to place them into freshman composition courses at Iowa State. Applicants may be required to submit additional information or data to support their applications.

a. Graduates of approved Iowa high schools who have the subject-matter background required by Iowa State University and who rank in the upper half of their graduating class will be admitted. Students who do not rank in the upper half of their graduating class may be admitted to the university if they achieve the following combination of high school rank and ACT or SAT I scores:

<table>
<thead>
<tr>
<th>High School Rank (99% is high)</th>
<th>ACT Composite Score</th>
<th>SAT I Combined Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>49-47%</td>
<td>20</td>
<td>930</td>
</tr>
<tr>
<td>46-45%</td>
<td>21</td>
<td>970</td>
</tr>
<tr>
<td>44-42%</td>
<td>22</td>
<td>1010</td>
</tr>
<tr>
<td>41-39%</td>
<td>23</td>
<td>1050</td>
</tr>
<tr>
<td>38% or below</td>
<td>24</td>
<td>1090</td>
</tr>
</tbody>
</table>

Those who do not meet these requirements but who have a high school rank of 20% or above may be given the opportunity to enroll for a trial period during a preceding summer session to establish their qualifications for fall admission. Those who have a high school rank below 20% (and an ACT below 24) will be denied admission.

b. Nonresidents of Iowa, including international students, may be held to higher academic standards, but must meet at least the same requirements as resident applicants.

c. Applicants who are graduates of nonapproved high schools will be considered for admission in a manner similar to applicants from approved high schools, but additional emphasis will be given to scores earned on standardized examinations.

d. Applications may be considered from students who did not graduate with their high school classes. They will be required to submit all academic data to the extent that it exists and achieve scores on standardized examinations which will demonstrate that they are adequately prepared for academic study.

e. Students with superior academic records may be admitted, on an individual basis, for part-time university study while enrolled in high school or during the summers prior to high school graduation.

f. Exceptional students may be admitted as full-time students before completing high school. Early admission is provided to serve persons whose academic achievement and personal and intellectual maturity clearly suggest readiness for college-level study.
High School Preparation Required for Admission
Graduation from an approved high school shall ordinarily precede entrance into the university.

Students who wish to enter Iowa State University directly from high school (or transfer from another college or university with less than 24 semester hours of graded transferable college credit) must meet the level of academic performance described above and show evidence of the following high school preparation:

English/Language Arts
Four years, emphasizing writing, speaking, and reading, as well as an understanding and appreciation of literature;

Mathematics
Three years, including one year each of algebra, geometry, and advanced algebra;

Science
Three years, including one year each of courses from two of the following fields: biology, chemistry, and physics;

Social Studies
Two years.

Additional Entrance Requirements for the College of Liberal Arts and Sciences
In addition to the high school preparation requirements described above, students applying to the College of Liberal Arts and Sciences must have completed an additional year of social studies, for a total of three years, and two years of a single foreign language.

Students who do not meet the high school course preparation requirements listed here, but who are otherwise well qualified, may be admitted after individual review of their applications.

Undergraduate Admission into Degree Programs by Transfer from Other Educational Institutions
Students who seek admission must meet the following requirements and also any special requirements for the college or curriculum of their choice.

Applicants must submit an application form for admission, together with a $20 application fee ($50 for international students), and request that each college they have attended send an official transcript of record to the Office of Admissions. Failure to provide transcripts from all colleges or universities attended may result in denial of the application or dismissal from the university. If less than 24 semester hours of graded transferable college credit will be completed prior to entry at Iowa State University, applicants must also request that their official high school transcript and ACT or SAT I scores be sent to the Office of Admissions. Other transfer applicants are encouraged to provide high school academic information. Students who do not do so may be asked to take course placement examinations during orientation.

The Test of English as a Foreign Language (TOEFL) is required of students whose first language is not English.

a. Transfer applicants with a minimum of 24 semester hours of graded transferable credit from regionally accredited colleges or universities, who have achieved for all college work previously attempted the grade point average required by Iowa State for specific programs, will be admitted. A 2.00 grade point average (on a 4.00 grading scale) is the minimum transfer grade point average requirement. Some programs may require a transfer grade point average higher than this minimum. Higher academic standards may be required of students who are not residents of Iowa, including international students.

Applicants who have not maintained the grade point average required by Iowa State University for specific programs or who are under academic suspension from the last college attended generally will be denied admission.

b. In addition to meeting the minimum transfer grade point average requirement described above, applicants who have completed fewer than 24 semester hours of graded transferable college credit prior to their enrollment at Iowa State must also meet the admission requirements for students entering directly from high school.

c. Transfer applicants under disciplinary suspension will not be considered for admission until information concerning the reason for the suspension has been received from the college assigning the suspension.

Applicants granted admission under these circumstances will be admitted on probation.

d. Transfer applicants from colleges and universities not regionally accredited will be considered for admission on an individual basis, taking into account all available academic information.

Transfer Credit Practices
Iowa State University endorses the Joint Statement on Transfer and Award of Academic Credit approved by the American Council on Education (ACE) and the American Association of Collegiate Registrars and Admissions Officers (AACRAO). The current issue of Transfer Credit Practices of Designated Educational Institutions, published by AACRAO, is an example of a reference used in determining transfer credit.

The acceptance and use of transfer credit are subject to limitations in accordance with the educational policies of Iowa State University.

a. Students from regionally accredited colleges and universities.

Credit earned at regionally accredited colleges and universities is acceptable for transfer, except that credit in courses determined by Iowa State University to be of a developmental, vocational, or technical nature, or credit in courses or programs in which the institution granting the credit is not directly involved, may not be accepted, or may be accepted to a limited extent.

No more than 65 semester or 97 quarter credits earned at two-year colleges can be applied to a bachelor’s degree from Iowa State University. While there is no limit to the number of credits that may be transferred from a four-year institution, the last 32 semester credits must be completed at Iowa State.

b. Students from colleges and universities which have candidate status.

Credit earned at colleges and universities which have become candidates for accreditation by a regional association is acceptable for transfer in a manner similar to that from regionally accredited colleges and universities if the credit is applicable to the bachelor’s degree at Iowa State University.

Credit earned at the junior and senior classification from an accredited two-year college which has received approval by a regional accrediting association for change to a four-year college may be accepted by Iowa State.

c. Students from colleges and universities not regionally accredited.

When students are admitted from colleges and universities not regionally accredited, they may validate portions or all of their transfer credit by satisfactory academic study at Iowa State, or by examination. The amount of transfer credit and the terms of the validation process will be specified at the time of admission.

In determining the acceptability of transfer credit from private colleges in Iowa which do not have regional accreditation, the Regent Committee on Educational Relations, upon request from such institutions, evaluates the nature and standards of the academic program, faculty, student records, library, and laboratories.

In determining the acceptability of transfer credit from colleges in states other than Iowa which are not regionally accredited, acceptance practices indicated in the current issue of Transfer Credit Practices of Designated Educational Institutions will be used as a guide. For institutions not listed in the publication, guidance is requested from the designating reporting institution of the appropriate state.

d. Students from foreign colleges and universities.

Transfer credit from foreign educational institutions may be granted after a determination of the type of institution involved, its recognition by the educational authorities of the foreign country, and an evaluation of the content, level, and comparability of the study to courses and programs at Iowa State. Credit may be granted in specific courses or assigned to general areas of study. Extensive use is made of professional journals and references which describe the educational systems and programs of individual countries.
Additional Transfer Credit Policies

a. Students with credit obtained during military service. Credit will be awarded for successful completion of technical or specialized schools attended while on active duty with the armed forces to the extent that the material is applicable toward degree requirements at Iowa State University. Application for such credit is made at the Office of Admissions, which follows many of the recommendations in the American Council on Education (ACE) publication A Guide to the Evaluation of Educational Experiences in the Armed Services.

b. Students with credit obtained through non-college sponsored instruction. Credit will be awarded for successful completion of learning acquired from participation in formal courses sponsored by associations, business, government, industry, and unions to the extent that the material is applicable toward degree requirements at Iowa State University. Application for such credit is made at the Office of Admissions, which follows many of the recommendations in the American Council on Education (ACE) publication The National Guide to Educational Credit for Training Programs.

c. Students with credit obtained through correspondence courses. Although Iowa State does not offer correspondence courses, college-level courses taken by correspondence from accredited colleges or universities are acceptable for transfer at the undergraduate level if the courses taken are those that do not require laboratory study.

d. College Level Examination Program (CLEP). Iowa State University will award credit for each of three CLEP general examinations (social sciences and history, humanities, and natural sciences) for test scores at or above the 60th percentile on national norms. Iowa State University will also award credit for each of nine subject examinations, for test scores at or above the 50th percentile on national norms. American government, introductory psychology, principles of accounting, general biology, calculus with elementary functions, introductory sociology, macroeconomics, microeconomics, and trigonometry.

Application of CLEP credit to a degree program varies with the department, so students should consult with their department before they register for CLEP examinations.

e. Students with “test-out” credit. Students who have earned credit at other colleges or universities through Advanced Placement (AP), College Level Examination Program (CLEP), or International Baccalaureate (IB) examinations may qualify for credit at Iowa State University. Scores from these examinations should be sent directly to the Office of Admissions; credit will be awarded provided the scores satisfy Iowa State’s requirements.

Credit earned at another college through locally designed test-out examinations may transfer to Iowa State University if accompanied by at least 12 transferable semester credits earned through coursework taken at that institution.

f. Articulation/Transfer Agreements.

1. Iowa Regent Universities General Education Articulation Agreement. Iowa State University participates in an articulation agreement with the other two Iowa Regent universities concerning the acceptance of their general education programs into the Iowa State University College of Liberal Arts and Sciences. Under the terms of this agreement, students who have satisfied general education requirements at the University of Northern Iowa or in the College of Liberal Arts at the University of Iowa may transfer to Iowa State’s College of Liberal Arts and Sciences with their general education requirements met (with the possible exception of the foreign language and library requirements).

2. Associate of Arts (A.A.) Articulation Agreement with Iowa public community colleges. Students who plan to enter the College of Liberal Arts and Sciences at Iowa State University with an associate of arts degree from an Iowa public community college, and who have at least 60 prescribed semester (90 quarter) credits acceptable for transfer and at least a 2.00 cumulative grade point average, will be considered to have met the general education requirements of the college (with the possible exception of the foreign language and library requirements).

3. Vocational-technical credit from Iowa public community colleges. Iowa State University will accept up to 16 semester (24 quarter) credits earned in vocational-technical courses where the sending Iowa public community college will accept such courses toward its associate of arts or associate in science degree. Certain vocational-technical courses at Iowa community colleges may be articulated to Iowa State University as academic credit. The hours earned in these articulated courses would transfer in addition to the 16 semester hour vocational-technical maximum. Please refer to the course equivalency guides on the Web (www.iastate.edu) or contact the Office of Admissions for more information.

4. AP and CLEP credit from Iowa public colleges and universities. Iowa State University has an agreement with the Iowa public colleges and universities which allows credit earned through AP and CLEP examinations to transfer directly to Iowa State University if accompanied by at least 12 transferable semester credits earned through coursework taken at the sending institution.

Reentering Students

Reentering students are those who have previously attended Iowa State University and are returning after an absence of at least one full year. The reentry process for students who left Iowa State in good academic standing is described in the Iowa State University Bulletin, Courses and Programs. (International students need to reapply after an absence of one full semester, exclusive of summer session.) See Index, “Reentry” for more information.

Reentering graduate students do not need to complete a reentry form but should notify their department and the Office of the Registrar of their intent to reenter Iowa State University. Students who are returning to Iowa State University to pursue an undergraduate degree after an extended absence may request permission to remove one or more of their complete academic terms from future degree and grade point average considerations.

Residency

Classification of Residents and Nonresidents for Admission, Tuition, and Fee Purposes

These criteria are contained in the Iowa Administrative Code: Board of Regents.

General

A. A person enrolling at one of the three state universities shall be classified as a resident or nonresident for admission, tuition, and fee purposes by the registrar or someone designated by the registrar. The decision shall be based upon information furnished by the student and other relevant information.

B. In determining resident or nonresident classification, the issue is essentially one of why the person is in the state of Iowa. If the person is in the state primarily for educational purposes, that person will be considered a nonresident. For example, it may be possible that an individual could qualify as students who wish to attend Iowa State University to take undergraduate courses but who do not plan to seek an undergraduate degree from Iowa State University should apply as nondegree undergraduate students. Credit taken under the nondegree undergraduate classification is applicable for undergraduate degree purposes for those who are later admitted as degree-seeking undergraduate students. Credit obtained under the nondegree undergraduate classification may not, however, be applied toward a graduate degree.
a resident of Iowa for such purposes as voting, or holding an Iowa driver’s license, and not meet the residency requirements as established by the Board of Regents for admission, tuition, and fee purposes.

C. The registrar, or designated person, is authorized to require written documents, affidavits, verifications, or other evidence deemed necessary to determine why a student is in Iowa. The burden of establishing that a student is in Iowa for other than educational purposes is upon the student. A student may be required to file any or all of the following:

1. A statement from the student describing employment and expected source of support
2. A statement from the student’s employer
3. A statement from the student’s parents verifying nonsupport and the fact that the student was not listed as a dependent on tax returns for the past year and will not be so listed in future years
4. Supporting statements from persons who might be familiar with the family situation
5. Iowa state income tax return.

D. Change of classification from nonresident to resident will not be made retroactive beyond the term in which application for resident classification is made.

E. A student who gives incorrect or misleading information to evade payment of nonresident fees shall be subject to serious disciplinary action and must also pay the nonresident fees for each term previously attended.

F. Review committee. These regulations shall be administered by the registrar or someone designated by the registrar. The decision of the registrar or designated person may be appealed to a university review committee. The finding of the review committee may be appealed to the Board of Regents, State of Iowa.

Guidelines
The following guidelines are used in determining the resident classification of a student for admission, tuition, and fee purposes:

A. A financially dependent student whose parents move from Iowa after the student is enrolled remains a resident provided the student maintains continuous enrollment. A financially dependent student whose parents move from Iowa during the senior year of high school will be considered a resident provided the student has not established domicile in another state.

B. In deciding why a person is in the state of Iowa, the person’s domicile will be considered. A person who comes to Iowa from another state and enrolls in any institution of postsecondary education for a full program or substantially a full program shall be presumed to have come to Iowa primarily for educational reasons rather than to establish a domicile in Iowa.

C. A student who was a former resident of Iowa may continue to be considered a resident provided absence from the state was for a period of less than 12 months and provided domicile is re-established. If the absence from the state is for a period exceeding 12 months, a student may be considered a resident if evidence can be presented showing that the student has long-term ties to Iowa and re-establishes an Iowa domicile.

A person or the dependent of a person whose domicile is permanently established in Iowa, who has been classified as a resident for admission, tuition, and fee purposes, may continue to be classified as a resident so long as domicile is maintained, even though circumstances may require extended absence of the person from the state. It is required that a person who claims Iowa domicile while living in another state or country will provide proof of the continual domicile as evidence that the person:

1. Has not acquired domicile in another state;
2. Has maintained a continuous voting record in Iowa; and
3. Has filed regular Iowa resident income tax returns during absence from the state.

D. A student who moves to Iowa may be eligible for resident classification at the next registration following 12 consecutive months in the state provided the student is not enrolled as more than a half-time student (6 credits for an undergraduate or professional student; 5 credits for a graduate student) in any academic year term, is not enrolled for more than 4 credits in a summer term for any classification, and provides sufficient evidence of the establishment of an Iowa domicile.

E. A student who has been a continuous student and whose parents move to Iowa may become a resident at the beginning of the next term provided the student is dependent upon the parents for a majority of financial assistance.

F. A person who is moved into the state as the result of military or civil orders from the government for other than educational purposes, or the dependent of such a person, is entitled to resident status. However, if the arrival of the person under orders is subsequent to the beginning of the term in which the student is first enrolled, nonresident fees will be charged in all cases until the beginning of the next term in which the student is enrolled. Legislation, effective July 1, 1977, requires that military personnel who claim residency in Iowa (home of record) will be required to file Iowa resident income tax returns.

G. A person who has been certified as a refugee or granted asylum by the appropriate agency of the United States, who enrolls as a student at a university governed by the Board of Regents, State of Iowa, may be accorded immediate resident status for admission, tuition, and fee purposes where the person:

1. Comes directly to the state of Iowa from a refugee facility or port of debarkation, or

Facts
A. The following circumstances, although not necessarily conclusive, have probative value in support of a claim for resident classification:

1. Reside in Iowa for 12 consecutive months, and be primarily engaged in activities other than those of a full-time student, immediately prior to the beginning of the term for which resident classification is sought.

2. Reliance upon Iowa resources for financial support.

3. Domicile in Iowa of persons legally responsible for the student.

4. Former domicile in the state and maintenance of significant connections therein while absent.

5. Acceptance of an offer of permanent employment in Iowa.

6. Other facts indicating the student’s domicile will be considered by the universities in classifying the student.

B. The following circumstances, standing alone, do not constitute sufficient evidence of domicile to affect classification of a student as a resident under these regulations:

1. Voting or registration for voting.

2. Employment in any position normally filled by a student.

3. The lease of living quarters.

4. Admission to a licensed practicing profession in Iowa.

5. Automobile registration.

6. Public records; for example, birth and marriage records, Iowa driver’s license.

7. Continuous presence in Iowa during periods when not enrolled in school.

8. Ownership of property in Iowa, or the payment of Iowa taxes.
Summer Orientation

The summer orientation program consists of one-and-a-half-day sessions scheduled in June. Each spring, new students and their parents or spouses are asked to select a convenient time from among a number of orientation sessions that are scheduled during June. In addition to preparing their class schedules for fall semester, new students with their parents or spouses participate in guided tours of the university, attend informational meetings about policies and procedures at the university, and meet formally and informally with faculty, staff, and other new students and their families. These meetings, held in a comfortable, informative atmosphere, lessen existing anxieties, assist each person in the development of a clearer understanding of the challenge of the university environment, and make it possible for new students—with support from their parents or spouses—to begin to make the academic and social decisions that are faced by all students at the university.

Cyclone Aides, Iowa State undergraduate students with widely varying backgrounds and interests, help acquaint new students and their families with the university.

Housing and meals are provided in campus residence halls at a nominal cost. Cyclone Aides live in the residence halls with the new students and are available at all times for informal discussion.

Registration/Enrollment

In order to register for classes students must first accept their letter of admission by the university. Registration and the payment of assessed fees are required of all who attend classes. Enrollment is not complete until fees are paid, including room and board fees for those living in residence halls. For more information, see Index, Registration.

Enrollment Status

Enrollment status is defined for certification purposes as either full-time or half-time.

Full-time status is defined as follows:
- Undergraduates: 12 credits for fall or spring semester
- Graduates: 9 credits for fall or spring semester

Half-time status is defined as follows:
- Undergraduates: 6 credits for fall or spring semester
- Graduates: 5 credits for fall or spring semester

Summer status depends on the number of weeks a student is enrolled. Always contact the Office of the Registrar to verify a student’s status for a summer session.

Credit by Examination (CBE)

It is Iowa State University policy to grant academic credit by examination in many of the undergraduate courses listed in the university bulletin. Credit is awarded primarily in the introductory level classes in mathematics, natural, physical, and social sciences, and the liberal arts. Students with superior high school backgrounds or those with college-level proficiency in certain subject areas are strongly encouraged to investigate and attempt testing in the CBE programs available.

Types of CBE Programs

Students may earn academic credit in any of four ways and have that credit recorded on their academic record when they enroll. Programs accepted at Iowa State include the Advanced Placement (AP) Program, the International Baccalaureate (IB) Examinations, departmental examinations, and the College Level Examination Program (CLEP).

Advanced Placement (AP) Program of the College Board

This program allows students, while still in high school, to take examinations for credit at the college level. Iowa State University awards credit or advanced placement through the Advanced Placement Program in art, biology, chemistry, computer science, economics, English, environmental science, foreign languages, government and politics, history, mathematics, music, physics, psychology and statistics. High school counselors and teachers will assist with testing arrangements.

Generally, students scoring 3 or better on the exams will be considered for course credit based on departmental review of the exams. In some departments, only scores of 4 or better will be considered for credit.

Correspondence concerning the Advanced Placement Program should be addressed to the College Board Advanced Placement Examinations, P.O. Box 9771-15, Princeton, New Jersey 08541, or visit their Web site at www.collegeboard.org/ap/students/index.html.

International Baccalaureate Examinations

The International Baccalaureate Program, offered at many high schools in the United States and abroad, allows students the opportunity to take examinations for credit at the college level. These examinations are offered at standard and higher levels.

Iowa State University awards credit for most higher level examinations and some standard level examinations. Students must receive a minimum score of 4 to qualify for academic credit in most subject areas. Some departments, require a minimum score of 5.

Correspondence concerning the International Baccalaureate Program should be addressed to International Baccalaureate, North America, 200 Madison Avenue, Suite 2301, New York, New York 10016, or visit their Web site at www.ibo.org.

Departmental Examinations

Students may take locally constructed departmental examinations for undergraduate credit in specified subject areas for which they and the department feel they have the necessary preparation. These exams are generally administered by the department which offers the course (for exceptions, see CLEP offerings below). Students interested in taking departmental (or CLEP) examinations should contact the appropriate department for specific information on the course covered by the exam and the exam itself. A nonrefundable fee is charged for each departmental examination requested. If an acceptable exam score is achieved, a grade of T will be reported to the Office of the Registrar. The T grade represents performance equivalent to a C or better in the course. T grades are not used in computing students’ grade point averages; however, the credit does become part of their official academic record and may be applied toward their graduation requirements.

A list of the most frequently requested exams and the date(s) and time(s) they are administered each semester is published in each semester’s Schedule of Classes. Most examinations for credit are prepared by the departments offering the courses. In some cases, the examination used is part of the College Level Examination Program (CLEP), where the content of the CLEP test has been judged to be an equivalent to the content of the course.

College Level Examination Program

The following information pertains to CLEP credit earned before July 1, 2001. Beginning July 1, 2001 CLEP will be available on computer only. At time of printing, information about the new computer version is not available. Therefore, for information about CLEP credit earned after June 30, 2001, see the URL www.iastate.edu, Index, Credit by Examination. Updated information will be posted as it occurs.

Iowa State University will award up to six semester credit hours in each of three general CLEP tests (Social Sciences and History, Humanities, and Natural Sciences) if the test score places the student at or above the 60th percentile on national norms. Iowa State University does not accept the general CLEP tests in either mathematics or English. In addition, the College of Engineering does not allow credit earned from CLEP general tests to be used in their students’ degree programs.

Subject CLEP tests accepted at Iowa State University include American Government (Pol S 215); Introductory Accounting (Acct 284 and 285); engineering majors should consult with their academic adviser before registering for this examination); General Biology (Biol 109, not for biology or engineering majors); Introductory Psychology (Psych 101); Introductory Sociology (Soc 134); Macroeconomics (Econ 102); Microeconomics (Econ 101); Trigonometry (Math 141); and Calculus with Elementary Functions (Math 165). Students must score at or above the 50th percentile on national norms to qualify for credit.
1. Departmental and CLEP tests are offered to newly admitted or currently enrolled students at Iowa State University. Former and future students will receive credit only if they enroll sometime during the twelve months immediately following the tests.

2. Permission to take a departmental examination is obtained from the department. Students may be denied permission because (a) the nature of the course is such that proficiency cannot be measured by such a test, (b) the student does not appear to have adequate background to pass the examination for the course, or (c) the student would not otherwise be allowed to enroll in the course. Students may appeal such a denial to the dean of the college in which the department is administered and subsequently to the provost.

3. Students may ordinarily attempt a CBE test only once in any course or area. Under special circumstances a re-test may be taken upon approval of the department in which the course is offered.

4. Departmental examinations and CLEP subject tests cover only a single course and students may not test out of independent study or special topic courses.

5. There is a nonrefundable fee for all departmental and CLEP tests. The fee is set by the Board of Regents and is subject to change.

6. Examinations are usually given just prior to, or within two weeks of, the beginning of fall and spring semesters. For more information, students should check the Schedule of Classes, or contact the department that offers the class.

7. Credit for the CLEP general examinations is not evaluated as equivalent to any specific course and cannot be used in place of specific course requirements for the major. All colleges (except Engineering, which does not accept these tests) allow CLEP general credits to be used for either general requirements (not in Liberal Arts and Sciences) or elective credit. Students are responsible for checking with their academic advisers to determine whether such credit is to their benefit.

8. Listed below are policies for transferring CBE from another college or university to Iowa State University:
 a. AP or CLEP credit which is earned at an Iowa public college or university may be transferred directly to Iowa State University provided it is accompanied by at least 12 semester credits earned in residence at the sending institution. AP or CLEP credit which is earned at any other college or university may not be transferred directly to Iowa State. However, the scores from these examinations may be sent to Iowa State University from the testing agency, and credit will be awarded based on Iowa State’s AP and CLEP policies.
 b. IB credit earned at another college or university may not be transferred directly to Iowa State University. However, the scores from IB examinations may be sent to Iowa State from the testing agency, and credit will be awarded based on Iowa State’s IB policies.
 c. Credit earned at another college or university through local test-out examinations may be transferred directly to Iowa State University provided it is accompanied by at least 12 semester credits earned in residence at the sending institution.

9. Credit earned from CBE will be posted to the student’s academic record at the end of the term. CBE credits will be counted toward the projected year in school classification used to establish registration start dates.

10. Some professional programs do not accept T credit in preprofessional courses. Students who anticipate applying to such programs should inquire about the acceptability of such credit before registering for such CBE tests.

11. Credit established at Iowa State University will usually transfer to other colleges and universities; however, the final decision rests with the institution reviewing the transcript.

Policies and Procedures Governing CBE Tests

A nonrefundable fee is charged for each CLEP test requested and all requests must be made one week prior to the test date in order to guarantee that a test booklet is available. CLEP tests are administered by the Student Counseling Service Testing Office Monday through Friday at 8 a.m. and 10 a.m. For information on whether to take any of the CLEP tests, contact the department that offers the course. To obtain information on any of the CLEP tests, contact the Testing Office, 2030 Student Services Building, Iowa State University, Ames, Iowa 50011. To print a copy of the Institutional CLEP registration form see the URL www.iastate.edu, Index, Testing (Student Counseling Service). Then click on the link, “CLEP Testing.”

Office of New Student Programs

Director: Elizabeth Kurt, B.S.

Orientation

The purpose of orientation is to help new undergraduate students make a smooth transition to Iowa State University. At orientation, students plan their academic programs, take tests to ensure placement in appropriate courses, register for classes, learn about university policies and procedures, and prepare for their personal and social adjustment to the university. The University Orientation Committee, composed of Iowa State University students, faculty, and staff, is responsible for the orientation programs; the undergraduate colleges of the university, in cooperation with the Office of New Student Programs, have responsibility for the implementation of orientation programs for new students and their families.

The Orientation Committee conducts an extensive orientation program during the summer, with additional programs held prior to each term. Special orientation sessions are conducted for transfer students during the spring. Special orientation programs are also held for older-than-average students, international students, and graduate students. New students receive a written invitation to attend an orientation program before their first semester at the university. Parents or spouses are encouraged to accompany students.

New Student Days

The New Student Days program is held on the Thursday, Friday, and Saturday before classes begin fall semester. The program helps new students develop academic, computer, and social strategies to ensure a successful transition to Iowa State University.

WelcomeFest

WelcomeFest activities are scheduled during the first week of fall semester to welcome students to campus. All students, including transfer students, are invited to participate in WelcomeFest.
Extended and Continuing Education

Off-Campus Credit Courses and Programs

Iowa State University remains true to the land-grant tradition of extending knowledge far beyond campus borders. Annually thousands of students enroll in ISU courses without setting foot in Ames. In addition to the traditional method of Iowa State University instructors traveling to classrooms off campus, technology has provided new ways for Iowa State University faculty to reach out to students.

Iowa State University offers distance education courses over the Iowa Communications Network (ICN), by videotape and on the World Wide Web.

Courses are the same as those offered on campus, carry residential credit, and are taught by ISU faculty members. Credit earned in off-campus courses becomes a part of your academic record at Iowa State University and may be used to meet degree requirements in the same manner as credit earned on campus.

ISU Extended and Continuing Education personnel provide leadership and support to faculty in their efforts to identify the needs of Iowans and to reach and satisfy adult learners who wish to earn college credit without attending classes on campus. The Extended and Continuing Education staff also helps off-campus students access student services and information at Iowa State.

For a list of currently available courses or to request specific courses and programs, see www.lifelearner.iastate.edu, or contact Extended and Continuing Education in Ames (515) 294-6222 or (800) 262-0015.

Also, the following ISU Extension offices can provide additional information:

- ISU Outreach Center in Cedar Rapids
 (319) 398-1272
- ISU Outreach Center in Ottumwa
 (515) 682-8324
- ISU Industry Outreach Center in Cedar Falls
 (319) 266-3260
- ISU Outreach Center in Urbandale
 (515) 727-0656
- ISU Outreach Center in Mason City
 (641) 424-5432
- ISU Outreach Center in Sioux City
 (712) 274-0048
- Southwest Area Outreach in Lewis
 (712) 769-2600

Some off-campus credit courses are offered to serve the special interests or needs of a particular group. Often courses are offered to fulfill certification or degree program objectives. Following are descriptions of the off-campus programs currently offered from Iowa State University:

College of Agriculture

The faculty of the College of Agriculture offers one bachelor’s and three master’s degrees off-campus. For information on any of the programs, e-mail proaginfo@iastate.edu or call (515) 294-1438 or (800) 747-4478.

Bachelor of Science in Professional Agriculture

In Iowa via the Iowa Communications Network; U.S. and Canada via videotape and the World Wide Web

Students who have completed or are in the process of completing foundation college courses, and want an agriculture degree, can tailor their program in professional agriculture based on their interests and goals. First delivered off-campus in 1991, the program provides a high-quality, flexible curriculum. The degree program appeals to a diverse group of students, including those who left college years ago without a degree to those who need new knowledge to use on-the-job or for career enhancement.

The course of study encompasses three major areas: animal ecology and sciences, agricultural social sciences and economics, and plant and soil sciences. The agricultural course work, a minimum of 45 credits, is a well-rounded mix of topics. All 15 departments in the College of Agriculture participate in the degree program. Students take a portion of their coursework, particularly non-agriculture courses, from colleges in close proximity to their home and transfer the credits to ISU.

Master of Agriculture

In Iowa via the Iowa Communications Network; U.S. and Canada via videotape and the World Wide Web

The Master of Agriculture prepares students for a proactive role in addressing and responding to personal, professional, and societal issues and challenges in a changing agriculture and food system. The intent of the program is to enable agriculturists to grow and develop as professionals, positioning them for emerging opportunities within or outside their current employment. Individuals enroll in the Master of Agriculture program for a variety of reasons, which include career advancement, teacher certification renewal, professional development, or personal interests.

The core 13 credits of the program consists of a set of courses and workshops that emphasize leadership development, technological change, use of statistics, economic issues, and sustainability issues. The remaining 14 credits, are selected in consultation with a graduate committee to meet the student’s needs and interests. The program capstone is a creative component of four credits that lets students explore a particular interest area. The creative component is a demonstration of independent creativity with a written report of laboratory, field, or library research. The non-thesis off-campus program began in 1979.

Master of Science in Agronomy

U.S. and Canada via the World Wide Web and CD-ROM

Iowa State’s first computer-based degree program, the professional Master of Science in Agronomy, debuted in 1998. The degree program emphasizes practical, professional and technical skills involved in crop management, soil and water management, and integrated pest management. Most of the program is accessed remotely, however, the orientation session, a summer workshop and a creative component seminar require travel to the Ames campus.

The curriculum consists of 12 courses plus a one-credit workshop and a three-credit creative component, for a total of 30 credits. The course prerequisites for admission to the program are limited to fundamental agriculture courses, recognizing that many potential students in the degree program will not have majored in agronomy as undergraduates. Generally, students who have completed a degree from a College of Agriculture will meet the requirements.

Master of Science in Microbiology

U.S. and Canada via videotape and the World Wide Web

The Department of Microbiology offers the non-thesis master program in microbiology. The program is designed primarily for working professionals who do not intend to continue work towards a doctor of philosophy. The program is 30 credits, not including research, and includes five credits of creative component. At least 25 credits must be in didactic courses.

College of Business

A Master of Business Administration is offered in Des Moines as part of ISU’s initiative in the capital city.

Master of Business Administration

On-site evenings in Des Moines

The Des Moines MBA program debuted fall semester 1999. Currently, classes meet twice per week from 5:45-9:15 p.m. For information, e-mail busgrad@iastate.edu or call (515) 294-8188 or (877) ISU-4MBA.

College of Education

The College of Education endeavors to identify needs of educators across the state and provides suitable courses and programs to satisfy those needs.

Certificate of Advanced Studies Superintendent Certification

In Iowa via the Iowa Communications Network

A post master’s curriculum of 30 credit hours provides training for the school superintendent license. The program stresses administrative and leadership skills, including knowledge of child and adolescent development, the educa-
tional environment, curriculum and instructional practice, and law and ethics. The program also includes management of systems, personnel and finances, interpersonal communication and community relationships. Call (515) 294-5450 or (800) 262-0015.

Community College Induction/Mentoring (CCIM)
On-site at Des Moines Area Community College (DMACC), Ankeny

CCIM is a 12-credit teacher education program designed for community college and secondary occupational instructors who are new to teaching, yet have years of professional technical experience in business and industry. The program is four courses delivered over 21 months. A cohort group begins the sequence of 14 seminars together and "graduates" together. CCIM uses a support network pairing new teachers with mentor teachers. Mentors regularly visit classrooms, demonstrate lesson plans and serve as a local resource for assignments given during monthly seminars. The courses may be applied to State of Iowa community college vocational-technical, and 7-12 grades provisional occupational endorsements. For more information, call (515) 294-4750 or (800) 262-0015.

Master of Education in Educational Leadership
In Iowa at selected Area Education Association sites

A master's program of 40 credits, called PREparation for LEADership, or PreLEAD, leads to licensing as a school administrator. Courses are structured to build leadership skills in organizational processes, scope and framework of schools, and interpersonal dimensions. The PreLEAD program sequence is five semesters and two summers long. The program includes a field experience of fifty-days to be completed in a mentor principal's school over the course of several terms. Each fall, new cohort groups begin the program. For information, call (515) 294-5785 or (800) 262-0015.

Master of Education in Educational Leadership
On-site at Des Moines Area Community College (DMACC), Ankeny

First offered off-campus in 1999, the non-thesis master's program in Organizational Learning and Human resource Development provides the knowledge and skills for leadership roles in public and private organizations. The program focuses on the role and function of learning, change, and performance management in effective organizations.

Develop the skills and knowledge to design, manage, and evaluate organizational learning and human resources development efforts. The program is 36 credits including a three-credit creative component. For information, call (515) 294-2163 or (800) 262-0015.

Master of Education in Higher Education
On-site at Des Moines Area Community College (DMACC), Ankeny

The Teaching and Learning for Community Colleges (TL2C2) is for mid-career faculty who have a passion for providing teaching and learning leadership. TL2C2 helps community college faculty maximize their own effectiveness as educators, as well as the students' potential for learning. This is a 30 credit-hour graduate program that leads to a master's degree in higher education with an emphasis in community colleges, or applies up to 30 credit-hours towards a Ph.D. in the Educational Leadership and Policy Studies Department.

The program features an integrated curriculum, offering exposure to the wide variety of related subject matter simultaneously. This is a unique opportunity to learn teaching and leadership skills to move from an instructional paradigm to the learning paradigm; from providing instruction to students to facilitating "learning in learners", to discover and teach the many ways in which learning can be stimulated in every student; and to implement learning environments that address multiple learning styles and needs. For information, call (515) 294-1241 or (800) 262-0015.

College of Engineering

As one of the first universities in the nation to offer videotaped credit courses for practicing engineers, Iowa State University has 28 years of experience working with off-campus students. For information about the five degree programs offered off-campus, call (515) 294-7470 or (800) 854-1675.

Bachelor of Science in Mechanical Engineering
At Kirkwood Community College, Cedar Rapids and elsewhere in Iowa via the Iowa Communications Network

The program of study focuses on design and research, in fluid mechanics, turbomachinery, fluid power, controls, heat transfer, machines and systems, materials and manufacturing processes, thermodynamics, and energy utilization. Instrumentation, design of experiments, and computational methods may be applied to any of these areas. The program offers a thesis and non-thesis option. The nonthesis option, includes a creative component that demonstrates substantial evidence of individual accomplishment. A typical schedule includes one course per semester, allowing students to finish the degree program in three to five years.

College of Family and Consumer Sciences

The college offers two certification programs and a master’s degree off-campus.

Empowerment Skills for Family Workers
On-site at a central Iowa location

A new comprehensive training and development program is designed to empower frontline workers with skills and competencies needed to help families identify and reach their goals for self-reliance and interdependence.

The program includes sessions on achieving healthy self-reliance; building mutually respectful relationships with families; communicating effectively with skill and soul; home visiting; ongoing assessment; accessing specialized services; cultural competence; facilitating family conferences and groups; and collaboration.

Extended and Continuing Education

The degree is 30 semester credit hours, including 27 credits of formal course work distributed among four broad groups. The final three credits are a creative component, individual study on a topic with significant systems engineering content; the project may be work related if it extends beyond on-the-job assignments.

Master of Science in Computer Engineering

Master of Science in Electrical Engineering
U.S. and Canada industry sites via videotape

The College of Engineering at Iowa State University, in cooperation with the University of Iowa and local industries, offers two off-campus Master of Science programs. Each program totals 30 graduate credits; a thesis or non-thesis option may be selected. The thesis option is recommended for those who intend to continue toward the doctor of philosophy degree or a career in research and development.

The nonthesis Master of Science degree requires a creative component. A typical schedule might include one class per semester, allowing students to finish the entire graduate program in five years.

Master of Science in Mechanical Engineering
In Iowa to industry sites via the Iowa Communications Network and video-conferencing

Following a successful pilot with students at John Deere in Dubuque and Waterloo during 1998-1999, the mechanical engineering master's program is open to additional industries.

The graduate program offers study including design and research, in fluid mechanics, turbomachinery, fluid power, controls, heat transfer, machines and systems, materials and manufacturing processes, thermodynamics, and energy utilization. Instrumentation, design of experiments, and computational methods may be applied to any of these areas. The program offers a thesis and non-thesis option. The nonthesis option, includes a creative component that demonstrates substantial evidence of individual accomplishment. A typical schedule includes one course per semester, allowing students to finish the degree program in three to five years.

College of Family and Consumer Sciences

The college offers two certification programs and a master’s degree off-campus.

Empowerment Skills for Family Workers
On-site at a central Iowa location

A new comprehensive training and development program is designed to empower frontline workers with skills and competencies needed to help families identify and reach their goals for self-reliance and interdependence.

The program includes sessions on achieving healthy self-reliance; building mutually respectful relationships with families; communicating effectively with skill and soul; home visiting; ongoing assessment; accessing specialized services; cultural competence; facilitating family conferences and groups; and collaboration.

Extended and Continuing Education

The degree is 30 semester credit hours, including 27 credits of formal course work distributed among four broad groups. The final three credits are a creative component, individual study on a topic with significant systems engineering content; the project may be work related if it extends beyond on-the-job assignments.

Master of Science in Computer Engineering

Master of Science in Electrical Engineering
U.S. and Canada industry sites via videotape

The College of Engineering at Iowa State University, in cooperation with the University of Iowa and local industries, offers two off-campus Master of Science programs. Each program totals 30 graduate credits; a thesis or non-thesis option may be selected. The thesis option is recommended for those who intend to continue toward the doctor of philosophy degree or a career in research and development.

The nonthesis Master of Science degree requires a creative component. A typical schedule might include one class per semester, allowing students to finish the entire graduate program in five years.

Master of Science in Mechanical Engineering
In Iowa to industry sites via the Iowa Communications Network and video-conferencing

Following a successful pilot with students at John Deere in Dubuque and Waterloo during 1998-1999, the mechanical engineering master’s program is open to additional industries.

The graduate program offers study including design and research, in fluid mechanics, turbomachinery, fluid power, controls, heat transfer, machines and systems, materials and manufacturing processes, thermodynamics, and energy utilization. Instrumentation, design of experiments, and computational methods may be applied to any of these areas. The program offers a thesis and non-thesis option. The nonthesis option, includes a creative component that demonstrates substantial evidence of individual accomplishment. A typical schedule includes one course per semester, allowing students to finish the degree program in three to five years.

College of Family and Consumer Sciences

The college offers two certification programs and a master’s degree off-campus.

Empowerment Skills for Family Workers
On-site at a central Iowa location

A new comprehensive training and development program is designed to empower frontline workers with skills and competencies needed to help families identify and reach their goals for self-reliance and interdependence.

The program includes sessions on achieving healthy self-reliance; building mutually respectful relationships with families; communicating effectively with skill and soul; home visiting; ongoing assessment; accessing specialized services; cultural competence; facilitating family conferences and groups; and collaboration.

Extended and Continuing Education

The degree is 30 semester credit hours, including 27 credits of formal course work distributed among four broad groups. The final three credits are a creative component, individual study on a topic with significant systems engineering content; the project may be work related if it extends beyond on-the-job assignments.

Master of Science in Computer Engineering

Master of Science in Electrical Engineering
U.S. and Canada industry sites via videotape

The College of Engineering at Iowa State University, in cooperation with the University of Iowa and local industries, offers two off-campus Master of Science programs. Each program totals 30 graduate credits; a thesis or non-thesis option may be selected. The thesis option is recommended for those who intend to continue toward the doctor of philosophy degree or a career in research and development.

The nonthesis Master of Science degree requires a creative component. A typical schedule might include one class per semester, allowing students to finish the entire graduate program in five years.

Master of Science in Mechanical Engineering
In Iowa to industry sites via the Iowa Communications Network and video-conferencing

Following a successful pilot with students at John Deere in Dubuque and Waterloo during 1998-1999, the mechanical engineering master’s program is open to additional industries.

The graduate program offers study including design and research, in fluid mechanics, turbomachinery, fluid power, controls, heat transfer, machines and systems, materials and manufacturing processes, thermodynamics, and energy utilization. Instrumentation, design of experiments, and computational methods may be applied to any of these areas. The program offers a thesis and non-thesis option. The nonthesis option, includes a creative component that demonstrates substantial evidence of individual accomplishment. A typical schedule includes one course per semester, allowing students to finish the degree program in three to five years.

College of Family and Consumer Sciences

The college offers two certification programs and a master’s degree off-campus.

Empowerment Skills for Family Workers
On-site at a central Iowa location

A new comprehensive training and development program is designed to empower frontline workers with skills and competencies needed to help families identify and reach their goals for self-reliance and interdependence.

The program includes sessions on achieving healthy self-reliance; building mutually respectful relationships with families; communicating effectively with skill and soul; home visiting; ongoing assessment; accessing specialized services; cultural competence; facilitating family conferences and groups; and collaboration.
This program is approved by the Family Development and Self-Sufficiency (FaDSS) Council of Iowa. For information, call (515) 294-6622 or (800) 262-0015.

Financial Counselor Certification

U.S. and Canada via the World Wide Web

New fall 2000, the Financial Counselor Certification is a joint effort between Iowa State University’s Financial Counseling Clinic and ISU Extension to provide high quality educational training for financial counselors. The certification program provides skills and training to individuals that work with families in making financial decisions. The program is based on a solution-focused approach that provides training in three primary areas: personal/family finance, credit, and counseling. The four-course program is available online and consists of five total college credits. For information, call (515) 294-8644 or (800) 262-0015.

Master of Family and Consumer Sciences

In Iowa via the Iowa Communications Network

Delivered off-campus since 1994, the non-thesis Master of Family and Consumer Sciences is designed for working professionals to enhance skills in their current position and increase their chances for promotion. The comprehensive degree requires a minimum of 36 credits in two or more of the College of Family and Consumer Sciences departments:

- Family and Consumer Sciences Education and Studies
- Food Science and Human Nutrition
- Hotel, Restaurant, and Institution Management
- Human Development and Family Studies
- Textiles and Clothing

At least six credits must be earned in each of the selected departments. In addition, credits are required in research methods and statistics. With electives, the degree program totals 36 credits. For information, e-mail mfcsinfo@iastate.edu or call (515) 294-5982 or (800) 262-0015.

College of Liberal Arts and Sciences

The political science and mathematics departments offer graduate-level programs off-campus. The Bachelor of Liberal Studies degree combines courses from the entire college and can cross over into other colleges at Iowa State.

Bachelor of Liberal Studies

On-site at Des Moines Area Community College (DMACC), Ankeny and via the World Wide Web

The Bachelor of Liberal Studies (BLS) is a general studies degree in the liberal arts. It offers the opportunity to earn a degree with the flexibility to choose courses based on a student’s interest and goals. Instead of a traditional major, students select course work from three of the following five distribution areas: humanities, communications and arts, natural sciences and mathematical disciplines, social sciences, and professional fields.

The BLS degree is offered with similar requirements by all three Iowa regent universities, and provides a framework to assemble all the educational opportunities available locally into a coherent four-year educational program. Up to three-fourths of the total degree requirements can be transferred from accredited institutions. Credits can be earned by proficiency or test-out examinations. Admission to the BLS program is granted after students complete an associate in arts or associate in science degree from an accredited two-year college or complete at least 62 semester credits acceptable toward graduation at ISU with a grade-point average of at least 2.0. The BLS degree program totals 124 semester credits. For information, call (515) 294-4831 or (800) 262-0015.

Certificate of Public Management

In Iowa via the Iowa Communications Network and on-site in Des Moines

Designed for active public administrators who wish to pursue a quality program within a reasonable time frame, the certificate program improves or refreshes skills while on the job. The 15-credit graduate study program includes at least nine credits from core and methods courses. The remaining six credits are selected from a list of electives.

To enter the certificate program, applicants must be accepted into the Master of Public Administration (MPA) degree program. All courses taken towards the certificate may be applied to the MPA without further admissions requirements. For information, call (515) 294-3764 or (800) 262-0015.

Master of Public Administration

On-site in Des Moines

Students prepare for a career in the public sector or for further graduate work in political science and related areas with the Master of Public Administration. The degree is designed to improve the level of performance of public managers and administrators in government and not-for-profit organizations. Students become skilled at conducting research and preparing thorough research summaries. Graduates can identify and address complex political questions, taking into account related ethical, legal, economics, and social issues.

The program, totaling 37 credits, includes core and methods courses central to both the theory and practice of public management, a concentration area for specialization, and a creative component. Students select from these concentration areas: public management; public policy analysis; and public budgeting and finance. For information, call (515) 294-3764 or (800) 262-0015.

Master of School Mathematics

In Iowa via the Iowa Communications Network

The Master of School Mathematics (MSM) program is designed for current secondary mathematics teachers. The degree program is built on three themes:

- enhancement of knowledge of geometry, calculus, and discrete mathematics
- importance of problem solving in learning and teaching mathematics
- use of computing technology in learning and teaching mathematics

The course work includes geometry, topics in discrete optimization, intermediate calculus, a seminar on current literature in mathematics education, a statistics course, electives, and a creative component, totaling 36 semester credits. The Creative component may be taken during a summer, with most of the actual research and writing done during the preceding year. For information, e-mail: msm@math.iastate.edu or call (515) 294-8169 or (800) 262-0015.

Continuing Education Units

Extended and Continuing Education awards Continuing Education Units (CEUs) for short courses, workshops, and other educational activities sponsored by Iowa State University which do not carry academic credit. A given activity may award CEUs to some participants and academic credit to others, under the following policies:

1. The activity must be administered through Iowa State University Continuing Education.
2. The dual arrangement must have received prior approval by the department head or chair, upon recommendation of the course instructor and the department curriculum committee.
3. Participants may enroll for either CEUs or for credit, but not for both.
4. Credit enrollees must meet the same academic standards they would have to meet if the course did not also award CEUs to some participants.
5. Assignments for credit enrollees must be clearly articulated. Substantial sequential learning experiences and careful evaluation of outcomes are required for academic course credit; these standards will not be reduced to accommodate the participation of CEU learners. Whenever graduate credit is offered, course prerequisites will be enforced and not routinely waived.

Once CEUs have been awarded, no participant may change his or her enrollment to academic credit. Standard university policies for determining fees will be applied to all participants, depending on the status of their enrollment. Participants must be informed ahead of time that once CEUs have been awarded to them, Iowa State cannot and will not convert them to academic credit. Further, a student can switch from CEU to credit during an offering only at the discretion of the course instructor.
All fees, tuition, and expenses listed in this publication are effective as of summer session 2001 and are subject to change without notice. For the most complete information see www.iastate.edu/~registrar/fees

A registration fee is charged to all students of the university. A full registration fee covers most laboratory fees, use of the library, membership in the Memorial Union, and a number of student activities. In certain courses involving special expenses, an additional fee may be charged. These fees are indicated in the course description of the specific courses involved.

Students who are not residents of Iowa pay an additional tuition fee each semester. This tuition fee is assessed in accordance with regulations of the Board of Regents, State of Iowa which are found in this bulletin under Admissions and Registrar.

Fee Payment

The Receivables Office bills students for tuition, room and board, and various other university charges. A statement of charges will be mailed on the first of each month to students at their in-session or interim address. It is the student’s responsibility to ensure the Office of the Registrar has a correct mailing address.

Students who do not receive a billing statement before the term begins should go to the Receivables Office to learn the amount of their account balance due. Failure to receive a billing statement will not exempt students from late penalties or from having a hold placed on their registration.

If payment of the minimum due is not made by the deadline printed on the billing statement, all fees become due immediately. A one-percent finance charge will be assessed on the total amount due at that time, and a "hold" will be placed on the student’s registration until payment of the total amount due has been made.

If a student’s registration has been canceled for nonpayment of fees, he or she may be reinstated with written permission from their college.

Deferred Payment

Students who do not pay their first payment in full by the due date will automatically select the deferred option, and will be charged a $15 administrative fee. Deferred billing is not an option for the summer term.

University fees are payable in three installments for fall and spring semesters. Payments for fall semester will be due August 20, September 20, and October 20. All fees are due in full on June 20. Payments for spring semester will be due

Deferred Payment

Students who do not pay their first payment in full by the due date will automatically select the deferred option, and will be charged a $15 administrative fee. Deferred billing is not an option for the summer term.

University fees are payable in three installments for fall and spring semesters. Payments for fall semester will be due August 20, September 20, and October 20. All fees are due in full on June 20. Payments for spring semester will be due

Past Due Accounts

Students with past due accounts receivable charges prior to the beginning of classes will be dropped from enrollment if these past due accounts are not paid before the first day of classes.

Registration Fee Schedule

<table>
<thead>
<tr>
<th>Per Semester</th>
<th>Resident</th>
<th>Nonresident</th>
</tr>
</thead>
<tbody>
<tr>
<td>Undergraduate</td>
<td>$1558</td>
<td>$5225</td>
</tr>
<tr>
<td>Graduate</td>
<td>$1851</td>
<td>$5449</td>
</tr>
<tr>
<td>Veterinary Medicine</td>
<td>$3555</td>
<td>$9688</td>
</tr>
</tbody>
</table>

Saturday MBA, Des Moines MBA, and MED classes will be assessed at the graduate rate in the current fee schedule plus a $62 per credit supplemental tuition fee. Fees for students enrolled for less than a full course load are given below in the Fee Schedule Per Credit. There is a minimum 2-credit fee for most students. Audits and zero credit courses are assessed on contact hours and there is a maximum charge for zero credit courses of 3 credit hours. R credits are assessed for the minimum fee only if no other credits are taken. The continuous registration fee for graduate students is $70. If the total number of credits includes .5 credit, such as 6.5, fees are assessed on the next larger whole number of credits. Therefore 6.5 credit hours would be assessed as 7 credit hours.

Summer session fees are charged per credit as indicated in the fee schedule.

Tuition assessment for study abroad credits, up to a maximum of 12 credits, is above and beyond tuition for other courses taken during the same term.
Nondegree Students and Noncollegiate Students
Nondegree undergraduate students and non-collegiate students pay the same fees as undergraduates.

Fees

Following are the descriptions of several commonly assessed fees for Iowa State University students. The list is not inclusive.

Activity: All students will be charged a $28 activity fee per fall and spring semester, $14 per summer semester, except for students exclusively registered for the following: extended education courses; courses for which no tuition is assessed; continuous registration status courses; and high school students enrolled under the Post-Secondary Enrollment Options Act. Students who are exempt from the activity fee may elect to pay the fee, which allows them to pay student admission rates to concerts, lectures, debates, and athletic events.

For students who withdraw or change to an exempt status as defined above, the tuition adjustment schedule will also be used for the activity fee.

Application: A fee of $20 must accompany the application for admission and is nonrefundable. The application fee for international students is $50. This fee does not apply to special students or workshop applicants.

Camp: A special tuition rate is assessed to students participating in camp programs. The undergraduate assessment is $520 and the graduate rate is $824. Summer camp programs entitled to the special rate are Anthropology and Geology. Students will be charged other fees in addition to tuition for enrolling in these programs. To obtain total fee information, students should contact the director of the individual program.

Change of Schedule: Starting the sixth day of classes a $5 fee is charged for course drops, additions, and section changes. One fee is assessed for multiple changes processed at the same time for the same term.

Computer: All students will be charged a computer fee each semester. Full-time students enrolled in the College of Engineering (including Biomedical Engineering and Systems Engineering) are charged $183 per semester. Full-time students in the Department of Computer Sciences or undergraduates in the major of Management Information Systems are charged $146 per semester. All other full-time undergraduate students are charged the standard computer fee of $72 per semester. Full-time graduate students are charged a $58 per semester computer fee. Students enrolled less than full-time are assessed prorated computer fees according to the number of credits for which they are enrolled. For students who withdraw, the adjustment schedule for tuition will also be used for computer fees. Students enrolled exclusively in any one of the following categories will not be assessed computer fees: Ag travel program; courses for which no tuition is assessed; extended education courses; foreign group study programs; continuous registration status courses; high school students enrolled under the Post-Secondary Enrollment Options Act; I/EOP students; internships away from campus; Lakeside Laboratory courses; practicum programs; summer camps.

The credit adjustment schedule for reduction from a full load to light classification is 100 percent through the third week, with no refunds after the third week.

Students who change their major will be charged the full computer fee for the major into which they transfer if the change occurs before the end of the third week. If the change occurs after the third week, then no change in the computer fee assessment will occur.

Developmental Mathematics: Students enrolled in Math 10-30 courses will be charged $260. This is a separate fee which is charged in addition to other fees and tuition. Students will be charged the developmental math fee each term they are enrolled in a Math 10-30 course.

Extended and Continuing Education: Undergraduate students pay $130 per credit with a maximum charge of $1,558; graduate students pay $206 per credit, with a maximum of $1,851, and students enrolled in MBA, MPA, M.Ed courses pay $268 per credit with a maximum of $2,409.

Graduation Fee: Undergraduate and graduate students are charged a $15 graduation fee the term they receive their degree.

Health Facility: All students are charged an $8 Health Facility Fee each semester except for students exclusively registered for the following: extended education courses; courses for which no tuition is assessed; continuous registration status courses; and high school students enrolled under the Postsecondary Enrollment Options Act. For students who withdraw or change to an exempt status as defined above, the refund schedule for tuition will be used for the health facility fee. These exceptions do not apply to international students (except where noted) or graduate students on “C Base” assistantships.

Health Fee (Student Health): A $55 student health fee, which partially finances the services of the Student Health Center, is charged to all students each semester. This fee is not assessed to students enrolled for four credits or less or students exclusively registered for the following: extended education courses; courses for which no tuition is assessed; foreign group study programs; continuous registration status courses; weekend MBA courses; Lakeside Laboratory courses; and high school students enrolled under the Postsecondary Enrollment Options Act. (These exemptions do not apply to international students or to graduate students on C- base assistantships.) Students who are exempt from the health fee may participate in the Health Plus Plan.

Students who withdraw or change to an exempt status as defined above will receive a credit adjustment of 100 percent during the first three weeks, with no credit adjustment
after the third week. Students who add courses at any time during the semester will be assessed the student health fee if applicable according to the guidelines stated above.

Students who carry the ISU sponsored insurance must also be assessed the student health fee. If spouse or domestic partner is covered under the insurance plan, the spouse (domestic partner) must also be covered under the Health Plus Plan.

Health Insurance: All international students and their accompanying dependents must enroll in the ISU Student and Scholar Health Insurance Program. ISU requires nonimmigrant international students and their dependents to purchase and maintain coverage through the ISU health insurance plan for the duration of their tenure at the university. Insurance plans purchased outside the university may be used for supplemental coverage, but cannot be substituted for the ISU plan. Students not assessed the mandatory Student Health Fee and spouses of students are eligible to participate in the Health Plus Plan. Contact the Student Health Insurance Office at 515-294-2394 for more information.

Late Fee Payment: If payment of the minimum due is not made by the deadline printed on the billing statement, all fees become due immediately. A one-percent finance charge will be assessed on the total amount due at that time. These students will also have a hold placed on their registration until payment of the total amount due has been made.

Late Registration: Students who do not complete their registration before the first day of classes are charged a late registration fee of $20. Graduate students who do not complete their registration before the first day of classes are charged a late registration fee of $20 during the first week of classes, $50 the second week of classes, and $100 the third week of classes or anytime later.

New Student Programs/Matriculation: A non-refundable fee of $105 is assessed to all new degree-seeking undergraduates (including new direct from high school and new transfer students) who are admitted for summer or fall semesters. This fee is charged to all new students except nondegree seeking students, veterinary medicine students, graduate students, and students enrolled in only off campus courses.

Senior: A $2 fee covers the cost of special senior activities. This fee is optional and is assessed spring term only.

Sponsored International Student: Agencies and foreign governments which require special administrative and fiscal reporting services of ISU will be assessed an administration fee. The fee for 2001-2003 will be 5 percent of the total tuition charge billed the sponsor. In succeeding years, the fee may be raised after 90 days advance notice to the sponsoring agency.

Study Abroad: Tuition assessment for study abroad credits, up to a maximum of 12 credits, is above and beyond tuition for other courses taken during the same term.

Transcript: Students may obtain an official transcript of their student academic record for $6. An additional $2 service charge for each transcript is assessed if same day service is requested.

Workshops: The fee for one-credit workshops, with no other course enrollments, is $130 for undergraduate students and $206 for graduate students. The two-credit minimum charge does not apply to workshops.

Other Fees

<table>
<thead>
<tr>
<th>Description</th>
<th>Fee</th>
</tr>
</thead>
<tbody>
<tr>
<td>Additional copies of Bulletin</td>
<td>$5</td>
</tr>
<tr>
<td>Diploma Replacement</td>
<td>$10</td>
</tr>
<tr>
<td>Duplicate Registration Materials</td>
<td>$2</td>
</tr>
<tr>
<td>Identification Card Replacement</td>
<td>$15</td>
</tr>
<tr>
<td>Returned Check Charge</td>
<td>$20</td>
</tr>
<tr>
<td>Thesis Masters</td>
<td>$50</td>
</tr>
<tr>
<td>Ph.D.</td>
<td>$100</td>
</tr>
</tbody>
</table>
Student Financial Aid

Director: Earl E. Dowling
Associate Director: Roberta Johnson
Assistant Director: Deborah Burdick
Assistant Director: Ann Wessman
Advisers: Clay Gurganus, John Lueth, Ted Maakestad, Linda Younger

Program Coordinator, Assessment and Data Analysis: Julia Sullivan

The Office of Student Financial Aid staff helps families afford Iowa State University. Grants, scholarships, loans, and part-time employment opportunities are available in various combinations to pay the difference between the amount the student and his or her parents can reasonably be expected to provide and the cost of attending Iowa State University.

All state and federal aid programs are subject to review by their respective governing agencies and may be changed without notice.

Eligibility for many forms of financial aid is determined by the Free Application for Federal Student Aid (FAFSA). These applications are available from high schools or online at www.fafsa.ed.gov by November of each year. Students should submit the FAFSA by mid-February prior to the fall term of enrollment, in order to receive priority consideration. A new application must be completed each academic year. Applications must be received no later than March 1. Applications received after March 1 will be awarded as funds are available. New students enrolling spring semester or summer session should complete the current year's aid application to apply for any available financial aid. To be eligible for financial aid, a student must be a U.S. citizen or permanent resident, enrolled on at least a half-time basis, and making satisfactory academic progress toward a degree. If signed copies of the student’s and parents’ income tax returns are requested, they should be sent directly to the Office of Student Financial Aid.

Students may use their financial aid for study in other countries if they have clearance for the transfer of credit to their degree programs and have made financial aid arrangements prior to departure. For further information, contact the Study Abroad Center, 6 Hamilton Hall, or the Office of Student Financial Aid, Beardshear Hall.

Financial aid programs generally consist of three types: gift aid (scholarships and grants), loans, and part-time employment. Laws, regulations, and policies governing these programs are subject to change.

1. ISU Scholarship/Grants. These awards are based on financial aid eligibility as determined by the FAFSA. A student must complete the FAFSA to be considered. Many of these awards are based on academic or special talent in addition to financial eligibility.

2. Entering freshmen can obtain information on the Web at www.iastate.edu/~fin_aid_info/.

3. College and Departmental Scholarships. Students are encouraged to contact the scholarship chair in their department or college. Scholarships based on academic achievement and/or financial need are available in most areas of study, but students may need to complete separate applications to be considered.

4. Military Officer Education (ROTC) Scholarships: Army. The Military Science Department offers 4-, 3-, and 2-year Army ROTC scholarships to qualified students on a competitive basis in virtually any academic discipline. These scholarships provide payment of tuition, all required fees (except student health), books and supplies allowance, and a monthly cash subsistence allowance. For applications or additional information, contact the Military Science Department at 132 Armory or call 515-294-1872.

5. Tuition Assistance Grant for Undergraduate Foreign Students. Undergraduate foreign students who are faced with financial hardship resulting from unforeseen circumstances may apply for this grant. The maximum award is $3,000 in the Army, Navy, Air Force programs. The maximum award is $7,000 per academic year. Apply to the Office of International Students and Scholars, 4 Hamilton Hall.

6. International Student Financial Aid. International students may contribute a small voluntary fee to this fund. These monies will be used to assist international students who have unforeseen financial emergencies. For further information, contact the Office of International Education Services, 4 Hamilton Hall.

II. Loans

A. Federal Perkins Loan. An eligible undergraduate student may borrow up to $4,000 per year, depending on financial need and the availability of funds. A maximum total of $40,000 may be borrowed for undergraduate and graduate programs combined. Interest of 5 percent on the unpaid balance begins with repayment of the loan principal 9 months after ceasing at least half-time enrollment. A student must complete the FAFSA in order to be considered for a Federal Perkins loan.

B. Grants

1. Federal Pell Grant. The maximum annual award under this program is $3,850. All undergraduate applicants for financial aid must apply for the Federal Pell Grant by completing the FAFSA. These forms are available from high school counselors, the Office of Student Financial Aid, or online at www.iastate.edu/~fin_aid_info/.

2. Federal Supplemental Educational Opportunity Grant. An eligible undergraduate student may be awarded a grant of $500 to $4,000 on the basis of financial need. A student must complete the FAFSA in order to be considered.

3. Iowa Grant. Iowa residents demonstrating financial need may be eligible for a $1,000 Iowa Grant. Students must complete the FAFSA to be considered.

4. Officer Education (ROTC) Financial Assistance Grants. All students enrolled in Advanced ROTC (third and fourth years) in the Army, Navy, and Air Force programs are provided an allowance of $200 per month for up to 10 months per year. The Navy program also includes a 4-year program which provides $200 per month for up to 12 months per year. For further information, contact the appropriate ROTC department in the Armory.

5. Military Officer Education (ROTC) Financial Assistance Grants. All students enrolled in Advanced ROTC (third and fourth years) in the Army, Navy, and Air Force programs are provided an allowance of $200 per month for up to 10 months per year. The Navy program also includes a 4-year program which provides $200 per month for up to 12 months per year. For further information, contact the appropriate ROTC department in the Armory.

6. International Student Financial Aid. International students may contribute a small voluntary fee to this fund. These monies will be used to assist international students who have unforeseen financial emergencies. For further information, contact the Office of International Education Services, 4 Hamilton Hall.

7. Other Scholarship Sources: Students are encouraged to pursue funds from agencies and private organizations on campus and in their hometowns. An excellent resource is the Financial Aid Web site: www.iastate.edu/~fin_aid_info/.

Analysis:

Program Coordinator, Assessment and Data Analysis: Julia Sullivan

Department offers Air Force ROTC scholarships to qualified students. The scholarships provide payment of tuition, fees, books, and $200 a month. Express scholarships are provided an allowance of $200 per month for up to 12 months per year. For further information, contact the appropriate ROTC department in the Armory.

1. ISU Scholarship/Grants. These awards are based on financial aid eligibility as determined by the FAFSA. A student must complete the FAFSA to be considered. Many of these awards are based on academic or special talent in addition to financial eligibility.

2. Entering freshmen can obtain information on the Web at www.iastate.edu/~fin_aid_info/.

3. College and Departmental Scholarships. Students are encouraged to contact the scholarship chair in their department or college. Scholarships based on academic achievement and/or financial need are available in most areas of study, but students may need to complete separate applications to be considered.

4. Military Officer Education (ROTC) Scholarships:
 - **Army.** The Military Science Department offers 4-, 3-, and 2-year Army ROTC scholarships to qualified students on a competitive basis in virtually any academic discipline. These scholarships provide payment of tuition, all required fees (except student health), books and supplies allowance, and a monthly cash subsistence allowance. For applications or additional information, contact the Military Science Department at 132 Armory or call 515-294-1872.
 - **Navy.** The Naval Science Department offers several scholarship programs to qualified students. The scholarships cover payment of tuition, fees, books, and $200 a month. Information is available from the Naval Science Department, 3 Armory, or by calling 515-294-6050 or 515-294-0328.
 - **Air Force.** The Air Force Aerospace Studies Department offers Air Force ROTC scholarships covering two or three years of college to qualified students. The scholarships provide payment of tuition, book fees, laboratory fees, and $200 a month. Express scholarships are also available to students qualified in certain technical academic majors. Details on scholarship qualification, application procedures, and eligibility are available from the Department of Air Force Aerospace Studies, 515-294-1716.
B. University Long-Term Loans (ULTL). Private donors contribute the funds for these loans, which are awarded on the basis of need to undergraduate and graduate students. The interest rate of 5 percent begins with repayment of principal 6 months after ceasing at least half-time enrollment. Deferment provisions are available in some instances. A student must complete the FAFSA in order to be considered.

C. Federal Health Professions Loans and Scholarships. These programs are limited to those students accepted for enrollment in the College of Veterinary Medicine. The loan funds have a 5 percent interest rate. Deferment and cancellation provisions are available in some instances. The FAFSA is required, and parental information must be provided, regardless of age or dependency of the student.

D. University Emergency Loans. The Emergency Loan Program is intended to meet students’ unplanned and unexpected education-related expenses. (These loans are not available to students who are enrolled only in off-campus courses.) Applicants must demonstrate that they have a verifiable means by which to repay their loans by the due date. Interest on emergency loans will begin on the date the loan is processed in the Treasurer’s Office and is computed at the simple monthly rate of .75 percent of the unpaid balance (an annual percentage rate of 9 percent). Emergency loan applications can be obtained at the Office of Student Financial Aid, Room 12, Beardshear Hall. Students should allow 48 hours for processing the emergency loan application.

E. William D. Ford Federal Direct Loans. Several types of Federal Direct loans are available to students.

1. The Federal Direct Subsidized Stafford Loan and the Federal Direct Unsubsidized Stafford Loan are low-interest loans made by the government to help pay for education after high school. Subsidized Direct Stafford loans will have all interest charges paid by the federal government while the student is enrolled in school on at least a half-time basis. The interest on the unsubsidized Direct Stafford loan will be the responsibility of the student and can be paid while the student is in school or added to the outstanding loan balance for payment after graduation.

Students must complete a FAFSA form to be considered for either loan. Students are eligible to borrow up to the amount of their financial need in the subsidized loan. The student may then choose to borrow any remaining amount, up to the federal maximum, in an unsubsidized Direct Stafford loan. Freshman students may borrow a combined total through either program of up to $2,625 per year. Sophomore students may borrow up to $3,500 per year, and junior and senior students may be eligible for up to $5,500 per year, with a $23,000 undergraduate maximum for all years combined. Graduate students may be eligible for up to $8,500 per year, with a $65,500 maximum, including all undergraduate loans.

For new borrowers, the interest rate is a variable rate which is tied to the 91-day treasury bill plus 1.7 percent. The interest rate is adjusted annually and is capped at 8.25 percent. Repayment does not begin until six months after graduation. Students are strongly advised to counsel with a financial aid adviser as increased loan indebtedness occurs.

2. Federal Direct Unsubsidized Stafford Loan for Independent Students. To be eligible, a student must be either an independent undergraduate student or a graduate/professional student. Completion of a FAFSA form is required. Eligible freshman and sophomore students may borrow up to $4,000 per year. Eligible juniors and seniors may borrow up to $5,000 per year, with a cumulative undergraduate maximum of $23,000. Graduate/professional students may be eligible to borrow up to $10,000 per year, with a cumulative total of $73,000.

Eligible independent students who borrow through both the subsidized and the unsubsidized Federal Direct Stafford Loan programs and are freshmen can borrow up to a total of $6,625 per year. Independent sophomores can borrow up to $7,500 per year, and independent juniors or seniors, $10,500 per year. Cumulative borrowing for undergraduate years could reach a total of $46,000.

Eligible graduate students can borrow up to $18,500 per year between the subsidized and the unsubsidized programs. Total indebtedness for a graduate student borrowing through both programs may not exceed $138,500. This amount includes undergraduate debt in these two programs.

All students are strongly advised to discuss their loan indebtedness with a financial aid adviser before combining several types of loans.

3. Federal Direct PLUS Loan. The interest rate for Federal Direct Parent Loans for Undergraduate Students (PLUS) is tied to the 91-day treasury bill rate plus 1 percent, with maximum interest being 9 percent. Through the Federal Direct PLUS program, parents may borrow the entire cost of education, less the amount of any financial aid the student is receiving. There is no limit on loan indebtedness, although a credit analysis will be conducted before funds can be disbursed.

F. Alternative Loans. Private financial institutions provide these loan funds, which are approved on the basis of a credit analysis. Amounts, interest rates, and repayment terms will vary, depending upon the financial institution selected. Interest will begin to accumulate immediately, although forbearance of the interest and principal can be made until after graduation. Some programs will require the student to obtain a credit-worthy cosigner. A FAFSA form is not required to apply for this loan.

III. Part-time Employment

A variety of employment opportunities are available for students to earn a portion of their educational expenses.

A. Federal Cooperative Education Program. This program combines classroom learning with paid work experience designed to develop students into the federal government’s future professionals and managers. The federal government seeks highly motivated, flexible, and creative students to fill co-op assignments across the country in laboratories, offices, forests, parks, hospitals, and in ocean and space programs in a wide variety of occupational fields. There are two different types of work schedules: alternate periods of work and study (full-time student and full-time worker the next) or part-time (parallel periods of work and study). Students interested in the Federal Cooperative Education Program can contact the director of ISU Career Planning and Placement Services by calling 515-294-9490.

B. Internship Programs. Most college departments offer internship programs to enhance the student’s education and career preparation by integrating classroom theory with on-the-job performance. These programs enable students to test career and professional goals; develop confidence, maturity, and work-related skills; and establish professional contacts and interests. Contact the respective department for specific program information.

C. Work-Study Programs. Both federal and state funds subsidize need-based programs that permit students to be employed on campus or off campus in nonprofit agencies. A portion of the student’s total earnings is paid by federal or state funds, and the remainder is paid by the employing department. Students apply for Work-Study by completing a FAFSA by the priority deadline, and indicating that they wish to work. Part-time job listings are available at the following URL: www.iastate.edu/~fin_aid_info/employment.

D. University Student Employment. University employment is available to all students who are U.S. citizens or to those international students who have obtained a work permit. Wages are paid 100 percent by the employing department. Many students who live in university residence halls apply for work in the residence hall food service to help meet the cost of room and board. Students interested in food service employment may apply directly to the assistant director of residence in charge of food service, Residence Department, Folley Hall, Iowa State University, Ames, Iowa 50011. Part-time job listings are available at the following URL: www.iastate.edu/~fin_aid_info/employment.

E. Off-Campus Employment. The off-campus employment program seeks part-time employment opportunities for students who would like to work while they are in school. Restaurants, hotels, service stations, and retail stores are examples of local employers that list positions with the Student Employment Center. These jobs are available to any ISU student, graduate or undergraduate, regardless of financial need. Job listings can be found at www.iastate.edu/~fin_aid_info/employment.

IV. Other Financial Aid

Many other forms of financial aid are available to students who qualify, including Vocational Rehabilitation, Veterans Benefits, and Department of Human Services programs. For further information on these programs, contact the appropriate government office.
Student Housing

Director: Randy Alexander, M.S.

Associate Directors: Virginia Arthur, Ph.D. (Residence Life); Gary Schwartz, M.A. (Residence Operations)

Assistant Directors: James Judy (Facilities Planning); Doug Grunenwald, Ph.D. (Academic Services); Gregory Lee, (Business Operations)

The university provides residence hall housing facilities for approximately 3,000 single undergraduate women and 4,000 single undergraduate men. In addition, more than 1,000 apartments are available on campus for families and for single students.

Each newly admitted student to the university will receive a housing application form following his/her admission. The student’s name will be placed on a list for room assignment according to the date on which the completed application and application fee are received in the Department of Residence Administrative Office. Admission to the university is necessary before a housing application will be accepted.

Address correspondence concerning residence halls or single student apartments to the Administrative Office, Department of Residence, 1215 Friley Hall, Iowa State University, Ames, Iowa 50012. For information regarding family apartments, contact the Director of University Family Housing, 100 University Village, Ames, Iowa 50010; e-mail: halls@iastate.edu or apartments@iastate.edu, or phone toll free: (800) 854-9050. Additional information may be obtained via www.public.iastate.edu/~residence_info/.

Undergraduate Residence Halls

Most of the rooms in residence halls are planned for double occupancy, however, some rooms accommodate three persons. In addition, a limited number of private rooms are available. All rooms are furnished with single beds, innerspring mattresses, chests of drawers, individual study desks, chairs, telephones, and cable television connections. An Ethernet connection is available for a fee. Students provide their own bed linens, throw rugs, blankets, pillows, towels, and study lamps (except in Maple, Willow and Larch Halls, where study lamps are furnished). Students are responsible for maintaining the cleanliness and order of their own rooms.

Housing options include (1) room provided for academic year, excluding academic breaks; (2) room provided for academic year including breaks; and (3) room provided for full calendar year including breaks (Union Drive-Friley only).

Cafeteria-style food service is provided for all residents in the halls. Students living off-campus may also purchase a residence hall meal plan by visiting the Administrative Office at 1215 Friley Hall. Meal plan options include the following:

- 20 meals per week (three meals per day, except Sunday evening meal)
- 15 meals per week (three meals per day, Monday-Friday)
- 14 meals per week (any two meals per day, Monday-Sunday)
- 10 meals per week (any two meals per day, Monday-Friday)

A single student who resides in an undergraduate residence hall must sign a contract for room and board for the academic year or the remainder thereof if contract is signed after fall semester begins. All charges are subject to change. The rate for the academic year 2000-01 was $4,378 for a double occupancy room and full meal plan.

Students may move out of the residence halls at any time during the academic year upon payment of room and board for the term of occupancy plus forfeiture of the prepayment and a charge of 8 percent of the remainder of the contract if the student remains enrolled. For additional information concerning the residence hall contract, students should contact the administrative office (1215 Friley Hall) before making the final decision.

In addition to the basic necessities, several special facilities are available for use by residents. These include house dens for informal get-togethers and relaxation, student government-purchased TVs, newspapers, magazines, lounge areas for meeting and entertaining guests, vending areas for snacks, hall desks with fax and copy machines, entertainment and recreational equipment, mail delivery and check-in and check-out location within the residence halls, indoor and outdoor recreation areas and intramural equipment owned by student government, fitness centers, coin-operated laundry facilities in each hall, special study areas in each complex, private dining rooms for specially-prepared house and organization dinners, meeting rooms and offices for student organizations, music listening and practice rooms, computer labs and parking lots assigned to the residence halls.

The residence halls are organized geographically into three autonomous student associations: The Towers Residence Association (TRA), the Richardson Court Association (RCA), and the Union Drive Association (UDA). The students in each of these coeducational associations elect a group of executive officers to be responsible for coordinating association events and activities. Each association funds and maintains a social program, an intramural program, and numerous committees that supplement the total social educational development of the individual residents. The three associations are also joined in an Inter-Residence Hall Association (IRHA) with an all-residence hall parliament; they jointly sponsor the KURE FM stereo radio station, Residence Hall Week, weekly movies, scholarships, leadership conferences, and more.

Each association is further organized into smaller living groups called houses. These houses of 55 to 75 members are the foundation of Iowa State University’s residence hall program. Members of the houses elect their own officers, and the majority of all programs are planned on a house participation basis. The individual’s educational experience is augmented by active participation in the total house program.

Students who choose to do so may live in a coed house. These houses have male and female students living at opposite ends of the house. They have separate bathroom facilities, but share lounge facilities and house activities.

A variety of special interest housing options is available within the residence halls. Special interest housing includes coed houses, quiet houses, nine- and 12-month continuous occupancy houses, a cross-cultural house, alcohol-free houses, and smoke-free houses. Learning communities, which bring together students who have similar academic goals, are also available in the residence halls.

These communities offer a collaborative living and learning environment, increased student-faculty interaction, social and academic networks essential to student success, and a sense of membership in the ISU community. Currently, the following learning communities are available: ACES (Agriculture Community Encourages Success); ABE (Agricultural and Biosystems Engineering); Animal Ecology; BEST (Biology Education Success Team); Business; Casa Hispanica; CCLC (Cross-Cultural Learning Community); Computer Engineering; Design Exchange; Honors; HDFS (Human Development and Family Studies); IMSE (Industrial Manufacturing Systems Engineering); LEAD (Leadership Through Engineering Diversity); MLC (Multicultural Learning Community); and WISE (Women in Science and Engineering). New learning communities are being developed. For an updated listing of special interest housing, please contact the Department of Residence, 1215 Friley Hall, Ames, Iowa 50012, or call (800) 854-9050. For the most up to date information on learning community opportunities at Iowa State, see www.iastate.edu/~learncommunity/ on the Web.
Undergraduate and Graduate Single Student Apartments

Hawthorn Court is a new and yet-expanding development at Iowa State, providing on-campus apartments to single students aged 20 and above, including graduate and upper-class undergraduate students. The apartments, which are brand new, include such amenities as central air-conditioning, living room and bedroom furniture, microwave, dishwasher and garbage disposal, as well as a washer and dryer in each apartment. The Hawthorn Court Community Center, which is scheduled to open soon, will aid in creating a community atmosphere in which students can learn and interact while enjoying the independence that comes with apartment life.

The apartments, which are available in two- and four-bedroom layouts, accommodate four persons of the same gender. Rent for Spring 2000 was $1,530 per semester for a two-bedroom and $1,665 per semester for a four-bedroom. Rent includes electricity, water, garbage pickup, basic phone service, basic extended cable, and Ethernet, and rent is conveniently paid as part of the resident’s university bill.

University Family Housing

The university provides 760 apartments in University Village and Schilletter Village. As of December 1, 2000, rates for these apartments were $396-$424 per month for University Village, and $447 per month for Schilletter Village. The apartments are furnished with stove and refrigerator, and central air-conditioning units are being added to the University Village apartments. Rental rates include cable television, high-speed internet connection, water and garbage removal service. Residents pay for their own gas, electricity and telephone.

Applications for University Family Housing will be accepted not more than one year in advance of the semester of assignment. Applicants must be admitted to Iowa State University to apply for housing.

To be eligible for a university family housing, applicants must be registered for classes during the semester of move-in. Preference for University Family Housing is given to the following groups in order of priority:

- graduate students families on appointment.
- single parents living with dependent children.
- legally married couples residing together with or without dependent children.

Address correspondence concerning family housing to University Family Housing, 100 University Village, Ames, Iowa 50010; Fax: (515) 294-0651 or e-mail: apartments@iastate.edu

Off-Campus Housing for Students

Availability and cost are factors to be considered when living off campus. Sleeping rooms in older houses, apartments, and duplexes make up the bulk of off-campus housing.

The Off Campus & Adult Student Services, B6 Memorial Union, keeps a listing of off-campus rental units. Other housing may be obtained through real estate agents, local newspapers, or by contacting individual owners.

It is best that the student come to Ames well in advance of the time he or she plans to begin academic work, as many units are rented 3 to 6 months in advance. The single occupancy room rental rates average $200 to $500 per month. Average rental rate per student sharing an apartment or house would be in the $250 to $400 range per month. Board for students

Living in off-campus rooms may be obtained in residence hall dining rooms, private restaurants, or the Memorial Union.

A meal plan is available in the Department of Residence to off-campus students that provides any one meal per day, Monday through Friday, while classes are in session. Information may be obtained from the Administrative Office, Department of Residence, 1215 Friley Hall, Iowa State University, Ames, Iowa 50012-0003.

Fraternities and Sororities

Of the 51 fraternity and sorority chapters on the Iowa State University campus, 43 have chapter houses, and provide housing for about 1,800 undergraduate students. The seven historically Black Greek fraternities and sororities do not provide residential facilities for members, but are active in scholastic, service, and social projects.

The chapter house facilities are similar to a private residence: living room, den, kitchen, dining room, laundry room, etc. The staff in the Office of Greek Affairs, a department in the Dean of Students Office, provide advising, programs, and services for the Greek chapters and organizations. Local alumni work with each fraternity and sorority to ensure that the chapter structure meets all the state and local building, safety, and fire codes that are required with incorporation under the State Law of Iowa.

The average cost of living in a fraternity or sorority chapter house ranges from $300 less to $300 more per year than living in the residence halls, or an off-campus apartment. The cost includes room, board, and social dues. Fees average $50 for a pledging fee and $150 for the initiation fee.

Men may move directly into a fraternity house at the beginning of an academic year if they pledge a chapter that has a house. Typically, they continue living there throughout their college years. Women pledging a sorority during formal recruitment or informally throughout the year generally live in the residence halls for the academic year. However, as space becomes available in a chapter house, sorority members often move into the house as sophomores or upper-class women.

If a student moves into a chapter house from the residence halls and has to break a contract, the student will forfeit the deposit and owe a percentage of the cost of the contract. Most of the chapters compensate a student to a degree. Because the compensation amount differs among houses, a student should communicate with the chapter before changing residences.
The University Library

Dean of Library Services: Olivia M.A. Madison, M.L.A.
General Information—(515)-294-3642
Library Hours—(515)-294-4849

The University Library provides a wide array of print, non-print, and electronic information resources, which are housed in the main Parks Library, the Veterinary Medical Library, and four subject-oriented reading rooms (design, economics and sociology, mathematics, and physics sciences). The library’s extensive collections support research and study for all ISU graduate programs, with the strongest support at the Ph.D. level. These collections are nationally recognized for their strengths in basic and applied fields of biological and physical sciences. Library holdings include more than 2,203,800 volumes and approximately 21,600 serial subscriptions.

The library encourages use of its collections and many services, and assistance is provided at nine public service desks. These desks include the Reference Desk, Reserve and Media Services, Interlibrary Loan, the Circulation Desk, the Periodical and Newspaper Room, the Microforms Center, Special Collections, the Map Room, and Document Delivery/Photoduplication. In addition, instruction in the use of library resources is offered to graduate and undergraduate students.

The library’s e-Library, accessed through the Internet, provides access to the local on-line catalog; indexing and abstracting databases; electronic journals; and selected Internet sites. Assistance in using this vast body of electronic resources is available at the Reference Desk and through individually arranged appointments with reference librarians.

The Parks Library has a limited number of research studies available for faculty, graduate students and professional and scientific staff. They are intended for research and other scholarly activities that require extensive use of library material. Normally, assignments are made for a semester at a time.

Student Counseling Service

Director: Terry Mason, Ph.D.
Interim Assistant Director for Clinical Services: Ron Jackson, Ph.D.

The Student Counseling Service (SCS) assists students in enhancing their academic and personal well-being with a staff of professional psychologists and counselors. Services are available to help students sort through their feelings, strengths, and options to develop new perspectives and coping skills.

Available services include individual counseling, relationship/couples counseling, career counseling and exploration, substance abuse assessment, and learning disabilities screening. Group counseling is also available for a variety of issues including adult children of alcoholics, depression, eating disorders, self-esteem and relationships, problem solving, and relaxation/stress management. SCS also offers a number of outreach programs and workshops.

Counseling services are offered at no cost to ISU students. However, a nominal fee for testing may be required. Counseling is strictly confidential. SCS staff will not release any information to anyone outside of the Student Counseling Service without the written permission of the client.

In addition to providing counseling and outreach services to students, SCS provides training and consultation to faculty and staff to assist them in addressing the psychological needs of students.

During the fall and spring semesters, SCS hours are Monday through Thursday, 8 a.m.–6 p.m. and Friday from 8 a.m.–5 p.m. During the summer (and when classes are not in session) office hours are Monday through Friday, 8 a.m.–5 p.m. The Student Counseling Service phone number is 515-294-5056.
Career Services Offices

Director: Beverly S. Madden, M.S., Beardshear
Agriculture: Michael Gaul, B.S., 141 Curtiss Hall
Business: Steven Kravinsky, M.S., 208 Carver
Design: Margaret Hutcheson, M.Ed., 297 College of Design
Education: Toni Humphreys, M.S., E105 Lagomarcino
Engineering: Larry Hanneman, M.S., 301 Marston
Family and Consumer Sciences: 131 MacKay
Liberal Arts and Sciences: Steven Kravinsky, M.S., 208 Carver
Veterinary Medicine: Eldon Uhlenhopp, Ph.D., 2520 Veterinary Medicine

Career services are provided in each college to assist students, undergraduate and graduate, and alumni with their career-related needs. A broad range of programs and services are offered including online registration, position listing and interview scheduling; résumé referral; coordination of co-op and internship programs; workshops and seminars on career exploration, résumé preparation, letter writing, job search techniques, interview skills, applying to graduate and professional schools, and adjusting to the first job.

Each year career services sponsor five college career-information days, the graduate and professional school day, an international opportunities festival, and a summer job fair. Extensive career and job search information is provided on-line. Each college career services office serves as a point of entry for students, alumni, and employers to the entire ISU network of coordinated, decentralized career services.

Office of Minority Student Affairs

Director: Rafael Rodriguez, M.A.

Program Coordinators: Karen Webb, M.Ed.; Eddie Weatherington, B.S.

Program Assistants: Meaghan Kozar, B.A.; Yanira Pacheco, B.A.; Irma White, B.A.

The Office of Minority Student Affairs is designed to give leadership to the university’s mission in the area of equal educational opportunity. The office strives to maximize the educational and personal growth of students by identifying and assisting in the development and promotion of programs which will enable students and staff to achieve their full potential.

In addition, the Office of Minority Student Affairs works closely with all units in the university to achieve the following objectives:

1. Strengthen Iowa State University’s efforts in recruiting, retaining, and graduating ethnic minority students.
2. Work in collaboration with Minority Liaison Coordinators in reviewing the concept of equal educational opportunity and recommending changes to university policies that may limit or prevent the achievement of educational and cultural goals of minorities.
3. Ensure access and persistence of minority students in every discipline and area of study offered by the university.
4. Maintain liaison with all departments and organizations interested in the growth and development of students.

These objectives are designed to assist in the achievement of the major purpose of the Office of Minority Student Affairs: the identification, recruitment, retention, graduation, and placement of minority students. This purpose is accomplished through the following programs:

- Academic Program for Excellence, Carver Academy Program, George Washington Carver Scholarships, Martin Luther King, Jr., Loan Program, American Indian Symposium, ethnic cultural celebrations, Early Success Program (ESP), College Bound activities.

International Education Services

www.public.iastate.edu/~internat_info/

Study Abroad Center:
www.iastate.edu/~study-abroad/
Director: Dennis Peterson, M.A.
Assistant Director, International Students and Scholars: Brenda Thors-Thorstensen, Ph.D.
Assistant Director, Study Abroad Center: Trevor Nelson, Ed.D.
Coordinator of International Services: Rebecca Matters
Coordinator of Special Projects: Deborah Vance, M.B.A.
Senior Program Coordinator: Michelle Szabo, M.Ed.
Program Coordinators:
Luiza Drescher, Ph.D.; Jane Edmonds, M.S.; Kamal Elbashir, Ph.D.; Nancy Guthrie, B.A.; Catherine Marshall, Ph.D.; Amy Mukamuri, B.A.; Wei Wei, M.S.

International Education Services (IES) is committed to courteous, accurate, timely service and informative programs for international students and visiting scholars, Americans seeking overseas opportunities, and citizens of Iowa interested in international education. IES staff members orient and advise internationally on university procedures, community resources, U.S. visas and personal concerns. Persons interested in study and/or work abroad find a wealth of information at the IES Study Abroad Center. The Center maintains information on scholarships, health and safety abroad, world cultures, and travel, as well as over 200 ISU programs and thousands of opportunities through other institutions. Staff assist not only students, but also faculty and staff traveling abroad. Project Assist provides logistical and other support to faculty developing new group study abroad programs. IES intercultural programs, such as the Culture Corps, Friendsships International, Conversational English and activities developed with the International Student Council and dozens of international student organizations, bring international students and Americans together for mutual learning. We welcome volunteers to join these and other programs.

Dean of Students Office

www.public.iastate.edu/~deansdt_info

Interim Dean of Students: Peter Englin, M.S., Student Services Building
Associate Dean of Students: Peter Englin, M.S., Student Services Building
Assistant Dean of Students: Vernon Wall, M.S., B6 Memorial Union
Assistant Dean of Students: Brian Tencleinger, M.S., B6 Memorial Union

Academic Success Center
Director: Sharon McGuiere, Ph.D., Student Services Building
Coordinator, Disability Resources: Student Services Building
Coordinator, Supplemental Instruction: Kari Hensen, M.S., Student Services Building
Learning Disabilities Specialist: Gwen Woodward, M.S., Student Services Building

Greek Affairs
Assistant Dean of Students: Brian Tencleinger, M.S., B6 Memorial Union

Judicial Affairs
Director: Grace Weigel, M.S., Student Services Building

Program Assistant: Bethany Schuttinga, M.S., Student Services Building

Lesbian, Gay, Bisexual, and Transgender Student Services
Associate Dean of Students: Peter Englin, M.S., Student Services Building

Margaret Sloss Women’s Center
Director: Sloss House

Off Campus and Adult Student Services
Director: Penny Rosenthal, M.S., B6 Memorial Union

Parents Association (ISUPA)
Associate Dean of Students: Peter Englin, M.S., Student Services Building

Recreation Services
Director: Larry Cooney, Ed.D., 2220 State Gymnasium

Associate Director: Michael Harvey, M.S., 2220 State Gymnasium

Business Manager: Scott White, M.S., 2220 State Gymnasium

Coordinator, Intramural Program: Garry Greenlee, M.S., 1264 State Gymnasium

Program Coordinator, Intramural Sports: Linda Marticke, M.S., 1262 State Gymnasium

Student Services 25
The Academic Success Center encompasses several academic assistance programs. The services available at the ASC include the following: resources for students with disabilities; course-specific Tutoring Services and Supplemental Instruction; general walk-in assistance through the Academic Learning Lab, providing individual consultations for those with acute needs and a study skills/time management presentations; and a one-credit study skills class (Psychology 131). All programs are focused on helping students learn how to learn and achieve their academic goals. For more information visit the web site at www.dso.iastate.edu/dept/asc.

Disability Resources (DR) coordinates those support services that students may need in order to reach their fullest academic potential. The DR staff members provide accommodations and serve as a resource within the university community concerning students who have physical or learning disabilities. DR provides assistance, information, support, counseling, education, referral, and awareness to students, faculty, staff, the Ames community, and the state of Iowa. Call 515-294-6624, VTDD 515-294-1021, for further information.

The mission of Tutoring Services is to enhance academic growth, to remove barriers to learning, and to promote human worth and dignity in ways that are enabling, professional, and service-oriented. Tutoring is the process by which students can get more individualized instruction for undergraduate courses offered at ISU. Tutoring recruits and screens tutors, works out convenient times to meet, collects fees, and pays tutors. For information call 515-294-6624.

Supplemental Instruction (SI) is a free academic assistance program for difficult selected 100 and 200 level courses. Peer SI leaders who have demonstrated competence in the course, attend classes and conduct bi-weekly sessions to help students learn and study the course material. A complete schedule can be viewed on the web.

The Academic Learning Lab (ALL) is a “learning how to learn” center. A walk-in service to students, ALL helps them with tips on how to succeed in the classroom. ALL is staffed with psychology graduate assistants who work with students to pinpoint areas in their study strategies that might need improvement. A one-credit study skills course, Psychology 131, that addresses learning issues as well as a variety of reading and study strategies and tactics from time management to test taking is offered each semester. Class size is limited to 20 students to allow for group interaction as well as individual attention.
LGBTSS, its staff, and advisory board work to promote assistance, support, visibility, and diversity through programming, a variety of services, and referral. In achieving its mission, LGBTSS strives to promote full inclusion of LGBT persons and their allies at ISU and to eliminate homophobia, heterosexism, and sexism on campus.

Programs and services of LGBTSS include the speakers bureau, Lavender Graduation, National Coming Out Days events, supporting campus LGBT organizations, the Safe Zone sticker project, the lending library, and brochures and workshops on various LGBT issues. For more information: 2222 Student Services Building, (515) 294-5433, lgbtss@iastate.edu, or www.public.iastate.edu/~lgbtss.

Margaret Sloss Women’s Center
The Margaret Sloss Women’s Center promotes the educational, personal and career development of all women in the ISU/Ames community. Along with other departments, the Women’s Center shares the university’s responsibility of creating a safe and supportive environment for all individuals. The purpose of the Women’s Center is to provide and sustain women through assistance, programs and information and referral services. The Women’s center provides:

- A clearinghouse of information including a lending library, resource files, a newsletter entitled Womenews, a calendar of events, and magazines including Ms., Essence, Working Woman, Curve, ConneXions, Mother Jones, About Women on Campus, and Harvard Women’s Health Watch.
- A program center that focuses on helping students, staff and faculty thrive in an academic environment by motivating them toward a greater understanding of, and involvement with, women’s issues. Educational programs presented in residence halls, departments and organizations include workshops on a variety of topics (e.g., self-esteem, images of women in the media, sexual assault, sexual harassment, domestic violence, dating violence, relationships between women and men, homophobia/heterosexism, sex roles and stereotypes, etc.).
- Coordination and co-sponsorship of special events including Women’s Week, National Coming Out Day, Sexual Assault Awareness Week, Rosa Parks Day, celebration, and Women’s History Month. Throughout the year, the Women’s Center also sponsors a number of speakers on current issues, hosts conferences, and coordinates support and discussion groups.
- Assistance and support for women who work toward changing situations which adversely affect them, both individually and institutionally.
- A space for women to meet, study, eat, network, discuss, find support, watch a video or just relax.
- A place to gain experience and/or credit as a journalism or design intern, practicum student, student programmer, board member, or volunteer.
- Other services include an electronic breast pump, lockers to rent, free condoms, meeting rooms for campus and community organizations, kitchen facilities, and a TV and VCR.

The Margaret Sloss Women’s Center is open Monday through Friday, 8 a.m.-5 p.m. and is housed in the Sloss House, located between Curtiss Hall and the Memorial Union. Call 515-294-4154 or view www.iastate.edu/~mswc.

Off Campus and Adult Student Services (OCASS)
Through various programs and services, the Off Campus and Adult Student Services seeks to meet the unique needs of current and prospective adult, commuter, and off-campus students. This is accomplished through the following:

- Providing information and consultation about tenant/landlord rights and responsibilities
- Serving as a clearinghouse for general campus and city information and referral
- Advocating for campus-wide awareness and responsiveness to the needs of current and prospective adult, commuter, and off-campus students
- Offering opportunities for interactions and connection for adult and commuter students
- Offering leadership opportunities to student employees and interns

The office is funded in part by the Government of the Student Body. For assistance and information, visit B6 Memorial Union, call 515-294-2364, or view www.ocass.iastate.edu.

Parents Association (ISUPA)
All parents of ISU undergraduate students are automatically considered to be members of the ISU Parents Association. The ISUPA serves as a link between the University and parents and families. Its mission is to serve and inform parents and to enhance the quality of student life at Iowa State.

There are no membership fees in the ISUPA; it is funded exclusively by contributions and fundraisers, like the annual tuition raffle. The ISUPA Board of Directors, comprised of 36 parents, along with members of the Dean of Students Office staff, administer the programs of the ISUPA, that include:

- Family Handbook, distributed to all new ISU parents at June orientation
- Parents Advisory Line (PAL), 1-800-772-8546, toll free assistance for parents
- Parent Calling Project, phonathon to new ISU parents each autumn
- Family Weekend, the annual fall event largely funded by the ISUPA
- Involvement in ISU admissions events

For more information on the ISUPA, call the Dean of Students Office, 294-6054 or view www.dso.iastate.edu, then Web site Index, Parents Association.

Recreation Services
Recreation Services is dedicated to the provision of quality recreational opportunities for the campus community. Programs include intramural sports, sport clubs, informal recreation, outdoor recreation, special events, fitness programs, and recreation facility scheduling. Assistance for other recreational services is provided.

The informal recreation program includes the opportunity for recreational sports activity in Beyer Hall, State Gymnasium, Forker Building (east campus), Lied Recreation/Athletic Center, outdoor tennis courts near the Forker Building, intramural fields east of the Towers and Maple-Willey-Larch Residence Halls, Clyde Williams Field and the southeast field complex east of the football stadium.

The fitness program provides several opportunities for staying fit. The types of aerobic classes available include: kickboxing, step, toning and water. The semester is divided into two sessions, each offering 35 classes. The Rec Miler’s Program is designed to help students stay interested and involved in a regular exercise program. Participants have the flexibility to choose their own activities and can exercise at their own pace and convenience. Participants keep track of their recreational mileage for each month. To get mileage credit, progress slips must be deposited in the Rec Miler’s boxes at the Recreation Services Office, 2220 State Gym, or at the Lied Recreation/Athletic Facility. Monthly totals for each participant are posted at State Gym.

Participants may earn awards for specific milestones. Aerobic activities for Rec Miler credit include: bike, walk, basketball, handball, cross country skiing, stationary bike, fitness class, jump rope, soccer, jog/run, swim, racquetball and tennis.

The outdoor recreation program is composed of four basic elements: the camping-outdoor equipment checkout program; the organized trip program; basic instruction activity workshops; the Outdoor Equipment and Resource Center. All of these programs and activities are designed to provide opportunities for natural environment experiences. Two regulation golf holes north of the Armory are open for ISU recreation golf use at no charge.

The sports club program is designed to serve individual interests in different sports club activities and is student-oriented in every aspect. Sports clubs offer team or individual recreational opportunities. Following are the sports clubs: badminton, ballroom dance, bowling, cycling, cuestrian, fencing, flying, frisbee, hapkido, hockey, judo, karate, kayak, lacrosse, racquetball, rifle and pistol, rodeo, rugby, sailing, scuba, ski, shotokan karate, sky diving, soccer, table tennis, taekwondo, do, trap and skeet, volleyball, water polo, water ski and weightlifting.

These clubs offer instruction and competition at the local and intercollegiate levels. The club members set dues, and most clubs receive financial subsidy from the Government of the Student Body to enable students to participate regardless of their financial situation.

The intramural program involves competition among participants who enter as teams or individuals and play according to specific schedules. There are a total of 50 intramural...
activities ranging from football to innertube water basketball and curling. Activities include men’s, women’s and co-rec divisions. Numerous special events add spice to the recreation program. These activities are of an endless variety and usually take place in a short time span. In general, they encompass demonstrations, performances, special contests, mass group participation, social occasions, excursions, displays, or special instruction.

Other physical, cultural, and social recreation programs are sponsored in coordination with various departments, organizations, and groups on and off campus. For further information concerning campus recreation activity, contact the Recreation Services Office, 2222 State Gym, or call (515) 294-4490, or www.public.iastate.edu/~rec_services_info.

Student Activities Center

The Student Activities Center is committed to student involvement and retention. Its programs and services, including leadership development and organization participation, strive to ensure student success. These practical experiences work toward enhancing the quality of student life. With over 500 organizations from which to choose, students learn about themselves and appreciate the diversity in others. The staff of the SAC is dedicated to utilizing their knowledge and experience to provide unique living and learning opportunities for all Iowa State students. The SAC is responsible for registering the 500+ student, campus, and community organizations. The staff provides consultative services to student leaders, members, and advisers of organizations on an individual and group basis. They also provide training workshops and facilitate retreats for student groups. This office produces Newsline, a newsletter distributed twice each semester to presidents and advisers of registered student organizations. The SAC also annually publishes the Student Organizations Resource Manual, which informs the campus community about university policies and procedures that affect student organizations. Information about substance abuse prevention and peer education training is a priority at Iowa State University and is provided through the SAC. The staff of the SAC also advises students involved in the Government of the Student Body (GSB) and VEISHEA. For more information visit the SAC, B6 Memorial Union, 294-1023, or view www.sac.iastate.edu/.

Student Answer Center

Students who have questions but are not sure where to find an answer may contact the Student Answer Center located on the ground floor of Beardshear Hall. A staff member will answer questions on the spot or provide referrals to other university departments as needed. In addition, students can pick up forms, information brochures, and campus maps and also receive assistance in getting information from the Web.

Answers to frequently asked questions are available on the Student Answer Center Web site at www.answer.iastate.edu/. Students also may e-mail their questions to the Student Answer Center at answercenter@iastate.edu or call 515-294-4469.

Student Assistance Services

When student life at Iowa State becomes overwhelming or situations arise when students need some advice, the staff of Student Assistance Services is ready to help. The associate dean of students, along with his/her graduate assistant and other DSO colleagues, provide resources for students to work through issues including:

- Academic concerns
- Personal concerns
- Personal and family emergencies, and
- Formal grievance procedures.

Assistance in understanding and navigating the University judicial systems and other university policies and procedures is also provided. Personalized referrals to other University resources and services is key in providing proactive and comprehensive assistance to students. Consultation and assistance is provided in an atmosphere of confidentiality and concern for each student’s personal well being and educational objectives. For more information visit 2222 Student Services Building, call (515) 294-1020, or view Web site Index at www.dso.iastate.edu/.

Student Legal Services (SLS)

Student Legal Services is a cost-free legal aid office available to any student currently enrolled at Iowa State and registered student groups. SLS is staffed by full-time, practicing attorneys who are available to consult with students and offer advice with respect to most legal problems. While SLS is a part of the Dean of Students Office, its financial support comes from the Government of the Student Body (GSB). The types of cases most often handled by the staff of the SLS include:

- Family Law and Divorce
- Criminal Law
- Landlord-Tenant Problems
- Off-Campus Employment Problems
- Consumer Issues
- Administrative Issues

However, SLS cannot actively represent students in controversies involving student vs. student, student vs. ISU, and ISU student judicial matters and does not handle the following cases: fee generating cases; felony defense; Federal Court matters; cases involving excessive time.

More information is available at SLS, B11 Memorial Union, (515) 294-0978, or view Web site Index at www.dso.iastate.edu/.

Student Support Services Program (SSSP)

SSSP, a federally funded program, provides academic support to eligible students and is designed to increase the retention and graduation rates of low-income individuals who are first generation college or individuals with disabilities. The needs of the students who are accepted into SSSP are thoroughly assessed through testing and counseling. SSSP participants receive personal and career counseling, along with academic advice, tutoring, and assistance in receiving financial aid.

Participants in SSSP are encouraged to work with an SSSP student mentor to become acclimated to the ISU environment. These relationships also encourage participants to fully access ISU resources.

Study skills improvement sessions and basic skills instruction are provided in the areas of math and writing. In addition, cultural enrichment (i.e. theatre, dance, and musical events) and educational (leadership conferences, graduate/professional, etc.) activities are planned. These services are provided free of charge to eligible students after they are accepted into the program. SSSP is located in the Student Services Building; call (515) 294-0210 or view Web site Index at www.dso.iastate.edu/.

Vocational Rehabilitation

The State of Iowa Division of Vocational Rehabilitation Services Office provides services to students who are able to provide medical documentation that they have a substantial impediment to employment. Rehabilitation services may include the following: medical assessment; vocational evaluation; counseling and guidance; special adaptive equipment or devices; financial assistance toward training; job placement assistance. No direct fees are charged, but there may be some costs through involvement with services. Financial assistance towards tuition costs is based on student financial need. For more information, contact Vocational Rehabilitation, 515-294-5059, 2222 Student Services Building, or see www.dso.iastate.edu/dept/vocrehab.
Child Care

Child Care Resources, a unit of Human Resource Services, supports Iowa State University families by linking them with programs and services that can help meet their child care needs. The university child care consultant is available to assist families in accessing services available both on the campus and in the community.

Child care programs located on campus include:
- Center for Child Care Resources: Assistance in locating community child care services, 1038 Pammel Court, 515-294-9833 or 1-800-437-8599
- University Community Childcare at Pammel Court, 891 Pammel Court, 515-294-9838
- The Comfort Zone: Daycare for kids who don’t feel so good, 1019 Pammel Court, 515-294-3333.
- Flex-Care: Part time care for children of ISU students, 1052 Pammel Court, 515-294-2471.
- University Child Care Center at Veterinary Medicine, 1700 Christensen Drive, 515-294-2273.
- ISU Child Development Laboratory School, Palmer HDFS Building, 515-294-3040.

For more information about child care options, contact the university child care consultant at 515-294-9827.

Forensics: Individual Events

ISU Forensics, the Iowa State speech team, participates in several kinds of competitive speech activities. Please contact Speech Communication Program at 515-294-7670 for further information.

Honor Societies

Alpha Lambda Delta/Phi Eta Sigma — Freshmen
First-year students who achieve at least a 3.5 GPA for one or more semesters their first year may be members of these national honor societies. These societies encourage superior scholastic attainment among students in their first year at institutions of higher education.

Alpha Pi Mu — Industrial Engineering
Members are chosen for character, achievement, and scholarship in industrial engineering. The group provides social and educational interaction for industrial engineering.

Alpha Upsilon Alpha — Education
An educational honor society that recognizes and encourages scholarship and leadership in the field of reading.

Alpha Zeta — Agriculture
Members must have completed three semesters of study in the College of Agriculture or Veterinary Medicine and be in the upper two-fifths of their class. Meetings are held to foster high standards of scholarship, character, and leadership. Alpha Zeta sponsors lectures, service projects, and promotes the agricultural programs at ISU.

Beta Beta Beta Biological Honor Society
A national organization for students in the biological sciences with a purpose to recognize undergraduates with exceptional scholarship, leadership and character.

Beta Gamma Sigma
Honor society for collegiate schools of business.

Cardinal Key — Senior Leadership
The Senior Honor Society of Cardinal Key recognizes those persons who have been outstanding leaders in college life, who have rendered noteworthy service to Iowa State, who are of high moral character, and who rank high scholastically. Members are selected by application and interview.

Chi Epsilon — Civil Engineering
The purpose is to develop the profession of civil engineering through the interaction of members, fellow civil engineering students, and faculty. Scholarship, character, practicality, and sociability are the fundamental requirements for membership.

Epsilon Pi Tau — Education in Technology
Members are selected from the upper one-fourth of the juniors, seniors, and graduate students in industrial technology. The group strives to promote skill, social and professional efficiency, and research.

Omega Nu — Electrical Engineering
Members are selected from the upper one-fourth of the junior class and upper one-third of the senior class in both electrical and computer engineering. Omega Nu promotes scholarship and leadership in electrical engineering.

Phi Kappa Tau — Education
A national honor society that recognizes students with outstanding academic achievement and encourages interaction between students and faculty.

Xi Sigma Pi — Females in Chemical Sciences
An organization open to female students in the chemical sciences which provides functions for members to socialize and discuss science issues in chemistry.

Kappa Delta Pi — Education
In an effort to promote excellence in and recognize outstanding contributions to education, Kappa Delta Pi maintains a high degree of professional fellowship among its members, quickens professional growth, and honors achievement in educational work. Membership invitations are extended to second semester sophomores, juniors, and seniors with a GPA of 3.25 or above.

Kappa Omicron Nu, Gamma Chapter
Objectives of the honor society are to promote graduate study and research, to stimulate scholarship and leadership toward the well-being of individuals and families throughout the world. Top 10 percent of junior and top 20 percent of senior students maintaining at least a B average, and outstanding graduate students in family and consumer sciences, are eligible for selection. Research within the college is shared at monthly meetings.

Kappa Omicron Nu — Electrical Engineering
Members are selected from the upper one-fourth of the junior class and upper one-third of the senior class in electrical engineering. Kappa Omicron Nu promotes scholarship and citizenship through guest lectures and service projects.

Golden Key — All University
A national nonprofit academic honors organization, Golden Key is dedicated to recognizing and encouraging scholastic achievement in all undergraduate fields of study and to uniting collegiate faculty and administrators.

Iota Sigma Pi — Females in Chemical Sciences
An organization open to female students in the chemical sciences which provides functions for members to socialize and discuss science issues in chemistry.

Kappa Delta Pi — Education
In an effort to promote excellence in and recognize outstanding contributions to education, Kappa Delta Pi maintains a high degree of professional fellowship among its members, quickens professional growth, and honors achievement in educational work. Membership invitations are extended to second semester sophomores, juniors, and seniors with a GPA of 3.25 or above.

Kappa Omicron Nu, Gamma Chapter
Objectives of the honor society are to promote graduate study and research, to stimulate scholarship and leadership toward the well-being of individuals and families throughout the world. Top 10 percent of junior and top 20 percent of senior students maintaining at least a B average, and outstanding graduate students in family and consumer sciences, are eligible for selection. Research within the college is shared at monthly meetings.

Kappa Delta Pi — Education
In an effort to promote excellence in and recognize outstanding contributions to education, Kappa Delta Pi maintains a high degree of professional fellowship among its members, quickens professional growth, and honors achievement in educational work. Membership invitations are extended to second semester sophomores, juniors, and seniors with a GPA of 3.25 or above.

Kappa Omicron Nu — Electrical Engineering
Members are selected from the upper one-fourth of the junior class and upper one-third of the senior class in electrical engineering. Kappa Omicron Nu promotes scholarship and leadership in electrical engineering.

Phi Sigma Chi — Sociology
Members share interest in the field of sociology, research of social problems, and such other social and intellectual activities as will lead to improvement in the human condition.

Eta Kappa Nu — Electrical Engineering
Members are selected from the upper one-fourth of the junior class and upper one-third of the senior class in electrical engineering. Eta Kappa Nu promotes scholarship and citizenship through guest lectures and service projects.

Golden Key — All University
A national nonprofit academic honors organization, Golden Key is dedicated to recognizing and encouraging scholastic achievement in all undergraduate fields of study and to uniting collegiate faculty and administrators.

Iota Sigma Pi — Females in Chemical Sciences
An organization open to female students in the chemical sciences which provides functions for members to socialize and discuss science issues in chemistry.

Kappa Delta Pi — Education
In an effort to promote excellence in and recognize outstanding contributions to education, Kappa Delta Pi maintains a high degree of professional fellowship among its members, quickens professional growth, and honors achievement in educational work. Membership invitations are extended to second semester sophomores, juniors, and seniors with a GPA of 3.25 or above.

Kappa Omicron Nu, Gamma Chapter
Objectives of the honor society are to promote graduate study and research, to stimulate scholarship and leadership toward the well-being of individuals and families throughout the world. Top 10 percent of junior and top 20 percent of senior students maintaining at least a B average, and outstanding graduate students in family and consumer sciences, are eligible for selection. Research within the college is shared at monthly meetings.

Kappa Delta Pi — Education
In an effort to promote excellence in and recognize outstanding contributions to education, Kappa Delta Pi maintains a high degree of professional fellowship among its members, quickens professional growth, and honors achievement in educational work. Membership invitations are extended to second semester sophomores, juniors, and seniors with a GPA of 3.25 or above.

Kappa Omicron Nu — Electrical Engineering
Members are selected from the upper one-fourth of the junior class and upper one-third of the senior class in electrical engineering. Kappa Omicron Nu promotes scholarship and leadership in electrical engineering.

Phi Sigma Chi — Sociology
Members share interest in the field of sociology, research of social problems, and such other social and intellectual activities as will lead to improvement in the human condition.

Eta Kappa Nu — Electrical Engineering
Members are selected from the upper one-fourth of the junior class and upper one-third of the senior class in electrical engineering. Eta Kappa Nu promotes scholarship and citizenship through guest lectures and service projects.

Golden Key — All University
A national nonprofit academic honors organization, Golden Key is dedicated to recognizing and encouraging scholastic achievement in all undergraduate fields of study and to uniting collegiate faculty and administrators.

Iota Sigma Pi — Females in Chemical Sciences
An organization open to female students in the chemical sciences which provides functions for members to socialize and discuss science issues in chemistry.

Kappa Delta Pi — Education
In an effort to promote excellence in and recognize outstanding contributions to education, Kappa Delta Pi maintains a high degree of professional fellowship among its members, quickens professional growth, and honors achievement in educational work. Membership invitations are extended to second semester sophomores, juniors, and seniors with a GPA of 3.25 or above.

Kappa Omicron Nu, Gamma Chapter
Objectives of the honor society are to promote graduate study and research, to stimulate scholarship and leadership toward the well-being of individuals and families throughout the world. Top 10 percent of junior and top 20 percent of senior students maintaining at least a B average, and outstanding graduate students in family and consumer sciences, are eligible for selection. Research within the college is shared at monthly meetings.

Kappa Delta Pi — Education
In an effort to promote excellence in and recognize outstanding contributions to education, Kappa Delta Pi maintains a high degree of professional fellowship among its members, quickens professional growth, and honors achievement in educational work. Membership invitations are extended to second semester sophomores, juniors, and seniors with a GPA of 3.25 or above.
Omega Chi Epsilon—Chemical Engineering
Membership is open to chemical engineering juniors in the top 20 percent of their class, or seniors in the top 30 percent. The purpose is recognition and promotion of high scholarship, original investigation, and professional service in chemical engineering.

Order of Omega—Greek Affairs
A national Greek honorary, the Order of Omega was founded at Iowa State in 1957. Criteria for membership include character; scholarship; leadership; service to the individual chapter, the Greek system, the university, and the Ames community. Membership is limited to junior and senior students who comprise one percent of the Greek population.

Phi Beta Theta—History
Students who have a B average in at least 15 hours of history are eligible for membership. The local branch sponsors social activities, co-sponsors prizes for undergraduate essays in history, and encourages students’ participation in state-wide, regional, and national Phi Alpha Theta conferences.

Phi Beta Delta—International Scholars
Phi Beta Delta is a national honor society dedicated to recognizing and encouraging high professional academic and personal achievements in the field of international education. Members are selected from domestic and international students and from distinguished faculty and staff members on the basis of scholastic achievement and international activities.

Phi Beta Kappa—Liberal Arts and Sciences
Phi Beta Kappa is a national honorary society, founded in 1776 “to recognize and encourage scholarship, friendship, and cultural interests.” Membership is by invitation to students enrolled in the LAS curriculum. To be eligible, juniors must have at least a 3.80 cumulative grade point average and seniors, at least a 3.60 average. Other criteria for membership include requirements in the mathematical disciplines and a foreign language.

Phi Kappa Phi—All University
This national honor society recognizes and encourages superior scholarship in all academic disciplines. Membership is open to qualified undergraduates and graduates by invitation and occasionally to faculty and alumni.

Phi Sigma Theta
Phi Sigma Theta is dedicated to recognizing and rewarding academic achievement, and encouraging community service, leadership, and continued academic excellence.

Phi Upsilon Omicron—Family and Consumer Sciences
Members are selected from junior and senior family and consumer sciences students who have demonstrated academic excellence and professional leadership qualities. Membership is a means of furthering professional goals. Outstanding graduate students are also eligible for selection.

Phi Zeta—Veterinary Medicine
Phi Zeta is the national honor society of veterinary medicine whose aim is to stand for the constant advancement of the veterinary profession, higher educational requirements, and high scholarship. Active members are students in the third and fourth year of the veterinary curriculum who have achieved high scholarship, and those who have been in possession of a veterinary medical degree for at least two years and are engaged in a veterinary graduate program, internship, or veterinary research.

Pi Alpha Xi—Horticulture
This honor society’s purpose is to promote high scholarship, foster good fellowship, increase efficiency of the profession, and establish cordial relations among the students, educators, and professional horticulturists. Membership is open to academically qualified upperclass and graduate students in horticulture.

Pi Kappa Lambda-Gamma Nu Chapter
Pi Kappa Lambda is the national music honor society.

Pi Mu Epsilon—Mathematics
Pi Mu Epsilon is the national mathematics honorary society whose purpose is the promotion of scholarly activity in mathematics among students and staff. Members are students and faculty who have completed at least two years of college-level mathematics with honor (at least 3.33 GPA) and have maintained an overall GPA of at least 3.0.

Pi Sigma Alpha
Pi Sigma Alpha is the national honor political science honor society.

Pi Tau Sigma—Mechanical Engineering
Members are juniors and seniors in the upper ranks of their classes in mechanical engineering. Meetings and social functions are held to recognize and encourage outstanding scholastic achievement.

Psi Chi—Psychology
This national honor society in psychology recognizes and honors individuals maintaining high scholarship and documented interest in psychology.

Rho Lambda
Contact the Student Activities Center (515-294-1023) for more information.

Sigma Gamma Epsilon—Geological Sciences
The objectives of this national honorary society are the scholastic and scientific advancement of its members and the promotion of friendships and assistance among colleges, universities, and scientific schools devoted to the advancement of the earth sciences. Membership is intended for those scientists and students of science whose primary concern is the study of the earth.

Sigma Gamma Tau—Aerospace Engineering
Sigma Gamma Tau is the national honorary for aerospace-aeronautical engineering students who have displayed outstanding scholarship, leadership, and personal characteristics. Members are selected from the upper fourth of the junior class and upper third of the senior class who have maintained a 3.00 or better cumulative grade point average.

Sigma Lambda Chi—Construction Engineering
The purpose is the recognition of outstanding students in construction engineering. Upperclass students in construction engineering may be initiated into the society providing they have an overall scholastic average in the upper 20 percent of their class.

Sigma Xi—Research
Sigma Xi, the scientific research society, is a broad-based scientific honor society with over 500 chapters and clubs at universities and nonacademic scientific institutions. Sigma Xi awards associate membership to undergraduates and graduate students who have demonstrated research potential through participation in an original scientific research activity. Full membership in Sigma Xi recognizes a significant scientific research contribution.
Lectures
Throughout the academic year the Committee on Lectures brings to the campus a number of speakers eminent in national and international affairs, the sciences, and the arts. In addition to giving formal lectures, a number of these speakers meet with students informally for discussions. Through these lectures and discussions the students are given a well-rounded education on subjects and areas affecting their culture, educational and economic philosophy, and scientific development. Past speakers include scholars E.O. Wilson and Stephen J. Gould; activists Gloria Steinem and Anita Hill; actor and comedian Bill Cosby; poet Maya Angelou; and astronaut Sally Ride.

The Institute on World Affairs is an annual series of speakers and on a topic of international interest held in the fall. Spring semester, the Institute on National Affairs is held with a topic of national concern as its focus. Focus, an annual fine arts festival with emphasis on student creativity in the arts, is held in the spring. The Committee on Lectures also sponsors or co-sponsors dramatic, dance, and musical events. In addition, a film series is scheduled during summer session. Students are encouraged to contact the lectures program office and become involved in the planning of these events.

Memorial Union
The Iowa State Memorial Union is regarded as the heart of campus life and the campus center of informal education at Iowa State University. It is the meeting place and headquarters for most student organizations and houses several university offices. Lectures, exhibits, films, concerts, banquets, dances, and other campus gatherings are accommodated in its meeting rooms and ballrooms.

A food court with eight food vendors and a large variety of choices, the Cardinal dining room, catering service, and a 24-hour vending area provide food service to the university community. The Maintenance Shop hosts some of the finest in blues, jazz, rock, and folk music performances at night and is a deli during the day. The Recreation Center offers bowling, billiards, pinball, and video games, and a large screen television.

Art is a way of life in the Union that includes special film showings, galleries, and a browsing library that offers reading, music, and video materials. The Workspace studios are staffed and equipped for individuals who wish to express themselves creatively. A small, quiet chapel is available for services, weddings, or meditation. In addition, four study lounges are available to students.

Campus visitors may choose to stay overnight in the guest rooms on the third, fourth, and fifth floors. The Memorial Union also has a convenience store, automatic teller machines, a TicketMaster outlet, the University Book Store, a copy center, a full service post office, and an attached 640 car parking ramp.

Opened in 1928 as a proud memorial to the Iowa State men and women who served in the Armed Forces during World War I, the Memorial Union is now a living memorial to all Iowa Staters who have served in the United States military.

Motor Vehicles and Bicycles
Students are permitted to own and operate motor vehicles - automobiles, motor scooters, and motorcycles. However, motor vehicles are in no way necessary for an Iowa State University student. Iowa State University is primarily a pedestrian campus. Those who operate a motor vehicle or bicycle on campus must abide by the rather extensive traffic and parking regulations. Fines are levied for infractions of these regulations. All motor vehicles and bicycles owned or operated by students on university property must be registered with the Parking Division Office located in the Armory. Copies of the traffic and parking regulations also are available at this office.

Music Activities
Many opportunities to perform and listen to music are provided to Iowa State students. The Department of Music offers a full instructional program including applied vocal and instrumental instruction, music theory, music history and literature, and music education.

The Department of Music offers a wide variety of opportunities to participate in large performing groups, including five choral ensembles, six bands, ISU Symphony Orchestra, and numerous chamber groups. Nearly one-fourth of all undergraduate students participate in some aspect of music while attending ISU. Campus concerts, student operas, musical shows, the Holiday Festival of Music, the Madrigal Dinner, and concert tours are among the musical events offered.

Musical events by world renowned artists are presented throughout the year in the Iowa State Center. In addition, the Department of Music presents many faculty and guest artist recitals.

Religious Life
Iowa State University is a state-supported, nonsectarian institution, but it recognizes the importance of spiritual life and cooperates with the many off-campus groups that fulfill the religious needs of the community.

Most of the larger denominations have places of worship within easy walking distance of the campus. Several denominations have attractive student centers and conduct extensive student programs under the direction of professionally trained persons. A number of campus student organizations also address the religious needs of many students.

Theatre and Dramatics
The Iowa State University Theatre, Department of Music, produces a season of at least five major presentations each year. The season’s bill endeavors to offer a variety of theatrical fare, including a musical, well-known dramatic literature and unusual and lesser-known plays. Practical experience in all phases of theatrical production is open to all interested, registered students within the university. The season is partially subsidized by an allocation from the Government of the Student Body; therefore, all students paying activity fees may purchase tickets to a performance at the reduced student price.

Other theatre-sponsored programs include student-produced plays, readers theatre programs, Theta Alpha Phi (a national dramatics honorary), the ISU Theatre Lab productions, the Minority Theatre Workshop, and the ISU Studio Theatre program.
Research Organizations

Research is an important activity at Iowa State University. Faculty members engage in research pursuits as well as teaching. Graduate students, and in some cases undergraduates, play an active part in this search for new knowledge.

Support for research at Iowa State University comes from state and federal appropriations as well as from contracts and grants involving the federal government and nonfederal organizations. As part of its total program, the university also supports extension services, special laboratories, centers, and institutes.

An abbreviated description of some of the various research organizations and their activities is presented here. Additional information concerning any of these organizations and student research opportunities they support may be obtained from their administrative offices.

Ames Laboratory of the United States Department of Energy—Thomas J. Barton, director. The laboratory staff conducts basic and intermediate-range applied investigations that seek to discover new scientific knowledge, improve understanding of natural laws and phenomena, and develop relevant technologies pertinent to energy production, conversion, and transmission, as well as to other critically important national programs. The laboratory prepares scientists for work in the physical sciences, engineering, and energy-related fields through research appointments for Iowa State University graduate students and postdoctoral associates.

Center for Academic Information Technology—Dorothy Lewis, interim director. Academic Information Technology provides academic computing and networking for the university. Instructional and research support ranges from highspeed and local area networking to supercomputing and wide-area networking. The center’s research computing group is active in the development of advanced computing techniques and aids researchers in efficiently carrying out the computing needed for research projects. The center also provides support for SCHOLAR, the library’s on-line information system, and management services for Project Vincent, high-performance workstations networked via a high-speed campus backbone. In conjunction with off-campus network Project Vincent provides computation capabilities for supercomputing, visualization, and numeric computation. In the increasingly distributed academic computing environment, the center seeks to promote computing standards and to achieve commonality of operations and economies of scale where appropriate.

Ames Center for Animal Health—James Roth, professor in charge. The purpose of the Ames Center for Animal Health (ACAH) is to further integrate and enhance animal health research and service activities at the animal health institutions in Ames to better serve the animal health needs of the state, the nation and the world. ACAH is a cooperative effort between Iowa State University, the USDA Agriculture Research Service (ARS), National Animal Disease Center (NADC), the USDA Animal and Plant Health Inspection Service (APHIS), National Veterinary Services Laboratories (NVSL), and the USDA APHIS Center for Veterinary Biologics (VB). In April 1995, ISU and the USDA signed a Letter of Intent to work together to build the animal health infrastructure in Ames through the Ames Center for Animal Health. It includes the following five components: expansion and consolidation of APHIS activities in Ames; construction of a biosafety level 3 large animal biocontainment facility that would be shared by ISU, ARS, and APHIS; development of a collaborative training program; formation of a technology transfer program; and increased sharing of resources among animal health institutions located in Ames.

Bridge Engineering Center—Walter R. Fehr, chair. The council, composed of faculty members engaged in biotechnology research from the colleges of Agriculture, Engineering, Family and Consumer Sciences, Liberal Arts and Sciences, and Veterinary Medicine, coordinates the university’s interdisciplinary biotechnology program. Council responsibilities include establishing and operating university-wide instrumentation facilities for molecular biology research, recommending allocations of biotechnology funds, and assisting in public education, technology transfer, and economic development activities.

Carrie Chapman Catt Center for Women & Politics—Dianne Bystrom, director. This center offers leadership development and educational opportunities to women and men of all ages who are interested in politics, public administration and policy, and public service; it fosters research on issues related to women and politics; sponsors conferences, workshops and lectures on important national and international issues; and encourages women to pursue careers in politics, public administration, and public service.

Airworthiness Assurance Center of Excellence—Lisa Braszhe, interim director. The purpose of this center is to develop advanced technologies that will be a key factor in maintaining the U.S. leadership role in aviation safety and global competitiveness in aviation systems.

Center for Agricultural and Rural Development—Bruce A. Babcock, director. The Center for Agricultural and Rural Development (CARD) is devoted to agricultural economic research, education and publication in both domestic and international arenas encompassing four broad areas: trade and agricultural policy, natural resources and conservation policy, food and nutrition policy, and rural and economic development policy.

Center for Academic Information Technology—Dorothy Lewis, interim director. Academic Information Technology provides academic computing and networking for the university. Instructional and research support ranges from highspeed and local area networking to supercomputing and wide-area networking. The center’s research computing group is active in the development of advanced computing techniques and aids researchers in efficiently carrying out the computing needed for research projects. The center also provides support for SCHOLAR, the library’s on-line information system, and management services for Project Vincent, high-performance workstations networked via a high-speed campus backbone. In conjunction with off-campus network Project Vincent provides computation capabilities for supercomputing, visualization, and numeric computation. In the increasingly distributed academic computing environment, the center seeks to promote computing standards and to achieve commonality of operations and economies of scale where appropriate.

The Ames Center for Animal Health—James Roth, professor in charge. The purpose of the Ames Center for Animal Health (ACAH) is to further integrate and enhance animal health research and service activities at the animal health institutions in Ames to better serve the animal health needs of the state, the nation and the world. ACAH is a cooperative effort between Iowa State University, the USDA Agriculture Research Service (ARS), National Animal Disease Center (NADC), the USDA Animal and Plant Health Inspection Service (APHIS), National Veterinary Services Laboratories (NVSL), and the USDA APHIS Center for Veterinary Biologics (VB). In April 1995, ISU and the USDA signed a Letter of Intent to work together to build the animal health infrastructure in Ames through the Ames Center for Animal Health. It includes the following five components: expansion and consolidation of APHIS activities in Ames; construction of a biosafety level 3 large animal biocontainment facility that would be shared by ISU, ARS, and APHIS; development of a collaborative training program; formation of a technology transfer program; and increased sharing of resources among animal health institutions located in Ames.
Center for Crops Utilization Research—Lawrence A. Johnson, director. The center conducts basic research on crop properties and applied research directed at developing products and processes that will expand demand for food crops such as corn and soybeans, as well as demand for alternative crops. It also acts as a technology-distribution center for processing, export customers, and foreign scientists and visitors.

Center for Designer Crops—Basil Nikolau, interim director. The purpose of this center is to undertake fundamental research that allows the design of crops specifically suited to their end use. Such uses include improved human and animal nutrition, novel and environmentally friendly industrial feedstocks and production of medicinal chemicals.

Center for Designing Foods to Improve Nutrition—Diane Birt, director. The Center for Designing Foods to Improve Nutrition was established at Iowa State University to improve nutrition and health maintenance through a more integrated understanding of food selection and consumption; nutrient utilization; and food production, formulation, processing, and distribution. Research focuses on designing new foods; modifying food consumption; nutrient utilization; food safety; and policy alternatives and implications.

Center for Excellence in Science and Mathematics Education—Brian Hand, director. This center helps Iowa schools develop their science and mathematics programs.

Center for Family Policy—Jacques Lemper, director. The purpose of this center is to address current and future policy issues, particularly focusing on infants, children, adolescents, adults and the elderly and their families and communities, whose quality of life is constrained by economic, social and/or developmental circumstances.

Center for Interfacial Materials and Crystallization—Glenn L. Schrader, manager. The Center for Interfacial Materials and Crystallization researches the chemical and physical phenomena that occur at interfaces—the thin films or layers at the boundaries between solids, liquids, and gases. The properties of these interfacial materials are crucial to the preparation and use of a wide array of industrially significant materials. Center researchers use advanced processing technology to develop new materials and then work with industrial partners to apply them to social and industrial needs.

Center for Nondestructive Evaluation—R. Bruce Thompson, director. The Center for Nondestructive Evaluation (CNDE) sponsors an interdisciplinary program that conducts fundamental and applied research leading to improved NDE technology. Research areas include ultrasonics, electromagnetic techniques, thermal wave imaging, microfocus x-ray techniques, artificial intelligence and expert systems with application to NDE measurements, signal processing routines, NDE of composites, NDE for material properties, and new instrumentations.

Center for Physical and Computational Mathematics—Bruce Harmon, interim director. This center develops new mathematical tools and researches the application of computers to special problems.

Center for Plant Genomics—Patrick Schnable, director. The purpose of this center is to conduct biological research and training at the frontiers of genomics and to develop advanced technologies for this work.

Center for Plant Responses to Environmental Stresses—Charlotte Bronson, interim director. The purpose of this center is to obtain fundamental information on the ways plants respond to environmental stresses and how they can be modified to tolerate those stresses.

Center for Plant Transformation and Gene Expression—Patrick Schnable, director. The purpose of this center is to develop more efficient methods for producing transgenic plants that will be safe for human health and the environment and to develop gene expression technologies to ensure that transgenes are stably expressed in the desired parts of plants and under the correct conditions.

Center for Portland Cement Concrete (PCC) Pavement Technology—Dale Harrington, director. This center advances the state-of-the-art of Portland Cement Concrete pavement technology (including design, materials science, construction and maintenance) to produce a durable cost-effective sustainable product.

Center for Sustainable Environmental Technologies—Robert C. Brown, director. This center develops and demonstrates renewable energy and chemical technologies and environmental technologies related to fossil fuels.

Center for Technology in Learning and Teaching—Jerry Willis, director. This center promotes, supports and facilitates research, development, use and evaluation of applications of technology which enhances learning and teaching.

Center for Transportation Research and Education—Stephen Andrle, director. This center acts as a focal point to promote transportation education, research and extension on the ISU campus. It develops and implements innovative methods, materials and technologies for improving transportation efficiency, safety and reliability, while enhancing the educational experience of students in transportation-related fields.

Computational Fluid Dynamics Center—John C. Tannehill, manager. This center uses powerful computers to solve complex engineering design problems associated with liquids or gases in motion. This research has applications in aerospace and other industries; for example, significant funding from NASA has supported studies of flow fields around the space shuttle. The center also administers interdepartmental course offerings in computational fluid dynamics.

Electric Power Research Center—Vijay Vittal, director. This center promotes and expands research in electric power and energy-related fields, attracts students and faculty to the power engineering field, and develops seminars and short courses for professionals. The center is an umbrella for the Power Affiliates Program, an electric power research effort established in 1963; and the Iowa Test and Evaluation Facility, a research and demonstration facility founded in 1979 near Fort Dodge; and the Power System Computer Service, a program for conducting load flow and fault studies for a power systems network covering Iowa and the surrounding area.

Food Safety Consortium—James S. Dickson, professor in charge. The Food Safety Consortium consists of researchers from the University of Arkansas, Kansas State University, and Iowa State University. It was established by Congress in 1988 to investigate meat production in the poultry, beef, and pork industries, from the farm to the consumer’s table. The goal of the multidisciplinary program is to improve food safety. Geographic Information Systems (GIS) Facility—Kevin Kane, director. The GIS Support and Research Facility was established to support the use of GIS in research and education. It provides hardware and software platforms and technical services for researchers to use for GIS-related projects. The facility has twelve high performance workstations and a variety of input and output devices. It also provides support and periodic training for GIS software products. Software supported by the faculty includes the ARC/INFO GIS software, ERDAS for image processing, and Oracle for relational database management.

Industrial Relations Center—Peter Orazem, director. The central focus of research is on the behavior of individuals and organizations in an employment and labor force relationship. It provides an interdisciplinary approach to related studies.

Information Assurance Center—Doug Jacobson, director. This center draws faculty from several different disciplines to enhance education and research in computer security. Through its efforts, the center strives to help address the national concern for producing more information assurance professionals and for advancing the state-of-the-art.

Institute for International Cooperation in Animal Biologics—James Roth, executive director. In October 1995, the Iowa State University (ISU) of Science and Technology, the USDA Animal and Plant Health Inspection Service’s (APHIS), National Veterinary Services Laboratories (NVSL), and the USDA Agriculture Research Service’s (ARS), National Animal Disease Center (NADC) jointly formed the Institute for International Cooperation in Animal Biologics (IICAB). The overall goal of the IICAB is to improve the availability, safety, efficacy, and use of veterinary biologics (vaccines) throughout the world. The institute works with the veterinary biologics industry, government regulatory and research agencies,
Iowa Energy Center—Floyd Barwig, director. The State of Iowa created the center in 1990 to support efforts to increase energy efficiency in all areas of Iowa energy use. The center is administered by Iowa State University, with input from an advisory council representing Iowa educational institutions, utilities, and state agencies. Competitive grants are awarded by the center to nonprofit organizations in Iowa, including universities. Research and demonstration projects supported by center grants focus on energy efficiency, assessment of energy-related technology, development of alternative energy systems based on renewable sources, and educational programs encouraging energy efficiency. Conferences and workshops are also supported through center grants.

Iowa Space Grant Consortium—William J. Byrd, director. The Iowa Space Grant Consortium (ISGC) is part of the NASA National Space Grant College and Fellowship Program, authorized by Congress in 1987 to promote interest in aerospace and related scientific, mathematics and technology fields. The ISGC was formed in 1990 by ISU, the University of Iowa and the University of Northern Iowa and now includes Drake University and affiliates from government, industry and non-profit organizations. The base program at ISU is the Spacecraft Systems and Operations Laboratory. Through this lab, many student activities are supported including senior design projects and the High Altitude Balloon Experiments in Technology project which launches weather balloons to develop technology and techniques for all levels of educational development.

Iowa State University Industrial Assessment Center—Greg Maxwell, project director. This center provides energy audits to small and medium-sized manufacturing companies and recommends ways to reduce their energy consumption and become more profitable. ISU teams that include both professional researchers and students visit the site, collect data, conduct analyses, and write reports for each company.

Laurence H. Baker Center for Bioinformatics and Biological Statistics—Hal Stern, interim director. The purpose of this center is to develop advanced methods, algorithms and programs for acquiring massive amounts of genetic data on thousands of individual plants, analyzing the data and providing the analysis back to plant scientists all over the world for further interpretation and use in their studies.

Leopold Center for Sustainable Agriculture—Fred Kirschenmann, director. Named for conservationist Aldo Leopold, the center was established to conduct research on the environmental and social impacts of farming practices and to help develop and demonstrate profitable farming systems that preserve the productivity and quality of natural resources and the environment.

International Institute of Theoretical and Applied Physics—Alan Goldman, interim director. The purpose of this institute is to empower scientists of developing countries to carry out research and teaching in their own countries and thereby to help strengthen the science and technology infrastructure of their regions; and to foster collaborations between U.S. scientists and their colleagues throughout the world.

Iowa Beef Center—John Lawrence, director. The purpose of this center is to enhance the vitality, profitability and growth of the beef cattle industry in the state.
North Central Regional Aquaculture Center-Joseph E. Morris, associate director. This center is administered jointly by Michigan State University and Iowa State University. It is one of five regional centers established to develop collaborative interstate research and cooperative extension programs for commercial aquaculture—the culture or husbandry of aquatic organisms under controlled conditions.

North Central Regional Center for Rural Development-Cornelia B. Flora, professor in charge. The center is supported by the land-grant universities of the North Central Region and the U.S. Department of Agriculture. The major purpose of the center is to conduct a multidisciplinary research and extension program addressed to improving the social and economic opportunities of both farm and non-farm people of rural America.

North Central Regional Plant Introduction Station-Candice Gardner, research leader. One of four regional centers, the station is a joint venture among the USDA Agricultural Research Service, agriculture experiment stations of the 12 north-central states, and the Iowa Agriculture and Home Economics Experiment Station. The station’s three main areas of activity are: (1) conservation to accomplish long-term viability of the germplasm collections, (2) to conduct research to characterize and evaluate the collections, and (3) to serve as a distribution center for plant scientists around the world.

Nutritional Sciences Council-Donald Beitz, chair. The Nutritional Sciences Council consists of faculty members and qualified collaborators who are engaged in research, extension, or teaching in the nutritional sciences and closely related disciplines. The council develops symposia on topics of international interest, sponsors an interdepartmental seminar, “Modern Views of Nutrition,” and arranges short courses designed to fill specific needs in the total nutrition program.

Plant Sciences Institute-Stephen Howell, director. This institute administers and coordinates a cluster of nine centers focused in specific areas of the plant sciences. Researchers are seeking fundamental knowledge about the functioning of plants. They are developing ways to help feed the growing world population, strengthen human health and nutrition, improve crop quality and yield, foster environmentally sustainable and expand the uses of plants for biobased products and bioenergy.

Raymond F. Baker Center for Plant Breeding-Arnel Hallauer, director. The purpose of this center is to further enhance the plant breeding research programs in corn, forages, soybeans, popcorn, small grains and potential new crops while educating high-quality graduate students and postdoctoral fellows for employment in both the public and private sectors.

Seed Science Center-Manjit K. Misra, director. The purpose of this center is to serve as a focus for research, teaching and outreach and international programs on seeds including the scholarly study of seeds, seed services, publications, training of seed specialists and scientists and extending of the information to growers, conditioners and sellers of this commodity.

Statistical Laboratory-Dean L. Isaacson, director. This research and service institute conducts research in statistical theory and methodology. It promotes and fosters the use of sound statistical methods in university research through on-campus consulting. Similar consulting aid, research cooperation, and services are extended to off-campus groups, other colleges and universities, and government agencies when such activities are of mutual benefit or otherwise in the public interest.

Veterinary Diagnostic Laboratory-Gary D. O’Sweller, director. The laboratory provides a research, teaching, and service facility to which the veterinary medical profession may bring animal health problems for counsel and diagnostic assistance. Disciplines utilized are pathology, bacteriology, virology, serology, chemistry, racing chemistry, molecular diagnostics and toxicology. A graduate residency program for pathology, microbiology, and toxicology is active.

Virtual Reality Applications Center-James E. Bernard, director. The mission of the Virtual Reality Applications Center (VRAC) is to develop ways to improve manufacturing productivity and support Iowa manufacturers through technology transfer. VRAC emphasizes visualization techniques.

Water Resources Research Institute-Rameesh Kanwar, director. The institute coordinates and administers an interdisciplinary program in water resources research. It administers the research funds received from the U.S. Department of the Interior, as made available through the Water Resources Research Act of 1983, and from the State of Iowa. Funds received from private, state, and federal sources are allocated for research in all aspects of water resources, and are directed primarily at solving state, regional, and national water problems. Technology transfer and information dissemination are additional elements of the program.

College Research Institutes

Agriculture and Home Economics Experiment Station- Richard Ross, director. The Experiment Station supports research in the biological, physical, and social sciences to contribute to the advancement of the agricultural industry and to improve the economic and social conditions of families and communities. Scientists in about 30 departments across campus work in campus laboratories, at 12 outlying research farms, and in the fields and business places of cooperators throughout the state. The station’s work is organized into two dimensions—academic departments and research centers. The research centers focus on problems that require an interdisciplinary research effort.

Business Research Institute-Benjamin J. Allen, director. A component of the College of Business’s mission is to create and disseminate knowledge and to offer innovative programs to prepare managers and leaders for a technologically oriented world. The BRI plays an important role in carrying out this mission. Through the institute, support is provided for applied research by college faculty and graduate students, resulting in the advancement of new knowledge for the business world. A concerted effort is made to encourage research within each of the college’s departments.

Engineering Research Institute-James L. Melsa, director. The institute coordinates staff research in areas involving all engineering academic departments and maintains major laboratory and technical service groups to support the various research programs. Funds are derived from state appropriations and from industrial and government grants or contracts. Activity is directed toward graduate instruction, basic research, and applied research.

Family and Consumer Sciences Research Institute-Mary Winter, associate dean. The focus of the institute is to improve the quality of life for individuals and families through basic and applied research. Graduate education, support of college research facilities, and staff support comprise the bulk of the remaining activities.

Institute for Design Research and Outreach-Mark C. Engelbrecht, director. The institute coordinates and facilitates research, artistic and creative design efforts of faculty and graduate students of the College of Design. It also coordinates the integrated outreach efforts of the college by providing a linkage between design extension and the research and instructional efforts of the college. The institute maintains the Design Simulation Laboratory, the Design GIS Laboratory, and the Architecture Technology Laboratory.

Research Institute for Studies in Education (RISE)-Walter Gmelch, director. RISE provides leadership for and participates in research and contract and grant activities conducted by faculty, staff, and students of the College of Education. RISE promotes and conducts research that is related to the mission of the College of Education and Iowa State University of Science and Technology. RISE emphasizes efforts to secure external funding for research and development activities related to the mission of the college and the university. The institute provides linkage with other units on and off campus and facilitates collaborative research activities through financial and personnel support. To support its mission, RISE is organized administratively into two primary components: research, and contracts and grants.

Veterinary Medical Research Institute-Harley Moon, professor in charge. The institute is multidisciplinary with a responsibility to conduct research and offer research training in animal diseases. Research and research training are conducted in the areas of viral, bacterial and parasitic diseases, immunology and basic biology.
Research Organizations

University Extension
ISU Extension builds partnerships and provides research-based learning opportunities to improve quality of life in Iowa. Extension is the institution-wide mechanism through which ISU shares its research and educational capacities, and through which these programs are informed of the priorities and interests of Iowans.

ISU Extension also is part of a national network, including the U.S. Department of Agriculture, 104 land-grant institutions, and 3,150 county programs. ISU Extension has offices and staff in every Iowa county. These offices provide Iowans easy access to ISU and a local presence for the University. ISU Extension also partners with Iowa community colleges, the other Regents universities, and the private colleges and universities, providing an array of inter-institutional technical assistance, training and education programs. ISU Extension serves Iowans and other clients in six program areas—Agriculture and Natural Resources, Business and Industry, Communities, Families, 4-H Youth Development, and Extended and Continuing Education. A description of the units follows.

Extension to Agriculture and Natural Resources
Agricultural programs serve primarily producers and agricultural support service industries statewide through education and service. Agricultural programs lead to increased profitability through enhanced management and marketing in an environmentally and socially acceptable system.

Extension to Business and Industry
Extension programs that assist business and industry firms are provided statewide through several cooperating organizations, including the College of Business, the College of Engineering, the Iowa Manufacturing Extension Partnership (IMEP), and the Center for Industrial Research and Service (CIRAS). Educational services are provided to contractors, consultants, manufacturers, the food service industry, and utilities to help maintain and increase profitability. IMEP provides consulting services to small and medium-sized manufacturers throughout the state.

Extension to Communities
ISU Extension to Communities helps organizations and local governments develop and build their capacity to make Iowa communities better places to live and work. The aim is to help Iowa communities analyze and understand their needs, identify alternative courses of action, make informed decisions, plan for the future, and evaluate their efforts.

Extension to Families
The Extension to Families unit provides education for families on: aging, child care, consumer decisions, family financial management, family relationships, housing choices, nutrition and health, parent education, and public policy affecting families.

Extension to 4-H Youth Development
This unit helps youth become self-directing and contributing members of society. 4-H youth programs teach through experiential learning, use prevention and early intervention approaches, and promote a sense of closeness between every youth and at least one significant adult. Subject matter is built on the knowledge base of ISU and other land-grant universities.

Extended and Continuing Education
As part of ISU Extension, the Extended and Continuing Education program supports ISU faculty and staff in developing and delivering off-campus credit programs and noncredit conferences and seminars to meet the lifelong learning needs of more than 270,000 adults each year. These distance education programs are offered via the Iowa Communications Network (ICN), the World Wide Web, and through videotapes shipped directly to students. Extended and Continuing Education is working with the ISU colleges and extension field staff to explore the possibilities for expanding the use of existing degree programs and adding new distance education opportunities.
The Academic Advising Program

Iowa State University’s academic advisers are dedicated to enhancing each student’s academic and career aspirations.

Each student is assigned an adviser when he or she arrives on campus, usually a faculty member or professional adviser in the student’s academic department. If a major has not yet been declared, a member of the college faculty or staff will be assigned as adviser. The adviser can serve as a primary resource for the wide variety of university support services available to Iowa State University students, but it is the student’s responsibility to ask for assistance.

Advisers assist in the development of an academic program that meets students’ career objectives as well as curriculum requirements. Advisers can help students achieve their academic objectives by advising them about course requirements, recommended electives, and procedures for registration and schedule changes. It is the student’s responsibility, however, to be knowledgeable about Iowa State policies and procedures and the graduation requirements for his or her individual program and to ensure that these requirements are met. Advisers will help students to get the most out of their educational experience.

In most departments, students may change advisers. A student who wants to change advisers should first obtain the agreement of another member of the department to become their adviser and then request permission from the department. Students who for any reason are unable to obtain the services of an adviser, should ask their department or college office to assign them to an adviser.

Learning Communities

Learning communities are a university-wide initiative that provide new students with an opportunity to connect with peers who have similar academic goals. Advantages include seeing familiar faces in classes, making a smooth transition from high school to college by developing academic and social networks, developing links between in-class and out-of-class learning opportunities, communicating with instructors, and reducing scheduling conflicts by registering for a block of classes.

Students are offered the opportunity to join learning communities during freshman summer orientation. Learning community students take specific courses together, work with mentors (including faculty, staff and students), create their own study groups and, in some cases, live on the same residence hall floor. Students are encouraged to make their requests for learning communities early because space is limited. For information on ISU learning community opportunities, see www.iastate.edu/~learncommunity/

ISU AccessPlus Information System

AccessPlus is a confidential, campus information system that is available via the World Wide Web or from various kiosks around campus. A social security number and university PIN are required to view personal information. Students can use AccessPlus to register for classes; view and verify information such as current term schedules, meeting rooms, and instructor information; and view their academic record including their latest term grades, their financial aid status, and their current university bill. The system allows a student to review other personal information such as academic adviser assignment and date of graduation. Students may print information from AccessPlus on the kiosks or computer labs for a nominal charge. Information about and access to AccessPlus may be found at www.iastate.edu/~registrar/info/access.html.

Registration and Advising

Registration is a process by which students become officially enrolled in classes for a given term. Students who attend classes must complete registration and pay their assessed fees. Registration is not complete until all fees are paid, including board and room fees for those living in residence halls.

The registration process starts with an advising period, which begins three days prior to the first day of registration. Advisers provide important information to students that allow them to register for classes.

Dates for advising and registration are included in the University Calendar, the ISU Directory, the Schedule of Classes, and the Iowa State Daily. The dates also are posted on departmental bulletin boards and the World Wide Web at the URL www.iastate.edu/~registrar/calendar/.

Continuing students will register for the following semester the middle of the current term. For example, registration for spring term begins the middle of the previous fall term; registration for summer session is completed during the previous spring at the same time as registration for fall semester. The registration period lasts four weeks.

Responsibilities

The registration process includes advising, enrollment in courses, and schedule changes. This process involves the student, the student’s adviser, and the student services staff of the student’s college, and in some cases, the dean of the college. Each is responsible for knowing and following the academic policies and procedures.

The student is responsible for the following: knowing university policies and procedures that apply to registration and schedule changes, and for carrying out those procedures; the accuracy of their schedule, including schedule adjustments (i.e., adds, drops, section changes); knowing the degree requirements of his or her major and/or curriculum; planning course schedules to meet those requirements; and monitoring the accuracy of the advisement/degree audit.

The adviser is responsible for the following: consulting with advisees during the advising/registration period; providing information about student’s major and curriculum requirements; providing guidance in the student’s course selection; assisting the student in monitoring the advisement/degree audit for accuracy; and for notifying the college student services office with corrections to the advisement/degree audit.

The college student services staff is responsible for the following: assisting new and reentering students with the registration process; resolving unusual scheduling problems; and solving problems or updating the advisement/degree audit.

The dean is responsible for the following: making decisions with respect to requests for deviations from university policies, deadlines, etc. (Students and staff should check with the college office to find out who is authorized to grant approvals or exceptions on behalf of the dean.)

Registration Process

To register for classes, students need the following materials and information:

1. Registration Worksheet (provides registration instructions, and a place to list course reference numbers). Students should use this form to plan their schedule before meeting with their adviser.
2. A RAN (registration access number) from their adviser, and PIN (personal identification number) for Web registration on AccessPlus.
3. Course information from the World Wide Web or the Courses and Programs Bulletin, available for a fee from campus bookstores.
4. Schedule of Classes available from the World Wide Web at www.iastate.edu/~catalog, the Parks Library reserve desk, departmental and college offices, and for purchase at campus bookstores.
5. Other departmental information applicable to their curriculum, available from their adviser.

The following outlines the steps in the advising and registration process:

1. Students meet with their adviser, who will provide the following:
 a. advisement/degree audit
 b. guidance in course selection
 c. signature for the Registration Worksheet
 d. Registration Authorization Card.
Students may review their schedules through their Registration Worksheet. A duplicate authorization form will be prepared.

2. Choose specific sections of each course. Students are responsible for choosing their course sections. In most cases advisers will not be involved in selecting meeting times.

3. Review Registration Authorization Card for the following:
 a. assigned date and time to register
 b. registration access number (printed on the Registration Access Card, a tear-off section of the authorization card)
 c. registration holds (prevents registration)
 d. the date and the address used to mail their class schedule

4. Register for courses using either the Web or Touch-tone Registration systems. Instructions for registration through the systems are printed on the Registration Worksheet and in the Schedule of Classes bulletin.

 Students are assigned a registration start date and time, which is the first day and time they can use the registration system. In general, registration start dates are assigned according to each student’s projected year in school based on the sum of total credits earned and current term credits. Dates are available on the Web at www.iastate.edu/registrar/registration. Students may choose to delay their registration until a later date, but courses will begin on the first day of registration and any delay may reduce their course selection.

 All students are encouraged to register for courses through either the Web or Touch-tone Registration systems. However, students who are unable to use either system may register in person by processing their signed Registration Worksheet in the Registrar’s Student Scheduling Office, 10 Alumni Hall.

Web or Touch-tone Registration systems. In order to access the Web or Touch-tone Registration systems, students must use their student I.D. number in combination with the registration access number printed on their authorization card. (The Web registration system also requires a personal identification number (PIN) to use AccessPlus.) Students are held accountable for all changes made to their schedules. To ensure the security of their schedule, students should memorize or record their registration access number in a secure location and destroy the Registration Access Card portion of their authorization form. If necessary, students may request a new Registration Worksheet and picture I.D. to the Registrar's Student Scheduling Office, 10 Alumni Hall to change their registration access number or to get their current number.

 As students register for classes through the Web or Touch-tone registration systems, messages after each entry indicate whether each request has been processed. As requests are processed, students should note changes on their Registration Worksheet.

 Students may review their schedules through a "list" action on the Touch-tone Registration system; or on AccessPlus, from www.adp.iastate.edu/accessplus.html; and on the kiosks at several locations on campus.

 Schedule Changes. Students who need to add courses or make other schedule changes may process their requests through the Web or Touch-tone Registration systems. The last day for schedule changes through either system is the fifth day of classes.

 Student schedules are printed and mailed approximately one month before classes begin. Students who process schedule changes after this date should note the changes on their printed schedules. Replacement copies of the student data verification and schedule form are available for a fee. Classroom locations not listed on the printed schedules can be obtained by requesting a “list” action on the touch-tone system or by accessing the online Schedule of Classes at www.adp.iastate.edu/cgi-bin/class.

 All changes processed before the first day of classes will be reflected on beginning class lists for instructors.

 Registration holds. Students with holds on their registration will not have access to registration until the holds have been released. Those who attempt to register before the holds have been released will receive a message indicating which offices have placed holds on their registration.

 Credit limits. For fall and spring semesters, the credit limit is 18 credits for undergraduates and 15 credits for graduate students. For summer session, the limit is 12 credits for undergraduates and 10 credits for graduate students. Add requests beyond a student’s credit limit will be denied. A student must drop credits before they may add another course. In some cases, the college dean may approve a lower or credit limit for individual students. Students may request a change in their credit limit by contacting their adviser. Advisers should notify the student’s college student services office if the credit limit needs to be changed.

 Restricted courses/sections. Some courses or sections are restricted to students who meet specified criteria including curriculum/major, college, and/or year in school. In addition, some sections may be restricted to new students to ensure that sufficient spaces are available when new students register during June orientation. A department may waive a restriction for a student who has extenuating circumstances. The student must obtain the authorization from the department on a Schedule Change/Restriction Waiver form. The form is processed in the Registrar’s Student Scheduling Office, 10 Alumni Hall.

 Permission Required courses/sections. To register for these sections, students must obtain authorization on a Schedule Change/Restriction Waiver form and process the approved form in the Registrar’s Student Scheduling Office, 10 Alumni Hall.

 Canceled courses/sections. In some cases, courses or sections may be canceled due to low enrollment or departmental staffing considerations. If students are registered for a canceled course or section, they will be notified by the Office of the Registrar, the department, and/or on their printed schedule.

 Registration for disabled students. Disabled students who need assistance with any phase of registration should contact the Registrar’s Student Scheduling Office, 10 Alumni Hall.

 Student Data Verification Form (SDVF) The SDVF includes the registration schedule, student information, and registration receipt and is mailed approximately one month before classes begin. It is the student’s responsibility to review this information and contact the Office of the Registrar with changes or corrections.

 Fee Payment

 The Receivables Office bills students for tuition, room and board, and various other university charges. A fee statement is mailed on the first of each month to each student’s in-session or interim address. Students also may view their account status on AccessPlus (www.adp.iastate.edu/accessplus.html) and on the kiosks at several locations on campus. It is the student’s responsibility to ensure that the Office of the Registrar has a correct billing address. A student who does not receive a billing statement before the term begins should go to the Receivables Office to learn the amount of the account balance due. Failure to receive a billing statement will not exempt students from late penalties or from having a hold placed on their registration. Also see Index, Fees and Expenses.

 Additional Registration Regulations

 A late registration fee is charged beginning on the first day of classes for fall and spring terms to initiate a registration. (This fee is not charged for the summer term.) If registration is not completed by the end of the fifth day of classes, students must obtain written permission from their advisers, the instructors for the courses they plan to take, as well as approval from the dean of the college in which they are registered. During the summer session, these approvals must be obtained in order to register after the third day of classes.

 Registration is closed after the tenth day of classes for fall and spring semesters, and after the third day of classes for summer session.

 Students may not enroll in courses with time conflicts without the approval of the departments concerned.

 Students who participate in off-campus experiences for which they receive Iowa State University credit must register for that credit during the term when the experience is taking place, whether or not they are taking courses on campus during that time.

 Students may obtain academic credit for an activity, either on or off campus, for which they are also paid, provided the activity is academically relevant. In order for an activity to be defined as academically relevant, prior arrangements must be made with a faculty member in an appropriate department and must include agreement on (1) the academic objectives, which the activity is expected to achieve, and (2) the procedure by which the student’s learning will be assessed. This policy does not apply to registrations for R (required) credit.
Validating Enrollment
To validate their enrollment in each course at the beginning of the semester, students must attend the first or second meeting (first meeting if the class meets only once a week). Students who add a course after the term begins must attend the next class meeting. The instructor has the option to offer a registered place in the course to another student when a registered student fails to both attend and to obtain prior approval of the instructor. However, those students are not automatically dropped from the course; they must drop the course or they will receive an F grade.

Making Schedule Changes
Procedures for schedule changes vary by the time period of the semester. The effective date of a schedule change is the date on which the change is entered into the registration system. Schedule change periods are as follows:

Period 1 ends on the fifth day of classes of the semester. Schedule changes during period 1 are free and do not require adviser signatures. Instructor or departmental approval may be required for adds or section changes in some courses during period 1. Course drops during this period do not count toward a student’s ISU course drop limit, and will not appear on a student’s grade report or permanent record. Schedule changes during period 1 may be processed through the Web or Touch-tone Registration Systems or by presenting a Schedule Change/Restriction Waiver form to the Registrar’s Student Scheduling Office, 10 Alumni Hall.

Period 2 ends the third Friday of classes after the day midterm grades are due. During this period, schedule changes require signatures of adviser and instructor and are processed on a Schedule Change/Restriction Waiver form. A $5 fee per visit is assessed for adds, drops, and section changes during this period. Course drops after period 1 count toward a student’s ISU drop limit and appear as an X on the grade slip and permanent record. A course section change replaces the section on the schedule and therefore does not require a drop.

Drops and other schedule changes that are judged to be beyond the student’s control may be processed as administrative actions if approved as such by the college dean. There is no $5 fee for administrative schedule changes. Administrative drops do not count toward a student’s ISU drop limit and do not appear as an X on the grade slip and permanent record. The effective date of an administrative action is the date it is approved by the college dean.

Period 3 follows period 2 and extends through the remainder of the semester. Schedule changes during this period are permitted only for extenuating circumstances beyond the student’s control, require a written statement of support from both the instructor and the adviser, and must be approved by the dean of the student’s college.

Specific deadlines for adding and dropping half-semester courses are published in the University Calendar. Appropriate adjustments to add and drop deadlines are made for other partial term courses. For partial term course deadlines, contact the Registrar’s Student Scheduling Office, 10 Alumni Hall.

Drop Limit Students are limited in the number of courses they may drop during their academic career. (This refers to drops processed after the fifth day of classes of each semester.) Students who entered Iowa State as freshmen are allowed to drop a maximum of five courses during their undergraduate career. If they entered at a level above freshman classification or in the College of Veterinary Medicine, they are allowed to drop a maximum of four courses. Courses dropped during their first term at Iowa State are not included in this limit, nor does the summer count as a first term for this purpose. Students who enroll at Iowa State University as undergraduates after receiving a bachelor’s degree are permitted two drops.

Exceptions may be made for courses that must be dropped for reasons beyond the student’s control. These exceptions are granted only by the dean or other authorized person on the dean’s behalf in the student’s college.

The number of drops students have left is indicated on their grade report (available on AcccessPlus) each term. Students are responsible for not exceeding their limit. Students who attempt to drop a course beyond the limit without special permission of the dean of the student’s college will continue to be enrolled in the course and will receive a grade at the end of the term.

Course Prerequisites
A prerequisite indicates the specific academic background or general academic maturity considered necessary for the student to be able to undertake the course. Since an instructor has the prerogative to direct a student who lacks a stated prerequisite to drop the course, students are advised not to enroll in a course for which they lack a stated prerequisite without checking first with the course instructor. Permission of the instructor is understood to be an alternate to the stated prerequisites in all courses.

It is university policy that the instructor shall inform the students at the beginning of each course if students who have not met the prerequisite requirements must drop the course.

Course prerequisites are presented in the Schedule of Classes as well as in the Courses and Programs section of this publication.

Cancellation/Withdrawal
Students who decide not to attend classes before the date class work begins must cancel their registration to avoid tuition and fees assessment. Students who decide not to attend classes beginning the first day of class must withdraw from the university.

Registration Cancellation
A cancellation is processed when a student notifies the Office of the Registrar prior to the day class work begins, of their decision not to attend classes for the current semester. All courses are removed and no tuition and fees are assessed.

Students may cancel their registration by contacting the Office of the Registrar at 210 Alumni Hall, 515-294-1899. Students who call should request the name of the person taking the call and make a record of the name as well as the time and date called. A confirmation letter will be sent to the student after the cancellation is processed.

Withdrawal
A withdrawal is processed beginning the first day of classes when a student notifies their academic adviser and College of their decision not to continue attending courses for a semester. Per the student’s request, the “Request for Withdrawal” form is initiated and submitted by the College to the Office of the Registrar. The student is withdrawn from all courses based on the withdrawal date on the form, and tuition and fees are prorated, if appropriate.

Student-Initiated Withdrawal
Students who find it necessary to leave the university before the end of a term, should follow the procedures described in this section. Otherwise, students’ records may be adversely affected and reentry or transfer to another institution may be difficult.

Students who are considering withdrawal from the university should immediately consult their academic adviser, who may be able to provide guidance for more advantageous alternatives.

A request for withdrawal during period 3, (i.e., after the last day to drop a course without extenuating circumstances) will not be approved except for circumstances that are beyond the student’s control. The dean of the student’s college must approve such requests. Students should check with their college office to find out who is authorized to grant approvals or exceptions on behalf of the dean.

Students should not expect to withdraw during or after the final examination week. In situations beyond a student’s control, when examinations cannot be completed, arrangements should be made for incompletes rather than withdrawal during final exam week. Students who are on temporary enrollment and withdraw during period 3 will not be permitted to enroll the following term, except under extenuating circumstances.

Procedures
To withdraw from the university, students must do the following:

1. Complete a Request for Withdrawal form, with adviser’s signature.
2. Request the approval and obtain the signature of the college in which they are enrolled. (If the request is approved, the withdrawal form will be forwarded to the Office of the Registrar where it will be recorded; the information is sent to the appropriate offices.)

The effective date of the withdrawal is the date on which it is approved by the college dean. Students should check with their college office to find out who is authorized to grant approvals or exceptions on behalf of the dean.

If students complete the withdrawal procedure, the courses they are taking will not be included on their permanent record nor will they be counted as part of their drop allowance. Half semester courses completed prior to withdrawal will be included on their permanent record. Incompletes will not be accepted for withdrawals.
Withdrawal procedures must be followed otherwise instructors of the courses involved will assign whatever grades or marks they consider appropriate. Since these grades may be Fs, students are warned that failure to follow the prescribed withdrawal procedures may adversely affect a later application for reentry or transfer to another institution.

University-Initiated Withdrawal

In addition to the above procedures, exceptional circumstances may arise in which the university may initiate the withdrawal of a student, including the following:

1. Extreme medical situations where the student is hospitalized and/or otherwise unable to implement the withdrawal process. The academic advisor or the office of the college dean usually initiates the withdrawal.

2. Behavioral situations where it is determined that the student should not remain at the university due to behavior that demonstrates that the student is a clear and present danger to self or others. In these circumstances, it is the duty of the university to take responsible action for the good of the student and/or others in the university community.

Justification for university-initiated withdrawal of a student for behavioral reasons is determined by the dean of students, director of the Student Counseling Service, the director of the Student Health Center (or their designated agents) and appropriate academic representative, in consultation with the student, if possible. These persons may receive and/or solicit information, professional evaluation, etc., concerning the student’s status. In the event that they concur that the student should leave the university, the student (and, in appropriate situations, next of kin) is to be informed in writing of the decision with recommendations concerning treatment or therapy, and the conditions required for consideration for readmission. This letter will be sent by the dean of students, who will also coordinate the review by the same panel.

When the decision has been made to withdraw a student, the student’s adviser will be notified and requested to process the withdrawal form. The Dean of Students Office will place a “hold” on the student’s records to prevent registration until a readmission decision has been reached by the behavioral review team.

Tuition and Fees Adjustments for Withdrawals

Tuition and fees adjustments are made for withdrawals according to the following schedule for full term courses (appropriate adjustments will be made when partial term courses are involved):

<table>
<thead>
<tr>
<th>Withdrawal Date</th>
<th>Student Pays</th>
</tr>
</thead>
<tbody>
<tr>
<td>Days 1-8</td>
<td>10%</td>
</tr>
<tr>
<td>Days 9-20</td>
<td>50%</td>
</tr>
<tr>
<td>Days 21-40</td>
<td>75%</td>
</tr>
<tr>
<td>After 40th class day</td>
<td>100%</td>
</tr>
</tbody>
</table>

Students may appeal a tuition and fees assessment for withdrawal by obtaining a "Procedures for Appealing Assessed Tuition" form from the fees section in the Office of the Registrar. The Office of the Registrar will review appeals for possible tuition and fees adjustment for the semester in question only after the written appeal and appropriate support documentation are received from the student. Determinations will be made by the Office of the Registrar based on extenuating circumstances beyond the control of the student. The results will be sent to the student in writing.

Students may appeal the decision of the Office of the Registrar by writing an appeal letter to the Tuition Appeals Review Committee. This letter should be submitted to the Office of the Registrar within 10 calendar days after receiving the original decision. A final appeal of the Tuition Appeals Review Committee decision can be made by submitting a request in writing to the Office of the Provost.

Room and Board Fee Refund

Refund of the unused portion of the contract is based on the daily rate of the remaining room and board fee. If fees have been paid, a refund will be authorized. If fees have not been paid, a charge will be made for the used portion of the contract. A refund is not authorized for any student leaving the residence halls after December 1 in fall semester or May 1 in spring semester.

Any student living off campus who has contracted for the meal plan to eat in a residence hall dining room and later terminates the contract will be refunded as above.

Returning/Reentry to the University

A student who has been absent from Iowa State University less than 12 months may be admitted as a returning student. If more than 12 months have elapsed, a student must apply for reentry to the University.

Returning Students

American undergraduate and nondegree undergraduate students planning to return to Iowa State University after an absence of less than 12 months do not complete a reentry form; however, international undergraduate and nondegree undergraduate students planning to return to Iowa State University after an absence of less than 12 months must complete a reentry form.

Returning American students and graduate students should contact the Office of the Registrar to have their records updated and registration access created. Students should contact their advisors or major professor to select courses and begin the registration process.

Returning students who want to change their curricula should follow the same procedure as in-school students. Students who were dropped from enrollment at Iowa State University must obtain reinstatement by the Academic Standards Committee of the college that initiated the drop. (See below for policies that apply to requests for reinstatement.)

Reentry Students

Undergraduate and non-degree undergraduate (special) students who plan to attend Iowa State University after an absence of twelve months or more must complete a reentry form. Forms are available for download from the World Wide Web at the following URL: www.iastate.edu/~registrar/info/reentry.html.

Students with a bachelor’s degree who plan to take supporting graduate level coursework prior to applying for graduate degree admission should request a nondegree graduate admission application.

Students who have previously attended Iowa State University only as non-degree [special] students and who now seek to earn an undergraduate degree should request an undergraduate application.

International students should contact the Office of Admissions, 100 Alumni Hall (direct 515-294-5836 or toll-free 1-800-262-3810) for reentry instructions. Financial certification of ability to cover all educational and living expenses will be required.

The reentry form should be completed and returned to the Office of the Registrar well in advance of the term of reentry. Students who have attended another college or university since enrollment at Iowa State University must have an official transcript(s) of all course work attempted sent to the Office of Admissions, 100 Alumni Hall. Reentering students must also contact their departmental office/adviser to prepare a class schedule. Reentry must be approved prior to registration.

Iowa State University requests the information on the reentry form for the purpose of making a reentry decision. If the required information is not provided, the university may not consider the request to reenter.

Reentry Approval Process

Generally, a request to reenter Iowa State University will be approved within the Office of the Registrar. However, the Office of the Registrar will refer the reentry form to the college to which a student plans to return if the student: (a) desires to change curriculum; (b) has a previous Iowa State University cumulative grade point average below 2.00 or has a last term average below 2.00; (c) was dropped from the university for unsatisfactory academic progress or was not otherwise in good standing; or (d) since leaving Iowa State University, has completed additional college study with less than a 2.00 grade point average.

Students who have been dropped from enrollment at Iowa State University must obtain reinstatement by the Academic Standards Committee of the college into which they plan to return. The following policies apply:

1. Students may not be reinstated until at least one term has elapsed since they were academically dismissed. The summer session is not considered as one term out of school.

2. Students who have been dismissed from enrollment two or more times are not eligible for reinstatement until they have been academically dismissed for the academic standards committee of the college.

3. Students who have been dismissed by a college and subsequently reinstated by another college cannot transfer back unless the Academic Standards Committee of the college grants permission. This procedure must be followed regardless of the student’s current academic standing.
4. Students must submit a petition to the Academic Standards Committee of the college in which they plan to enroll at least 45 days before the beginning of the term. The petition should not be to the college that dismissed the student. (Students who have been dropped twice and want to return in the College of Liberal Arts and Sciences must submit their petition at least 70 days before the beginning of the term.)

5. Reinstated students will return on temporary enrollment status.

Academic Renewal Policy

Students who are returning to Iowa State University to pursue an undergraduate degree after an extended absence may request permission to remove one or more of their complete academic terms from future degree and GPA considerations. See Index, Academic Renewal Policy.

Academic Regulations

Class Attendance

Students are expected to attend all class meetings as scheduled. Each instructor sets their policy with respect to class attendance, and excuses for absence from class are handled between the student and instructor. The instructor is expected to announce his or her policy at the beginning of the course. See Index, Validation of Enrollment for regulations concerning attendance to validate students’ enrollment in a class.

In order to attend a given class, a student must be registered for that class for credit or audit. Exceptions to this policy are at the discretion of the instructor of the course.

Veteran Attendance

Students receiving benefits from the Veterans Administration are identified on class lists and are required by the V.A. to attend class regularly to maintain their V.A. eligibility. If the instructor knows that a student receiving V.A. benefits is not attending class, the instructor is obligated to notify the Office of the Registrar and a notification will be forwarded to the Veterans Administration. More information about veteran benefits is available on the Web, www.iastate.edu/~registrar/info/vabenef.html

Field Trips

Trips away from campus are sometimes arranged as a means of enriching the students’ learning experience in a given course. Such trips may not take place during the first or last week of the semester, nor may they extend over more than two consecutive class days (Monday through Friday); these regulations may be waived only by special permission of the dean of the college in which the course is offered. Students should check with their college office to find out who is authorized to grant approvals or exceptions on behalf of the dean.

In order to go on a field trip, students must first obtain permission from the instructors whose classes they will miss. If permission to miss class is not granted, students cannot be required to go on the field trip nor can they be penalized for missing the trip.

Special fees are often charged to cover the costs of field trips. Field trip fees are noted in the Schedule of Classes.

Ownership of Course-related Presentations

The presenter owns course-related presentations, including lectures. Individuals may take written notes or make other recordings of the presentations for educational purposes, but specific written permission to sell the notes or recordings must be obtained from the presenter. Selling notes by students without the required permission is a violation of the Student Disciplinary Regulations.

Recording and Transmission of Classes

Recordings and transmission of classes may take place for a variety of legitimate reasons, including providing educational opportunities for those who cannot attend classes on campus, assisting students with disabilities that impair classroom notetaking, and giving the instructor feedback on his or her classroom performance.

Because the lectures of faculty represent their intellectual labors, individuals are expected to request permission to make recordings of lectures and other classroom interactions.

Recordings may be used for the purposes of the particular class, although in some cases the recordings may be preserved and used for other classes as well.

Credit Involving a Paid Activity

Students may obtain credit for an activity either on- or off-campus, for which they are also paid, provided the activity is academically relevant. In order for an activity to be defined as academically relevant, prior arrangements for receiving credit must be made with a faculty member in an appropriate department. The arrangements must include agreement on (1) the academic objectives which the activity is expected to achieve, and (2) the procedure by which the student’s learning will be assessed. This policy does not apply to registrations for R credit.

Academic Dishonesty

Academic dishonesty occurs when a student uses or attempts to use unauthorized information in the taking of an exam; or submits as his or her own work, themes, reports, drawings, laboratory notes, computer programs, or other products prepared by another person; knowingly assists another student in such acts or plagiarism. Such behavior is abhorrent to the university, and students found guilty of academic dishonesty face suspension, conduct probation, or reprimand. Instances of academic dishonesty ultimately affect all students and the entire university community by degrading the value of diplomas when some are obtained dishonestly, and by lowering the grades of students working honestly.

Examples of specific acts of academic dishonesty include but are not limited to:

- **Obtaining unauthorized information.** Information is obtained dishonestly, for example, by copying graded homework assignments from another student, by working with another student on a take-home test or homework when not specifically permitted to do so by the instructor, or by looking at one’s notes or other written work during an examination when not specifically permitted to do so.

- **Tendering of information.** Students may not give or sell their work to another person who plans to submit it as his or her own. This includes giving their work to another student to be copied, giving someone answers to exam questions during the exam, taking an exam and discussing its contents with students who will be taking the same exam, or giving or selling a term paper to another student.

- **Misrepresentation.** Students misrepresent their work by handing in the work of someone else. The following are examples: purchasing a paper from a term paper service; reproducing another person’s paper (even with modifications) and submitting it as their own; having another student do their computer program; or having someone else take their exam.

- **Bribery.** Offering money or any item or service to a faculty member or any other person to gain academic advantage for oneself or another is dishonest.

Plagiarism. Unacknowledged use of the information, ideas, or phrasing of other writers is an offense comparable with theft and fraud, and it is so recognized by the copyright and patent laws. Literary offenses of this kind are known as plagiarism.

One is guilty of plagiarism when: the exact words of another writer are used without using quotation marks and indicating the source of the words; the words of another are summarized or paraphrased without giving the credit that is due; the ideas from another writer are borrowed without properly documenting their source.

Acknowledging the sources of borrowed material is a simple, straightforward procedure that will strengthen the paper and assure the integrity of the writer. The English 104-105 Student Manual provides guidelines to aid students in documenting material borrowed from other sources, as does almost every handbook in writing style.

Academic dishonesty is considered to be a violation of the behavior expected of a student in an academic setting as well as a student conduct violation. A student found guilty of academic dishonesty is therefore subject to appropriate academic penalty, to be determined by the instructor of the course, as well as to penalty under the university student conduct regulations.

If an instructor believes that a student has behaved dishonestly in a course, these steps are to be followed:

1. The instructor should confront the student with the charge of dishonesty and arrange a meeting with the student to discuss the charge and to hear the student’s explanation.

2. If the student admits guilt, the instructor shall inform the student (a) of the grade on the work in which the dishonesty occurred, and (b) how this incident will affect subsequent evaluation and the final grade. Because academic dishonesty is also a student conduct violation, the instructor must report the incident to the dean of students. The latter, or his/her designee, will meet with the student
and, depending on the severity of the offense as well as on the student’s past conduct record, may schedule a hearing before the All-University Judiciary Committee. This hearing, conducted according to the procedures outlined in the Student Information Handbook, is to determine the disciplinary action to be taken. In any case, the student’s academic adviser will be informed of the incident but may not insert any record of it in the student’s academic file.

3. If the student claims to be innocent of the charge, the instructor may not assign the student a grade for the work in question until the question of guilt is resolved, unless circumstances require that an interim grade be assigned. The instructor shall consult with his or her department chair and report the incident in writing to the dean of students. The latter will schedule a hearing before the All-University Judiciary Committee, to be conducted according to the procedures outlined in the Student Information Handbook. Both the student and instructor will be invited to attend the hearing and present pertinent information. If the student concurs, his or her academic adviser will be informed of the charge. If the Judiciary Committee finds the student guilty of the charge, the instructor will inform the student (a) of the grade on the work in which the dishonesty occurred, and (b) how this incident will affect subsequent evaluation and the final grade. The Judiciary Committee will determine the appropriate disciplinary action with respect to the student conduct violation. If the Judiciary Committee finds the student not guilty, the instructor will grade the student accordingly on the work in question and the student’s grade in the course will not be adversely affected. If the student is found guilty, the student’s adviser will be informed of the decision but shall not insert any record of the action in the student’s academic file.

4. If a student either admits dishonest behavior or is found guilty of academic dishonesty by the All-University Judiciary Committee, the committee may impose any of the following sanctions:

Disciplinary Reprimand—An official written notice to the student that his/her conduct is in violation of university rules and regulations.

Conduct Probation—A more severe sanction than a disciplinary reprimand, to include a period of review and observation during which the student must demonstrate the ability to comply with university rules, regulations, and other requirements stipulated for the probation period.

Suspension Deferred—The suspension is deferred subject to a definite or indefinite period of observation and review. If a student is found guilty of further violation of the University Code of Conduct or an order of a judiciary body, suspension will take place immediately.

Defined Length—The student is dropped from the university for a specific length of time. This suspension cannot be for less than the remainder of the semester in progress or for the next full semester.

Indefinite—The student is dropped from the university indefinitely. To be reinstated the student must appear at a hearing conducted by the All-University Judiciary Committee, which makes the reinstatement decision. Reinstatement may be contingent upon meeting written requirements specified by the All-University Judiciary Committee at the time of the reinstatement hearing.

5. A student accused of cheating has the option to stay in the class or to drop the class if the drop is made within the approved time periods and according to the regulations established by the university. If the student chooses to drop the class the student will be required to sign a statement of understanding that if the student is later found guilty of cheating, then the student will receive an “F” for the course.

6. Procedures for appeal of either the All-University Judiciary Committee’s conduct decision or the instructor’s grade are outlined in the Student Information Handbook.

7. In instances in which the student admits guilt or is judged to be guilty by the Judiciary Committee, a staff member of the Dean of Students Office will counsel with the student in an effort to deter any further such incidents.

8. Student records concerning academic dishonesty are maintained in the Dean of Students Office for a period of 7 years, after which the file records are purged. These student records are confidential; nothing from them appears on a student’s academic transcript.

9. In the event that an instructor is uncertain how to handle an incident of suspected academic dishonesty, the dean of students is available at any time to provide advice and assistance to the instructor in deciding a proper course of action to be taken.

10. Students enrolled in the College of Veterinary Medicine are bound by an honor code. A charge of academic dishonesty may be made by a student or instructor to the Interclass Honor Board chairperson according to the procedures outlined in the Honor Code, or the instructor may follow the procedures outlined above. The Interclass Honor Board functions as the judiciary of the College of Veterinary Medicine for all allegations presented to it.

Other violations related to academic misconduct may include subsection 4.1.11 Misuse of Computers and subsection 4.2.20 Unauthorized Sale of Others’ Intellectual Works. These subsections are located in the Iowa State University Student Disciplinary Regulations under section 4 of the Conduct Code.

Progressing Toward a Degree Classification

An indication that a student is making progress toward a degree is the change in classification. Classification is determined by the number of credits completed and reported to the registrar prior to the beginning of the term; and is based on credit hours earned, not merely hours attempted. The grades F and NP and the marks I and D do not count in this classification system.

Classification in all colleges except Veterinary Medicine is as follows:

Sophomore: 30 credit hours earned
Junior classification: 60 credit hours earned
Senior classification: 90 credit hours earned

Students who have a bachelor’s degree and are working toward another undergraduate degree, licensure, or admission to a specific graduate or professional program, may be classified as a senior.

Transfer students without a degree are classified on the basis of credits accepted by Iowa State University.

Veterinary medicine students are promoted from the first- to the second-, third-, and fourth-year classes based upon satisfactory completion of the required courses for each year. To be promoted to the second-year class, students must have a cumulative grade-point average of at least 1.67 for all courses in the first year of the veterinary medicine curriculum. To be promoted to the third- and fourth-year classes, students must have a cumulative grade-point average of at least 2.00 for all courses in the professional curriculum.

A student who is attending Iowa State and decides not to work toward an undergraduate degree, will be classified as a special student. Admission requirements and academic standards regulations are the same as regular students. Credits taken as a special student are applicable for undergraduate degree purposes if the student is admitted later as a regular undergraduate. Credits obtained as a special student may not, however, be applied toward a graduate degree.

Students enrolled in the Intensive English and Orientation Program (IEOP) are classified as special students in the College of Liberal Arts and Sciences and usually are not permitted to enroll in academic courses until they have satisfied requirements for admission as regular students. Permission to enroll in one academic course may be granted under special circumstances.

Transfer of Credits

Credits presented from another institution are evaluated initially by the Office of Admissions to determine whether the courses are acceptable for transfer credit. Credits applied toward a degree will be determined by the student’s college, based on relevance to the students’ program requirements as well as the level of performance deemed necessary for successful progress in that program. Courses that are deemed important to a program but were earned with less than a C grade may or may not be approved for a program. This policy also applies to students already enrolled at Iowa State University. Grades earned in courses transferred to Iowa State University will not be used in calculating a transfer student’s Iowa State cumulative grade point average.

A student who is admitted as a transfer from another college or university is required to have at least a 2.00 cumulative grade-point
average for all transferable work taken elsewhere. If, due to special circumstances, a student is admitted with less than a 2.00 average, that student has a transfer quality-point deficiency. This deficiency will be added to any deficiency accumulated at Iowa State University and will be used to determine whether satisfactory progress toward a degree is being made. To graduate, students must earn sufficient quality points above a 2.00 at Iowa State University to offset any deficiency at time of entrance.

Students should consult with their academic advisers and the Office of Admissions before taking coursework at other colleges and universities to be certain it will be applicable to their program of study. Students who believe that any transfer credits have not been correctly evaluated should consult with their academic adviser and with the Office of Admissions. Questions concerning transfer credits applied toward a degree program should be referred to the academic adviser and college office.

No more than 65 semester or 97 quarter credits earned at two-year colleges can be applied to a bachelor’s degree from Iowa State University. While there is no limit to the number of credits that may be transferred from a four-year institution, the last 32 semester credits must be completed at Iowa State.

Iowa State University students who attend one of the other Iowa Regent universities under the Regent Universities Student Exchange Program will have the credits earned at the other university counted as resident credit and grades received included in their Iowa State University cumulative grade point average. For information on applying to the program see Index, Regent Universities Student Exchange Program.

Degree Planning
In addition to being properly registered, students are responsible for knowing the requirements for their degree and planning their schedule to meet those requirements. Each college has a procedure to determine whether a student will fulfill all degree requirements for graduation.

At each fall and spring registration, students receive an advisement/degree audit printout. This printout shows in a degree program format those courses that have been completed and those courses in which the student is currently enrolled. Also shown are the graduation requirements that have not been completed.

Students should use the information on this printout to help them select courses for the next term and to evaluate their progress toward their degree. Graduation evaluators in the Office of the Registrar use a similar printout during the term a student will graduate to evaluate a student’s graduation status.

For information about how completed courses fulfill degree requirements or how other courses will apply toward their degree requirements, students should see their adviser.

Two Bachelor’s Degrees
Students may receive two bachelor’s degrees if the requirements for each major (curriculum) are met and the total number of semester credits earned is at least 30 more than the requirements of the curriculum requiring the greater number of credits. The same rule applies to degrees that are not awarded at the same time. Students should have an academic adviser in each major (curriculum), with one adviser being designated as the registration adviser. Students should request approval to pursue two degrees by completing the form “Request for Double Major/Curriculum or Two Degrees.” This form is available from advisers and classification offices. Each adviser will receive grade reports and schedule information after this form has been processed. The appropriate department and college must approve each degree program.

Students who have earned advanced degrees and wish to earn a second Bachelor’s Degree may be eligible for a college waiver of certain basic and general education requirements. Students should contact the department offering the major for advice and appropriate planning.

Double Major/Curriculum
A double major is a program for a single degree in which all requirements for two or more majors (curricula) have been met. The majors (curricula) may be in different colleges or within the same college or department. The diploma and permanent record will designate all majors (curricula) that are completed at the same time.

To declare a double major (curriculum), students should complete the form, “Request for a Double Major/Curriculum or Two Degrees.” This form, available from advisers and classification offices, should be completed no later than the beginning of the senior year. One major (curriculum) may be designated as primary and the other secondary for purposes of record keeping, but the student’s rights and responsibilities are the same in both majors. The adviser of the primary major will serve as the student’s registration adviser, but both advisers will receive grade reports and schedule information. Degree programs must be approved for each major (curriculum) by the appropriate department and college. One of the majors may subsequently be canceled using the same form.

In addition to their engineering degree, students in the College of Engineering may earn majors in other colleges of the university. A major must meet all requirements of the offering department or program and its college and contain a minimum of 15 additional credits beyond the requirements for a B.S. degree in engineering for each major area of study. Within the College of Engineering, only double degrees are permitted.

Students with a primary major in another college who wish to take a second major in the College of Liberal Arts and Sciences are not required to meet the Liberal Arts and Sciences General Education requirements. They must, however, meet all requirements for the major, including complementary courses. Students in the B.L.S. curriculum in the College of Liberal Arts and Sciences do not have majors.

Second Major (Curriculum) Completed after the Bachelor’s Degree
After receiving a bachelor’s degree, a person may wish to complete all requirements for another major (curriculum). Approval of the department of the second major (curriculum) is needed before study for the program is begun. At the completion of the program a notation will be made on the permanent record (transcript), but no change will be made on the diploma received at the time of graduation. A degree program must be approved for the second major/curriculum by the department and by the dean’s office.

Changing Curriculum or Major
A student’s freedom to change their major, and the procedure that should be followed, depend on the student’s academic standing as well as on policies of individual colleges as approved by the provost.

1. If students are not on temporary enrollment and have never been dismissed and reinstated, they may change their major by consulting first with their adviser. (If, however, they have been on temporary enrollment in the past, they may also be subject to regulation 4, below.) Beyond that, they should follow these procedures:
 a. If the change involves majors within the same college, they should check with the college office to obtain instructions as to how to make the change.
 b. If the change involves majors in different colleges, they should obtain a Change of Curriculum/Major form and their file from their adviser, present these materials to the classification office of their present college, then to the classification office of the college to which they are transferring, and finally to the office of their new major.

2. Students on temporary enrollment must first obtain permission to enter the new major. Permission comes from the dean of the college responsible for that major in consultation with the department head. If permission is granted, students should then follow the procedures described above. If they are on temporary enrollment and want to transfer to another college in the university, they must do so before the last day to drop a course in period 2 (see Index, Making Schedule Changes).

3. Students who have been reinstated may not transfer to another college during the first term following reinstatement, and they may not at any time transfer back to the college that originally dismissed them without the permission of the academic standards committee of that college.

4. Students who transferred from one college to another while on temporary enrollment, may not transfer back unless they have the permission of the academic standards committee of the college from which they originally transferred.

Declaring a Minor
Many departments and programs in the university specify requirements for an undergraduate minor. A record of requirements completed appears on students’ transcripts. All minors require at least 15 credits, including at least 6 credits in courses numbered 300 or above.
taken at Iowa State. The minor must include at least 9 credits that are not used to meet any other department, college, or university requirement. Courses taken for a minor may not be taken on a pass-not pass basis. For additional information regarding policies which govern minors, see Index, Minor. To declare a minor, students must submit a completed Request for a Minor form to their college office at least one term before graduation. The minor may be from the catalog under which the student is graduating or a later catalog.

Graduation

Seniors must file a graduation application with the Graduation Office, 10A Alumni Hall, by the Friday of the first week of classes for students who plan to graduate in fall and spring semesters, and the last day of spring semester for students who plan to graduate in summer. Applications may be obtained from the adviser; college office; or download from www.—register/forms; the Student Answer Center, on the ground floor of Beardshear; or the Graduation Office, 10A Alumni Hall. Students will be notified by mail approximately four weeks after the semester begins of their graduation status.

Individual college ceremonies take place at the end of fall and spring semesters. The formal commencement ceremony for graduate students takes place on the Friday at the end of the semester, and the undergraduate ceremony takes place on Saturday. A combined undergraduate and graduate college commencement ceremony takes place at the end of the summer term.

Final grade checks will be made approximately two weeks after the end of the semester and diplomas will be mailed to all successful degree candidates.

In order to graduate, students must be certain:

1. Registration for the term has been completed and their date of graduation is correct on their advisement/degree audit printout.
2. They will have earned sufficient credits, acceptable toward graduation, to meet the minimum requirements for their curriculum. Some examples of credit not acceptable toward graduation are: elective credits beyond those allowed in a curriculum, credits earned in passing the same course more than once, more than four credits of Athletics 101, and credit in two courses for which the catalog states that only one may count toward graduation.
3. They have been certified by their major department as having achieved an adequate level of proficiency in written communication.
4. They have attained a cumulative grade point average of at least 2.00 in all work taken at Iowa State and have also met any special grade point averages required by their college, department, or program in specified groups of courses.
 a. If they were admitted from another college or university with a quality-point deficiency, they must have earned sufficient quality points above a 2.00 at Iowa State to offset the deficiency with which they entered.
 b. If they have taken work at another college or university prior to or after having been a student at Iowa State, they must have submitted a transcript of all such college study attempted to the Office of Admissions. This work must average 2.00 or the deficiency of quality points will be assessed against them. Failure to submit such a transcript is grounds for dismissal.
5. Incompletes in courses required for graduation have been removed by midterm of the term of graduation.
6. At least 32 credits have been earned in residence at Iowa State University, and the final 32 credits were taken at Iowa State. (Six of the last 32 credits may be transferred to Iowa State, with prior written permission of their major department.) Iowa State University must receive a transcript of all transfer work by midterm of the term of graduation.
7. They have paid all outstanding financial obligations they owe the university. If they owe an outstanding obligation to the university, a hold will be placed on their records and they will not receive their diploma or transcript. If students have questions about this policy, they should contact the graduation section of the Office of the Registrar, 10A Alumni Hall.

Evaluation of Academic Progress

Evaluation Procedures

It is university policy that the instructor shall inform the students at the beginning of each course of the evaluation procedures planned for use in the course.

Retention of Records

Records of all graded work must be retained by the instructors until midterm of the semester following completion of a course or until all pending appeals and incompletes are resolved, whichever is later. Instructors leaving the university must file test and grade records with their department office before departure.

Examinations

Examinations are one of the major means by which an instructor assesses students’ performance in a course. In order that examinations can be a useful part of the educational process, the following policies have been instituted:

1. One purpose of examinations is to help students’ learning activity. Therefore, examinations shall be evaluated as soon as possible after they are given and the results shall be made available to the students.
2. All tests and examinations administered between the beginning of the term and final examination week shall be held during a regularly scheduled lecture or laboratory class period for that course. A department may request permission to administer a separately scheduled examination if all of the following criteria are met: (a) the course is multi-sectioned; (b) a common departmentally developed examination will be administered to all students in all sections at the same time; and (c) the test scores will be used as a basis for a uniform grading procedure for all sections of the course. Requests to hold separately scheduled examinations must be made to the registrar and approved by the provost in time to be announced in the Schedule of Classes. Whenever a separately scheduled examination is administered, a regular class meeting during that week shall be omitted. Students who are unable to take a separately scheduled examination at the scheduled time because of a course conflict or other legitimate reason must notify the instructor in advance and must be given the opportunity to be examined at another time mutually convenient for the student and the instructor; the instructor shall determine whether to administer the same examination or an alternate examination, or use an alternate assessment procedure.

3. At the end of the semester, a week is set aside for final examinations or other term evaluations, with a period normally of two hours scheduled for each course. The following policies govern the responsibilities of students and faculty members during this week:
 a. Final exams in courses of two or more credits may not be given at a time other than that for which the exam is scheduled by the registrar. An instructor may not give a final exam prior to final exam week. The instructor may change the time of offering of the final examination as it appears in the final exam schedule.
 b. Permission to change the time for which an exam is scheduled may be given only by the dean of the college. If the instructor elects not to give a final exam, the class is required to meet at the scheduled final exam period for other educational activity such as a review of the course or feedback on previous exams.
 c. Final exam periods are determined according to the regularly scheduled meeting time of the class. However, certain courses are assigned special group exam times so that several sections of the same course may be tested together. If this results in conflicting group examination periods, students should inform the instructor in charge of the first of the two conflicting courses as listed on the final exam schedule within the special groups in question; that instructor is responsible for arranging a special examination or making some other adjustment.
 d. The final exam for a class that regularly meets in the evening must be held at the time the class would normally meet during the final exam week. If this exam conflicts with an evening group exam, the instructor responsible for the latter must arrange a special examination for any students who have a conflict.
 e. If unusual circumstances involve the need for students to change the time of their final examination, they must obtain the approval of the instructor of the course.
 f. If a student has three examinations scheduled on the same calendar day and wishes to change one to another day, the instructor of the course having the smallest number of students is responsible for arranging an alternate examination time for the student unless make-up exam times are available in one of the other courses.
 g. All faculty members are considered to be on duty throughout the entire final examination week and are expected to be available to students during that week for discussion of any matters pertaining to the final examination and final grade or to other aspects of the course.

Dead Week. The last week of classes has been designated Dead Week by the Government of the Student Body. The intent
is to provide students with time for review and preparation for final examinations. Therefore, no activities sponsored by student organizations under the jurisdiction of GSB may be held during that week. For academic programs, however, the last week of classes is considered to be a normal week in the semester. Instructors are reminded that most students are enrolled in several courses each semester and their workloads often increase as final examination week approaches. Instructors are encouraged to give major assignments and examinations prior to the last week of classes so students can budget their time better for final examination preparation.

The Grading System
Grades represent the permanent official record of a student's academic performance. The grading system at Iowa State operates according to the following regulations:

1. Student performance or status is recorded by the grades and marks described below. A student’s grade point average is calculated on the basis of credits earned at Iowa State with the grades and quality points shown below. Credits earned with P, S, or T are not used in calculating the grade point average but may be applied toward meeting degree requirements. A cumulative grade point average of 2.00 is required for a bachelor's degree.

2. To change a grade or mark already reported, the student must submit a written request to the registrar, the instructor submits a final course grade, once submitted to the registrar. If the student has not contacted the instructor by midterm, the student must resolve the incomplete according to the conditions set forth in the Incomplete Mark Report form. If the student is not available at the end of the term to sign the Incomplete Mark Report form, the instructor may assign an incomplete mark and submit the form without the student’s signature. The Office of the Registrar will record the incomplete mark and mail a copy of the form to the student. If the student chooses not to accept the incomplete, the student has until midterm of the following semester to contact his or her instructor and request a grade be submitted to the registrar. If the student has not contacted the instructor by midterm, the student must resolve the incomplete according to the conditions set forth in the Incomplete Mark Report form.

3. Repeating Courses. Students who want to protest a grade submitted will be used in computing the student’s cumulative grade point average rather than the previous grade(s), up to a limit of 15 credits. (This could result in a lowered grade point average if the second grade is lower than the first, or even loss of credit if the grade is lowered to an F.) All grades will remain on the student’s record.

4. Grades in all courses attempted remain on each student’s record. If a course is repeated, the record will show the grade obtained on the initial attempt as well as grades received on subsequent attempts.

5. The cumulative grade point average is calculated by dividing the total number of quality points earned by the total number of credits in all courses attempted. Grades of S, P, NP, and T are not counted in calculating the grade point average. If a course is repeated, the cumulative grade point average is calculated according to the process described in item 6a below.

6. Repeating Courses.

a. The most recent grade for a course a student repeats will be used in computing the student’s cumulative grade point average rather than the previous grade(s), up to a limit of 15 credits. (This could result in a lowered grade point average if the second grade is lower than the first, or even loss of credit if the grade is lowered to an F.) All grades will remain on the student’s record.

b. Students may repeat any course for which an F grade or any passing grade except P or S was received, but they may not elect to repeat the course under the Pass-Not Pass system.

c. Beyond 15 credits of repeats, both grades will be included in computing the cumulative grade point average.

d. Courses should be repeated as soon as possible, preferably within three semesters in residence, because of changes that occur with course updating, change in course number, or revision in number of credits.

Approval to repeat a course after more than three semesters has elapsed must be noted on a Designation of Repeated Course form, which can be obtained from departmental offices. This form must be signed by the head of the department offering the course and by the student’s adviser, and then taken to the Office of the Registrar. This form must also be used in cases in which the course number or number of credits has changed.

Deadlines for filing repeated course forms for full-semester and half-semester courses are published in the University Calendar.

e. Transfer students may repeat courses at Iowa State University for which a D or F was received at another institution. They must process a designated repeat form indicating they are repeating the course to reduce a transfer deficiency. Such repeated credits will count toward the 15-credit request limit and will affect only their transfer deficiency. Such repeated credits will count toward the 15-credit request limit and will affect only their transfer deficiency.

f. A student who has earned an F at Iowa State University may repeat the course at another institution and the credits earned may be applied toward graduation at Iowa State, but the grade earned will not be used in computing a cumulative grade point average.

7. Students who want to protest a grade submitted by an instructor should follow the procedures described in the section on Appeal of Academic Grievances.

Academic Progress
Each college has an academic standards committee that is responsible for monitoring the academic progress of all undergraduate students in that college, based on policies and
minimum requirements set by the Faculty Senate Committee on Academic Standards and Admissions and ratified by the Faculty Senate. Individual college faculties may, with the approval of the Faculty Senate Committee on Academic Standards and Admissions, set additional requirements that are not lower than those established for the university. These additional requirements must be reviewed at least every third catalog by the college academic standards committee to determine if they should be continued. Requirements approved by the college academic standards committees will then be forwarded to the Faculty Senate Committee on Academic Standards and Admissions for final approval. The college committees are responsible for actions involving individual students with respect to placing students on temporary enrollment, dismissing students from the university for unsatisfactory academic progress, and reinstating students who have been dismissed. For questions concerning interpretation and application of the rules governing academic progress, students should contact the chair or secretary of their college academic standards committee in the administrative office of their college.

The university’s academic standards rules are presented below. In addition to taking action based on these rules, a college academic standards committee may also place a student on temporary enrollment or dismiss a student from enrollment in the university when, in the college committee’s judgment, the student’s academic performance or progress toward a degree is exceptionally deficient. Likewise, a college committee may, under exceptional circumstances, exempt individual students from the application of these rules.

Students who participate in the Regent Universities Student Exchange Program, or in a similar program where the credit taken at the other school will be considered as resident credit and the grades included in the student’s ISU cumulative grade point average, are subject to Iowa State University’s academic standards.

Temporary Enrollment Status and Academic Dismissal

Students are placed on temporary enrollment status as a warning that their academic progress is not satisfactory and that they must improve their academic performance to avoid dismissal from the university. Students who are placed on temporary enrollment should immediately seek assistance in academic improvement from such sources as academic advisers, instructors, the Student Counseling Service, and the University Tutoring Office.

Students may be admitted to Iowa State University on temporary enrollment or may subsequently be placed on temporary enrollment as a result of unsatisfactory academic performance. Students on temporary enrollment status who do not meet the minimum requirements described below will be dismissed from enrollment in the university.

Decisions regarding temporary enrollment and academic dismissal are based on the student’s cumulative quality-point deficiency. The number of deficient quality-points is determined by subtracting the total number of ISU quality-points from twice the number of ISU credits attempted. If a student enters Iowa State University with a quality-point deficiency, this deficiency will be added to any deficiency accumulated at Iowa State University to determine the cumulative quality-point deficiency. Example: Assume a student has attempted 65 credit hours of coursework, and has a cumulative grade-point average of 1.80. The student needs 130 quality points (i.e., 65 credit hours x 2.00 points) in order to have a zero quality-point deficiency. The student currently has earned 117 quality points (i.e., 65 credit hours x 1.80 grade point average*). Thus, the student currently is deficient by 13 quality points (i.e., 130–117).

Assume the student must remove this 13 quality-point deficiency over the next 30 credit hours. The student would need to earn 73 quality points (i.e., 30 credit hours x 2.00 quality points = 60 quality points) in order to not add to the deficiency. Thus, a grade-point average of 2.44 (i.e., 73 quality points/30 credit hours) for the next 30 credit hours is needed to remove the deficiency.

Students who are placed, or continued, on temporary enrollment at the end of the spring semester will be permitted to enroll for the following summer session. Of the preceding paragraphs will be permitted to enroll for the summer term. The cumulative quality-point deficiency at the end of the summer term will be used to determine if the student is to be dismissed from enrollment in the university. This is true for all students enrolled in the summer term. Students considered for academic dismissal at the end of spring semester will be permitted to enroll for the summer term. The cumulative quality-point deficiency at the end of the summer term will be used to determine whether the student should be permitted to continue. The individual colleges determine if students reinstated for the spring semester will be permitted to utilize the summer term option. (Reinstated students should also see the section on Reinstatement.)

1. Students with fewer than 90 credits attempted or earned, *, whichever is greater, will be placed on temporary enrollment at the end of any semester or summer term when their cumulative quality-point deficiency equals 10 or more quality points. At the end of any term in which a student is on temporary enrollment, the student will be:
 a. dismissed from enrollment in the university if the cumulative quality-point deficiency has increased;
 b. continued on temporary enrollment if the cumulative quality-point deficiency has not increased but remains greater than 10;
 c. removed from temporary enrollment if the cumulative quality-point deficiency has been removed.

2. Students with 90 or more credits attempted or earned, whichever is greater, will be placed on temporary enrollment at the end of any semester or summer term when they have any quality-point deficiency. At the end of the term in which a student is on temporary enrollment, the student will be:
 a. dismissed from enrollment in the university if the cumulative quality-point deficiency has increased;
 b. continued on temporary enrollment if the cumulative quality-point deficiency has not increased but remains greater than zero;
 c. removed from temporary enrollment if the cumulative quality-point deficiency has been removed.

3. A student on temporary enrollment may transfer to another college within the university only with the permission of the department executive officer (DEO) of the new department and dean of the new college. Transfer during period 3 (after the last day to drop a course) may be approved by the DEO of the new department and dean of the new college only under exceptional circumstances. The student will be subject to any additional specific academic requirements determined by the academic standards committee of the college to which the transfer is made.

4. A student who has transferred from a college while on temporary enrollment cannot transfer back unless permission is granted by the academic standards committee of the original college.

5. A student on temporary enrollment who withdraws during period 3 will not be permitted to enroll the following term, except under extenuating circumstances as judged by the college academic standards committee.

Additional Academic Progress Regulations

1. Colleges, departments, or programs may have special grade point requirements for admission, continuation, or graduation. These are presented in connection with statements of college and department curriculum requirements.

2. Engineering: In addition to the requirements listed above, students enrolled in the College of Engineering with 60 or more credits attempted or earned, *, whichever is greater, will be placed on temporary enrollment at the end of any semester when they earn less than a 2.00 grade point average for that semester. Students placed on temporary enrollment under provisions of this requirement will be dismissed from enrollment in the university if they fail to achieve, for the following semester, at least a 2.00 semester grade point average.

Summer term grades will be combined with the student’s grades for the prior term completed to form a single semester grade point average to be used for temporary enrollment and academic dismissal decisions. Credit hours and quality points will be combined for the purpose of obtaining the average. When courses are repeated, both grades will be used in this computation.

Students considered for academic dismissal at the end of a spring semester under provisions of the preceding paragraphs will be permitted to enroll for the following summer session.

3. Veterinary Medicine: Additional rules for minimum satisfactory progress are in effect.
4. Special students: Students matriculated in this classification category are governed by the regular academic progress regulations. Furthermore, by special action of their college academic standards committee, additional standards may be required.

Reinstatement
The procedures delineated in this section apply to students who were dismissed from Iowa State for academic reasons. Students who left Iowa State in good academic standing and who are seeking reenrollment should see Index, Reentry for more information.

1. Reinstatement is not automatic. A student who has been dismissed for academic reasons should contact the Dean’s Office in the college he or she wishes to enter for instructions specific to that college. The college Academic Standards Committee reviews each petition and other relevant information, and reinstatement is based upon that review. The student must identify the causes of her or his poor academic performance, and demonstrate that he or she has taken actions to avoid or eliminate these causes. The student must submit a plan for academic success.

2. A student can only be reinstated when at least one academic semester has elapsed since she or he was academically dismissed. The summer session is not a semester for the purpose of being out of school one semester.

3. A student who has been dismissed from enrollment two or more times is not eligible for reinstatement until at least two academic semesters have elapsed since his or her last academic dismissal.

4. A student who was dismissed by one college and subsequently reinstated by another college cannot transfer back unless permission is granted by the Academic Standards Committee of the original college. This procedure applies regardless of the student’s current academic standing.

5. To be considered for reinstatement to the university, a student must file a reentry form and submit a petition to the Academic Standards Committee of the college in which she or he desires to enroll at least 45 days before the beginning of the semester. (A student dismissed for the second time and requesting reinstatement in the College of Liberal Arts and Sciences must submit his or her petition 70 days before the beginning of the semester.)

6. As conditions of reinstatement, a student will reenter on temporary enrollment, and must accept whatever additional requirements are stipulated by the college Academic Standards Committee. Some examples may include full- or part-time status, specified credit hours, specific courses, specific GPAs, restriction on choice of major, and required counseling. Other conditions may also be imposed.

Student Appeal
1. Students may appeal a decision regarding their academic status if they believe that new information can be provided or extenuating circumstances exist that would alter the application of any rule in this section. The appeal should be made in writing to the Academic Standards Committee of the college in which the student is enrolled. The written appeal must include the reasons for the appeal and the evidence to substantiate these reasons. The student should initiate the appeal process by contacting the secretary of the college Academic Standards Committee in the administrative office of her or his college immediately upon receipt of notification of the committee’s action, and at least ten calendar days before the beginning of the semester. The secretary will then inform the student of the deadline for submission of the written appeal.

2. If the student is dissatisfied with the committee’s action, he or she may submit an appeal in writing to the dean of her or his college within seven calendar days. The dean must respond in writing within seven calendar days of receipt of the appeal.

3. If the issue is not resolved within the college, further appeals may be made in writing to the provost and subsequently to the president of the university. Appeals beyond the college level will, however, be considered only if based on one or both of the following contentions: (a) appropriate procedures were not followed at the college level; (b) academic rules were not applied correctly at the college level.

Removal of Unmet High School Requirements
In some instances, students are admitted to Iowa State University but are not considered to be fully eligible for enrollment. To be eligible for enrollment at ISU, even though they may withdraw or drop out of school during the first year. The College of Liberal Arts and Sciences allows students until the end of their third year to remove unmet Foreign Language requirements.

4. The college Academic Standards Committee determines whether a student should be granted an extension due to extenuating circumstances.

5. Students will be permitted to register for each succeeding term at ISU during the year they are trying to remove unmet requirements. If the unmet requirements are not removed by the end of that year, the student’s registration will be canceled and a hold placed on their record.

Academic Renewal Policy
Students who are returning to Iowa State University to pursue an undergraduate degree after an extended absence may request permission to remove one or more of their complete academic terms from future degree and GPA considerations.

1. Eligibility. To be eligible for academic renewal consideration, students must meet these requirements:
 a. Students must not have enrolled at Iowa State University for five or more consecutive years.
 b. Students must not have graduated from Iowa State University.
 c. Students must currently be in good academic standing. (If the student was previously dismissed, he or she must be reinstated.)

2. Conditions. Academic renewal is based on the following conditions:
 a. All courses and credits that were taken during the chosen terms will be removed from consideration for GPA and degree requirements. Students may not combine courses from multiple terms to comprise the semester(s) or quarter(s) dropped. Degree requirements met during the dropped terms will ordinarily have to be repeated.
 b. Renewal may be applied only to academic terms completed prior to the students’ extended absence.
 c. All courses and grades for the chosen terms will remain on the students’ academic record.
 d. Designated repeats, drops and P/NP options will be reinstated for the terms dropped.
 e. Students who have used all of their drop options will be given one extra drop.
 f. Students may be granted only one academic renewal.

 To be eligible for a degree, students must complete a minimum of 24 credit hours at Iowa State after the granting of academic renewal.

3. Procedures.
 a. Students should discuss their desire to pursue academic renewal with an adviser in the college they wish to enter.
 b. Students should submit a petition for academic renewal to the Office of the Registrar. Students may obtain a petition from their college office.

**“Attempted” refers to credit hours both passed and failed at Iowa State University; “earned” includes transfer credits and credit hours passed at Iowa State University.

**Total quality points can also be determined by summing the quality points associated with each letter grade earned for each of the 65 credit hours completed by the student. See Index, Quality Points for more information. For example, assume a student has earned 52 credit hours of C and 13 credit hours of D. Total quality points may be determined as follows:

<table>
<thead>
<tr>
<th>Hours</th>
<th>Quality Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>52 x 2.00</td>
<td>104.00</td>
</tr>
<tr>
<td>13 x 1.00</td>
<td>13.00</td>
</tr>
<tr>
<td>117.00 total quality points</td>
<td></td>
</tr>
</tbody>
</table>
48 Academic Life

Satisfactory Academic Progress for Financial Aid Recipients

In order to remain eligible to receive financial aid from the student aid programs listed below, a student must meet both quantitative and qualitative academic standards as described within this policy. These standards are minimum expectations; specific aid programs may require a higher level of progress. A student not in compliance will be unable to receive aid from these programs until the deficiency has been corrected. Progress toward a degree will be reviewed each term and enforced at intervals no longer than one year. The programs affected by this policy are:

1. All students must meet the quality standard for continued enrollment in order to remain eligible to receive financial aid. See Index, Academic Progress, Quality Standard.
2. The quantity standard for full-time undergraduate students is described below:
 a. Duration of eligibility. Students may receive federal and institutional aid for a maximum of six academic years or twelve semesters. Students who have not accumulated sufficient credit hours at the end of this time period to complete their course of study will not be eligible to continue to receive financial aid.
 b. Annual credit hours to be earned. An undergraduate student who receives financial aid from one or more of the programs cited above must complete credit at a rate at least equal to the scale below, where the numbers in the top row indicate academic years completed, and those in the bottom row indicate credit hours required:

<table>
<thead>
<tr>
<th>Academic Year</th>
<th>Credit Hours Required</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>15</td>
</tr>
<tr>
<td>2</td>
<td>30</td>
</tr>
<tr>
<td>3</td>
<td>51</td>
</tr>
<tr>
<td>4</td>
<td>72</td>
</tr>
<tr>
<td>5</td>
<td>96</td>
</tr>
<tr>
<td>6</td>
<td>120</td>
</tr>
</tbody>
</table>
 c. Academic school year. This includes the summer session and regular semesters within any 12-month period. Credits earned during the summer session will be included when totaling credit hours earned each academic year.

3. The quantity standard for all part-time students:
 a. The duration of eligibility for part-time students is the same as above, but adjusted by the rate of attendance. For example, a student with a maximum duration of six years who is attending school half-time would have the duration of eligibility adjusted to twelve years.
 b. Part-time students who are otherwise eligible for financial aid must maintain the academic standards or rate of completion as stated above, adjusted by the number of hours attempted at the time the financial aid was disbursed.
 9 to 11 credit hours = 3/4 time
 6 to 8 credit hours = 1/2 time
4. Regaining eligibility. If a student is denied financial aid because of failure to comply with the above standards, the additionally required credit must be earned at the student’s own expense at Iowa State University, or the student must transfer sufficient hours taken at another institution to make up the deficiency.

5. Transfer students. A student transferring to Iowa State University for the first time will be treated as a first-term student and will not be held responsible for previous terms or credit hours taken at former institutions. If a student attends Iowa State University, transfers to another institution, and then transfers back to Iowa State, the credits earned at the other institution will be added to the student’s total earned credit hours.

6. Noncredit courses. Noncredit courses may be converted to credit hours by translating weekly contact hours as defined by the Office of the Registrar.

7. Appeals. Students ineligible for financial aid as a result of this policy, or ineligible for any other reason, may appeal this decision by submitting in writing extenuating circumstances beyond their control that affected their progress to the director of the Student Financial Aid Office and/or the designated representative. The appeal may be accompanied by a recommendation from the student’s academic adviser. If this appeal is denied, a further appeal may be made to a committee composed of the chair of the University Financial Aid Committee, the chair of the University Academic Advising Committee, and the director of Student Financial Aid. Appeals of other financial aid decisions, including loss of athletic grants-in-aid, shall also follow this procedure.

8. General Information and Definitions
 a. Incompletes, repeated courses, withdrawals. A student who receives an Incomplete, repeats a course, or withdraws may continue to receive financial aid upon reentering the university as long as the student completes the required credit hours for each academic school year and maintains the minimum quality-point standards. However, the duration of eligibility will not be extended for a student who withdraws or repeats a course. (See the section Duration of Eligibility.)
 b. Exceptions to the policy.

 (1) Professional students. For those students enrolled in the College of Veterinary Medicine, eligibility will be based on the academic criteria of the college.
 (2) Special undergraduate students. These students are eligible for Stafford only, and must maintain a minimum GPA of 2.00.
 c. Academic school year. This includes the summer session and regular semesters within any 12-month period. Credits earned during the summer session will be included when totaling credit hours earned each academic year.
 d. Changes in program of study. The duration of eligibility will not be extended for a student who changes from one program of study to another. (See Duration of Eligibility, in the section, Satisfactory Academic Progress for Financial Aid Recipients.)

 These academic progress criteria are defined in minimal terms. If the student earns only the minimum credit hours for financial aid eligibility, the student’s total eligibility for particular programs may be exhausted prior to degree completion. (See Duration of Eligibility and Credit Hour Earning Scale.) In addition, the student’s college or department may require more credit hours than required by this policy.

Sources of Help with Academic Problems

If students are having trouble in a course, the following persons and places may be able to provide help:

1. The instructor of the course may be able to help the student determine the problem with the course and recommend methods for improvements.
2. The student’s adviser may be able to recommend support services or remedial strategies.
3. The office of the department that offers the course may have a list of persons qualified to provide tutoring services for the course. The locations of the department offices are listed in the front of the ISU Directory.
4. The Student Counseling Service provides professional counseling services for students with problems which affect academic performance. Tutoring may be arranged through Tutoring Services in the Dean of Students Office.

Scholastic Recognition

The university recognizes those students who are doing exceptionally well in several ways.

1. Dean’s List. Each semester the university issues a dean’s list made up of those students who have carried at least 12 hours of graded or S-F courses with a 3.50 grade-point average or above for the semester. Courses taken on a P-NP basis do not count as part of the 12-hour requirement. No dean’s list is issued for summer school.

2. Annual Recognition Ceremony. In the spring the university sponsors a ceremony at which high scholarship students in all classes are recognized.

3. Graduation with Distinction.

 Undergraduates who have a cumulative grade point average of 3.50 or higher at the beginning of their final term are graduated “with distinction” provided they have completed 60 semester credits of coursework at Iowa State University at the time they graduate. Of these 60 credits, 50 graded credits are required. This recognition appears on the student’s permanent record and diploma, and in the commencement program. Recognition for students graduating in veterinary medicine is based only on the grades earned while enrolled in that college. Candidates for the bachelor of liberal studies degree may be graduated with distinction providing that they (a) have achieved a cumulative grade point average of 3.50 or higher for all ISU credits; (b) have achieved a cumulative grade point average of 3.50 or higher for all other credits taken at the other Iowa Regent universities; and (c) have completed 45 semester credits of coursework at the three Iowa Regent universities at the time of graduation.
Academic Privileges and Opportunities

A. Credit by Examination

Academic credit may be earned by means of special examinations. The Credit by Examination (CBE) program is available to current Iowa State students as well as prospective and entering students. Students with college-level proficiency in particular areas are encouraged to investigate credit by examination early in their college careers. For more information, see Index, Credit by Examination.

B. Pass-Not Pass Grading

Students who want to broaden their education at Iowa State may choose to take a maximum of 9 semester credit hours on a Pass-Not Pass basis, meaning that only a P or NP will be recorded as their final grade in the course. The purpose of P-NP grading is to encourage students to take courses outside the usual program of study for their major and minor disciplines. The following policies apply:

1. Undergraduate students who have earned at least 40 semester credits and who are not on temporary enrollment at the beginning of the semester are eligible. A special student must obtain approval from their academic adviser and college dean.

2. Only elective courses may be taken on a P-NP basis. In specific majors, some restrictions may apply, so students should consult with their academic adviser.

3. Except for restrictions on its own undergraduate majors, a department may not deny the availability of any of its course offerings on a P-NP basis.

4. Courses offered on a satisfactory-fail basis may not be taken P-NP.

5. Students should register for a P-NP course in the same manner and at the same time that they register for their other courses. Students should then change to P-NP by processing a schedule change form with their academic adviser’s signature in the P-NP approval section of the form.

6. Students who elect to change back to a graded basis should process the change using the P-NP section of the schedule change form.

7. Changes to or from a P-NP basis must be made before the last day to drop (usually the Friday of week 10 of the term). If the change from P-NP to a graded basis is made after the first 10 class days of a semester (first five days of summer session), the course will count toward the total P-NP credits allowed.

8. Registration on a P-NP basis is not indicated on the instructor’s class list. Students will receive a P if their grade is D minus or better and an NP if their grade was F.

9. Neither P (earned grade of D minus or better) nor NP (earned grade of F) is counted in calculating a student’s grade point average (GPA).

10. Students who pass a course taken under the P-NP system may not repeat the course. When students have taken a course and received a grade, they may not repeat it for P-NP credit.

11. When students change their curriculum, any P credits that they have accumulated will be accepted by the new department if such credits are in courses normally accepted by the department.

12. Credits taken on a P-NP basis at another institution and transferred to Iowa State may be applied as electives in a student’s degree program if the credits are otherwise acceptable in that program. The number of P-NP transfer credits that can be accepted depends on the number permitted by the institution from which the student is transferring. If a student transfers more than nine semester P-NP credits, no additional Iowa State P-NP credits can be applied to the student’s degree program.

C. Auditing

To audit a course means to enroll in the course without receiving credit for it. The instructor must approve all audits and students must register for audits by day 10 of the semester.

D. Independent Study

Students who elect to change back to a graded basis should process the change using the P-NP section of the schedule change form. If the change occurs after day 5 of the semester, the drop will count toward the total allowable ISU drops.

Requests to audit a course will be honored only if there is space available in the course after the four-week touch-tone registration period has ended. Once enrolled in a course, auditors have the same rights and privileges as any student taking the course for credit. Their names appear on the class list with a notation that they are auditing. To change the status of an audited course to a graded course, students must process the schedule change request form by day 5 of the semester. Audited courses do not appear on the student’s permanent record except by special request from the student and the student’s adviser with evidence showing that the student was actively involved in the course. Audited courses do not apply toward V.A. benefits.

An agreement to audit a 500 or 600 level course must be negotiated between the student and the course instructor. An audited course counts for only one credit in the graduate student’s allowable course load; however, fees will be assessed for the full number of credits for the course.

D. Independent Study

Most departments offer opportunities for independent study through a 490 course listing. Usually a minimum of 6 to 10 credits of coursework in the department is required before independent study is permitted. Students who are interested in this kind of experience in a particular department should check the catalog to determine the department’s prerequisites to register for 490. 490H sections are reserved for students in the University Honors Program.

Students should check with the department about procedures, in addition to meeting the prerequisites, for registering for 490. A written plan of study is prepared in advance with a faculty member who has agreed to supervise the student’s work. A student should meet with the department chair to approve the plan of study, and the final product, and to assign a grade. Initiation of the plan of study should occur prior to the semester in which enrollment is desired. Both the student and the instructor should agree on the number of credits for which the student will enroll, the amount and kind of work he or she will do for that credit, and the system by which she or he will be graded (A-F or S/F). Students should not expect to register for or add 490 credit without an instructor’s permission. Some colleges and/or departments have limits on the number of credits of 490 that may be applied toward graduation.

Appeal of Academic Grievances

Students who believe a faculty member (in his or her academic capacity) has behaved unfairly or unprofessionally may have their grievance reviewed through the procedure described below. A student may not initiate an appeal more than one year following completion of the course, and may not initiate the appeal of a course grade beyond midterm of the semester following her or his completion of the course.

Prior to initiating a formal appeal, a student may wish to discuss the situation informally with a staff member of the Dean of Students Office, who can offer advice as to the most effective way to deal with it. Grievances arising out of classroom or other academic situations should be resolved, if at all possible, with the individual instructor involved. If resolution cannot be reached, or if the grievance involves sexual or racial harassment and the student prefers not to deal directly with the instructor, a student should discuss the grievance with the instructor’s department chair and submit it in writing to him or her. The department chair will discuss the grievance with the instructor involved and/or refer it to a departmental grievance committee. The department chair should respond in writing within five class days of receipt of the written notice of the grievance. If resolution of the grievance cannot be made with the department chair, the student may appeal to the dean of the dean’s college. (In the case of a grievance involving a Graduate College policy or procedure, an appeal of the chair’s decision should be directed to the Dean of the Graduate College rather than to the dean of the instructor’s college.) The dean will hear the explanations of the department chair and instructor, and should respond to the student in writing within ten class days of receipt of the written notice of the appeal. If the grievance cannot be resolved with the dean, the student may forward a written appeal to the provost, who will convene a quorum of the Committee to Review Student Grievances (see below) to hear the appeal within ten class days of receipt of the written notice of the appeal. Within five class days following the hearing, the provost will make a decision in regard to the grievance and will transmit this decision in writing to the grievant, the dean, the department chair, and the i
In order that their right to privacy be protected, students and their parents are notified concerning student records. A minimum of two faculty members, two students, and the chairperson shall constitute the quorum for a grievance hearing.

Information Disclosure
Iowa State University is required by law to make available to enrolled students, prospective students, and their parents certain information about the University. The information disclosure is available at the following URL: www.iastate.edu/disclosure. Students without electronic access can obtain the information from the Office of the Registrar, 214 Alumni Hall, 515-294-1840 or from the Office of Admissions, 100 Alumni Hall, 515-294-5836. A paper copy of the information will be provided upon request.

Student Records
Iowa State University maintains various records concerning students, to document their academic progress as well as to record their interactions with university staff and officials. In order that their right to privacy be preserved and to conform with federal law, the university has established certain policies to govern the handling of student records. All policies conform with FERPA, the Family Educational Rights and Privacy Act (also known as the Buckley Amendment).

Public Information
Certain information concerning students is considered to be open to the public upon inquiry. This public information is of two types: directory information and other information not included in the ISU Directory. Directory information includes local address, telephone number, and electronic mail address; home town, college, curriculum, year in school, and enrollment status. Other public information includes mailing address, date and place of birth, dates of attendance at Iowa State, expected date of graduation, names of advisers, awards and academic honors, Iowa State degree(s) and date(s) awarded, previous educational institutions attended, degrees received, dates of attendance, full- or part-time status, participation in officially recognized activities and sports, and weight and height of members of athletic teams.

Public information will be released by the registrar to anyone upon inquiry, unless students have requested that their information not be released. A request to have public information withheld should be made at the Office of the Registrar, 214 Alumni Hall. If the request is granted, the registrar will notify the appropriate university offices.

It is the policy of the university to respect the privacy of students; therefore, only lists and labels containing names of students with directory information will be made available to members of the public. This directory information will be provided on a time-available basis for the cost of producing the information. Directories are also available in the bookstores for those persons needing directory information. Directory information is available on the World Wide Web using the on-line phonebook; and from printed directories, which may be purchased at the bookstores.

Confidential Information
With the exception of the information noted above, all student records are considered to be confidential and are open only to university personnel; to offices and agencies carrying out their accreditation and audit functions of university programs; to persons in compliance with a judicial order; to organizations conducting studies for or on behalf of educational institutions or agencies for the purpose of developing, validating, or administering predictive tests, administering student aid programs, and improving instruction; and to persons in an emergency in order to protect the health or safety of students or other persons.

The following policies govern access to student records:

1. Each type of student record is the responsibility of a designated university official, and only that person or the dean or director to whom that person reports has authority to release the record. The responsible officials are:
 a. Academic records: registrar
 b. Admissions records: director of admissions
 c. Financial aid records: director of student financial aid
 d. Business records: university controller
 e. Traffic and security records: director, ISU Department of Public Safety
 f. Medical records: director, Student Health Center
 g. Counseling records and test scores: director, Student Counseling Service
 h. Actions of Academic Standards Committees: college deans
 i. Disciplinary records: dean of students
 j. Residence hall records: director of residence
 k. Placement records: college placement officers
 l. Evaluations for admission to ISU graduate or professional programs: deans or department chairs
 m. Special academic programs: faculty member in charge of the program and the dean of the college.

2. The responsible official may release records to university personnel who have a legitimate need for the information. “University personnel” includes students appointed to specified committees. A list of those persons who normally have access to each type of student record is available in 214 Alumni Hall.

3. All student records are reviewed periodically. Information concerning the frequency of review and expurgation of specific records is available in 214 Alumni Hall.

4. Students have the right to review upon request any records that pertain directly to them, and may obtain a copy of the record for a fee. This provision does not apply to records to which the student has waived his or her right to review, nor does it apply to medical and counseling records.
5. A student may waive the right to review a specific record by submitting in writing a statement to this effect to the official responsible for that record.

6. A file containing copies of records pertinent to advising is maintained on each student for use by the student’s adviser. Ordinarily this file is kept in the possession of the adviser, but for convenience it may be stored elsewhere such as in the department office. When the student changes majors, or changes advisers within the same major, the file is transferred to the new adviser. Under the university’s student records policy, the student is considered to have the right of access to this file.

7. Medical and counseling records shall be released at the written request of the student to medical or psychological professionals outside the university or to university officials.

8. University personnel who have access to student records in the course of carrying out their university responsibilities shall not be permitted to release the record to persons outside the university, unless authorized in writing by the student or unless one of the exceptions stated earlier is involved.

9. Confidential information may be released to parents by obtaining the student’s written consent or by having the parent establish the student’s dependency as defined by the Internal Revenue Code of 1954, section 152, by furnishing a certified copy of the parent’s most recent federal income tax return.

10. Iowa high schools receive a freshman year report containing first year academic progress data of all their graduates attending Iowa State University for the purpose of evaluating and improving their instructional programs.

11. The officials responsible for custody of student records will maintain records of requests and disclosures of personally identifiable non-public information. The records of requests, whether granted or not, shall include the person or agency requesting the information and the purpose of the release. These records of requests and disclosures will be available to the student on request. Records of requests and disclosures are not necessary for requests made by the student, by school officials in carrying out their official responsibilities, by persons employed by agencies and offices conducting audits and accreditations of university programs, or any of the other exceptions listed previously.

Posting Grades and Test Scores
The test scores or course grades of students may be posted in public locations to inform students of their performance provided that the information is presented in such a way as not to reveal the name or entire ID number of specific individuals.

Release of Grades
Reports of a student’s grades are not routinely sent to the student’s parents. Parents of students under 18 years of age may obtain grades by writing to the Office of the Registrar. The grades of other students will be sent to their parents only with written permission of the student, or by establishing dependency as outlined in item 9 under Confidential Information.

When Records May Be Withheld
The appropriate university official may request that a student’s record not be released if that student is delinquent in an account with the university or an affiliated organization. The effect of this action is that a transcript will not be released and registration will be withheld. The appropriate official may also request that records be withheld in instances when official disciplinary action has been taken against a student. Authorization for these actions is supported by The Iowa Code and The Iowa Administrative Code.

In order for such an action to be rescinded, the Office of the Registrar must receive written authorization from the official who originally requested the action, indicating that the student has met the obligation. Further information about this policy can be obtained from the Office of the Registrar.

Review and Challenge of Records
A student may challenge the accuracy of handling of records maintained by the university on grounds that the records are inaccurate, misleading, or otherwise violate the privacy or other rights of the student. The university has established the following procedures to provide an opportunity for the student to correct or delete inaccurate records, or to insert into the record a written explanation of the content.

Students who question their records should discuss the issue first with the individual staff person who established or maintains the records. Presumably most issues can be resolved at this level. If a satisfactory resolution cannot be reached, the student should submit the question to the head of the department in which the record is maintained.

The department head will discuss the issue with the staff person and the student challenging the record. If resolution cannot be reached after meeting with the department head, the student may submit the question to the dean or director to whom the department head is responsible. The dean or director will investigate, and will respond in writing.

If the record has not been reconciled through these measures, the student may direct a written request to the president of the university. The president will convene an Ad Hoc Hearing Panel of Access and Confidentiality of Educational Records, composed of two faculty members, two students, and one administrator, appointed by the president for a period of one year, with the president or a designee serving as nonvoting chairperson. The student shall be given an opportunity to present to the panel evidence relevant to the issues raised, and the panel will issue a written response.

ISUCard and Identification Number
Each student is assigned a random university identification number on entry to the university. This number appears on the ISUCard that is provided to each student at the time of first registration. The ISUCard, along with a current registration receipt, may be required for some services and/or activities. At the time the ISUCard is issued each student also selects a personal identification number (PIN), which is required for electronic access to personal student information.

Loss of an ISUCard should be reported immediately to the ISUCard Office, where the lost card will be invalidated and replaced for a charge. Disciplinary sanctions may be imposed for improper use of the ID card or attempts to obtain, by fraudulent means, any form of identification.

Social Security Number
Social security numbers are collected from prospective and current students, for administrative coordination and record identification purposes only. Although procedures have been established by the registrar for assignment of an alternative number upon request, students who wish to be employed on campus or to receive financial aid are required by law to provide their social security numbers for administrative use. The social security number is a confidential record and is maintained as such by the university in accordance with the Family Educational Rights and Privacy Act.

Policy on Student Names
Iowa Regents universities have a common policy regarding student names and name changes. The name on the student record should be the student’s complete and legal name. In evaluating and processing all name change requests, the university reserves the right to require adequate and appropriate documentation as warranted.
<table>
<thead>
<tr>
<th>Designators</th>
<th>Programs</th>
</tr>
</thead>
<tbody>
<tr>
<td>A E</td>
<td>Agricultural Engineering</td>
</tr>
<tr>
<td>A Ecl</td>
<td>Animal Ecology</td>
</tr>
<tr>
<td>Acct</td>
<td>Accounting</td>
</tr>
<tr>
<td>Advrt</td>
<td>Advertising</td>
</tr>
<tr>
<td>Aer E</td>
<td>Aerospace Engineering</td>
</tr>
<tr>
<td>Af Am</td>
<td>African American Studies</td>
</tr>
<tr>
<td>AFAS</td>
<td>Air Force Aerospace Studies</td>
</tr>
<tr>
<td>AgEdS</td>
<td>Agricultural Education and Studies</td>
</tr>
<tr>
<td>Agron</td>
<td>Agronomy</td>
</tr>
<tr>
<td>Am In</td>
<td>American Indian Studies</td>
</tr>
<tr>
<td>An S</td>
<td>Animal Science</td>
</tr>
<tr>
<td>Anthr</td>
<td>Anthropology</td>
</tr>
<tr>
<td>Arch</td>
<td>Architecture</td>
</tr>
<tr>
<td>Art</td>
<td>Art and Design</td>
</tr>
<tr>
<td>Art H</td>
<td>Art History</td>
</tr>
<tr>
<td>ArtEd</td>
<td>Art Education</td>
</tr>
<tr>
<td>ArtGr</td>
<td>Art: Graphic Design</td>
</tr>
<tr>
<td>ArtD</td>
<td>Art: Interior Design</td>
</tr>
<tr>
<td>ArtS</td>
<td>Integrated Studio Arts</td>
</tr>
<tr>
<td>AST</td>
<td>Agricultural Systems Technology</td>
</tr>
<tr>
<td>Astro</td>
<td>Astronomy and Astrophysics</td>
</tr>
<tr>
<td>Ath</td>
<td>Athletics</td>
</tr>
<tr>
<td>B M E</td>
<td>Biomedical Engineering</td>
</tr>
<tr>
<td>B M S</td>
<td>Biomedical Sciences</td>
</tr>
<tr>
<td>BBMB</td>
<td>Biochemistry, Biophysics, and Molecular Biology</td>
</tr>
<tr>
<td>BCB</td>
<td>Bioinformatics and Computational Biology</td>
</tr>
<tr>
<td>Biol</td>
<td>Biology</td>
</tr>
<tr>
<td>Bot</td>
<td>Botany</td>
</tr>
<tr>
<td>BPM I</td>
<td>Biological/Pre-Medical Illustration</td>
</tr>
<tr>
<td>BusAd</td>
<td>Business Administration</td>
</tr>
<tr>
<td>C E</td>
<td>Civil Engineering</td>
</tr>
<tr>
<td>C I</td>
<td>Curriculum Instruction</td>
</tr>
<tr>
<td>C R P</td>
<td>Community and Regional Planning</td>
</tr>
<tr>
<td>Ch E</td>
<td>Chemical Engineering</td>
</tr>
<tr>
<td>CAS</td>
<td>Complex Adaptive Systems</td>
</tr>
<tr>
<td>Chem</td>
<td>Chemistry</td>
</tr>
<tr>
<td>Chin</td>
<td>Chinese</td>
</tr>
<tr>
<td>CJ St</td>
<td>Criminal Justice Studies</td>
</tr>
<tr>
<td>CI St</td>
<td>Classical Studies</td>
</tr>
<tr>
<td>CmDis</td>
<td>Communication Disorders</td>
</tr>
<tr>
<td>Co Ed</td>
<td>Counselor Education</td>
</tr>
<tr>
<td>Com S</td>
<td>Computer Science</td>
</tr>
<tr>
<td>ComSt</td>
<td>Communication Studies</td>
</tr>
<tr>
<td>Con E</td>
<td>Construction Engineering</td>
</tr>
<tr>
<td>Cpr E</td>
<td>Computer Engineering</td>
</tr>
<tr>
<td>Dance</td>
<td>Dance</td>
</tr>
<tr>
<td>Dsn S</td>
<td>Design Studies</td>
</tr>
<tr>
<td>E App</td>
<td>Engineering Applications</td>
</tr>
<tr>
<td>E E</td>
<td>Electrical Engineering</td>
</tr>
<tr>
<td>E M</td>
<td>Engineering Mechanics</td>
</tr>
<tr>
<td>E Sci</td>
<td>Engineering Science</td>
</tr>
<tr>
<td>Econ</td>
<td>Economics</td>
</tr>
<tr>
<td>EdAAdm</td>
<td>Educational Administration</td>
</tr>
<tr>
<td>EEB</td>
<td>Ecology and Evolutionary Biology</td>
</tr>
<tr>
<td>EL PS</td>
<td>Educational Leadership and Policy Studies</td>
</tr>
<tr>
<td>Engl</td>
<td>English</td>
</tr>
<tr>
<td>Engr</td>
<td>Engineering</td>
</tr>
<tr>
<td>EnSci</td>
<td>Environmental Science</td>
</tr>
<tr>
<td>Ent</td>
<td>Entomology</td>
</tr>
<tr>
<td>Env S</td>
<td>Environmental Studies</td>
</tr>
<tr>
<td>Ex Sp</td>
<td>Exercise and Sport Science</td>
</tr>
<tr>
<td>F Lng</td>
<td>Foreign Languages and Literatures</td>
</tr>
<tr>
<td>FCEdS</td>
<td>Family and Consumer Sciences</td>
</tr>
<tr>
<td>Fin</td>
<td>Finance</td>
</tr>
<tr>
<td>For</td>
<td>Forestry</td>
</tr>
<tr>
<td>Frnch</td>
<td>French</td>
</tr>
<tr>
<td>FS HN</td>
<td>Food Science and Human Nutrition</td>
</tr>
<tr>
<td>Gen</td>
<td>Genetics</td>
</tr>
<tr>
<td>Genet</td>
<td>Genetics—Interdisciplinary</td>
</tr>
<tr>
<td>Geol</td>
<td>Geology</td>
</tr>
<tr>
<td>Ger</td>
<td>German</td>
</tr>
<tr>
<td>Geron</td>
<td>Gerontology</td>
</tr>
<tr>
<td>Gr St</td>
<td>Graduate Studies</td>
</tr>
<tr>
<td>Greek</td>
<td>Greek</td>
</tr>
<tr>
<td>H P C</td>
<td>Historical, Philosophical, and Comparative Studies in Education</td>
</tr>
<tr>
<td>H S</td>
<td>Health Studies</td>
</tr>
<tr>
<td>HD FS</td>
<td>Human Development and Family Studies</td>
</tr>
<tr>
<td>Hg Ed</td>
<td>Higher Education</td>
</tr>
<tr>
<td>Hist</td>
<td>History</td>
</tr>
<tr>
<td>Hon</td>
<td>Honors</td>
</tr>
<tr>
<td>Hort</td>
<td>Horticulture</td>
</tr>
<tr>
<td>HRI</td>
<td>Hotel, Restaurant, and Institution Management</td>
</tr>
<tr>
<td>I E</td>
<td>Industrial Engineering</td>
</tr>
<tr>
<td>I R</td>
<td>Industrial Relations</td>
</tr>
<tr>
<td>I Tec</td>
<td>Industrial Technology</td>
</tr>
<tr>
<td>Ia LL</td>
<td>Iowa Lakeside Laboratory</td>
</tr>
<tr>
<td>IGS</td>
<td>Interdisciplinary Graduate Studies</td>
</tr>
<tr>
<td>Imbio</td>
<td>Immunobiology</td>
</tr>
<tr>
<td>InfAs</td>
<td>Information Assuarance</td>
</tr>
<tr>
<td>IntSt</td>
<td>International Studies</td>
</tr>
<tr>
<td>Ital</td>
<td>Italian</td>
</tr>
<tr>
<td>JI MC</td>
<td>Journalism and Mass Communication</td>
</tr>
<tr>
<td>L A</td>
<td>Landscape Architecture</td>
</tr>
<tr>
<td>LAS</td>
<td>Liberal Arts and Sciences Cross-Disciplinary Studies</td>
</tr>
<tr>
<td>Latin</td>
<td>Latin</td>
</tr>
<tr>
<td>Lib</td>
<td>Library</td>
</tr>
<tr>
<td>Ling</td>
<td>Linguistics</td>
</tr>
<tr>
<td>M E</td>
<td>Mechanical Engineering</td>
</tr>
<tr>
<td>M S</td>
<td>Military Science</td>
</tr>
<tr>
<td>M S E</td>
<td>Materials Science and Engineering</td>
</tr>
<tr>
<td>Mat E</td>
<td>Materials Engineering</td>
</tr>
<tr>
<td>Math</td>
<td>Mathematics</td>
</tr>
<tr>
<td>MCDOB</td>
<td>Molecular, Cellular and Developmental Biology</td>
</tr>
<tr>
<td>Mgmt</td>
<td>Management</td>
</tr>
<tr>
<td>Micro</td>
<td>Microbiology</td>
</tr>
<tr>
<td>MIS</td>
<td>Management Information Systems</td>
</tr>
<tr>
<td>Mkt</td>
<td>Marketing</td>
</tr>
<tr>
<td>Mteor</td>
<td>Meteorology</td>
</tr>
<tr>
<td>Music</td>
<td>Music</td>
</tr>
<tr>
<td>N S</td>
<td>Naval Science</td>
</tr>
<tr>
<td>Neuro</td>
<td>Neuroscience</td>
</tr>
<tr>
<td>OLHBD</td>
<td>Organizational Learning and Human Resource Development</td>
</tr>
<tr>
<td>P M</td>
<td>Pest Management</td>
</tr>
<tr>
<td>P Phy</td>
<td>Plant Physiology</td>
</tr>
<tr>
<td>Perf</td>
<td>Performing Arts</td>
</tr>
<tr>
<td>Phil</td>
<td>Philosophy</td>
</tr>
<tr>
<td>Phys</td>
<td>Physics</td>
</tr>
<tr>
<td>PI HP</td>
<td>Plant Health and Protection</td>
</tr>
<tr>
<td>PI P</td>
<td>Plant Pathology</td>
</tr>
<tr>
<td>Pol S</td>
<td>Political Science</td>
</tr>
<tr>
<td>POM</td>
<td>Production/Operations Management</td>
</tr>
<tr>
<td>Port</td>
<td>Portuguese</td>
</tr>
<tr>
<td>Psych</td>
<td>Psychology</td>
</tr>
<tr>
<td>Relig</td>
<td>Religious Studies</td>
</tr>
<tr>
<td>ResEv</td>
<td>Research and Evaluation</td>
</tr>
<tr>
<td>Rus</td>
<td>Russian</td>
</tr>
<tr>
<td>Soc</td>
<td>Sociology</td>
</tr>
<tr>
<td>Sp Cm</td>
<td>Speech Communication</td>
</tr>
<tr>
<td>Sp Ed</td>
<td>Special Education</td>
</tr>
<tr>
<td>Span</td>
<td>Spanish</td>
</tr>
<tr>
<td>Stat</td>
<td>Statistics</td>
</tr>
<tr>
<td>SusAg</td>
<td>Sustainable Agriculture</td>
</tr>
<tr>
<td>T C</td>
<td>Textiles and Clothing</td>
</tr>
<tr>
<td>T SC</td>
<td>Technology and Social Change</td>
</tr>
<tr>
<td>Thre</td>
<td>Theatre</td>
</tr>
<tr>
<td>Tox</td>
<td>Toxicology</td>
</tr>
<tr>
<td>Trans</td>
<td>Transportation</td>
</tr>
<tr>
<td>TrLog</td>
<td>Transportation and Logistics</td>
</tr>
<tr>
<td>U St</td>
<td>University Studies</td>
</tr>
<tr>
<td>V C S</td>
<td>Veterinary Clinical Sciences</td>
</tr>
<tr>
<td>V Med</td>
<td>Veterinary Medicine</td>
</tr>
<tr>
<td>V MPM</td>
<td>Veterinary Microbiology and Preventive Medicine</td>
</tr>
<tr>
<td>V Pth</td>
<td>Veterinary Pathology</td>
</tr>
<tr>
<td>VDPAM</td>
<td>Veterinary Diagnostic and Production Animal Medicine</td>
</tr>
<tr>
<td>W Res</td>
<td>Water Resources</td>
</tr>
<tr>
<td>W S</td>
<td>Women's Studies</td>
</tr>
<tr>
<td>Zool</td>
<td>Zoology</td>
</tr>
</tbody>
</table>
Undergraduate and Professional Degree Programs

The university is organized into nine colleges, including the Graduate College. Seven colleges offer undergraduate degree programs, and the College of Veterinary Medicine offers the Doctor of Veterinary Medicine degree. For a listing of the more than 100 majors offered by the Graduate College, see the summary at the end of the Graduate College section of this publication.

Iowa State University is accredited by the Commission of Institutions of Higher Education of the North Central Association of Colleges and Schools.

The main undergraduate academic programs of each college are listed below, together with the degrees awarded upon completion. In many cases certain minors, options, or electives allow for increased specialization within the programs. Programs which are administered jointly by two colleges are listed within both colleges.

College of Agriculture
- Agricultural Biochemistry, B.S.
- Agricultural Business, B.S.
- Agricultural Education, B.S.
- Agricultural Extension Education, B.S.
- Agricultural Studies, B.S.
- Agricultural Systems Technology, B.S.
- Agronomy, B.S.
- Animal Ecology, B.S.
- Animal Science, B.S.
- Dairy Science, B.S.
- Dietetics, B.S.
- Entomology, B.S.
- Environmental Science, B.S.
- Environmental Studies, B.S.
- Food Science, B.S.
- Forestry, B.S.
- Genetics, B.S.
- Horticulture, B.S.
- International Agriculture, B.S.
- Microbiology, B.S.
- Nutritional Science, B.S.
- Pest Management, B.S.
- Plant Health and Protection, B.S.
- Professional Agriculture, B.S.
- Public Service and Administration in Agriculture, B.S.
- Seed Science, B.S.
- Zoology, B.S.

College of Business
- Accounting, B.S.
- Finance, B.S.
- International Business, B.S.
- Management, B.S.
- Management Information Systems, B.S.
- Marketing, B.S.
- Production/Operations Management, B.S.
- Transportation and Logistics, B.S.

College of Design
- Architecture, B.Arch.
- Art and Design, B.A., B.F.A.
- Graphic Design, B.F.A.
- Interior Design, B.F.A.
- Landscape Architecture, B.L.A.

College of Education
- Community Health Education, B.S.
- Early Childhood Education, B.S.
- Elementary Education, B.S.
- Environmental Studies, B.S.
- Exercise and Sport Science, B.S.
- Industrial Technology, B.S.
- Secondary Education (See licensure programs offered by the colleges of Agriculture, Design, Education, Family and Consumer Sciences, and Liberal Arts and Sciences.)

College of Engineering
- Aerospace Engineering, B.S.
- Agricultural Engineering, B.S.
- Chemical Engineering, B.S.
- Civil Engineering, B.S.
- Computer Engineering, B.S.
- Construction Engineering, B.S.
- Electrical Engineering, B.S.
- Engineering Operations, B.S.
- Engineering Science, B.S.
- Industrial Engineering, B.S.
- Materials Engineering, B.S.
- Mechanical Engineering, B.S.

College of Family and Consumer Sciences
- Apparel Merchandising, Design, and Production, B.S.
- Child and Family Services, B.S.
- Dietetics, B.S.
- Early Childhood Education, B.S.
- Family and Consumer Sciences Education and Studies, B.S.
- Family Resource Management and Consumer Sciences, B.S.
- Food Science, B.S.
- Hotel, Restaurant, and Institution Management, B.S.
- Housing and the Near Environment, B.S.
- Nutritional Science, B.S.

College of Liberal Arts and Sciences
- Advertising, B.A.
- Anthropology, B.A., B.S.
- Biochemistry, B.S.
- Biological/Pre-Medical Illustration, B.A.
- Biology, B.S.
- Biophysics, B.S.
- Botany, B.S.
- Chemistry, B.A., B.S.
- Computer Science, B.S.
- Earth Science, B.A., B.S.
- Economics, B.S.
- English, B.A., B.S.
- Environmental Science, B.S.
- Environmental Studies, B.A., B.S.
- Foreign Languages and Literatures
 - French, B.A.
 - German, B.A.
 - Spanish, B.A.
- Genetics, B.S.
- Geology, B.S.
- History, B.A., B.S.
- Interdisciplinary Studies, B.A., B.S.
- International Studies, B.A., B.S.
- Journalism and Mass Communication, B.A., B.S.
- Liberal Studies, B.L.S.
- Linguistics, B.A.
- Mathematics, B.S.
- Meteorology, B.S.
- Music, B.A., B.Mus.
- Performing Arts, B.A.
- Philosophy, B.A.
- Physics, B.S.
- Political Science, B.A.
- Psychology, B.A., B.S.
- Religious Studies, B.A.
- Russian Studies, B.A.
- Sociology, B.A., B.S.
- Speech Communication, B.A., B.S.
- Statistics, B.S.
- Women’s Studies, B.A., B.S.
- Zoology, B.S.

College of Veterinary Medicine
- Veterinary Medicine, D.V.M.
A student fulfilling the requirements of two separate curricula in different colleges may, in certain cases, receive a degree from one of the colleges with double majors crossing college lines. Each major in a double major must include a minimum of fifteen credits not simultaneously used to meet any other department, college, or university requirement. The permission of both deans must be obtained and each degree program must be approved by the appropriate department and dean.

Minors

Requirements for an undergraduate minor are specified by many departments and programs in the university; a record of completion of such requirements appears on a student’s transcript. Lists of undergraduate minors offered by each college appear in the college description; minors offered by cross-disciplinary programs not administered by a single college include gerontology, and international studies. Undergraduate students in any college may elect to meet the requirements of any undergraduate minor offered in the university. Credits used to meet the minor requirements may also be used to satisfy the credit requirement for graduation and to meet credit requirements in courses numbered 300 or above. Some students may, however, have to exceed the graduation credit requirement set by their college in order to meet the requirements of both the minor and the curriculum/major.

All minors require at least 15 credits, including at least 6 credits taken at Iowa State University in courses numbered 300 or above. The minor must include at least 9 credits that are not used to meet any other department, college, or university requirement. Courses taken for a minor may not be taken on a pass-not pass basis. Specific requirements and/or restrictions are available from the department or program offering the minor.

English Proficiency Policy

Iowa State University believes that written communication is a fundamental skill of an educated person; therefore its graduates are expected to acquire reasonable competence in written communication during their educational careers. The following are designed to ensure that this competence is developed and maintained:

1. All students must earn credit in a sequence of basic composition courses (English 104 and 105) normally in the freshman year.

2. Continued development of communication skills following the freshman year is the responsibility of the student’s major department. This development may be promoted by requiring and critically evaluating term papers and other written assignments as part of courses offered by the department and by encouraging students to enroll in advanced English composition courses that meet their particular needs.

3. Each department is responsible for certifying that its majors have achieved an adequate level of proficiency in written communication at the time of graduation.

Library Study

Independent study and investigation through the use of books and libraries enable students to grow intellectually and professionally in college and afterward. For this reason, all students receive instruction in the use of the University Library, including practice in how to locate the published literature of their respective fields of study.

U.S. Diversity and International Perspective Requirements

One of Iowa State University’s goals is to prepare its students to meet the challenges of responsible citizenship and effective professional roles in a culturally diverse global community. To help achieve this goal, all undergraduate students must fulfill graduation requirements in two areas: U.S. Diversity and International Perspectives. The specific standards used to certify students’ fulfillment of these requirements vary from major to major, but all require three credits of course work (or the equivalent in some alternative academic experience) for each of the requirements. In most cases, courses used to meet the U.S. Diversity and International Perspectives requirements can also be used to fulfill general education requirements of the student’s college or requirements of the student’s major. Students should consult with advisers for details of the requirements in particular majors.

The focus of the U.S. Diversity requirement is the multicultural society of the United States. Courses or alternative academic work used to meet the requirement address significant manifestations of human diversity and provide students with insights that enhance their understanding of diversity among people in the U.S. The focus of the International Perspectives requirement is the global community. Its objective is to promote students’ understanding of cultural diversity and interdependence on a global scale. A period of immersion in a foreign culture is often a particularly effective way of meeting these objectives, so Iowa State University encourages the use of study-abroad experiences as a means of fulfilling the International Perspectives requirement. International students, because they are “studying abroad” from their home country’s
perspective, are normally deemed to have met the International Perspectives requirement.

Curriculum Requirements
The curriculum requirements, both in number of credit hours and specific courses, are guidelines for the student and his or her adviser in planning an academic program. The curriculum is subject to change and because of these changes, adjustments may need to be made.

Catalog in Effect
A student may choose to graduate under the catalog in effect at the time of graduation, or one of the two immediately preceding catalogs, provided it covers a period of his or her enrollment. Full requirements of the chosen catalog must be met except that adjustments will be made in instances where courses are no longer available or where programs have been changed.

Special Programs
Honors Program
The Iowa State University Honors Program is designed for students who have demonstrated the ability and motivation to assume more than the usual responsibility for their undergraduate education. The goal of the program is to enable Honors students to gain maximum benefit from their undergraduate education. Students who graduate in the Honors Program receive the Honors designation on their transcripts and on their baccalaureate diplomas.

Special educational opportunities. Students in the Honors Program determine their educational objectives and devise an individualized program of study to meet those objectives. An honors program may include substitutions for required courses, combinations of courses from several departments to form a new major or minor, Honors courses or seminars, independent study and research, and other forms of innovation. Information about Honors courses and seminars for the current academic year can be obtained from the Honors Program Office.

Other benefits. Members of the Honors Program have 24-hour access to the Honors building as a quiet place to study, use the computers, and visit with other Honors students. Students also have off-campus opportunities such as attending Honors seminars and Wingspread conferences. Full members—those with approved honors degree programs—receive extended loan privileges at the Library, priority scheduling, and the opportunity to apply for research funds.

Eligibility. Students who have a cumulative grade-point average of at least 3.35 become eligible to apply for admission to the Honors Program during their second semester in residence and continue to be eligible for admission as long as they have at least 48 semester credits remaining before graduation. Decisions with respect to admission are made by the college Honors Program committees.

Freshman Honors Program. Entering freshmen with outstanding high school records and academic ability may be eligible to participate in the Freshman Honors Program. The Freshman Honors Program, which is designed to introduce students to an honors education, consists of special honors sections of English 105 and Library 160, a Freshman Honors Seminar, and advising by specially selected honors advisers. Students may also choose to participate in the Mentor Program, designed to introduce students to the research arena. Participants select an area of interest and are matched with an Honors member conducting research in that area. Admission to the Freshman Honors Program is limited and by invitation, and is based on past academic achievement, potential, and interest in an honors education.

Further information. Further information concerning the University Honors Program and the Freshman Honors Program can be obtained from the Honors Program Office in Osborn Cottage.

Inter-institutional Programs
Students have the opportunity to complete two years of study at another institution and the last two years at Iowa State through coordinated programs offered by the College of Family and Consumer Sciences.

Dual-degree Programs
Students who complete the first three years in certain curricula at Iowa State and who satisfactorily complete the first year in a recognized medical, dental, veterinary medical, or law curriculum may then be awarded a bachelor’s degree from Iowa State. (See Index, Preprofessional Study.)

Iowa Lakeside Laboratory
Iowa Lakeside Laboratory is an off-campus teaching facility situated on a 140-acre campus on West Okoboji Lake in Northwest Iowa. It is run cooperatively by Iowa State University, the University of Iowa, and the University of Northern Iowa. Each summer Iowa State University students can take up to three undergraduate and/or graduate courses in archaeology, biology, ecology, environmental science, and/or geology for credit at Lakeside (see course listings under Iowa Lakeside Laboratory). All Lakeside courses are small, full-immersion, field-oriented courses that run for either 3 or 4 weeks. Lakeside also offers a variety of short courses for teachers and a series of non-technical short courses on various aspects of the natural history of Iowa. Information about Lakeside courses as well as registration and housing information can be obtained from the Administrative Office, Iowa Lakeside Laboratory, 131 Bessey Hall.

Gulf Coast Research Laboratory
Through an affiliation with Gulf Coast Research Laboratory (GCRL) at Ocean Springs, Mississippi, Iowa State University provides an opportunity for students the opportunity to take courses and do research relating to marine environments during the summer. Credit in taken at GCRL may be transferred back to ISU degree programs. Brochures listing courses taught in a given summer at GCRL are available by writing or visiting 201 Bessey Hall. Information is also available from the GCRL web site at seahorse ims usm edu/gindex htm.

Federal Cooperative Education Program
Federal Cooperative Education combines classroom learning with paid work experience through either alternate (full-time) or parallel (concurrent, part-time) periods of work and study. In general, students under this program will require one year more to complete the usual curriculum requirements. Initial placement usually comes after completion of the first or second year. The student must observe regulations of the employer and not expect special treatment. University students do not apply to cooperative students, nor are students allowed time off for university activities. A student may not enroll in classes at any educational institution during a period of full-time cooperative employment without university approval. Those in a cooperative program are considered by the university to be students subject to university regulations concerning conduct during this period and are liable to dismissal from the university for misconduct on the job. They may continue living in university housing during work periods. Cooperative students pay no fees to the university during work periods, but may attend student activities provided they pay the activity fee.

The Washington Center Program
Iowa State University, in conjunction with The Washington Center, offers its students the opportunity to gain academic credit and first-hand professional work experience in the governmental, non-profit, and private sectors through a semester-long internship in the nation’s capital. The Washington Center, the largest non-profit organization of its kind, places students in a variety of internships and also offers a wide array of academic programs and seminars to complement their internship experience. Further information about the requirements can be obtained from Career Services, 12 Alumni Hall, 515-294-9490.

Regent Universities Student Exchange Program
Iowa State University students may take courses at either of the other two Regent universities for Iowa State resident credit. Regular, degree-bound students in good standing at any of the three Regent universities may attend another Regent university for a maximum of two semesters, and the credits earned at the other university will be counted as resident credit at the home institution. Approval for participation and credit in the exchange program must be obtained well in advance of registration since the department head must approve the acceptance of such credits if these are to apply to the major, and to ensure complete processing of the application between the cooperating universities within specified dates for enrollment. Detailed information and application forms for the exchange program are available from the Office of the Registrar.

National Student Exchange (NSE)
Iowa State University is a member of the National Student Exchange. NSE has 160 colleges and universities in many locations across the United States as members. Iowa State students with a cumulative GPA of at least 2.50 are eligible to apply. Credits earned as an NSE participant will be recorded on the students Iowa State transcript. Approval for credit in the NSE program should be approved well in advance of registration. Detailed information and application forms are available from the NSE coordinator 314 Alumni Hall.
Study Abroad at ISU

Preparing students to think globally is part of the university’s 2000 - 2005 strategic plan. Study abroad is an excellent means to develop this skill, since it provides students with an unparalleled opportunity to understand the forces that are shaping the world and the challenges as a nation and as a community of nations. Study abroad provides opportunities for students to challenge themselves academically, intellectually, and emotionally.

The Study Abroad Center

The Study Abroad Center is a unit of International Education Services and the office with primary responsibility for study abroad. Staffed by experienced international travelers, the Center has a wealth of information on educational and work opportunities abroad, travel information, and resources within ISU college and academic disciplines.

The Study Abroad Center
6 Hamilton Hall
Tel: (515) 294-6792
Fax: (515) 294-8263
studyabroad@iastate.edu
www.iastate.edu/~study-abroad/

Types of Programs

Students attending Iowa State University have diverse backgrounds, needs, abilities, and interests. Consequently, a variety of programs are offered to ensure the needs and wants of students are being met.

Group Programs – On most group programs, an ISU professor leads the group abroad and oversees academic work. Group programs range from one to eight weeks during a break (Spring Break, Winter Break, or Summer) up to a whole semester. Programs have been offered on every continent including the Antarctica. These are "non-integrated" programs, meaning students are taught with other ISU students and no students from the host country. On most group programs, students earn ISU credits and take courses designated especially for members of the group.

Regents' Semester Programs – These programs provide an opportunity to study at a university in Wales or Australia with a group of students from the Iowa Regents' Universities. These are "semi-integrated" programs, in which participants have specially-arranged programs with the other Regents' students in addition to being able to select from regularly offered courses at the host institution. Participants pay a negotiated rate and receive transfer credit.

Exchange Programs – Participants take regular classes at a foreign university and pay tuition, and sometimes room and board, at ISU. These programs last for one or two semesters, and transfer credit is awarded.

Practical Experience – ISU students can gain experience in their academic discipline while living abroad. Choices include service learning, internships, student teaching, and study-and-work programs.

Other Opportunities -- Students can participate in programs organized by other U.S. or foreign institutions. The Study Abroad Center has a wealth of information on these opportunities. In most cases, participants in these programs will receive transfer credit and can use their ISU financial aid.

Financial Questions

Students earning academic credit toward their ISU degree can use most, if not all, of their financial aid to fund the study abroad experience. This is true for ISU programs or ones offered through other institutions. Staff in the Student Financial Aid Office, can provide more information on how financial aid may be applied toward the cost of studying abroad and adjusted, if necessary, to reflect costs that are different from campus-based courses.

Recognizing the importance of this educational activity, ISU provides study abroad scholarships for summer, spring, and fall academic year programs. Applicants must have at least a 2.50 GPA. An application can be downloaded at www.iastate.edu/~study-abroad/

In addition to ISU aid, numerous organizations and foundations offer funding for study abroad. The Study Abroad Center library has information on funding for study abroad (including Fulbright awards for graduate students) as well as a list of fund-raising ideas that have been used successfully by students in the past.

Several reputable travel agencies and discounters offer reduced airfare to students. Discounted student health insurance is available, as well. Other student discounts (lodging, car rental, etc.) are available to holders of the International Student Identity Card. Hostelling International offers its members discounts on stays in hostels worldwide.

Program Options (By Language of Instruction)

Iowa State University provides students with the opportunity to develop second language skills in a variety of languages and countries. Students without prior language study can take courses in Spanish, French, Mandarin Chinese, and Korean. Students with prior language study can further develop their skills in Spanish, French, German, Portuguese, Mandarin Chinese, and Korean. Programs last five weeks to an academic year.

Program Options (By College)

Regardless of the college in which a student is enrolled, there is an array of study abroad options lasting from a week to a full academic year. For a complete and current list of study abroad programs, access Globetrotter, a database of ISU programs, at http://www.iastate.edu/~study-abroad/.

Additional information is available at the Study Abroad Center, 6 Hamilton Hall.

Military Training

Iowa State University students may elect to participate in one of the Reserve Officers Training Programs (ROTC) offered at Iowa State by the Army, the Navy, and the Air Force. Descriptions of the specific programs are found under the departments of Air Force Aerospace Studies, Military Science, and Naval Science. A student who completes a four-year program in any of these fields may be commissioned as a military officer at the time of graduation.

Late Afternoon, Evening, and Saturday Classes

In order to make on-campus courses available to those who live within commuting distance of Ames, classes are scheduled in the late afternoon and evening so that persons with full-time employment or other responsibilities may commute and continue their education. On-campus Saturday and evening course information, including registration information, is available on the Web at the following URL: www.iastate.edu/~catalog/schedule
Departments of the College

Agricultural Education and Studies
Agricultural and Biosystems Engineering
Agronomy
Animal Ecology
Animal Science
Biochemistry, Biophysics, and Molecular Biology
Economics
Entomology
Food Science and Human Nutrition
Forestry
Horticulture
Microbiology
Plant Pathology
Sociology
Zoology and Genetics

Students enrolled in the College of Agriculture are provided a broad-based education that includes coursework in communications; biological, physical, and social sciences; humanities; and technical subject matter.

Upon graduation students find diverse career opportunities because of the well balanced education they have received as undergraduates. Opportunities for graduates include production agriculture, business and industry, public agencies, education, biological and environmental sciences, value-added processing, natural resource management, rural development, animal and human health professions, and graduate studies.

High School Preparation
Requirements for students entering from high school or transferring with less than 24 college credits into the College of Agriculture include four years of English; three years of mathematics which must include one year each of algebra, geometry, and advanced algebra; three years of science which must include one year each of biology and chemistry, or biology and physics, or chemistry and physics; and two years of social studies. No foreign language is required for admission to the College of Agriculture.

Majors in the College of Agriculture

A student has many majors from which to choose. Each major is unique but there are courses common to many. This is helpful to students in that they may transfer from one agriculture major to another before the second year with little, if any, loss of credits. Options and areas of specialization further define the majors and required coursework within some majors. In all cases, majors are designed to help students succeed in their chosen professions. Majors in agriculture are:

- Agricultural Biochemistry
- Agricultural Business
- Agricultural Education
- Agricultural Studies
- Agricultural Systems Technology
- Agronomy
- Animal Ecology
- Animal Science
- Dairy Science
- Dietetics
- Entomology
- Environmental Science
- Food Science
- Forestry
- Genetics
- Horticulture
- Microbiology
- Nutritional Science
- Plant Health and Protection
- Professional Agriculture (off-campus)
- Public Service and Administration in Agriculture
- Zoology

Secondary Majors

- Agricultural Extension Education
- Environmental Studies
- International Agriculture
- Pest Management
- Seed Science

A secondary major must be taken in conjunction with a primary major.

Minors

- Agricultural Biochemistry
- Agricultural Education and Studies
- Agricultural Systems Technology
- Agronomy
- Animal Ecology
- Entomology
- Environmental Science
- Environmental Studies
- Food Science
- Forestry
- Genetics
- Horticulture
- International Agriculture
- Microbiology
- Nutrition
- Pest Management
- Plant Health and Protection
- Zoology

See statement on minors in the Colleges and Curricula section of this catalog.

Special Programs

General Agriculture

General Agriculture is a starting place for students who wish to pursue careers in agriculture but who are unsure of which majors to choose. The Agriculture Student Services Office provides advising for general agriculture students until they select their majors.

Preventive Veterinary Medicine

Students in the College of Agriculture may complete the requirements for admission to the College of Veterinary Medicine by enrolling in any major within the college. Because a solid foundation in the sciences is basic to the program in veterinary medicine, those majors that emphasize the sciences are usually more compatible with preventive veterinary medicine (see College of Veterinary Medicine section of this catalog for specific admissions requirements).

Students who are undecided about choice of major may enroll in general preventive studies (Gen PV). These students will also enroll in an orientation course, which describes the various college majors. A Gen PV student has up to 1.5 semesters to select a major.

Preventive veterinary medicine students also have an opportunity, with careful planning, to complete the requirements for a bachelor of science degree in an individual curriculum within the College of Agriculture after admission to the College of Veterinary Medicine. This may be done by completing the prescribed course of study established by an individual major. Students also may meet degree requirements of an individual major through the College of Agriculture Honors Program. Further details are available from an academic adviser or from members of the College of Agriculture Honors Committee.

Honors Program

The College of Agriculture Honors Program provides an opportunity for students of high ability to maximize their educational experience by individualizing their program of study. (See statement on Honors Program in the Colleges and Curricula section of this catalog). For more information, contact the chair of the College of Agriculture Honors Committee, or your department Honors contact person.

Off-Campus Programs

Coursework leading to bachelor of science and master of agriculture degrees in professional agriculture and a nonthesis master of science in microbiology are offered to students who choose to study off-campus; see Extended and Continuing Education for further information.

Study Abroad and International Travel Opportunities

Agriculture is being transformed into a highly interconnected global system; decisions made in one agricultural sector have profound impacts worldwide. It is important for students to develop an understanding and appreciation for the global system and the central role that U.S. agriculture plays in providing a safe and predictable food supply for a growing world population. The College of Agriculture provides study abroad and international travel opportunities in several locations around the world. For additional information, contact the Office of International Agriculture Programs in the College of Agriculture.
Internships and Cooperative Education Programs
Practical work experience can provide a unique learning opportunity that complements academic coursework. This experience is provided through internships or cooperative education programs. For additional information, contact a departmental adviser or internship coordinator.

College of Agriculture Core Curriculum and Electives
All curricula in the College of Agriculture lead to a bachelor of science degree. Each major has specific degree requirements for graduation. These include the College of Agriculture’s core curriculum.

Students pursuing a primary major in another college and taking a second major in the College of Agriculture must fulfill the core curriculum requirements of the College of Agriculture and all the requirements of the second major. The College of Agriculture core curriculum follows.

Minimum Credits Subject Area
9.5 Interpersonal and public communication skills
6 credits of English with grades of C or better in both required core English courses (104 and 105); 3 credits of speech fundamentals with grades of C or better; 0.5 credit in Lib 160
17 Mathematical, physical, and life sciences
3 credits of mathematics; 3 credits of statistics; 5 credits of physical science (e.g., chemistry, geological and atmospheric sciences, physics); 6 credits of life science (e.g., biochemistry, biology, botany, ecology, genetics, microbiology, physiology, zoology).
15 Humanities, ethics and social sciences
3 credits of ethics from an approved list; 3 credits of humanities; 3 credits of social sciences; 3 credits of U.S. diversity from an approved list; 3 credits of international perspectives from an approved list.

The College of Agriculture is committed to enhancing student proficiency in four areas: 1) ability to write, discuss and present subject matter within the major (communications), 2) ability to consider many dimensions of a problem and develop a solution (problem-solving), 3) ability to use computers for computer proficiency (disciplinary and multidisciplinary) are incorporated into designated courses within each major field. The problem-solving requirement is fulfilled by taking one or more of these problem-solving-intensive courses.

Electives
Students use electives to broaden their education or to strengthen an area of specialization. Electives may be used to meet the requirements for a double major (see statement on double majors in this catalog). Those who wish to change their major, or who decide to graduate with a double major, must be enrolled for the last two semesters in the curriculum in which they expect to graduate. Students in ROTC may apply ROTC credits toward elective requirements.

Advising
Each student in the College of Agriculture works closely with an academic adviser who is associated with the major in which the student is enrolled. All entering students and their parents are strongly encouraged to participate in the summer orientation program in which they will have the opportunity to meet and work with academic advisers in planning their first semester schedule of classes. The advisers also assist students in making personal adjustments to university life, offer suggestions on academic and co-curricular choices, and provide information on career choices. Advisers make a special effort to adjust course schedules in accordance with students’ interests and capabilities.

A student may wish to prepare for admission to a professional program such as law, medicine, or veterinary medicine while pursuing a bachelor of science degree in the College of Agriculture. This may be accomplished through several majors; however, it is recommended that the student work closely with an academic adviser.

Each department prepares a guide to help students chart their long-term programs and to specify the exact requirements for graduation.

Visit the college web site www.ag.iastate.edu.

Graduate Study
Graduate study in agriculture is conducted through the Graduate College. Details are found in the Graduate College section of this catalog.

Various departments in the College of Agriculture also participate in the following graduate-level interdepartmental offerings:

Ecology and Evolutionary Biology
Genetics
Immunobiology
Molecular, Cellular, and Developmental Biology
Neuroscience
Plant Physiology
Professional Agriculture (off-campus)
Technology and Social Change (interdepartmental minor)
Toxicology
Water Resources
For details, consult the Graduate College section of this catalog.

Curriculum in Agricultural Biochemistry
Administered by the Department of Biochemistry, Biophysics and Molecular Biology.

<table>
<thead>
<tr>
<th>Cr.</th>
<th>Degree Requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.5</td>
<td>Interpersonal and public communication skills</td>
</tr>
<tr>
<td></td>
<td>Engl 104, 105, Sp Cm 212; Lib 160</td>
</tr>
</tbody>
</table>

62-63 Mathematical, physical, and life sciences

<table>
<thead>
<tr>
<th>Cr.</th>
<th>Degree Requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Math 165, 166, 265 or 266; Phys 221, 222; Chem 177, 177L, 178, 210 or 211, 211L, 321, 322, 322L, 331, 331L, 332; Biol 201, 202, 201L or 202L, 301, 302</td>
<td></td>
</tr>
</tbody>
</table>

15 Humanities, ethics, and social science

<table>
<thead>
<tr>
<th>Cr.</th>
<th>Degree Requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 cr. in ethics from an approved list; 3 cr. in humanities; 3 cr. in social sciences; 3 cr. in U.S. diversity from an approved list; 3 cr. in international perspectives from an approved list</td>
<td></td>
</tr>
</tbody>
</table>

9 Agricultural sciences

<table>
<thead>
<tr>
<th>Cr.</th>
<th>Degree Requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>9 cr. from an approved list available in the department. Two courses with environmental awareness emphasis will be chosen from an approved list.</td>
<td></td>
</tr>
</tbody>
</table>

11-13 Agricultural biochemistry

<table>
<thead>
<tr>
<th>Cr.</th>
<th>Degree Requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>BBMB 101, 102; 404, 405 or 501, 502; 411. Students wishing research experience in agricultural biochemistry are encouraged to enroll in BBMB 499</td>
<td></td>
</tr>
</tbody>
</table>

21.5-22.5 Electives

<table>
<thead>
<tr>
<th>Cr.</th>
<th>Total credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>128</td>
<td>Electives</td>
</tr>
</tbody>
</table>

Typical Program for the First Year

<table>
<thead>
<tr>
<th>Cr.</th>
<th>Fall</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>General Chemistry—Chem 177M</td>
</tr>
<tr>
<td>1</td>
<td>Laboratory in General Chemistry—177N</td>
</tr>
<tr>
<td>4</td>
<td>Calculus I—Math 165</td>
</tr>
<tr>
<td>3</td>
<td>First-Year Composition—Engr 104</td>
</tr>
<tr>
<td>3</td>
<td>Principles of Biology—Biol 201</td>
</tr>
<tr>
<td>1</td>
<td>Principles of Biology Laboratory—Biol 201L</td>
</tr>
</tbody>
</table>
Curriculum in Agricultural Business

Administered by the Department of Economics. Students majoring in Agricultural Business often choose elective coursework leading to minors in the College of Business or in the College of Agriculture, or emphasizing specific areas within agricultural business such as finance, management, commodity analysis, research, agricultural sales and marketing, environmental economics, farm and ranch operations, international economics, agricultural extension, or government service.

Cr. Degree Requirements
12 5 Interpersonal and public communication skills
Lib 160, Engl 104, 105
Engl 302 or Engl 309 or Engl 314
Sp Cm 212 or AgEds 311
15 Mathematical and computer science
Math 150, 151; Stat 227
Com S 103
4-5 Physical Sciences
Chem 163-163L or Phys 111
6 Life and Environmental Sciences
Biol 109 or 201
A Ecl 120 or
Biol 123 or other credits that meet the environmental intensive requirement
12 Humanities, ethics and social science
Courses in individual areas below may overlap but the total credits taken must equal 12 or more
Ethics
International perspectives
U.S. diversity
Humanities
Social science other than economics
12 Business
Acct 284, 285; Fin 301
One of the following:
Mgmt 310, 370, Mkt 340,
MIS 330, POM 320, TrLog 360
3 Agricultural sciences electives
32-34 Economics and Agricultural Economics
Econ 101, 101L, 102, 110, 135,
301, 302 or 353, 335, 492
Nine credits of the following:
Econ 401, 402, 415, 430, 431 or
432, 437, 451, 455, 460, 466, 470,
472, 480
Five additional credits of
Economics at the 300 level or higher
30-34 Free electives
128 Total credits

Typical Program for the First Year
Cr. Fall
4 Microeconomics—Econ 101, 101L
R Orientation in Economics/Agricultural Business—Econ 110
3 Agricultural Science Course
3 Mathematics for Business and Social Sciences I—Math 150
3 First-Year Composition I—Engl 104
0.5 Library Instruction—Lib 160
3 Environmental Biology—Biol 123
Cr. Spring
4 Computer Applications—ComS 103
3 Agribusiness Firms, Markets and Prices—Econ 125 or Financial Accounting—Acct 284
3 Mathematics for Business and Social Sciences II—Math 151
3 First-Year Composition II—Engl 105
3 Macroeconomics—Econ 102

Curriculum in Agricultural Education

Administered by the Department of Agricultural Education and Studies. Students majoring in Agricultural Education choose between two options: Teacher Certification or Communications.

Teacher Certification Option
Cr. Degree Requirements
9.5 Interpersonal and public communication skills
Engl 104, 105, Lib 160, AgEds 311 (3 cr.); communications intensive requirement
21-22 Mathematical, physical, and life sciences
Chem 163, 163L or 177, 177L; Biol 201, 202; BMBB 221 or Phys 106; life science elective (3 cr.); demonstration of computer proficiency; Math 140 or 150; Stat 104; environmental intensive requirement
18 Humanities, ethics, and social sciences
Psych 230; C 333; American history elective (3 cr.); from approved lists: 3 cr. in ethics; 3 cr. in international perspectives; 3 cr. in U.S. diversity; problem-solving intensive requirement
12 Business
Acct 284, 285; Fin 301
One of the following:
Mgmt 310, 370, Mkt 340,
MIS 330, POM 320, TrLog 360
3 Agricultural sciences electives
32-34 Economics and Agricultural Economics
Econ 101, 101L, 102, 110, 135,
301, 302 or 353, 335, 492
Nine credits of the following:
Econ 401, 402, 415, 430, 431 or
432, 437, 451, 455, 460, 466, 470,
472, 480
Five additional credits of
Economics at the 300 level or higher
30-34 Free electives
128 Total credits

Typical Program for the First Year
Cr. Fall
3 First-Year Composition—Engl 104
3 Fundamentals of Algebra for Science and Higher Mathematics—Math 140
3 Principles of Micro Economics—Econ 101
3 Speech elective
3 Communication elective
0.5 Library Instruction—Lib 160

Agriculture

Econ 110; AgEds 311 or 321, 342, 347, Engl 205, 309, 310, 314, 415, 416,
Mgmt 370, 371, Sp Cm 110, 212,
312, 323, 327, ComS 102, 214,
310, 314, 317

12-13 Electives
128 Total credits

Professional credits
AgEds 110A, 211, 310, 401, 402,
416, 417 (12 Cr.); C 120, 124,
406, 415, 426.

13-14 Electives

Communications Option
Cr. Degree Requirements
9.5 Interpersonal and public communication skills—Engl 104, 105, Lib 160, speech elective (3 cr.), communication intensive requirement
23-24 Mathematical, physical, and life sciences—Chem 165, 163L or 177, 177L; Biol 201, 202; BMBB 221 or Phys 106; life science elective (3 cr.); demonstration or computer proficiency; Math 140 or 150; Stat 104; environmental intensive requirement
15 Humanities, ethics, and social sciences—Econ 101 or 102; psychology elective (3 cr.); ethics elective (3 cr.); international perspectives elective (3 cr.); U.S. diversity elective (3 cr.); problem-solving intensive requirement.
26 Agricultural sciences and economics—10 credits in a selected area of agricultural sciences and economics including 6 credits at the 300-400 level; 6 cr. each in two additional areas of agricultural sciences and economics; agricultural sciences and economics electives (4 cr.)
41.5 Professional communications—
AgEds 110A, 211, 215, 311, 315, 412 (6 cr.); select 27 cr. from
MI 101, 321, 342, 347, Engl 205, 309, 310, 314, 415, 416,
Mgmt 370, 371, Sp Cm 110, 212,
312, 323, 327, ComS 102, 214,
310, 314, 317

12-13 Electives
128 Total credits

Typical Program for the First Year
Cr. Fall
3 First-Year Composition—Engl 104
3 Fundamentals of Algebra for Science and Higher Mathematics—Math 140
3 Principles of Micro Economics—
Econ 101
3 Speech elective
3 Communication elective
0.5 Library Instruction—Lib 160

Agriculture

Econ 114; An S 114 and 114L;
AST electives (4 cr.); horticulture
elective (2 cr.); Econ 101 and 330;
Acct 284; 6 credits in courses
300-level or above to be chosen
from agricultural systems technol-
omy, animal science, agronomy,
agricultural economics, forestry,
or horticulture; electives from the
College of Agriculture (3 cr.)

43.5 Professional credits
AgEds 110A, 211, 310, 401, 402,
416, 417 (12 Cr.); C 120, 124,
406, 415, 426.
Curriculum in Agricultural Extension Education

Administered by the Department of Agricultural Education and Studies. Agricultural extension education may be taken only as a secondary major in a double major program.

<table>
<thead>
<tr>
<th>Cr.</th>
<th>Degree Requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.5</td>
<td>Interpersonal and public communication skills</td>
</tr>
<tr>
<td></td>
<td>Engl 104, 105; written communications elective (3 cr.); AgEds 311; Lib 160; communications intensive requirement</td>
</tr>
<tr>
<td>20</td>
<td>Mathematical, physical, and life sciences</td>
</tr>
<tr>
<td></td>
<td>Chem 163, 163L or 177, 177L; Math 104 or 150; Stat 104; Biol 201; entomology elective (3 cr.); life sciences elective (3 cr.); environmental intensive requirement; demonstration of computer proficiency</td>
</tr>
<tr>
<td>18</td>
<td>Humanities, ethics, and social sciences</td>
</tr>
<tr>
<td></td>
<td>Psychology elective (3 cr.); from approved lists: 3 cr. in ethics, 3 cr. in international perspectives; 3 cr. in U.S. diversity; humanities electives (6 cr.); problem-solving intensive requirement</td>
</tr>
<tr>
<td>35</td>
<td>Agricultural sciences and economics</td>
</tr>
<tr>
<td></td>
<td>Animal science electives (6 cr.); agronomy electives (9 cr.); economics elective (3 cr.); horticulture elective (2 cr.); electives (15 cr.)</td>
</tr>
</tbody>
</table>

Total credits: 128 credits

Typical Program for the First Year

Because agricultural extension education is a secondary major that has requirements that are similar to those of the agricultural education major, courses taken by the student during the first year will be similar to those taken by first-year agricultural education majors. Differences in individual programs will reflect the student’s choice of a primary major.

<table>
<thead>
<tr>
<th>Cr.</th>
<th>Fall</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5</td>
<td>Orientation to Agricultural Studies—AgEds 110B</td>
</tr>
<tr>
<td>3</td>
<td>Survey of the Animal Industry— An S 114 and 114L</td>
</tr>
<tr>
<td>3</td>
<td>Introduction to Probability and Matrices—Math 104 or Discrete Mathematics—Math 150</td>
</tr>
<tr>
<td>3</td>
<td>First-Year Composition—Engl 104</td>
</tr>
<tr>
<td>3</td>
<td>Social science elective</td>
</tr>
<tr>
<td>3</td>
<td>Introductory Biology—Biol 109</td>
</tr>
<tr>
<td>0.5</td>
<td>Library Instruction—Lib 160</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cr.</th>
<th>Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Principles of Crop Production—Agron 114</td>
</tr>
<tr>
<td>3</td>
<td>Principles of Microeconomics—Econ 101</td>
</tr>
<tr>
<td>3</td>
<td>Life science elective</td>
</tr>
<tr>
<td>3</td>
<td>Humanities elective</td>
</tr>
<tr>
<td>3</td>
<td>First-Year Composition—Engl 105</td>
</tr>
</tbody>
</table>

Curriculum in Agricultural Studies

Administered by the Department of Agricultural Education and Studies. Students are encouraged to develop one or more areas of concentration in agricultural sciences and economics.

<table>
<thead>
<tr>
<th>Cr.</th>
<th>Degree Requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.5</td>
<td>Interpersonal and public communication skills</td>
</tr>
<tr>
<td></td>
<td>Engl 104, 105; written communications elective (3 cr.); speech elective (3 cr.); Lib 160; communications intensive requirement</td>
</tr>
<tr>
<td>20</td>
<td>Mathematical, physical, and life sciences</td>
</tr>
<tr>
<td></td>
<td>Chem 163, 163L or 177, 177L; Math 104 or 150; Stat 104; Biol 109 or 201; life science elective (6 cr.); demonstration of computer proficiency; environmental intensive requirement</td>
</tr>
<tr>
<td>18</td>
<td>Humanities, ethics, and social sciences</td>
</tr>
<tr>
<td></td>
<td>Econ 101; humanities electives (3 cr.); AgEds 315; from approved lists: 3 cr. in ethics; 3 cr. in international perspectives; 3 cr. in U.S. diversity; problem-solving intensive requirement</td>
</tr>
<tr>
<td>42.5</td>
<td>Agricultural sciences and economics</td>
</tr>
<tr>
<td></td>
<td>AgEds 110B, 215, 450; Agron 114, 154, 212; An S 114 and 114L; electives (6 cr.); Econ 135, 330; AST electives (4 cr.); agricultural sciences and economics electives (9 cr.); 300-400 level</td>
</tr>
</tbody>
</table>

Other required courses

3	Acct 284
32	Electives
128	Total credits

Typical Program for the First Year

<table>
<thead>
<tr>
<th>Cr.</th>
<th>Fall</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5</td>
<td>Orientation to Agricultural Studies—Engl 104</td>
</tr>
<tr>
<td>3</td>
<td>Principles of Crop Production—Agron 114</td>
</tr>
<tr>
<td>3</td>
<td>Principles of Microeconomics—Econ 101</td>
</tr>
<tr>
<td>3</td>
<td>Life science elective</td>
</tr>
<tr>
<td>3</td>
<td>Humanities elective</td>
</tr>
<tr>
<td>3</td>
<td>First-Year Composition—Engl 105</td>
</tr>
</tbody>
</table>

Preveterinary Studies

Preparation for admission to veterinary medicine may be accomplished through the agricultural studies curriculum.

<table>
<thead>
<tr>
<th>Cr.</th>
<th>Degree Requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.5</td>
<td>Interpersonal and public communication skills</td>
</tr>
<tr>
<td></td>
<td>Engl 104, 105; written communications elective (3 cr.); speech elective (3 cr.); Lib 160; communications intensive requirement</td>
</tr>
<tr>
<td>28-30</td>
<td>Mathematical, physical, and life sciences</td>
</tr>
<tr>
<td></td>
<td>Math 140 and 142, or 151, or 160, or 165; Stat 104; Chem 163, 163L; Phys 106 or 111; AST 115, 215; Biol 109; A E 271 or 272 or Biol 123 or A Ecl 120</td>
</tr>
<tr>
<td>15</td>
<td>Humanities, ethics, and social sciences</td>
</tr>
<tr>
<td></td>
<td>Humanities elective (3 cr.); Econ 101; from approved lists: 3 cr. in ethics; 3 cr. in international perspectives; 3 cr. of U.S. diversity; and environmental-intensive requirement</td>
</tr>
<tr>
<td>6</td>
<td>Agricultural sciences</td>
</tr>
<tr>
<td></td>
<td>Select from department-approved list</td>
</tr>
<tr>
<td>30</td>
<td>Agricultural systems technology</td>
</tr>
<tr>
<td></td>
<td>AST 110, 210, 324, 330, 360, 373, 403 and 496</td>
</tr>
</tbody>
</table>

Other required courses

3	Acct 284; Econ 330 or Mgmt 370
32	Econ 336
128	Total credits

Areas of specialization

Production Agriculture: Credits selected from department-approved list of agricultural science courses

Agribusiness Management: Credits selected from department-approved list

Grain Operations: Acct 285; AST 362; Econ 135; Mkt 340; a minimum of 6 credits from the following: An S 319; Econ 301, 332, 335; Ent 376; Mgmt 371; TrLog 360, 460

Applied Technology: Select credits with adviser assistance for specialization in one of these areas: water quality, safety, seed science, construction technology, machine testing, food processing, environment, computer operations, international studies, industrial technology

11-13 | Free electives |
| 128.5 | Total credits |
Environmental Systems Technology Option

2001-2003

Agriculture

30 Agronomic sciences

6 Agronomic studies

15 Humanities, ethics, and social sciences

28-31 Mathematical, physical, and life sciences

12.5 Interpersonal and public communication skills

Engl 104, 105; Sp Cm 212 or AgEdS 311; Engl 302 or 309 or 314; Lib 160

40-42 Mathematical, physical, and life sciences

Math 140 and 142, or 160, or 165;
Stat 104; Chem 163, 163L, 164,
231, 231L; Phys 106 or 111; AST
115, 215; A E 271 or 272; Biol
201, 201L, 202, 202L; Micro 201,
201L

15 Humanities, ethics, and social sciences

Econ 101; Hist 472; from
approved lists: 3 cr. in ethics, 3 cr.
in international perspectives; 3 cr.
of U.S. diversity; and environmental-
tal-intensive requirement

12 Agronomic sciences

Select a minimum of 12 credits
from Agron 114, 154, 206,
317, 354, 356, 360, 485

14 Environmental Sciences

Select a minimum of 14 credits
from A Ecl 410, 513; Biol 312; Bot
330, 487, 500, 564; Env S 123,
324, EnSci 401, 402, 404; For 407

6 Environmental Studies

Select a minimum of 6 credits
from: Env S 201, 293, 340, 380,
382, 450, 482, 491

22 Agricultural systems technology

AST 110, 120, 210, 324, 326, 333,
403, 425, 475 or 476, 496.

5-7 Free electives

128.5 Total credits

Mechanical Systems Option

2001-2003

Agriculture

30 Agricultural systems technology

6 Agronomic sciences

15 Humanities, ethics, and social sciences

28-31 Mathematical, physical, and life sciences

12.5 Interpersonal and public communication skills

Engl 104, 105; Sp Cm 212 or AgEdS 311; Engl 302 or 309 or 314; Lib 160

28-31 Mathematical, physical, and life sciences

Stat 104 or 101; Math 140 and
142, or 160, or 165; Chem 163,
163L; Phys 106 or 111; AST 115,
215; A E 271 or 272; Biol 109; Biol
123 or A Ecl 120

15 Humanities, ethics, and social sciences

Econ 101; humanities elective
(3 cr.); from approved lists: 3 cr.
in ethics, 3 cr. in international perspectives; 3 cr. of U.S. diversity; and environmental-intensive requirement

6 Agronomic sciences

Agron 114, 154

30 Agricultural systems technology

AST 110, 210, 330, 333, 335, 337,
360, 403, 430, 435, 460, 496

24 Areas of specialization

Management: Acct 284; Econ
336; Mgmt 370; Mkt 340; a mini-
num of 12 credits from the fol-
lowing: Acct 215, 285, 316; I Tec
231, 244, 360; Mgmt 371; MIS
330; Mkt 442, 446, 447

Precision Agriculture: Credits
selected from departmental-
approved list.

Technology: Math 166, E M 274,
324, 327; Phys 112; a minimum of
9 credits from the following: E M
378, 417; I Tec 231, 244, 360;
Mat E 362, 362L, Stat 401

9-12 Free electives

128.5 Total credits

Typical Program for the First Year

Cr. Fall
1 Experiencing Agricultural Systems Technology—AST 110
3 Fundamentals of Algebra—Math 140
3 First-Year Composition—Engl 104
5 General Chemistry—Chem 163,
163L
3 Agricultural science elective

Cr. Spring
2 Computer-aided Graphics
Applications—AST 215
3 Introductory Biology—Biol 109 or
Principles of Biology—Biol 201
3 First-Year Composition—Engl 105
3 Trigonometry and Analytic Geometry—Math142 or Calculus
for Business and Social Sciences—Math 151
3 Agricultural science elective

0.5 Library Instruction—Lib 160

Curriculum in Agronomy

Students majoring in agronomy study crop sci-
ence, soil science, and agricultural meteorolo-
gy in one of three options: (1) general agrono-
my, (2) environmental science, (3) science. A
minimum of 15 credits in agronomy must be
earned at Iowa State for both the major and
the minor.

General Agronomy Option

Cr. Degree Requirements

12.5 Interpersonal and public communication skills

Engl 104, 105; Lib 160; Sp Cm
212 or AgEdS 311; 3 cr. elective
from Engl 302, 309, or 314

7 Mathematical sciences

Math 181 or 160; Stat 101 or 104;
demonstration of computer profi-
cy

13 Biological sciences

Chem 163, 163L, 231, 231L; Geol
100, 100L; Phys 111

30 Agronomic sciences

Agron 105, 110, 114, 154, 206,
210, 230, 306, 310, 354, 354L,
392, 410, and 492 and 9 cr. of
electives (no more than 2 cr. total
from Agron 331, 370, 490, 491,
and 496 allowed to meet the 9 cr.
requirement; Agron 220 may be
used only as a biological science by
Agronomy majors)

23.5 Free electives

128 Total credits

Environmental Science Option

Cr. Degree Requirements

12.5 Interpersonal and public communication skills

Engl 104, 105; Lib 160; Sp Cm
212 or AgEdS 311; 3 cr. elective
from Engl 302, 309, or 314

7 Mathematical sciences

Math 181 or 160; Stat 101 or 104;
demonstration of computer profi-
cy

13 Biological sciences

Chem 163, 163L, 231, 231L; Geol
100, 100L; Phys 111

30 Agronomic sciences

Agron 105, 110, 114, 154, 206,
210, 230, 306, 310, 354, 354L,
392, 410, and 492 and 9 cr. of
electives (no more than 2 cr. total
from Agron 331, 370, 490, 491,
and 496 allowed to meet the 9 cr.
requirement; Agron 220 may be
used only as a biological science by
Agronomy majors)

23.5 Free electives

128 Total credits
Science Option

The science option is recommended for individuals who want a stronger basic science orientation. See an agronomy adviser for specific recommendations.

Typical Program for the First Year

<table>
<thead>
<tr>
<th>Cr.</th>
<th>Fall</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>Orientation in Agronomy—Agron 110</td>
</tr>
<tr>
<td>3</td>
<td>Principles of Agronomy—Agron 114</td>
</tr>
<tr>
<td>3</td>
<td>College Algebra—Math 140</td>
</tr>
<tr>
<td>4</td>
<td>Principles of Biology I—Biol 201 and 201L</td>
</tr>
<tr>
<td>3</td>
<td>The Earth—Geol 100</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cr.</th>
<th>Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Introduction to Meteorology—Agron 206</td>
</tr>
<tr>
<td>5</td>
<td>General Chemistry—Chem 163 and 163L</td>
</tr>
<tr>
<td>3</td>
<td>First-Year Composition—Engl 105</td>
</tr>
<tr>
<td>0.5</td>
<td>Library Instruction—Lib 160</td>
</tr>
<tr>
<td>3</td>
<td>Principles of Microeconomics—Econ 101</td>
</tr>
<tr>
<td>3</td>
<td>Humanities elective—from approved list</td>
</tr>
</tbody>
</table>

Curriculum in Animal Ecology

<table>
<thead>
<tr>
<th>Cr.</th>
<th>Degree Requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>15.5</td>
<td>Interpersonal and public communication skills</td>
</tr>
<tr>
<td></td>
<td>Engl 104 and 105; Sp Cm 212; Lib 160; two additional 3-cr. courses in written or oral communication from an approved list; and communications-intensive requirement</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cr.</th>
<th>Physical sciences</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>Chem 163, 163L, 164 (or 177, 177L, 178); 231, 231L; Phys 106</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cr.</th>
<th>Biological sciences</th>
</tr>
</thead>
<tbody>
<tr>
<td>19</td>
<td>A Ecl 110, 120, 211, 310, 312; Biol 201, 201L, 202, 202L</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cr.</th>
<th>Humanities, ethics, and social science</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>3 cr. in humanities; 3 cr. in social sciences; from approved lists: 3 cr. in ethics; 3 cr. in U.S. diversity, and 3 cr. in international perspectives; and environmental-intensive and problem-solving intensive requirements</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>R</th>
<th>Practical experience requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(A Ecl 104)</td>
</tr>
</tbody>
</table>

Students majoring in Animal Ecology are required to choose one of the following options by the end of their sophomore year: Aquaculture, Ecology, Fisheries and Aquatic Sciences, Interpretation of Natural Resources, Prevetinary and Wildlife Care, or Wildlife.

Typical Program for the First Year

<table>
<thead>
<tr>
<th>Cr.</th>
<th>Fall</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Principles of Biology—Biol 201, 201L</td>
</tr>
<tr>
<td>R</td>
<td>Orientation in Animal Ecology—A Ecl 110</td>
</tr>
<tr>
<td>3</td>
<td>First-Year Composition—Engl 104</td>
</tr>
<tr>
<td>3</td>
<td>College Algebra—Math 140</td>
</tr>
<tr>
<td>5</td>
<td>General Chemistry—Chem 163, 163L</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cr.</th>
<th>Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Principles of Biology—Biol 202, 202L</td>
</tr>
</tbody>
</table>

Curriculum in Animal Science

<table>
<thead>
<tr>
<th>Cr.</th>
<th>Degree Requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.5</td>
<td>Interpersonal and public communication skills</td>
</tr>
<tr>
<td></td>
<td>Engl 104, 105, 302 or 314; Sp Cm 212; Lib 160; and communications-intensive requirement</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cr.</th>
<th>Mathematical sciences</th>
</tr>
</thead>
<tbody>
<tr>
<td>6-8</td>
<td>Math 150; Stat 101 or 104 or 227</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cr.</th>
<th>Physical sciences</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Chem 177, 177L; BBMB 221 or Chem 231 or Chem 331</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cr.</th>
<th>Biological sciences</th>
</tr>
</thead>
<tbody>
<tr>
<td>13-14</td>
<td>Biol 201, 201L; 202, 202L or B M S 329; Biol 301 or Gen 320; 3 credits Microbiology, including laboratory; and an environmental-intensive requirement</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cr.</th>
<th>Personal development, human relations, and global awareness</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>A minimum of: 3 credits in humanities; 3 cr. in social sciences; from approved lists: 3 cr. in ethics, 3 cr. in international awareness, 3 credits in U.S. multicultural awareness; and problem solving-intensive requirement</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cr.</th>
<th>Animal science</th>
</tr>
</thead>
<tbody>
<tr>
<td>29-31</td>
<td>An S 110; 114, 114L; 211; 214; 214L; 311; 411; one course from: 216, 224, 250, 270; 319; 331; 352; one course from 313, 336, 337, 345, 360; two courses from: 415, 419, 423, 424, 425, 426, 429, 434, 451, 470, FS HN 405, 410</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cr.</th>
<th>Business</th>
</tr>
</thead>
<tbody>
<tr>
<td>3-7</td>
<td>Com S 103 or proficiency exam or AST 115 one course from department list</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cr.</th>
<th>Typical Program for the First Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>31.5-40.5</td>
<td>Free electives</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cr.</th>
<th>Total credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>128</td>
<td>Total credits</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cr.</th>
<th>Typical Program for the First Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>Orientation in Animal Science—An S 110</td>
</tr>
<tr>
<td>2</td>
<td>Survey of the Animal Industry—An S 114</td>
</tr>
<tr>
<td>1</td>
<td>Working with Animals—An S 114</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cr.</th>
<th>Free electives</th>
</tr>
</thead>
<tbody>
<tr>
<td>128</td>
<td>Total credits</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cr.</th>
<th>Typical Program for the First Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>Orientation in Animal Science—An S 110</td>
</tr>
<tr>
<td>2</td>
<td>Survey of the Animal Industry—An S 114</td>
</tr>
<tr>
<td>1</td>
<td>Working with Animals—An S 114</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cr.</th>
<th>Free electives</th>
</tr>
</thead>
<tbody>
<tr>
<td>128</td>
<td>Total credits</td>
</tr>
</tbody>
</table>
Typical Program for the First Year

41.5-46.5 Free electives

Dairy Science Curriculum in Preparation for admission to veterinary medicine may be accomplished through the dairy science curriculum.

Preveterinary Studies
Preparation for admission to veterinary medicine may be accomplished through the animal science curriculum.

Curriculum in Dairy Science

Cr. Degree Requirements
9.5 Interpersonal and public communication skills
Engl 104, 105; Sp Cm 212 or AgEds 311; Lib 160; and communications intensive requirement

9-13 Mathematical and business sciences
AST 115 or Com S 103 or proficiency exam; Econ 101; Math 150; Stat (3 cr.)

8 Physical sciences
Chem 177, 177L; BBMB 221 or Chem 231 or 331

10-11 Biological sciences
4 Biol 201, 201L; Biol 301 or Gen 320; Micro 201 and 201L or FS HN 273; and environmental-intensive requirement

15 Personal development, human relations, and global awareness
3 cr. in humanities; 3 cr. in social sciences; from approved lists; 3 cr. in ethics, 3 cr. in international awareness, 3 cr. in U.S. multicultural awareness; and problem solving-intensive requirement

30 Professional dairy science
An S 110, 114, 114L, 211, 214, 214L, 311, 319, 331, 337, 352, 411, 434, plus a minimum of 6 credits from list maintained in department. A minimum of 15 credits in this category must be earned from courses taught in the Animal Science department at ISU.

41.5-46.5 Free electives

128 Total Credits

Typical Program for the First Year

Cr. Term
Fall
R Orientation in Dairy Science—An S 110
3 Survey or the Animal Industry—An S 114, 114L
3 Principles of Biology—Biol 201
1 Principles of Biology Lab—Biol 201L

3 First-Year Composition—Engl 104
0.5 Library Instruction—Lib 160
3 Mathematics—Math 150
3 Elective

Cr. Spring
3 General Chemistry—Chem 177
1 General Chemistry Lab—Chem 177L
3 First-Year Composition—Engl 105
3 Introduction to Statistics—Stat 104
3 Elective

Preveterinary Studies
Preparation for admission to veterinary medicine may be accomplished through the dairy science curriculum.

Curriculum in Dietetics

Administered by the Department of Food Science and Human Nutrition.

General Dietetics
The student is prepared for admission to dietetic internship programs and other professional experience programs approved/accredited by The American Dietetic Association.

Courses included have been approved as meeting the academic requirements of the American Dietetic Association. There is a $30 fee for a statement of verification of completion of the approved program.

Cr. Degree Requirements
9.5 Interpersonal and public communication skills
Engl 104, 105, 314; Sp Cm 212; Lib 160; and communications-intensive requirement

3 Mathematical and physical sciences
Math 140, 141

14 Life sciences
Chem 163, 163L, 231, 231L; BBMB 301, 311; Biol 201, 202; Micro 201; Zool 156, 255

17 Humanities, ethics, and social science
Econ 101; 3 cr. in humanities; from approved lists: 3 cr. in ethics; 3 cr. in international perspectives; 3 cr. in U.S. diversity; and environmental-intensive requirement; and problem solving-intensive requirement

19 Entomology
Ent 110, 201, 211, 370, 374, 376; Ent 490E or P M 491; Ent electives; for students entering entomology with one year or more of college-level biological sciences courses, Ent 201 and 211 are waived, and the group requirement reduced to 16 cr.

Students majoring in Entomology are required to choose one of the following options by the end of their sophomore year: Agricultural and Horticultural Insect Management, Community and Structural Insect Management, or Insect Biology.

Agricultural and Horticultural Insect Management Option

Cr. Degree Requirements
5 Mathematics
Math 140, 141

16 Physical Sciences
Chem 163, 163L, 164, 231, 231L; Phys 106

6 Biological Sciences
BBMB 301; Bot 302

12 Agricultural Sciences
Agron 114 or Hort 221; Agron 154 or 155, 317; PI HP 407

5 Entomology
Ent 283, 375

6 Social Sciences
Acct 215; Econ 135

14.5 Free electives
Curriculum in Environmental Science

Cr.	Degree Requirements	9.5	Communication
3 | Engl 104, 105; Lib 160; speech elective (3 cr.); communication-intensive requirement

Cr.	Mathematical sciences
11 | Math 165 and 166 or 181 and 182; Stat 104; proficiency in computer use

Cr.	Physical sciences
13 | Chem 177, 177L, 178, plus 4 credits from approved list.; Phys 111, 112

Cr.	Biological sciences
7 | Biol 201, 201L and 202 or Micro 201

Cr.	Humanities, ethics, and social science
15 | 3 cr. ethics, 3 cr. U.S. diversity, 3 cr. of international perspectives, 3 cr. of humanities, and 3 cr. of social sciences. All courses must be approved.

Cr.	Environmental science
30 | EnSci 101, 295, 300, 401, 402, 404, 404L, 495 and 15 approved elective credits at the 300-400 level; problem-solving intensive requirement

Cr.	Complementary courses
15 | Phys 111, 112; Agron 260 or 360; Geol 210; EnSci 290 or 390

Total credits
128 | Free electives

Typical Program for the First Year

Cr.	Fall
3 | Introductory Composition—Engl 104
3 | Principles of Biology—Biol 201
1 | Laboratory in Principles of Biology—Biol 201L
4 | General Chemistry—Chem 163 or 177
1 | Laboratory in General Chemistry—Chem 163L or 177L
4 | Fundamentals of Algebra for Science and Higher Mathematics—Math 140 or Calculus and Differential Equations—Math 181
R | Orientation in Entomology—Ent 110

Cr.	Spring
3 | Introductory Composition—Engl 105
3 | General Chemistry—Chem 164, or 178, 178L
4 | Principles of Biology—Biol 202, 202L
1 | Introduction to Insects—Ent 201
2 | Insects and Society—Ent 211
0.5 | Library Instruction—Lib 160

Pre-Veterinary Studies
Preparation for admission to veterinary medicine may be accomplished through the entomology curriculum.
Consumer Food Science Option

Typical Program for the First Year

Cr.	Fall	5 General Chemistry—Chem 163, 163L
Cr.		3 Principles of Biology —Biol 201
Cr.		3 First-Year Composition —Engl 104
Cr.	0.5	Orientation —FS HN 110
Cr.	Spring	3 Principles of Biology —Biol 202
Cr.		3 First-Year Composition —Engl 105
Cr.	3 Elective	
Cr.	0.5	Library —Lib 160
Cr.	3-4	Stat 101 or 104

11 Humanities, ethics, and social science
Env S 201; select 3 credits each for U.S. diversity, international perspective and ethics (see approved lists). At least 3 credits must be in the humanities.

9 Economics and business
Econ 101; select 6 credits from Acct 215, 284, 285; Econ 301, 320, 322; Mgmt 310, 370, 371, 414, 472; MIS 330; Mkt 340, 447, 448

42.5-43.5 Food science and human nutrition
FS HN 110, 167, 203, 272, 311, 351, 403, 405, 410, 412, 420, 421, 471, 472, 480, plus 5-6 credits at 200-level or above. Credit allowed for FS HN 101 only if taken prior to enrollment in or during the first year in the FS HN department.

10-14 Free electives

120 Total credits

Curriculum in Food Science and Technology—B.S./M.S.

Administered by the Department of Food Science and Human Nutrition.

Undergraduate Program:

Cr.	Degree Requirements
Cr.	9.5 Interpersonal and public communications skills
Cr.	Engl 104, 105, Lib 160; ComSt 214 or Sp Cm 212
Cr.	50-51 Mathematical, physical, and life sciences
Cr.	Math 165 and 166 or 181 and 182; Stat 101 or 104; Chem 177, 177L, 178, 331, 331L, 332; Phys 111, 112; BBMB 404, 405; Biol 201, 202; Micro 201L, 302
Cr.	17 Humanities, ethics, and social science
Cr.	Env S 201; select 3 credits each in humanities, U.S. diversity, international perspective and ethics (see approved lists) plus additional credits to total 17.
Cr.	34.5 Food science and human nutrition
Cr.	FS HN 110, 167, 203, 311, 351, 403, 410, 412, 420, 421, 471, 472, 480; additional credits in FS HN courses at 200-level or above or An S 270, 380, or 470 to total 34.5 cr. Credit allowed for FS HN 101 only if taken prior to enrollment in or during the first year in the FS HN department
Cr.	8-9 Electives
Cr.	120 Total credits

Graduate Program:

| Cr. | Degree Requirements |
| Cr. | 30 Graduate-level coursework including research |

Agriculture

Typical Program for the First Year

Cr.	Fall
Cr.	5 General Chemistry—Chem 177, 177L
Cr.	3 Principles of Biology —Biol 201
Cr.	3 First-Year Composition —Engl 104
Cr.	0.5 Orientation —FS HN 110
Cr.	Spring
Cr.	3 Principles of Biology —Biol 202
Cr.	3 first-Year Composition —Engl 105
Cr.	3 Math for Business and Social Sciences —Math 150 or alternate
Cr.	3 Introduction to Human Nutrition—FS HN 167
Cr.	0.5 Library —Lib 160
Cr.	3-4 Stat 101 or 104

25 Mathematical, physical, and life sciences
Math 140, 150, 151; Stat 101; Chem 163, 163L; Biol 201, 201L; Agron 154

15 Humanities, ethics, and social science
3 cr. in humanities; Econ 101; 3 cr. in ethics from approved list; and 3 cr. in U.S. diversity and 3 cr. in international perspectives

28 Forestry courses
For 104, 110, 120, 201, 202, 203, 204, 205, 206, 302, 451, 454

Students majoring in forestry are required to choose one of the following options at the end of their sophomore year: forest ecosystem management or wood products or urban and community forestry or natural resource conservation.

Options

Cr.	Wood products
Cr.	For 280, 452, 453, 481, 483, 485, 486, 487
Cr.	Forest ecosystem management
Cr.	Bot 356; For 280, 301, 342, 345, 452, 453; Pl P 416; 6 credits from approved multiple use courses (see department for list)
Cr.	Urban and Community Forestry
Cr.	Bot 356; For 280, 452, 475, 476; Hort 344; Mgmt 370; Pl P 416; Soc 310, 464; C R P 253; 3 credits from approved multiple use courses (see department for list)
Cr.	Natural Resource Conservation
Cr.	A Ed 330; Biol 202, 202L, 212; Bot 340, 356 For 301, 407, 453; Soc 130 or 134; 6 credits from approved directed electives list (see department for list)

8.5-21.5 Free electives

128 Total credits
Agriculture

Typical Program for the First Year

<table>
<thead>
<tr>
<th>Cr.</th>
<th>Fall</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>First-Year Composition I—Engl 104</td>
</tr>
<tr>
<td>R</td>
<td>Orientation in Forestry—For 110</td>
</tr>
<tr>
<td>3</td>
<td>Fundamentals of Algebra—Math 140</td>
</tr>
<tr>
<td>3</td>
<td>Principles of Biology I—Biol 201</td>
</tr>
<tr>
<td>1</td>
<td>Principles of Biology Laboratory I—Biol 201L</td>
</tr>
<tr>
<td>3</td>
<td>Introduction to Renewable Resources—For 120</td>
</tr>
<tr>
<td>3</td>
<td>Principles of Microeconomics—Econ 101</td>
</tr>
<tr>
<td>16</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cr.</th>
<th>Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Foundations of Soil Science—Agron 154</td>
</tr>
<tr>
<td>0.5</td>
<td>Library —Lib 160</td>
</tr>
<tr>
<td>3</td>
<td>First-Year Composition II—Engl 106</td>
</tr>
<tr>
<td>4</td>
<td>General Chemistry I —Chem 163</td>
</tr>
<tr>
<td>1</td>
<td>General Chemistry Lab I —Chem 163L</td>
</tr>
<tr>
<td>4</td>
<td>Wood Anatomy and Properties—For 280 or U.S. Diversity/International Perspectives</td>
</tr>
<tr>
<td>14.5 or 15.5</td>
<td></td>
</tr>
</tbody>
</table>

Curriculum in Genetics

Administered by the Department of Zoology and Genetics.

<table>
<thead>
<tr>
<th>Cr.</th>
<th>Degree Requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.5</td>
<td>Communications</td>
</tr>
<tr>
<td></td>
<td>Engl 104, 105; an advanced English writing course (Engl 302-316); oral communication (AgEds 311, Sp Cm 212; Lib 160)</td>
</tr>
<tr>
<td>11</td>
<td>Math</td>
</tr>
<tr>
<td></td>
<td>Must include at least one course from both calculus and statistics chosen from Math 160, 165, 166, 181, 182, Stat 101 or 104, 401, 402, 403</td>
</tr>
<tr>
<td>3</td>
<td>Computer Studies</td>
</tr>
<tr>
<td></td>
<td>Three credits in computer science or computer applications chosen from an approved list. See department for list.</td>
</tr>
<tr>
<td>31</td>
<td>Physical sciences</td>
</tr>
<tr>
<td></td>
<td>Chem 177, 177L, 178, 178L or 211L, 331, 331L, 332, 332L; BBMB 404 or 420; Chem 211 or 321 or BBMB 405 or 411; Physics 111, 112 or 221, 222</td>
</tr>
<tr>
<td>23</td>
<td>Biological sciences</td>
</tr>
<tr>
<td></td>
<td>Biol 201, 201L, 202, 202L, 301, 301L, 302, 302L; Micro 302; Biol 303</td>
</tr>
<tr>
<td>15</td>
<td>Humanities, ethics, and social sciences</td>
</tr>
<tr>
<td></td>
<td>15 credits including at least 3 credits each in the humanities, social sciences, ethics, international perspectives and U.S. diversity chosen from an approved list.</td>
</tr>
</tbody>
</table>

The environment-intensive and problem solving-intensive college requirements can be satisfied by selection of appropriate courses. See department for lists.

9.5 Genetics

Gen 110, 410, 411, 460 or 462, 491

9 Support electives

Choose 9 credits from approved list. See department for list. Biol (A Ecl) 312 must be included in the program

Electives

Additional electives sufficient to equal the 128 credits required for graduation.

128 Total credits

Typical Program for the First Year

<table>
<thead>
<tr>
<th>Cr.</th>
<th>Fall</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>General Chemistry—Chem 177, 177L</td>
</tr>
<tr>
<td>3</td>
<td>First-Year Composition—Engl 104</td>
</tr>
<tr>
<td>4</td>
<td>Calculus—Math 165 or 181</td>
</tr>
<tr>
<td>4</td>
<td>Principles of Biology—Biol 201, 201L</td>
</tr>
<tr>
<td>0.5</td>
<td>Orientation and Career Opportunities—Gen 110</td>
</tr>
<tr>
<td>0.5</td>
<td>Library Instruction—Lib 160</td>
</tr>
<tr>
<td>4</td>
<td>General Chemistry—I—Chem 177, 177L</td>
</tr>
<tr>
<td>3</td>
<td>First-Year Composition—I—Engl 105</td>
</tr>
<tr>
<td>4</td>
<td>Calculus—I—Math 161 or 166 or 182</td>
</tr>
<tr>
<td>4</td>
<td>Principles of Biology—I—Biol 202, 202L</td>
</tr>
</tbody>
</table>

19-20 Biological sciences

Biol 201, 202; select 13-14 credits from the following group: Bot 320, 306, 484; Biol 312; Agron 230; Agron 260; Agron 317; Agron 354; Ent 370 or 376; Ent 375; Bot 404; PI P 407; For 416; PI HP 391; Biol 201L; Biol 202L; Gen 320 or Biol 301, 301L; Biol 302, 302L

15 Humanities, ethics, and social sciences

3 credit course from each of the following areas: humanities, ethics, social science, U. S. diversity, and international perspectives; see department for procedure in meeting problem-solving, environmental-intensive, and communication-intensive requirements.

<table>
<thead>
<tr>
<th>Cr.</th>
<th>Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>General Chemistry—Chem 178, 178L</td>
</tr>
<tr>
<td>3</td>
<td>First-Year Composition—Engl 105</td>
</tr>
<tr>
<td>4</td>
<td>Calculus—I—Math 161 or 166 or 182</td>
</tr>
<tr>
<td>4</td>
<td>Principles of Biology—I—Biol 202, 202L</td>
</tr>
</tbody>
</table>

Curriculum in Horticulture

Students majoring in horticulture will select an option in which to specialize prior to reaching junior standing and will fulfill the requirements described below under Specialization Options. A minor is available. The requirements appear under Horticulture, Courses and Programs.

<table>
<thead>
<tr>
<th>Cr.</th>
<th>Degree Requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.5</td>
<td>Interpersonal and Public Communication Skills</td>
</tr>
<tr>
<td></td>
<td>Engl 104, 105, 302 or 314; Lib 160; Sp Cm 212 or AgEds 311; and a communications-intensive requirement (see department for procedure)</td>
</tr>
<tr>
<td>6.9</td>
<td>Mathematical sciences</td>
</tr>
<tr>
<td></td>
<td>Math 140 or 150 or 165 or 181; and Stat 101 or 104 or 227 or 401</td>
</tr>
<tr>
<td>13</td>
<td>Physical sciences</td>
</tr>
<tr>
<td></td>
<td>Chem 163, 163L, or 177, 177L; and 231, 231L, or 331, 331L; and one course from the following group: Chem 164, 164L; 178, 178L; or Phys 106 or 111. A student must take either (1) Chem 163/163L and Chem 231/231L or (2) Chem 177/177L and 178/178L series and Chem 331/331L.</td>
</tr>
</tbody>
</table>

12 Environmental horticulture option:

Hort 424 must be among the courses that fulfill the horticultural sciences requirement. Biol 312 and 9 or more credits from the following group of courses that fulfill the Horticultural sciences requirement. At least 12 credits from the following group: AST 324, 425, Agron 260, Bot 304, 364, Ent 375, Env S 293, 330, 382, 491

12 Greenhouse production and management option:

Hort 233, 322, 332, 422, 434, and 435 must be among the courses that fulfill the Horticultural Sciences requirement. Acct 284; and 9 or more credits from the following group: Econ 101, 102; Acct 215, 285; AST 358; Com S 103, 107; Mkt 340; Ent 375; Mkt 442, 446, 447

12 Fruit and vegetable production and management option:

Hort 422, 461, and 471 must be among the courses that fulfill the Horticultural Sciences requirement. Acct 284; and 9 or more credits from the following group: FS HN 372, 202, 471, 472, 403, 405; Econ 101, 102, 330; Acct 215, 285; AST 358; Com S 103 or 107; Mgmt 370; Mkt 340, 442, 446, 447

20 Horticultural communications and public education:
Students in this option must take Engl 314 under Interpersonal and Public Communications Skills and a minimum of 20 credits from the following group: Engl 220, 303, 305; ComSt 102, 214, 317; Sp Cm 312, 313, AgEds 310, 311, 401; Jl MC 210.

12.5 Nursey crops production and management option:
Hort 241, 322, 341, 342, 421, and 442 must be among the courses that fulfill the Horticultural Sciences requirement. Acct 284; and 9 or more credits from the following group: Acct 215, 285; AST 356; Agron 206; Com S 103 or 107; Econ 101, 102, 330; Mgmt 370; Mkt 340, 442, 446, 447

15 Public garden management and administration option:
Those who choose this option must take Bot 306, Ent 375 or Ent 376, Pl P 407 or Pl HP 391, Hort 233, 241, 252, 282, 322, 345, 445, and at least 1 credit of Hort 391. The student must then select a minimum of 15 credits from the following: Acct 284; Engl 303, 309; JlMC 220; AgEds 311; Sp Cm 312, 313. Up to 6 credits from the list below may be substituted for any of the 15 above credits. Acct 215, 285, 316; AgEds 402; AST 358; Com S 214, Engl 313, 415, 416; Fin 301; Mgmt 370, 371.

12 Science option:
Those who choose the Science Option must take Bot 320 for the biological sciences requirement. Math 165 or 181 for the mathematical sciences requirement; Chem 177, 177L, 178, 178L, 331, 333L, 332, 332L, Phys 111 and 112 for the physical sciences requirement. BBMB 301 or 404, Math 166 or 182, and 5 or more credits from the following group: BBMB 311, 404, 405, 411; Bot 303; Chem 210 or 211, 316, 321, 322, 322L; Com S 107 or 205; Gen 410, 411; Biol 301, 301L, 302, 302L.

12 Turfgrass management option:
Hort 351L, 351, 451, 452, 551, and 552 should be among the courses that fulfill the Horticultural Sciences requirement. Acct 284 and 9 or more credits from the following group: Acct 285; AST 324, 326, 358; Agron 206, 260, 356, 459; Com S 103 or 107; HRI 287, 288, 289, Mgmt 370; Pl HP 206, 391; Ent 375

14-18 Electives

128.5 Total credits

An official minor will be accepted in place of a specialized option with the permission of the student’s adviser.

Typical Program for the First Year

<table>
<thead>
<tr>
<th>Cr.</th>
<th>Fall</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Humanities or Free Elective</td>
</tr>
<tr>
<td>5</td>
<td>General Chemistry—Chem 163, 163L or 177, 177L</td>
</tr>
<tr>
<td>3</td>
<td>First-Year Composition—Engl 104 or 105</td>
</tr>
<tr>
<td>1</td>
<td>Orientation in Horticulture—Hort 110</td>
</tr>
<tr>
<td>0.5</td>
<td>Library Instruction—Lib 160</td>
</tr>
<tr>
<td>3</td>
<td>Fundamentals of Algebra for Science and Higher Mathematics—Math 140</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cr.</th>
<th>Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>General Biology—Biol 201</td>
</tr>
<tr>
<td>4</td>
<td>General Chemistry—Chem 164, 164L, 177, 177L (or Phys 106 or 111)</td>
</tr>
<tr>
<td>3</td>
<td>Humanities or social science from an approved list</td>
</tr>
<tr>
<td>3</td>
<td>First year composition—Engl 105 or Soils for Horticultural Scientists—Agron 155</td>
</tr>
<tr>
<td>3</td>
<td>Elective</td>
</tr>
</tbody>
</table>

Curriculum in International Agriculture

Administered by an Interdepartmental Committee. International agriculture can be taken only as a secondary major in conjunction with a primary major in the College of Agriculture. A minor is available to interested students regardless of their major.

<table>
<thead>
<tr>
<th>Cr.</th>
<th>Degree Requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.5</td>
<td>Interpersonal and public communication skills</td>
</tr>
<tr>
<td>12.5</td>
<td>Interpersonal and public communication skills</td>
</tr>
<tr>
<td>10-12</td>
<td>Mathematical sciences</td>
</tr>
<tr>
<td>24-30</td>
<td>Physical sciences</td>
</tr>
</tbody>
</table>

Curriculum in Microbiology

Administered by the Department of Microbiology.

<table>
<thead>
<tr>
<th>Cr.</th>
<th>Degree Requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.5</td>
<td>Interpersonal and public communication skills</td>
</tr>
<tr>
<td>10-12</td>
<td>Mathematical sciences</td>
</tr>
<tr>
<td>24-30</td>
<td>Physical sciences</td>
</tr>
</tbody>
</table>

Program for the First Year

Because international agriculture is a secondary major, the courses taken by the student during the first year will vary, depending on the primary major (see typical program for the primary major).

Curriculum in Microbiology

microbes.micro.iastate.edu/mipmhome.html

Administered by the Department of Microbiology.

<table>
<thead>
<tr>
<th>Cr.</th>
<th>Degree Requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.5</td>
<td>Interpersonal and public communication skills</td>
</tr>
<tr>
<td>10-12</td>
<td>Mathematical sciences</td>
</tr>
<tr>
<td>24-30</td>
<td>Physical sciences</td>
</tr>
</tbody>
</table>

Curriculum in Microbiology

microbes.micro.iastate.edu/mipmhome.html

Administered by the Department of Microbiology.

<table>
<thead>
<tr>
<th>Cr.</th>
<th>Degree Requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.5</td>
<td>Interpersonal and public communication skills</td>
</tr>
<tr>
<td>10-12</td>
<td>Mathematical sciences</td>
</tr>
<tr>
<td>24-30</td>
<td>Physical sciences</td>
</tr>
</tbody>
</table>

Curriculum in Microbiology

microbes.micro.iastate.edu/mipmhome.html

Administered by the Department of Microbiology.

<table>
<thead>
<tr>
<th>Cr.</th>
<th>Degree Requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.5</td>
<td>Interpersonal and public communication skills</td>
</tr>
<tr>
<td>10-12</td>
<td>Mathematical sciences</td>
</tr>
<tr>
<td>24-30</td>
<td>Physical sciences</td>
</tr>
</tbody>
</table>

Curriculum in Microbiology

microbes.micro.iastate.edu/mipmhome.html

Administered by the Department of Microbiology.
Typical Program for the First Year

Cr.	Fall	Cr.	Spring
4 | General Chemistry—Chem 177 | 6 | General Chemistry—Chem 177, 177L
1 | Laboratory in General Chemistry—Chem 177L | 4 | Principles of Biology—Biol 201, 201L
3 | First-Year Composition—Engl 104 | 3 | First-Year Composition—Engl 104
3 | Principles of Biology—Biol 201 | 4 | Calculus
1 | Laboratory in General Biology—Biol 201L | 0.5 | Orientation—FS HN 110
3 | Humanities, ethics, or social science | 4 | Principles of Biology—Biol 202, 202L
0.5 | Library 160 | 3 | First-Year Composition—Engl 105
R | Orientation in Microbiology—Micro 110 | 3-4 | Calculus or Elective
3 | General Chemistry—Chem 178 | 3 | General Chemistry—Chem 178
0.5 | Library—Lib 160 | 1 | FCS & Agric Systems—FS HN 203
1 | FCS & Agric Systems—FS HN 110
15 Humanities, ethics, or social science | 4 | Principles of Biology—Biol 202, 202L
9.5 Interpersonal and public communication skills | 3 | First-Year Composition—Engl 105
3-4 | Calculus or Elective | 3-4 | Calculus or Elective
3 | General Chemistry—Chem 178 | 3 | General Chemistry—Chem 178
0.5 | Library—Lib 160 | 0.5 | Library—Lib 160
203 Total credits | 1 | FCS & Agric Systems—FS HN 203

Curriculum in Nutrition-B.S./M.S.

Administered by the Department of Food Science and Human Nutrition.

Undergraduate Program:

Cr.	Degree Requirements
9.5 Interpersonal and public communication skills | Engl 104, 105, Lib 160, ComSt 214 or Sp Cm 212
51-58 Mathematical, physical, and life sciences | 4 credits in calculus (2 semesters preferred), Stat 104 or 101; Chem 177, 177L, 178, 331, 331L, 332, 332L; Phys 111, 112; Biol 201, 201L, 202, 202L, 301, 302; Micro 201L, 302; Zool 355
15 Humanities, ethics, and social science | Env S 201; select at least 13 additional credits to include 3 credits each for U.S. diversity, international perspective and ethics (see approved lists). Total credits should include 6 each in humanities and social science category.
27.5-31.5 Food science and human nutrition | FS HN 110, 203, 214 or 311, 261, 360, 362, 480; select 14-16 credits from: FS HN 361, 403, 412, 419 or 519, 461, 463, 464, 466, 490C, 499, 560, 562, 565, 575
6-17 Electives | Lib 160; ComSt 214 or Sp Cm 212
120 Total credits

Graduate Program:

Cr.	Degree Requirements
30 Graduate-level coursework including research | See department for graduate requirements.

Curriculum in Pest Management

Administered by the departments of Agronomy, Animal Ecology, Entomology, Forestry, Horticulture, and Plant Pathology. Must be taken as a secondary major in conjunction with a primary major. Students with primary majors in other than the sponsoring departments also are encouraged to enroll in the pest management program. Additionally, a minor in pest management is available; the requirements appear under Pest Management, Courses and Programs.

Cr.	Degree Requirements
12.5 Interpersonal and public communication skills | Engl 104, 105 and a minimum of 3 cr. in speech fundamentals with grades of C or better; Lib 160; electives and a communication-intensive requirement
6 Mathematical sciences | Stat 104; 3 cr. in mathematics, statistics or computer science; students must demonstrate computer proficiency according to procedures established by their primary major
9 Physical sciences | Chem 162, 162L, 231, 231L
16-17 Biological sciences | Biol 201, 201L, 202, 202L; Gen 320; any 2 courses of the following: BMBB 301; Biol 303, 312; Bot 320, 484; Ent 370; Micro 201, 302
15 Humanities, ethics, and social science | 3 cr. in economics or marketing; 3 cr. in humanities; 3 cr. in international perspectives; 3 cr. in U.S. diversity; 3 cr. in ethics; and environmental-intensive requirement; and problem solving-intensive requirement
9-10 Agricultural sciences | Agron 114 or For 301 or Hort 221; Agron 154 or 155; Agron 206
Curriculum in Plant Health and Protection

Administered by the Departments of Agronomy, Entomology, Forestry, Horticulture, and Plant Pathology. A minor in plant health and protection is available; the requirements appear under Plant Health and Protection, Courses and Programs.

<table>
<thead>
<tr>
<th>Cr.</th>
<th>Degree Requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.5</td>
<td>Interpersonal and public communication skills</td>
</tr>
<tr>
<td>6-10</td>
<td>Mathematical sciences</td>
</tr>
<tr>
<td>12-13</td>
<td>Physical sciences</td>
</tr>
<tr>
<td>19-20</td>
<td>Biological sciences</td>
</tr>
<tr>
<td>15</td>
<td>Humanities, ethics, and social science</td>
</tr>
<tr>
<td>17</td>
<td>Agricultural sciences</td>
</tr>
</tbody>
</table>

20-22 Plant health and protection
Pl HP 110, 206, 391, 392, 498; Agron 317; Hort 320 or Agron 354/354L; Ent 376; Pl P 407 or 416; and environmental-intensive requirement, communication-intensive requirement, problem-solving-intensive requirement

18.5-26.5 Free electives

128 Total credits

Typical Program for the First Year

Because pest management is a secondary major, the courses taken by the student during the first year will vary, depending on the primary major (see typical program for the primary major). It is recommended, however, that the following courses be included early in the program:

<table>
<thead>
<tr>
<th>Cr.</th>
<th>Principles of Crop Production—Agron 114 or Forest Ecology—For 301 or Principles of Horticulture—Hort 221 or Wildlife and Agriculture—A Ecl 130</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Principles of Biology—Biol 201, 202</td>
</tr>
</tbody>
</table>

Curriculum in Professional Agriculture

An interdepartmental curriculum offered by the College of Agriculture designed for students who have completed foundation program courses and desire to complete their degrees off campus. The curriculum’s administrative home is the Department of Agricultural Education and Studies. Coursework is usually delivered via video-tape, Iowa Communications Network, World Wide Web, on-campus workshops and labs, or at locations away from the Ames campus; see Off-Campus, Credit Courses and Programs.

Foundation Program

<table>
<thead>
<tr>
<th>Cr.</th>
<th>Requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.5</td>
<td>Interpersonal and public communication skills</td>
</tr>
<tr>
<td>17</td>
<td>Mathematical, physical, and life sciences</td>
</tr>
</tbody>
</table>

15 Humanities, ethics, and social sciences
Econ 101; from approved lists: 3 cr. in ethics, 3 cr. in international perspectives; 3 credits in U.S. diversity.

17 Agricultural sciences
Agron 114 or Hort 221; Agron 154 or 155; Agron 206; 8 cr. from the following: Agron 260, 338, 356, 421, 450, 485; Ent 283, 375; For 475; Hort 322, 332, 421, 424, 425; PI P 452, 477

Agriculture

15 Humanities, ethics, and social sciences
Econ 101; from approved lists: 3 cr. in ethics, 3 cr. in international perspectives, 3 cr. in U.S. diversity; elective (3 cr.); problem-solving intensive requirement

41.5 Total foundation program cr.

Agricultural Science Program

<table>
<thead>
<tr>
<th>Cr.</th>
<th>Degree Requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>45</td>
<td>Agricultural social sciences and economics</td>
</tr>
<tr>
<td>41.5</td>
<td>Electives</td>
</tr>
</tbody>
</table>

128 Total credits

Curriculum in Public Service and Administration in Agriculture

Administered by the Department of Sociology.

<table>
<thead>
<tr>
<th>Cr.</th>
<th>Degree Requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.5</td>
<td>Interpersonal and public communication skills</td>
</tr>
<tr>
<td>18</td>
<td>Mathematical, physical and life sciences</td>
</tr>
</tbody>
</table>

2001-2003
Curriculum in Seed Science

Administered by the Departments of Agricultural and Biosystems Engineering, Agronomy, Horticulture, and Plant Pathology. Must be taken as a secondary major in conjunction with a primary major. The seed science program is designed for students with career interests in one or more aspects of the seed industry. Areas of study include: seed production, conditioning, pathology, physiology, quality control, and marketing, as well as seed plant designs.

Curriculum in Zoology

Administered by the Department of Zoology and Genetics.
Departments of the College
Accounting
Finance
Logistics, Operations and Management
Information Systems
Management
Marketing

Objectives of the Curricula in Business
The instructional objective of the College of Business is to provide a high quality professional education in business. Such an education should provide the student with: (1) an appreciation of the evolution of the profession and an awareness of the social, technological, political, legal and economic forces shaping its future; (2) an understanding of the major functional areas of business with the opportunity for specialization for a career in business; (3) an ability to recognize and appreciate ethical and social values; (4) an opportunity for advanced study.

A comprehensive education in business includes a broad foundation in the liberal arts, courses in the major functional areas of business activity, proficiency in analytical methods, and the ability to identify problems and arrive at logical solutions. In addition, a professional education is designed to inspire students to assume business and community leadership.

The curricula in business are accredited by the International Association for Management Education (AACSB), the national business accrediting agency.

Organization of Curricula
The undergraduate curricula in business are divided into two phases: a general education (pre-business) program and a professional program. The pre-business requirements provide a broad foundation in the liberal arts. The professional program includes two parts: (1) the business core which provides a common body of knowledge in all the functional areas in business, and (2) a major curriculum. The seven major curricula offered for the degree bachelor of science (B.S.) include accounting, finance, management, management information systems, marketing, production/operations management or transportation and logistics.

Required High School Preparation
Students entering the pre-business curriculum must present evidence of the following high school preparation:

a. Four (4) years of English/Language Arts, emphasizing writing, speaking, and reading as well as an understanding and appreciation of literature.
b. Three (3) years of mathematics, including one year each of algebra, geometry, and advanced algebra.
c. Three (3) years of science, including one year each of courses from two of the following fields: biology, chemistry, and physics.
d. Two (2) years of social studies.

Admission Standards to Professional Programs
All new entering students are enrolled in a pre-business curriculum. To enter the professional program in the College of Business, students must complete a minimum of 30 credits including the foundation courses and Engl 104 and Engl 105. Any unmet high school requirements and Engl 101 courses must also be complete. See Curriculum in Business.

Achievement of an Iowa State University cumulative grade-point average of 2.5 or a grade-point average of 2.5 in the foundation courses guarantees admission to the professional program in the College of Business for all majors except Management Information Systems, which requires a 2.75 grade-point average in one of these areas. Students that have not achieved guaranteed admission may be considered on a case-by-case basis.

Eligibility to apply for the University Honors Program also qualifies a student for admission to the professional program. Students who meet this criterion must still apply for admission to the professional program.

If using the foundation courses for admission to the Professional Program, both transfer grades and Iowa State University grades are used to compute the grade point average. If courses are repeated, foundation grades from Iowa State University are used instead of transfer foundation grades. With the exception of Acct 285 and MIS 330, pre-business students do not have access to business core classes. To facilitate registration, students may be conditionally admitted during the semester in which they complete the admission requirements.

Admission requirements are subject to change. Applications and the current requirements for admission to the College of Business are available from the Andersen Undergraduate Services Center in the College of Business.

Academic Standards and Graduation Requirements
Policies for students enrolled in the College of Business may be obtained from the Andersen Undergraduate Services Center in the College of Business. Students are responsible for knowing and adhering to these College of Business policies as well as the university regulations found in this catalog. The following policies are in effect for students graduating from a professional curriculum in business with a B.S. degree under the 2001-2003 catalog: (1) A minimum of 124.5 semester credits are required. (2) At least 50 percent of the required business credits must be earned at Iowa State. All 300 level and higher business credits must be earned at a four-year college. (3) A minimum of 12 credits of the last 32 credits earned in residence must be applied to the business core and/or the major. (4) The major departments reserve the right to determine the appropriate section of the degree program to which transfer credits will be assigned. (5) Students must achieve English proficiency by earning a grade at C or better in two of the three required English courses. (6) A student must earn a grade of C or higher in a minimum of 30 credits applied to the business core and the major. (7) A student must earn at least 42 credits of 300 level and higher coursework from a four-year institution. (8) Business majors may not take business courses Pass-Not Pass (P/NP). (9) General education courses may not be taken P/NP. (10) No more than 9 elective credits may be taken P/NP.
Pre-business Curriculum

Cr. 18

Foundation Courses
3 Math 150\(^1\)\(^2\)
4 Com S 103\(^2\)
3 Econ 101
5 Stat 227\(^2\)
3 Acct 284

12 Communications
3 Engl 104
3 Engl 105
3 Engl 302
3 Sp Crn 212

Supporting courses
3 Acct 215
0.5 BusAd 101
3 Math 151\(^1\)\(^2\)
3 Econ 102
0.5 Lib 160

24 General Education Requirements
6 Global/International Perspectives
3 Select from approved international perspective list\(^3\)
3 Select from approved global perspective list\(^3\)

9 Humanities
3 Phil 230
3 History course(s)
3 Select from approved list\(^3\)

3 Natural science
3 Select from approved list\(^3\)

6 Behavioral science
6 Select from departments of Anthropology, Psychology, or Sociology\(^3\)

U.S. Diversity Course\(^4\)

1 Students not adequately prepared in mathematics may have to take remedial courses in addition to courses listed above. Remedial mathematics courses may not be used to satisfy credit requirements for graduation in the business curricula.

2 Substitutions can be made. See the Andersen Undergraduate Services Center in the College of Business.

3 Approved list of courses is available from the Andersen Undergraduate Services Center in the College of Business.

4 Courses for this requirement may also be used to fulfill other curriculum requirements or electives and therefore credits are not included in the sum needed.

Professional Program

Cr. 24

Business Core
3 Acct 285
3 Fin 301
6 Mgmt 370, 478
3 MIS 330
3 Mkt 340
3 POM 320
3 TrLog 360

18-21 Business Major
Select one:
18 Accounting
18 Acct 383, 384, 386, 387, 485, 497
21 Finance
6 Fin 310, 320
12 Select from Fin 330, 361, 380, 415, 424, 425, 445, 462, 472, 499 of which six credits must be at the 400 level.
3 Select from Acct 383, 384, 386, 387, 488 or any 400 level Acct; or any Fin course listed above.

18 Management Option in Human Resources Management
6 Mgmt 371, 471
12 Select from department-approved list

18 Management Option in Entrepreneurship and Strategy
9 Mgmt 310, 377, either 413 or 415
9 Select from department-approved list

18 Management Option in General Business
15 Acct 383, Fin 310, Mgmt 371, 471, Mkt 447
3 Select from department-approved list

18 Management Information Systems
15 Com S 201, MIS 331, 432, 433, 435
3 Select from department-approved list

18 Marketing
9 Mkt 443, 444, 447
6 Select from Mkt 343, 410, 442, 446, 448, 449
3 Select from department-approved list

18 Production/Operations Management
9 POM 420, 422, 424
9 Select from department-approved list

18 Transportation and Logistics
6 TrLog 460, 461
12 Select four of the following courses, two of which must be TrLog courses: TrLog 462, 463, 466, 468, 469, POM 420, 422, 424, or MIS 439.

15.5-18.5 Elective Courses
6 Non-business electives. Select from departments outside Business. No Econ, Stat, or Bus Tech credits may be used.

9.5-12.5 Select courses to broaden or complement the requirements (see adviser).
Internships
Credit and non-credit internships in business may be approved for College of Business students in all majors including pre-business. Credit hours and requirements vary. Arrangements must be made in the College prior to the beginning of the internship. An internship adviser will assist students in making these arrangements.

Double Majors
Undergraduates with a primary major in the College of Business may complete another major in the College of Business. Those desiring a second major outside the college should refer to the catalog section of the appropriate college and department for the second major requirements.

Undergraduates with a primary major outside the College of Business wanting a second major in business must meet the admission requirements for the professional program, complete the business core courses, and the major specialization.

All students pursuing double majors or double degrees within the College of Business are required to have 15 credits of coursework in each major that is not used in the other major.

International Business Secondary Major
A student in the College of Business may earn a secondary major in International Business. The requirements for this major include 12 credits in international business courses, one year of the same university-level foreign language (minimum 6 credits) and an approved international experience (minimum 3 months). Students who pursue this secondary major will be required to complete the requirements for a primary major in Business. Fifteen of the 18 credits required for the International Business major may not be used for the primary major.

Minor
The College of Business offers a structured minor in general business to students outside the College. Requirements for the minor are Acct 285, Fin 301, Mgmt 370, MIS 330, Mkt 340, POM 320, and TrLog 360. The minor must include at least 6 credits in courses numbered 300 or above taken at Iowa State University with a grade of C or higher.

Students wishing to earn a minor in business must meet the admissions requirements of the College of Business professional program (see admission standards to professional programs).

Students with a primary major in the College of Business may qualify for a minor specialization in one of the college’s departments by taking at least 15 credit hours in the minor specialization, nine hours of which may not be used to satisfy any other department, college, or university requirement. The minor must include at least 6 credits in courses numbered 300 or above taken at Iowa State University with a grade of C or higher.

Students with a major outside the College of Business are eligible for a general business minor only—not a specialization in a business department.

Entrepreneurial Studies Cross-Disciplinary Minor
The College of Business participates in a cross-disciplinary minor in Entrepreneurial Studies. This minor is only available to students outside the College of Business. Requirements for the minor include Mgmt 310, 313, and 9 credits from an approved list. The approved list is available in the Andersen Undergraduate Services Center in the College of Business. The minor must include at least 6 credits in courses numbered 300 or above taken at Iowa State University.

Nondegree Seeking Students
Students who wish to take courses in the College of Business, but are not seeking an undergraduate degree, should apply to the college as nondegree seeking students. Nondegree seeking students are eligible to take up to 9 credits in 300-level and above business courses without meeting the college’s admission requirements. Students who desire to take more than 9 credits, however, must meet the College’s professional program admission requirements and have approval of a department chair. Nondegree seeking students must meet all course prerequisites.

Graduate Study
Three programs are offered at the graduate level: a master of business administration (M.B.A.) program, a master of accounting (M.Acc.), and a master of science (M.S.) in business. These programs are intended to meet three sets of educational objectives.

The M.B.A. is the professional management education program for those pursuing careers in business. The purpose of this professional program is to provide professional business education by preparing students to understand the impact of technology on business organizations in a global environment. The M.B.A. program consists of a 48-credit curriculum leading to a nonthesis, noncreative component master of business administration. Students may pursue a specialization in accounting, agribusiness, finance, human resource management, information systems, manufacturing and quality or marketing.

The masters of accounting (M.Acc.) is a 32-hour degree. The program requires 15 hours of graduate accounting courses, at least 9 hours of nonaccounting graduate electives, a communications course and an international course from an approved list, and a 2-hour creative component. The M.Acc. is appropriate for any student wanting to pursue a variety of accounting careers. Additionally, the program is designed to help interested candidates meet the 150-hour education requirement for CPA certification in Iowa.

The M.S. program, consisting of 30 minimum credits, is oriented toward further business specialization at the master’s level for students with undergraduate degrees or academic backgrounds in business. The program is intended to serve those students who desire specialized study of an area within business. Students in the program must complete a thesis. This program is also a suitable vehicle for students planning to pursue a Ph.D. in business.

Double degree programs are offered with architecture (M.Arch./M.B.A.), community and regional planning (M.B.A./M.C.R.P.), and statistics (M.B.A./M.S.-Statistics). Various departments in the College of Business participate in the following graduate level interdepartmental offerings: Industrial Relations (interdepartmental program), Information Assurance (interdepartmental program) and Transportation (interdepartmental major). The College of Business also offers a business administration minor to students with majors outside the college.
College of Design

Mark C. Engelbrecht, Dean
Timothy O. Borich, Assistant Dean

Departments of the College
Architecture
Art and Design
Community and Regional Planning
Landscape Architecture

The College of Design is among a small, elite number of comprehensive design schools offering outstanding opportunities for both disciplinary and interdisciplinary education.

The College of Design strives to provide each student with a broad educational background and preparation in a specific environmental design or art discipline. Each program is designed to develop knowledge and appreciation of the physical and cultural environment, to stimulate creative thinking and analysis, and to prepare students for participation in a wide variety of careers.

The college’s undergraduate curricula are structured along three areas: general education, general design education, and discipline-specific education. General education and general design education are composed to assure that students receive a well-rounded undergraduate education and exposure to allied design disciplines. The intense, discipline-specific course sequences focus on developing students’ ability and knowledge in their major.

Within the major area, students advance creative and professional skills through classroom instruction and studio work, critiques of student projects, discussion with professional practitioners, and field studies.

The college’s programs also encompass many opportunities for individualized study and extracurricular activities such as visiting lectures and symposia, workshops, gallery exhibits, practicum and internship programs, field trips, and international study programs.

Graduates of the college are employed in private firms, government, industry, and education, or are self-employed as designers or artists. Opportunities for graduates include careers as architects, landscape architects, community and regional planners, graphic designers, interior designers, studio artists, arts administrators, art educators, and environmental designers.

The College’s world wide web site includes additional information: www.design.iastate.edu

Undergraduate Curricula

Majors
Architecture
Art and Design
Community and Regional Planning
Graphic Design
Interior Design
Landscape Architecture

Secondary Majors
Environmental Studies*
International Studies*
Transportation*

Minors
Design Studies
Entrepreneurial Studies*
Environmental Studies*
Gerontology*
International Studies*
Technology and Social Change*
*The College of Design participates in these interdepartmental secondary majors and minors.

Graduate Curricula

The College of Design offers graduate study in the areas shown below. Graduate study is conducted through the Graduate College. Details are found in the Graduate College section of this catalog.

Majors
Architecture
Architectural Studies
Art and Design
Art Education
Community and Regional Planning
Graphic Design
Integrated Visual Arts
Interior Design
Landscape Architecture
Transportation Planning*

Double Degree Programs
Architecture/Community and Regional Planning
Community and Regional Planning/Landscape Architecture
Architecture/Business
Community and Regional Planning/Public Administration

Minors
Gerontology*
*The College of Design participates in these interdepartmental graduate programs.

High School Preparation

Courses in fine arts and design that develop visualization and freehand drawing abilities are highly recommended though not required for entrance. Students planning to enroll in an academic program of the College of Design must complete the following high school course requirements: 4 years of English to develop communication skills, critical reading and writing ability, including coursework in composition and literature, and, up to 1 year of speech and/or journalism; 3 years of mathematics to develop problem solving skills, including 1 year each of algebra, geometry, and advanced algebra; 3 years of science, including at least two of the following: 1 year of biology, 1 year of chemistry, or 1 year of physics; 2 years of social studies, including at least 1 year of U.S. history and 1 semester of U.S. government.

Special Requirements

Students admitted into the departments of Architecture and Landscape Architecture are enrolled in preprofessional programs. Admission into the professional programs requires a separate application after completing the preprofessional program, depends on available resources, and is subject to review by faculty committee. Applicants must complete a specified core of courses and are reviewed on the basis of a portfolio of original work, scholastic performance, and a written essay.

Students enrolled in all curricula in the Department of Art and Design must complete a set of basic course requirements before entering a specific program of study. Admission into the graphic design and interior design programs depends on available resources and is subject to review by a faculty committee. Applicants are reviewed on the basis of a portfolio of original work, scholastic performance, and a written composition.

Advising

Each student receives personal assistance from an academic adviser within the student’s curriculum area. Students enrolled in the college’s preprofessional programs are advised by professional advisers. Once admitted to professional programs, students are assigned to faculty advisers. Advisers help students develop a program of study, access pertinent university resources, as well as provide information on career choice.

The college’s career services office works with students to develop their career goals as well as prepare and search for employment.

Honors Program

The College of Design participates in the Honors Program which provides opportunities for outstanding students to individualize their programs of study. See Index, Honors Program.

Requirements in the College of Design

All students in the College of Design are expected to meet the following requirements of the college.
General Education

Minimum Credits
6 Biological sciences, physical sciences and mathematics
Includes courses in the fields of agronomy, astronomy and astrophysics, biology, botany, chemistry, civil engineering, computer science, geology, mathematics, physics, statistics, and zoology.
9.5 Communications
Engl 104*, 105*, Lib 160.
Includes courses in the fields of English (composition), and speech communication (interpersonal and rhetorical).
6 Humanities
Includes courses in the fields of classical studies, English literature, foreign languages, history, philosophy, religious studies, as well as history/theory/literature courses in dance, music, theater, journalism, African American studies, American Indian studies, environmental studies, Latino/a studies, women’s studies, and university studies.
6 Social sciences
Includes courses in the fields of African American studies, American Indian studies, anthropology, economics, environmental studies, geography, human development and family studies, Latino/a studies, political science, psychology, sociology, and women’s studies.
9 Selected from the above areas.
Six credits must be at the 300 level or above.
36.5 Minimum credits
See departmental curricula for specific course requirements within the general education areas.

General Design Education

Cr.
3 History requirement:
a history course in the College of Design but outside the student’s curriculum area.
6-9 Options in studio, history, theory, criticism, and methods
At least two studio, history, theory, criticism, and/or methods courses in the College of Design but outside the student’s curriculum area.
9-12 Total credits (at least 3 credits must be at the 300 level or above)

*To meet requirements for graduation, a minimum grade of C- must be received.

Minor in Design Studies
The undergraduate minor in Design Studies is constructed to facilitate design awareness among interested students and to provide a vehicle for interdisciplinary study within the College of Design. This minor is open to all undergraduate students at Iowa State University.

This minor requires fifteen credits of course work: three credits of history selected from College of Design course offerings and twelve additional credits selected from College of Design course offerings.

At least six of the fifteen credits must be taken at Iowa State University in courses numbered 300 or above. At least nine of the fifteen credits must not be used to meet any other college or university requirements except the credit requirement for graduation.

Students enrolled in the College of Design may not use courses in their major to satisfy this minor.

Curriculum in Architecture

The department offers undergraduate and graduate degree programs:

A 140-credit undergraduate professional program, preceded by a 29.5-credit preprofessional program, leading to the Bachelor of Architecture degree.

A three-part 100-credit program leading to the master of architecture. Applicants holding B.S. or B.A. degrees in architecture or environmental design are given advanced standing in this program. For applicants holding professional degrees in architecture (B.Arch. or M.Arch.), a 30-credit post-professional course of study is available.

A 30-credit graduate program leading to the master of science in architectural studies, a research oriented degree.

For more complete graduate program descriptions see Graduate Study under Architecture in the Courses and Programs section.

Students are advised to seek faculty counsel regarding a career in architecture. Most states require that an individual intending to become an architect hold an accredited degree. There are two types of degrees that are accredited by the National Architectural Accrediting Board: (1) The bachelor of architecture, which requires a minimum of five years of study, and (2) the master of architecture, which requires a minimum of three years of study following an unrelated bachelor’s degree or two years following a related preprofessional bachelor’s degree. These professional degrees are structured to educate those who aspire to registration or licensure as architects.

The four-year preprofessional degree, where offered, is not accredited by the NAAB. The preprofessional degree is useful as preparation for further study in a professional architecture degree program or for employment options in a related field.

Preprofessional Program

First Year

Cr. Fall/Spring
4 Arch 102
3 Arch 182
6 Engl 104/105
3 Math 142
4 Physics 111
6 Social sciences/humanities options*

Second Year

Cr. Fall
6 Arch 231
3 Arch 247
3 Arch 242

Cr. Spring
6 Arch 232
3 Arch 247
3 Arch 242

Third Year

Cr. Fall
6 Arch 344
3 Arch 271
3 Elective**
18

Cr. Spring
6 Arch 346
3 Arch 348
3 Arch 448
3 Arch 458
18

Fourth Year

Cr. Fall/Spring
6 Arch 401
3 Arch 482
3 Arch HT 582 option*
3 Communication option*
3 Elective**
6 Arch 402**
3 Professional option†
3 Arch HT option*
6 Electives**
36

Fifth Year

Cr. Fall
6 Arch 403
2 Arch 485
3 Professional option†
3 College option*
3 Elective*
17

Cr. Spring
6 Arch 404
3 College option*
3 Professional option†
3 Elective*
15

*Choose from a faculty approved list of courses.
***May be substituted by Dsn S 446 (Interdisciplinary Design Studio).
†Three credits of professional options or electives must satisfy the College of Design studio, theory requirement.
Curriculum in Art and Design—B.F.A.

Leading to the degree bachelor of fine arts degree. Total credits required: 120.5.

This curriculum offers two concentrations for the student: visual communications and studio research.

Admission into the art and design B.F.A. curriculum is subject to completion of a minimum of 24.5 credits including Art 108, 109, 110, 130, Art H 181, Engl 104 and 105, Lib 160, 6 credits in general education coursework, and 15 credits in recommended studio coursework. A portfolio review will take place at the end of the second year to guide the student into the appropriate BFA concentration.

Transfer students with studio credits from other colleges and universities must present a portfolio of work upon admission and prior to registration for classes. Students are advised to present this portfolio of work upon admission and prior to registration for classes.

Cr. Degree Requirements
36.5 General education

6 min. Biological and physical sciences and mathematics
Select from Astro 120, 150, Biol 109, 123, 201, 202, Bot 102, 202, Chem 160, 163, 182L, Com S 103, 107, Geol 100, 101, Gen 260, Math 104 or 150, 105, 140, 141, 151, Mteor 206, Phys 101, 106, Stat 101, 104, Zool 155, 258, or any higher level course in these disciplines for which these courses are prerequisite.

9.5 min. Communications
6 Engl 104 and 105
3 Select from CmDis 286, ComSt 101, 102, Sp Cm 212
0.5 Lib 160

6 min. Humanities

6 min. Social sciences
Select from Anthr 201, 202, 306, Econ 101, 102, Pol S 215, 230, 241, 251, Psych 101, 230, Soc 130 or 134, or any higher level course in these disciplines for which these courses are prerequisite, or select from Am In 210, Env S 201, 223, HD FS 102, 239, 276, 283, 349, 367, 370, 373, 377, 378, 380, 395, JI MC 101, 205, 320, 453, 474, 476, W S 201, 301, 321, 323, 327, 346, 350, 385, 386, 401.

9 min. Selected from the above areas and/or from CmDis 275, 286, ComSt 101, 102, 214, 310, 311, 314, 317, 318, Engl 205, 219, 220, 302, 303, 304, 305, 306, 309, 310, 314, 315, 316, Fin 351, 357, Mgmt 370, Mkt 340, Sp Cm 212, 305, 312, 321, 322, 323, 325, 327. Six credits must be at the 300 level or above.

6 min. General design education*
3 History of Design—Art H 181**
3 Select from Dsn S 129, or other approved course from Arch, Art H, C R P or L A.

24 Art and design core
6 Visual Foundations I and II—Art 108, 109
R Orientation to Art and Design—Art 110
6 Drawing I and II—Art 130, 230
6 History of Art I and II—Art H 280, 281
6 Art history selections (300 level or above)

*The general design education requirement of 6 credits will be fulfilled within the studio requirement of the individual concentration.
**Transfer students with more than 60 credits must substitute another design studies course to meet this requirement.

Visual Communications Concentration
(Note: Portfolio review at end of second year)

6 Visual Communications Foundation
ArtIS 301—Foundations of Visual Literacy
ArtIS 310—Sources of Visual Design

9 ISA Studio Exploratory
Select three (3) courses from the following ArtIS offerings:

18 Visual Communications Career Focus Approved program of study. At least 6 credits must be at or above 300 level.
3 Art 497—Internship
3 Select from Art History or Studio
2 Art 499 FBA Seminar and Exhibition

13 Electives
120.5 Total credits

Studio Research Concentration
(Note: Portfolio review at end of second year)

15 Introduction to Studio Concentration

24 Studio options
Select from a combination of two and three dimensional studio courses, ArtIS 300-400 level.
Recommended: Art 497 Internship.

3 Art History
Select from Art H 300-400 level courses
2 Art 499 FBA Seminar and Exhibition

10 Electives
120.5 Total credits
Curriculum in Art and Design—B.A.

Leading to the degree bachelor of arts degree. Total credits required: 120.5.

This curriculum offers a general concentration in studio in combination with an applied career minor or approved program.

Admission into the art and design B.A. curriculum is subject to completion of a minimum of 24.5 credits including Art 108, 109, 110, 130, Eng 104 and 105, Lib 160, 3 credit selected general design education course, and 6 credits in general education coursework.

Transfer students with studio credits from other colleges and universities must present a portfolio of work done in these courses in order to have the credits apply toward studio requirements. Students are advised to present this portfolio of work upon admission and prior to registration for classes.

Transfer students with studio credits from other colleges and universities must present a portfolio of work done in these courses in order to have the credits apply toward studio requirements. Students are advised to present this portfolio of work upon admission and prior to registration for classes.

Curriculum in Community and Regional Planning

Leading to the degree bachelor of science. Total credits required: 128.5.

Areas of specialization include: land use and transportation planning; housing and social planning; community economic development; environmental planning and urban design. Students can also work with their advisors to design their own areas of specialization.

Cr. Degree Requirements

36.5 General education

6 min. Biological and physical sciences and mathematics

Select from Astro 120, 150, Biol 109, 123, 201, 202, Bot 102, 202, Chem 160, 163, 163L, Com S 103, 107, Geol 100, 101, Gen 260, Math 104 or 150, 105, 140, 141, 151, Mteor 206, Phys 101, 106, Stat 101, 104, Zool 155, 258, or any higher level course in these disciplines for which these courses are prerequisite

9.5 min. Communications

6 Eng 104 and 105
3 Select from CmDis 286, ComSt 101, 102, Sp Cm 212
0.5 Lib 160

6 min. Humanities

212, 305, 312, 321, 322, 323, 325, 327.
Six credits must be at the 300 level or above.

6 min. General design education**

3 Select a history course from Arch, Art H, Dsn S, or L A.
3 Select from Art H 181, 426, 446, or other approved design studies course

24 Art and design core

6 Visual Foundations I and II—Art 108, 109
R Orientation to Art and Design—Art 110
6 Drawing I and II—Art 130, 230
6 History of Art I and II—Art H 280, 281
6 Art history selections (300 level or above)

24 Art and design options**

18 Major concentration

Select from all ArtIS 200-300 level courses, graphic design, interior design.
3 Art H 300-400 level courses
3 Art H Museum/Gallery/Studio Internship
R Art 496—Art and design field study

15 Applied minor* or approved program of study (at least 6 credits 300 or above courses)
See department for specific curriculum sheets with course information.

15 Electives

120.5 Total credits

Curriculum in Art and Design—B.A.

Leading to the degree bachelor of arts degree. Total credits required: 120.5.

Areas of specialization include: land use and transportation planning; housing and social planning; community economic development; environmental planning and urban design. Students can also work with their advisors to design their own areas of specialization.

Cr. Degree Requirements

12.5 Communications

Engl 104, 105, and 309 or 314; Lib 160; Sp Cm 212

9 Humanities

11 Mathematics

Stat 101; Math; Com S 103

6 Natural sciences

18 Social sciences

Econ 101 or 102; Pol S 215; Soc 134; options

9 Design core

LA 103; General design education, * or from approved options

3 Engineering and transportation options

C E 350

37 Community and regional planning core

C R P 253, 272, 274, 383, 432, 492; options

Planning related specialty

14 Electives

128.5 Total credits

**See College of Design requirements.
Curriculum in Graphic Design

Administered by the Department of Art and Design. Leading to the bachelor of fine arts degree. Total credits required for graduation: 123.5. Curriculum is planned for students preparing to enter the professional field of graphic design.

Consideration for admission into the graphic design curriculum requires completion of at least one year of study at ISU. Admission is based on department resources and will be determined by overall cumulative grade point average following completion of 23 credits including the following courses: Art 108, 109, 110, 130, ArtGr 177, Art H 181, Engl 104 or 105, and 6 credits of general education. A portfolio review also will be a significant factor in the admission review process.

On admission to the program, the faculty strongly recommend the purchase of a laptop computer and software. Specifications for the laptop computer and software are available at www.design.astate.edu under the “Students” link.

Transfer students with studio credits from other colleges and universities must present for departmental review a portfolio of work done in these courses in order to have the credits apply toward studio requirements. Students are advised to present this portfolio of work upon admission and prior to registration for classes.

Cr. Degree Requirements

39.5 General education

6 min. Biological and physical sciences and mathematics
Select from Astro 120, 150, Biol 109, 123, 201, 202, Bot 102, 202, Chem 160, 163, 163L, Com S 103, 107, Geol 100, 101, Gen 260, Math 104 or 150, 105, 140, 141, 151, Mteor 206, Stat 101, 104, 105, 106, 107, Zool 155, 258, or any higher level course in these disciplines for which these courses are prerequisite.

9.5 min. Communications
Select from CmDis 286, ComSt 101, 102, Sp Cm 212

6 min. Humanities

6 min. Social sciences
Select from Anthr 201, 202, 306, Econ 101, 102, Pol S 215, 230, 241, 251, Psych 101, 230, Soc 130 or 134, or any higher level course in these disciplines for which these courses are prerequisite, or select from Am In 210, Env S 201, 223, HD FS 102, 239, 276, 283, 349, 367, 370, 373, 377, 378, 380, 395, Ji MC 101, 205, 320, 453, 474, 476, W S 201, 301, 321, 322, 327, 346, 350, 385, 386, 401

12 min.
Selected from the above areas and/or from CmDis 275, 286, ComSt 101, 102, 214, 310, 311, 314, 317, 318, Engl 205, 219, 220, 302, 303, 304, 305, 306, 309, 310, 314, 316, 316, Fin 361, 371, Mgmt 370, Mkt 340, Sp Cm 212, 305, 312, 321, 322, 323, 325, 327. Six to nine credits must be at the 300 level or above.

12 min.
General design education
3 History of Design—Art H 181*
3 Select a history course from Arch, Art H, Dsn S, or L A.
6 Studio Options: Select from ArtIS, ArtID, L A, Arch or other approved studio course.

18 Art and design core
6 Visual Foundations I and II—Art 108, 109
R Orientation to Art and Design—Art 110
6 Drawing I and II—Art 130, 230
6 History of Art I and II—Art H 280, 281

50 Graphic design concentration
2 Introduction to Graphic Design—ArtGr 177
3 Design Through Photography—ArtIS 229
6 Graphic Design Studio I and II—ArtGr 270, 271
4 Graphic Technology I and II —ArtGr 275, 276
1 Graphic Design Internship Seminar—ArtGr 277
6 Graphic Design Studio III and IV—ArtGr 370, 371
6 Graphic Design History/Theory/Criticism I and II, ArtGr 397, 388
2 Graphic Design Materials and Processes—ArtGr 372
6 Graphic Design Studio V and VI—ArtGr 470, 471
2 Graphic Design Professional Presentation—ArtGr 472
3 Graphic Design Professional Practices—ArtGr 481
6 Select three 2-credit options from approved program list. One option will be taken with ArtGr 370, 371, 470
3 Select from:
Art and Design in Europe—Art 495G
Graphic Design Internship—ArtGr 480
Art and Design Field Study—Art 496G
4 Electives
123.5 Total credits

*Transfer students with more than 60 credits must substitute another design studies course to meet this requirement.

Curriculum in Interior Design

Administered by the Department of Art and Design. Leading to the bachelor of fine arts degree. Total credits required for graduation: 127.5. Curriculum is planned for students preparing to enter the professional field of interior design.

Admission is based on department resources and will be determined by rank order, based on three factors: A. Overall cumulative grade point average following completion of 27 credits including the following courses: Art 108, 109, 110, 130, ArtID 160, 160S, Art H 181, Engl 104 or 105, and 6 credits of general education; B. A written composition and. C. Portfolio review.

Transfer students with studio credits from other colleges and universities must present for departmental review a portfolio of work done in these courses in order to have the credits apply toward studio requirements. Students are advised to present this portfolio of work upon admission and prior to registration for classes. Admission of transfer students is contingent on available places in the program.

Cr. Degree Requirements

36.5 General education total

6 Biological and physical sciences and mathematics
Math 104 or 105 or 140 or 150 Select from Astro 120, 150, Biol 109, 123, 201, 202, Bot 102, 202, Chem 160, 163, 163L, Com S 103, 107, Geol 100, 101, Gen 260, Math 104 or 150, 105, 140, 141, 151, Mteor 206, Phys 101, 106, Stat 101, 104, Zool 155, 258, or any higher level course in these disciplines for which these courses are prerequisite.

9.5 Communications
Engl 104 and 105
Lib 160
Select from CmDis 286, ComSt 101, 102, Sp Cm 212

6 Humanities

123.5 Total credits
Transfer students with more than 60 credits must substitute another design history course to meet this requirement.

Curriculum in Landscape Architecture

The department offers a 5-year curriculum, requiring 149.5 credits, leading to the degree bachelor of landscape architecture. These credits are distributed between a one-year pre-professional program of 32.5 credits and a 4-year professional program of 117 credits.

Admission into the professional program depends upon available resources and is subject to the approval of a faculty committee at the completion of the preprofessional program. Applicants must complete a specified core of courses and are reviewed on the basis of a portfolio of original work, scholastic performance, and a written essay.

Preprofessional Program

First Year

<table>
<thead>
<tr>
<th>Cr.</th>
<th>Fall</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Landscape Architectural Design and Visualization I—LA 101</td>
</tr>
<tr>
<td>3</td>
<td>Introduction to Landscape Architecture—LA 141</td>
</tr>
<tr>
<td>3</td>
<td>First-Year Composition—Engl 104</td>
</tr>
<tr>
<td>3</td>
<td>Algebra—Math 140</td>
</tr>
<tr>
<td>3</td>
<td>Environmental Biology—Env S 123</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cr.</th>
<th>Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Landscape Architectural Design and Visualization II—LA 102</td>
</tr>
<tr>
<td>3</td>
<td>Design option¹</td>
</tr>
<tr>
<td>2</td>
<td>Trigonometry—Math 141</td>
</tr>
<tr>
<td>3</td>
<td>Soils for Urban Use—Agron 156</td>
</tr>
<tr>
<td>3</td>
<td>First Year Composition II—Engl 105</td>
</tr>
<tr>
<td>0.5</td>
<td>Library Instruction—Lib 160</td>
</tr>
</tbody>
</table>

15.5 Total credits

Second Year

<table>
<thead>
<tr>
<th>Cr.</th>
<th>Fall</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Midwestern Landscape Studies—LA 201</td>
</tr>
<tr>
<td>2</td>
<td>Investigating Landscape Constructions—LA 281</td>
</tr>
<tr>
<td>3</td>
<td>Native Plants of the Midwest—LA 221</td>
</tr>
<tr>
<td>3</td>
<td>Introduction to Landscape Architectural Theory—LA 272</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cr.</th>
<th>Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Site Planning and Design I—LA 202</td>
</tr>
<tr>
<td>3</td>
<td>Landscape Architectural History: prehistory to 1900—LA 273</td>
</tr>
<tr>
<td>3</td>
<td>The Social and Behavioral Landscape—LA 274</td>
</tr>
<tr>
<td>3</td>
<td>Literature option¹</td>
</tr>
<tr>
<td>3</td>
<td>Elective</td>
</tr>
</tbody>
</table>

18 Total credits

Professional Program

Third Year

<table>
<thead>
<tr>
<th>Cr.</th>
<th>Fall</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Site Planning and Design II—LA 301</td>
</tr>
</tbody>
</table>

149.5 Total credits

1. Select from department approved list.

At least two elective courses must be from an L.A professional elective list approved by the department.

Graduate students pursuing the M.L.A. may concurrently enroll in the undergraduate program to earn the B.L.A. The actual courses required will vary according to each student’s landscape architectural skill level upon admission as determined by a faculty committee. For more information, students should contact the department office.
College of Education

Walter Gmelch, Dean
Jackie Blount, Associate Dean
Roger Smith, Associate Dean

Departments of the College
Curriculum and Instruction
Educational Leadership and Policy Studies
Health and Human Performance
Industrial Education and Technology

The College of Education is a diverse college guiding students as they prepare to work with people in different organizations. Degree programs include teacher education, preparation for professions in health and exercise, manufacturing and safety in industry, and professional programs at the graduate level. The College of Education, in conjunction with other colleges, offers licensure programs for early childhood education, elementary, secondary, and community college teaching; school principals and superintendents, as well as school media specialists, special education and school counseling. In addition, certification programs also exist for students in the Department of Health and Human Performance and the Industrial Technology program.

A person who is to work effectively with people needs broad personal and professional knowledge and understanding. The College of Education strives to provide each student with a sound general education as well as preparation in an area of specialization.

Recommended High School Preparation
Recommended preparation for students entering most departments of the College of Education should include 4 years of English (including speech) with emphasis in composition and communication skills; 3 years each of mathematics and natural sciences, and 3 years of social science and/or humanities. In addition, students interested in Elementary Education or Early Childhood Education are advised to complete three or more years of high school study in one foreign language.

Advising System
Each student in the College of Education works closely with an academic advisor who is associated with the curriculum in which the student is majoring. Advisors assist students in developing academic programs and in adjusting to university life. They also provide information and guidance about career choices. Advisors attempt to adjust each student’s schedule of course work in accordance with the student’s interests and capabilities.

The college offers an orientation program during the summer for students planning to enter in the fall. Incoming students are encouraged to attend the orientation session so that academic assessments can be made and appropriate classes may be scheduled for the following term.

Curricula and Special Programs in the College of Education

Community Health Education—Options: Community and Public Health, Substance Abuse Prevention, Wellness/Fitness.

Early Childhood Education—(Administered jointly by the Department of Curriculum and Instruction in the College of Education and the Department of Human Development and Family Studies in the College of Family and Consumer Sciences.)

Elementary Education.

Exercise and Sport Science—Options: Athletic Training, Exercise Science, General Exercise and Sport Studies, Physical Education Licensure, Sport Management.

Industrial Technology—Options: Manufacturing, Occupational Safety.

Secondary Education. The College of Education provides secondary education licensure programs in conjunction with subject matter areas of agriculture, art (master’s program only), biology, chemistry, earth sciences, English, foreign languages, general sciences, health, family and consumer sciences education, mathematics, music, physical science, physics, social studies, and speech. See Index, Teacher Education.

The College of Education offers coaching and health endorsements to students who want to add additional teaching areas to their primary licensure program.

The Departments of Educational Leadership and Policy Studies and Curriculum and Instruction offer work for the degrees master of science, master of education, and doctor of philosophy with a major in education. They also offer minor work to students majoring in other fields of study. In the Department of Educational Leadership and Policy Studies, students may complete the Ph.D. with a major in education and a specialization in educational leadership. At the master’s level, students may specialize in counselor education; educational administration; higher education; organizational learning and human resource development; and research and evaluation.

Minors
Athletic Coaching
Athletic Training
Dance
Educational Computing
Health Studies

Graduate Curricula
Graduate study in the College of Education is conducted through the Graduate College. Details are found in the Graduate College section of this bulletin.

Honors Program
The College of Education Honors Program provides an opportunity for students with a 3.35 grade point average or higher to complete their course of study in the University Honors Program. For more details, contact the academic advisor, the College Honors Committee, or see Index, Honors Program.

International Studies (secondary major only)
The International Studies Program is an interdisciplinary program which may be taken only as a second major. Students pursuing a second major in international studies must complete the International Studies Program as described in this catalog (see Index, International Studies).

The General Education Requirement
Students in the College of Education and all prospective teachers are required to complete a program in general education which is integrated with their professional training and extends through the undergraduate curriculum.

The general education program emphasizes intellectual growth and personal development as contrasted with specific vocational preparation. It is recognized that many contributions to general education may be made by courses which have other primary objectives.

The program aims to stimulate a desire for learning and intellectual endeavor, develop understanding and appreciation for the physical and cultural world, encourage independent thinking and analysis, increase competence in all aspects of communication, and create an understanding of individuals as social, psychological, and physical beings.

The student is expected to complete studies in five groups in general education. Areas represented below are not departmental titles. In some cases, courses relating to a given area may be found in several different departments. Credits listed are minimum requirements.

<table>
<thead>
<tr>
<th>Cr.</th>
<th>I. Biological sciences, physical sciences, and mathematics</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>II. Social sciences</td>
</tr>
<tr>
<td>9</td>
<td>III. Humanities</td>
</tr>
<tr>
<td>9</td>
<td>IV. Communication skills</td>
</tr>
<tr>
<td>1</td>
<td>V. Health, dance, exercise and sport science, safety</td>
</tr>
<tr>
<td>34</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Additional credits in above areas</td>
</tr>
<tr>
<td>42</td>
<td></td>
</tr>
</tbody>
</table>

This total will include Engl 104 and 105, Lib 160, and credits used to satisfy University requirements in the areas of U.S. Diversity and International Perspectives.
Teacher Education and Licensure

All students who are recommended by Iowa State University for teacher licensure must meet the requirements of the teacher education program and be recommended by the College of Education.

Each student will be enrolled in the department in which he or she plans to major and must meet the graduation requirements of that department and the college in which it is located.

For details concerning the professional teacher education requirements and the areas of specialization requirements, see Teacher Education, Courses and Programs. Information disclosure for students and employees is available at www.iastate.edu/~disclosure/.

Curriculum in Community Health Education

Administered by the Department of Health and Human Performance, the curriculum in community health education was developed to prepare professionals in diverse fields within health education. Students electing to major in Community Health Education may select one of three career options: 1. Community/public health; 2. Substance abuse prevention; or 3. Wellness/fitness. Various certifications are available upon successful completion of the options within the curriculum.

For students preparing to teach grades 7-12, health studies may be added to their primary licensure area. See Teacher Education.

English Proficiency

In order to meet graduation requirements, all students must earn an average of C (2.0) or better in Engl 104 and Engl 105, with neither grade below a C-. Students not meeting this condition must earn a C or better in an advanced writing course (select from Engl 220, 302, 309, or 314).

U.S. Diversity and International Perspectives

In order to meet graduation requirements, all students must complete 3 credits of course work in U.S. Diversity and 3 credits in International Perspectives. See university approved list.

Total credits required: 124 (46 credits in courses number 300 or above.)

Option 1: Community/Public Health (20 cr.)

This option emphasizes health promotion and disease prevention and prepares students for professional involvement in community health agencies which incorporate health services and the educational process. Students will be prepared for employment in state and public health agencies, volunteer health agencies, hospitals (patient education), and industry (health and wellness programs). Graduates are eligible to take the National Certified Health Education Specialist (CHES) exam which recognizes qualified specialists in the diversified field of health education.

- **Course (Cr.)**
 - 48.5-49.5 General education
 - 21-22 Biological sciences, physical sciences and mathematics
 - 4 Chem 183
 - 1 Chem 183L
 - 3 Principles of Biology—Biol 201
 - 3 Introduction to Human Nutrition—FS HN 167
 - 3-4 Computer Applications—C I 201 or Com S 103
 - 3 Basic Human Physiology and Anatomy—Zool 195
 - 4 Principles of Statistics—Stat 101
 - 9 Social sciences
 - 3 Introduction to Sociology—Soc 134
 - 3 Developmental Psychology—Psych 230 or Individual and Family Life Development—HD FS 102
 - 3 Social Psychology—Psych 280 or Soc 305
 - 6 Humanities
 - Hist, Relig, Phil, F Lng, Engl Lit, Cl St, (See HHP homepage or department list)
 - 12.5 Communication skills
 - 6 First-year Composition—Engl 104, 105
 - 3 Fundamentals of Public Speaking—Sp Cm 212
 - 3 Business Communication—Engl 302 or Business and Professional Speaking—Sp Cm 312
 - 0.5 Library Instruction—Lib 160
 - 15 Community health core
 - 3 Foundations—H S 255
 - 3 Community and Public Health—H S 310
 - 3 Health Promotion in the Community and Workplace—H S 380
 - 3 Administration of School Health—H S 390
 - 3 Community Health Program Development—H S 430
 - 14 Community Health Education Content Courses
 - 2 First Aid and Emergency Care—H S 105
 - 3 Personal and Consumer Health—H S 110
 - 1 R Health and Human Performance Orientation—H S 250
 - 3 Drug Education—H S 215
 - 3 Human Diseases—H S 350
 - 3 Human Sexuality—HD FS 276
 - 3 Job Search Skills and Strategies—H S 385
 - 15-16 Health Related Supporting Courses
 - 3 Principles of Accident Prevention—I Tec 270
 - 3 Principles of Microeconomics—Econ 101
 - 3 Principles of Marketing—Mkt 340
 - 3 Principles of Public Relations—Jl MC 220 or Publicity Methods
 - 3 Jl MC 201
 - 3 Select from Engl 309, 313, HD FS 395, 449 or Jl MC 342/342L.
 - 5.5-7.5 Electives

Option 2: Substance Abuse Prevention (24 cr.)

This option is designed to meet the needs of students who are interested in becoming certified substance abuse prevention specialists. To be eligible for Iowa Board of Substance Abuse Certification, students need 2000 hours of an approved supervised internship within the CHE major. Preventionists are employed in state health departments, state education departments, school districts and private and public agencies which have prevention programs.

- **Course (Cr.)**
 - 3 Substance Abuse Prevention—H S 395
 - 3 Youth and Crime—Soc 241
 - 3 Children, Family & Public Policy—HD FS 395
 - 3 Counseling Theories and Techniques—Psych 422
 - 12 Directed Field Experience in Community Health Education—H S 485

Option 3: Wellness/Fitness (23 cr.)

The Wellness/Fitness option prepares students interested in career settings which emphasize health promotion and physical fitness. These include: business, industry, hospitals and recreation settings. This program allows students to combine wellness concepts from Community Health Education with fitness concepts from the field of exercise science.

- **Course (Cr.)**
 - 2 Physical Fitness and Conditioning—Ex Sp 258
 - 2 Laboratory in Human Physiology and Anatomy—Zool 156
 - 2 Leadership Techniques for Fitness—Ex Sp 259
 - 3 Physiology of Exercise—Ex Sp 358
 - 3 Principles of Fitness Assessment & Exercise Prescription—Ex Sp 458
 - 1 Internship in Exercise Leadership—Ex Sp 459
 - 10 Directed Field Experience in Community Health Education—H S 485

Education 81
The curriculum in early childhood education is planned for students preparing to teach children who are typically developing and those with special needs from birth through age eight. Graduates in this curriculum may teach in early childhood (preschool and primary) classrooms or home-based programs, with an emphasis on inclusive services; graduates may be employed by either public or private agencies including schools. This curriculum has been approved by the Iowa Department of Education and meets requirements for the early childhood education unified teacher license, which permits individuals to teach general and special education for children from birth through age eight. The program is jointly administered by the Department of Curriculum and Instruction within the College of Education and the Department of Human Development and Family Studies within the College of Family and Consumer Sciences.

For details concerning the professional teacher education requirements and admission to the undergraduate teacher education program, see Teacher Education, Courses and Programs.

English Proficiency

In order to meet graduation requirements, all students must earn a C (2.0) or better in Engl 104 and Engl 105.

U.S. Diversity and International Perspectives

In order to meet graduation requirements, all students must complete 3 credits of course work in U.S. Diversity and 3 credits in International Perspectives. See department advising office for approved lists of courses.

Foreign Language Requirement

Early childhood education majors must satisfy a graduation requirement equivalent to the first year of university-level study in one foreign language (normally, completion of a two-semester sequence in any one foreign language). The requirement may be met by completion of three or more years of high school study in one foreign language.

Students who have completed three or more years of French, German, or Spanish in high school may not receive graded credit for 101-102 in those languages; test-out credit (T credit) may be obtained by passing an appropriate examination or by completing an advanced sequence (200-level or higher) in that language. If these students choose to take 101-102 on a remedial basis, they will be graded S-F.

Total credits required: 135.5.

Curriculum in Elementary Education

The curriculum in elementary education is planned for students preparing to teach in grades kindergarten through six. For additional information, see Index, Elementary Education. Teaching endorsements in areas closely related to elementary education, including a special education endorsement in multicategorical resource teaching, are available for elementary education majors. See Teacher Education, Courses and Programs, for information about specific endorsements. Additional teaching endorsements, available at the graduate level to individuals who hold a valid Iowa teaching license, include the following: K-6 foreign language, reading, special education (behavior disorders, learning disabilities, multicultural self-contained), and talented and gifted.

English Proficiency

In order to meet graduation requirements, all students must have a C (2.0) or better for each of Engl 104 and Engl 105.

U.S. Diversity and International Perspectives

In order to meet graduation requirements, all students must complete 3 credits of course work in U.S. Diversity and 3 credits in International Perspectives. See department for approved lists of courses.

Foreign Language Requirement

Elementary education majors must satisfy a graduation requirement equivalent to the first year of university-level study in one foreign language (normally, completion of a two-semester sequence in any one foreign language). The requirement may be met by completion of three or more years of high school study in one foreign language.

Students who have completed three or more years of French, German, or Spanish in high school may not receive graded credit for 101-102 in those languages; test-out credit (T credit) may be obtained by passing an appropriate examination or by completing an advanced sequence (200-level or higher) in that language. If these students choose to take 101-102 on a remedial basis, they will be graded S-F.

Total credits required: 135.5.

Cr.

<table>
<thead>
<tr>
<th>Cr.</th>
<th>General education</th>
</tr>
</thead>
<tbody>
<tr>
<td>41.5</td>
<td>Communications and Library Engl 104 (3), Lib 160 (0.5), Select 3 credits from communications options list. (3)</td>
</tr>
</tbody>
</table>

Curriculum in Early Childhood Education

- **Natural sciences and Mathematical Disciplines:** Biological sciences (3), Math 195 (3), physical sciences (3), FS HN 167
- **Social sciences:** American history or American government (3), options (6)
- **Humanities:** Select 9 credits from department-approved list
- **Health, safety**: H S 105 (2)
- **Human development and family studies:** HD FS 102 (3), 220 (3), 221 (3); select 3 credits from HD FS 349, 395, 446, 449, 460
- **Professional education**:
 - Professional education core: C I 201 (3), 204 (3), 333 (3), 406 (3); Sp Ed 250 (3); Orientation (R)
 - Related Options: Select 3 credits from department-approved list
 - Preprimary: Inclusive HD FS 240 (3), 340 (4), 343 (4), 345 (3), 455 (4), 456 (3)
 - Primary: Inclusive: C I 245 (2), 268 (1), 367 (4), 433 (2), 438 (2), 439 (2), 468F (1), 468G (1), 468I (1), Sp Ed 368 (1), 355 (2), 455 (2)
 - Student teaching: Preprimary and Primary (Inclusive): Sp Ed 415 (8) and HD FS 417B (8) or C I 416A (8) or 416D and HD FS 417C (8)

Total credits required: 129.5

Cr.

<table>
<thead>
<tr>
<th>Cr.</th>
<th>General Education</th>
</tr>
</thead>
<tbody>
<tr>
<td>46.5</td>
<td>Communication skills Engl 104 (3), 105 (3), Library 160 (0.5); Select from ComSt 102 (3), 218 (3), 317 (3), Sp Cm 212 (3), 312 (3), 313 (3), 322 (3), 327 (3)</td>
</tr>
<tr>
<td>9</td>
<td>Social sciences: Psych 230 (3), American history/American government (3), options (3)</td>
</tr>
<tr>
<td>9</td>
<td>Humanities: Select 9 credits from department-approved list</td>
</tr>
<tr>
<td>1</td>
<td>Health, dance, exercise sport science, safety options (1)</td>
</tr>
<tr>
<td>9</td>
<td>Mathematics: Math 195 (3), 196 (3); Select from 140 (3), 142 (3) 160 (3), 165 (4), 180 (3), 297 (3)</td>
</tr>
<tr>
<td>9</td>
<td>Biological/Physical Sciences: Biological sciences (3) select from Anth 292 (3), Biol 109 (3), 129 (3), 201 (3); Bot 102 (2), 202 (2), Zool 155 (3), 156 (2), 258 (3)</td>
</tr>
<tr>
<td>9</td>
<td>Physical sciences (3) select from Astro 120 (3), 150 (3); Chem 160 (3), 163 (4), 164 (4); Geol 100 (3), 100L (1), 101 (3); L A S 111 (4); Mteor 206 (3); Phys 101 (3), 106 (4)</td>
</tr>
<tr>
<td>18</td>
<td>Area of specialization (Requires 24 credits. A minimum of 18 credits may not be used to meet other requirements.)</td>
</tr>
<tr>
<td>70</td>
<td>Professional education</td>
</tr>
<tr>
<td>24</td>
<td>Required courses: C I 201 (3), 204 (3), 250 (3), 245 (2), 268 (1), 333 (3), 406 (3); HD FS 226 (3), 240 (3) or Engl 394 (3)</td>
</tr>
<tr>
<td>21</td>
<td>Required methods: C I 377 (4), 468A (1), 378 (4), 468B (1), 448 (3), 468C (1), 449 (3), 468D (1), 443 (3)</td>
</tr>
<tr>
<td>3</td>
<td>Related Options: Select from C I 302 (3), 422 (3), 450 (3), 451 (3), 457 (3); Sp Ed 330 (3); Cpr E/Mat E 370 (3); HD FS 367 (3); CmDis 275 (3); Thre 359 (3); Psych 437 (3)</td>
</tr>
</tbody>
</table>
Theatre.
courses numbered 300 or above).
In order to meet graduation requirements, all
students must complete 3 credits of course
Perspectives
U.S. Diversity and International
302, 309, or 314).
this condition must earn a C or better in an
being lower than a C-. Students not meeting
English Proficiency
underCurriculum in Performing Arts in
available; the requirements appear
emphasis is available; the requirements appear
The curriculum in Exercise and Sport Science
is planned for students preparing to teach
physical education or to enter related profes-
sional areas. The student majoring in Exercise and Sport Science may select one of five options: (1) physical education licensure; (2) exercise science; (3) athletic training; (4) sport management; or (5) general exercise and sport studies.
Minors in dance, and athletic coaching are available; the requirements appear under Health and Human Performance, Courses and Programs.
A major in Performing Arts with a dance emphasis is available; the requirements appear under Curriculum in Performing Arts in Theatre.

English Proficiency
In order to meet graduation requirements, all students must earn an average of C (2.0) or better in Engl 104 and 105, with neither grade being lower than a C-. Students not meeting this condition must earn a C or better in an advanced writing course (select from Engl 220, 302, 309, or 314).

U.S. Diversity and International Perspectives
In order to meet graduation requirements, all students must complete 3 credits of course work in U.S. Diversity and 3 credits in International Perspectives. See university approved list.*

Total credits required: 124 (46 credits in courses numbered 300 or above).

<table>
<thead>
<tr>
<th>Cr.</th>
<th>General Education</th>
</tr>
</thead>
<tbody>
<tr>
<td>44.5</td>
<td>Biological sciences, physical sciences, mathematics</td>
</tr>
<tr>
<td>14</td>
<td>Physics—Select from 106-111</td>
</tr>
<tr>
<td>4</td>
<td>Basic Human Physiology and Anatomy—Zool 155</td>
</tr>
<tr>
<td>2</td>
<td>Lab in Anat and Phys—Zool 156</td>
</tr>
<tr>
<td>2-3</td>
<td>Mathematics—select from Math 104, 140, 141, 142, 150,165**</td>
</tr>
<tr>
<td>3-4</td>
<td>Computer Science—select from Com S 103, 107, 205, C I 201</td>
</tr>
<tr>
<td>9</td>
<td>Social sciences</td>
</tr>
<tr>
<td>3</td>
<td>Introduction to Psychology—Pych 101</td>
</tr>
<tr>
<td>3</td>
<td>Introduction to Sociology—Soc 134</td>
</tr>
<tr>
<td>3</td>
<td>Choose from Soc, Psych, Econ, Anthr (See HHP homepage.)</td>
</tr>
</tbody>
</table>
| 6 | Humanities
| 12.5| Communication skills |
| 6 | First-year Composition—Engl 104, 105 |
| 3 | Fundamentals of Public Speaking—Sp Cm 212 |
| 0.5 | Library Instruction—Lib 160 |
| 3 | English or Speech—select from Engl 302, 314, Sp Cm 312 |
| 3 | Health, safety, physical education, and dance |
| 3 | Personal and Consumer Health—H S 110 |
| 3 | Electives for Gen Ed. |

*ISU homepage: Site index, U.S. Diversity, International
**Exercise Science majors must select Math 140, 141, 142, or 165

15 Core requirements*
R Orientation to Health and Human Performance—Ex Sp 250
3 Biomechanics—Ex Sp 355**
3 Sociology of Sport and Physical Activity—Ex Sp 360
3 Psychology of Sport and Physical Activity—Ex Sp 365
3 Motor Behavior—Ex Sp 372
3 Physiology of Exercise—Ex Sp 358**

*A grade of C– or better in each of the required core courses must be earned prior to graduation.

Option 1. Physical Education Licensure
This option is designed for students interested in becoming licensed to teach physical education K-12. Students interested in preparing to coach must earn additional credits in: Ex Sp 220 and 315. Note: when making general education course selections, teacher licensure students must choose C I 201, Psych 230, a physical science and a U.S. history or political science course.

28 Professional education requirements
3 Educational Psychology—C I 333
3 Foundations of American Education—C I 204
R Senior Seminar—C I 415
3 Multicultural Gender Fair Education—C I 406
3 Principles of Secondary Education—C I 426
8 Supervised Teaching in Physical Education in the Secondary School—Ex Sp 417
8 Supervised Teaching in Physical Education in the Elementary School—Ex Sp 418
20 Physical education professional theory
2 Physical Fitness and Conditioning—Ex Sp 258
2 Leadership Techniques for Fitness Programs—Ex Sp 259

1 Directed Field Experience in Elementary School Physical Education—Ex Sp 280
3 Elementary and Pre-school Movement Education—Ex Sp 275
3 Teaching Physical Education—Ex Sp 375
3 Adapted Physical Education—Ex Sp 395
3 Evaluation in Physical Education—Ex Sp 470
3 Physical Education Curriculum Design and Program Organization—Ex Sp 475

20 Physical education professional activity and related courses
3 Intro to Human Nutrition—FS HN 167
3 Development and Guidance in Middle Childhood—HD FS 226
2 First Aid and Emergency Care—H S 105
2 Fundamental of Skill Analysis—Ex Sp 229
1 Aquatics—Ex Sp 230
1 Tumbling and Gymnastics Skills—Ex Sp 231
3 Individual Sports—Ex Sp 235, 236, 237
3 Team Sports—Ex Sp 232, 233, 238
2 Dance—Dance 211

Option 2. Exercise Science
This option prepares students for careers in the physical fitness/health field. It is designed for those who wish to prepare for professional roles as exercise specialists or program direc-
tors in corporate fitness programs, health clubs, cardiac rehabilitation programs, or other public and private agencies providing physical fitness activities.

38-48 Exercise Science Requirements
2 Basic Athletic Training—Ex Sp 220
2 Physical Fitness and Conditioning—Ex Sp 258
2 Leadership Techniques for Fitness Programs—Ex Sp 259
3 Management in the Sport Enterprise—Ex Sp 270
R Search Strategies for Field Experiences and Employment—Ex Sp 385
3 Physical Activity Promotion in the Community and Workplace—Ex Sp 440
3 Principles of Fitness Assessment and Exercise Prescription—Ex Sp 458
1 Internship in Exercise Leadership—Ex Sp 459
3 Medical Aspects of Exercise—Ex Sp 462
8-16 Internship in Sport and Exercise Science—Ex Sp 485A
3-5 Statistics—select from Stat 101, 104, 227
4 General Chemistry—Chem 163
1 Laboratory in General Chemistry—Chem 163L
3 Intro to Human Nutrition—FS HN 167
16.5-26.5 Electives
Option 3. Athletic Training
The CAAHEP accredited athletic training option prepares students for the NATA BOC certification examination or for graduate work in athletic training. Admission to the athletic training option is competitive and based on available department resources and will be determined on the basis of grades in foundation courses and other performance factors. Details are available from the Health and Human Performance Advising Office or the Athletic Training Education Program Director.

48-50 Athletic Training Requirements
3 Basic Athletic Training for Athletic Trainers—Ex Sp 222
1 Athletic Training Clinical Practicum—Ex Sp 221
3 Evaluation of Athletic Injuries I—Ex Sp 224
1 Athletic Training Clinical Practicum—Ex Sp 225
3 Evaluation of Athletic Injuries II—Ex Sp 226
1 Athletic Training Clinical Practicum—Ex Sp 227
2 Physical Fitness and Conditioning—Ex Sp 258
2 Therapeutic Modalities for Athletic Trainers—Ex Sp 323
1 Athletic Training Clinical Practicum—Ex Sp 324
3 Rehabilitation of Athletic Injuries—Ex Sp 326
1 Athletic Training Practicum—Ex Sp 327
3 Organization and Administration of Athletic Training—Ex Sp 425
R Job Search Skills and Strategies—Ex Sp 385
3 Legal Aspects of Sport—Ex Sp 445
3 Principles of Fitness Assessment and Exercise Prescription—Ex Sp 458
R Review of Athletic Training Competencies—Ex Sp 489
4 General Chemistry—Chem 163
1 Laboratory in General Chemistry—Chem 163L
3 Drug Education—HS 215
3 Introduction to Human Nutrition—FS HN 167
3 Human Diseases—HS 350
3-5 Statistics—select from Stat 101, 104, 227
10.5-16.5 Electives

Option 4. Sport Management
The sport management option prepares students for a variety of sport specialist and leadership positions in amateur and professional sport organizations, health and sport clubs, community recreation centers, resorts, voluntary agencies such as YM/YWCA's, industry, and other public and private agencies involving sports instruction, recreational sports activities, and sport/fitness management.

49-59 Sport Management Requirements
2 Physical Fitness and Conditioning—Ex Sp 258
3 Principles of Sport Management—Ex Sp 270
3 Sport Marketing—Ex Sp 350
3 Sport Facility and Event Management—Ex Sp 352
R Search Strategies for Field Experiences and Employment—Ex Sp 385
3 Sport Business and Finance—Ex Sp 435
3 Legal Aspects of Sport—Ex Sp 445
3-5 Statistics—select from: Stat 101, 104, 227
3 Principles of Marketing—Mkt 340
3 Organization and Theory—Mgmt 370
3 Organizational Behavior—Mgmt 371
3 Financial Accounting—Acct 284
3 Principles of Public Relations—JI MC 220 or Principles of Advertising—JI MC 230
3 Principles of Microeconomics—Econ 101
3 Principles of Macroeconomics—Econ 102
8-16 Internship in Sport and Exercise Science—Ex Sp 485C
5.5-15.5 Electives

Option 5. General Exercise and Sport Studies
The general exercise and sport studies option is planned for students who are interested in an interdisciplinary approach to the study of human movement. In this option, exercise and sport science is combined with a concentration in another area of study to support an individualized program, such as sports information, or other sport related fields. This option also provides preprofessional training for students who are preparing for advanced study leading to careers in physical therapy, medicine, or other allied health programs.

R Search Strategies for Field Experience and Employment—Ex Sp 385
6 Exercise and Sport Science Professional Courses
3-5 Statistics—select from Stat 101, 104, 227
26 Meet the requirements of a specialization area in a related field (area and program must be approved by the Department of Health and Human Performance).

27.5-29.5 Electives
Curriculum in Industrial Technology

The industrial technology curriculum prepares students for professional positions that emphasize technical management in industry, business, or government. The Bachelor of Science degree program stresses computer applications, technical management, production processes, and product quality. The curriculum has been designed to assist students to develop a comprehensive understanding of the interaction of people, planning, machines, tools, equipment, safety, and production processes, in manufacturing settings. Extensive laboratory experiences are incorporated into most courses. The program seeks to develop problem solving abilities and creativity to assist graduates in meeting technical requirements, human expectations, and regulatory requirements in contemporary manufacturing settings.

Students majoring in industrial technology select one of the two options: manufacturing or occupational safety.

English Proficiency In order to meet graduation requirements, all students must earn an average of C (2.0) or better in all English courses taken, including Engl 104, Engl 105, and one of the following: Engl 309 or Engl 314.

U. S. Diversity and International Perspectives In order to meet graduation requirements, all students must complete 3 credits of course work in U.S. Diversity and 3 credits in International Perspectives. Courses that are acceptable for meeting these requirements are listed on the University website.

Total credits required: 120.5-123.5.

For additional information see Index, Industrial Technology.

Industrial Technology Major

Cr. 44.5

General Education

16 Biology, physical sciences, and mathematics—Chem 163, 163L, Math 142, 160, Phys 111

9 Social sciences—Psych 101, Econ 101. Select one 3 credit course from the U.S. diversity or International perspectives list.

6 Humanities—Art, foreign languages, history, literature, music, philosophy, or religion. Select one 3 credit course from the U.S. diversity or International perspectives list.

9.5 Communication skills—Engl 104, 105, Sp Cm 212, Lib 160

4 Health, safety, exercise and sport science, dance—I Tec 270, 1 credit in Ex Sp

35 Foundation Courses

3 Professional Communication—ComSt 214

3 Report and Proposal Writing—Engl 309 or Technical Communication—Engl 314

1 Introduction to Industrial Technology—I Tec 110

3 Introduction to Design in Industrial Technology—I Tec 120

3 Introduction to Non-metallic Manufacturing Materials and Processes—I Tec 130

3 Electrical Fundamentals—I Tec 140

3 Introduction to Training and Development in Industry and Business—I Tec 202

3 Introduction to Metallic Materials and Processes—I Tec 231

3 Total Quality Improvement—I Tec 360

3 Safety in Manufacturing—I Tec 392

1 Seminar in Industrial Technology—I Tec 395

2 Supervised Industrial Cooperative Experience—I Tec 480 or Supervised Industrial Internship—I Tec 481

4 Principles of Statistics—Stat 101

Students must select one of two options: Manufacturing prepares students to plan and coordinate materials, machines, methods, and human resources in a manufacturing environment.

Occupational safety prepares students to develop, coordinate, and evaluate the safety issues relating to people, materials, equipment, and manufacturing environments.

Options

44 Manufacturing Option (123.5 Cr.)

32 Option Requirements

3 Financial Accounting—Acct 284

3 Computer Applications in Industrial Technology—I Tec 216 or Programming—I—Com S 207

4 Advanced Technical Graphics, Interpretation, and CAD—I Tec 224

3 Analog Manufacturing Applications—I Tec 240

3 Automated Manufacturing Processes—I Tec 336

2 Digital Manufacturing Applications—I Tec 340

3 Facility Planning—I Tec 410

3 Computer Automated Manufacturing Systems—I Tec 435

2 Electrical Outputs for Manufacturing—I Tec 440

3 Automation Systems—I Tec 446

3 Management of Organizations—Mgmt 370

9 Technical Electives —Select from:

3 Integrated/Mechanical Fluid Systems—I Tec 244

3 Polymer and Composite Processing—I Tec 330

3 Statics and Strength of Materials for Industrial Technology—I Tec 423

3 Materials Testing and Processing—I Tec 433

3 Independent Study in Industrial Technology—I Tec 490

3 Electives*

41 Occupational Safety Option (120.5 Cr.)

28 Option Requirements

3 Financial Accounting—Acct 284 or Management of Organizations—Mgmt 370

2 First Aid and Emergency Care—H S 105

4 Applied Ergonomics and Work Design—I E 271

2 Introduction to Occupational Safety—I Tec 272

3 Fire Protection and Prevention—I Tec 296

3 Legal Aspects of Occupational Safety and Health—I Tec 394

3 Industrial Hygiene: Chemical and Biological Hazards—I Tec 470

3 Industrial Hygiene: Physical Hazards—I Tec 471

2 Safety Analysis and Design—I Tec 475

3 Basic Human Physiology and Anatomy—Zool 155

7 Technical Electives—Select from:

2 Agricultural Safety—AST 435

3 Elementary Organic Chemistry—Chem 231

1 Laboratory in Elementary Organic Chemistry—Chem 231L

2 Introduction to Environmental Issues—Env S 201

2 Energy and the Environment—Env S 324

3 Environmental Law—Env S 491

3 History of American Technology—Hist 488 or M E 488

2 Construction Safety—I Tec 390

3 Facilitation of Workplace Learning—I Tec 402

6 Electives*

*Electives must be approved by the department.
College of Engineering

James L. Melsa, Dean
David K. Holger, Associate Dean
Theodore H. Okiishi, Associate Dean
Loren W. Zachary, Assistant Dean

Departments of the College
Aerospace Engineering and Engineering Mechanics
Agricultural and Biosystems Engineering
Chemical Engineering
Civil and Construction Engineering
Electrical and Computer Engineering
Industrial and Manufacturing Systems Engineering
Materials Science and Engineering
Mechanical Engineering

Engineers occupy a uniquely important position in our modern civilization. They have the responsibility for taking the discoveries of basic science and translating them into processes, materials, products, structures, facilities, and services for society.

Objectives of Curricula in Engineering

Engineering education seeks to develop a capacity for objective analysis, synthesis, and design to obtain a practical solution. The engineering programs at Iowa State University are designed to develop the professional competence of a diverse student body and, by breadth of study, to prepare students to solve the technical problems of society while considering the ethical, social, and economic implications of their work.

Experiences contained within the programs are intended to develop in each student an ability to apply knowledge of mathematics and science to engineering problems; an ability to design and conduct engineering experiments, including analyzing and interpreting data from experiments; an ability to design a system, component, or process to meet desired needs; an ability to function on multi-disciplinary teams in the solution of engineering problems; an ability to identify, formulate, and solve engineering problems; an ability to communicate effectively; the broad education necessary to understand the impact of engineering solutions in a global and national context; a recognition of the need for and an ability to engage in life-long learning; a knowledge of contemporary issues; and, an ability to use the techniques, skills, and modern engineering tools necessary for engineering practice.

Registration as a professional engineer, which is granted by each individual state, is required for many types of positions. The professional curricula in engineering at Iowa State University are designed to prepare a graduate for subsequent registration in all states. Seniors in accredited curricula (accredited by the Engineering Accreditation Commission of the Accreditation Board for Engineering and Technology) of the College of Engineering are encouraged to take the Fundamentals of Engineering Examination toward professional registration during their final academic year. Seniors in engineering curricula who have obtained at least 8 semester credits in surveying may take the Fundamentals Examination for professional registration as land surveyors.

Four engineering departments offer the opportunity for well-qualified undergraduate juniors and seniors to pursue a graduate degree in their program while finishing the undergraduate requirements. The departments offering concurrent B.S./M.S. degree programs are: Agricultural and Biosystems Engineering, Chemical Engineering, Civil and Construction Engineering, Electrical and Computer Engineering, and Materials Science and Engineering. Refer to the Graduate Study section for each department for more information.

Advanced work in engineering is offered in the postgraduate programs. See the Graduate College section of this catalog.

Accreditation

Twelve curricula in the college of engineering are accredited by the Engineering Accreditation Commission of the Accreditation Board for Engineering and Technology (ABET).

Engineering Accreditation Commission Accreditation Board for Engineering and Technology
111 Market Place, Suite 1050
Baltimore, MD 21202-7700
Phone: 410-347-7700
WWW: http://www.abet.org

Accreditation status is indicated at the beginning of the courses and programs section of each engineering curriculum.

Organization of Curricula

All curricula in engineering are designed as four-year programs. They are structured in two phases: a basic program and a professional program. The basic program consists primarily of subjects fundamental and common to all branches of engineering and includes chemistry, physics, mathematics, engineering computations, and English. The professional phase of a curriculum includes intensive study in a particular branch of engineering, as well as a continuation of supporting work in mathematics, basic sciences, humanities, and social sciences.

Students must complete the requirements of the basic program before proceeding to a professional program.

Preparation for the Engineering Curricula

High school credits particularly important to students wishing to study engineering include 2 years of algebra, 1 year of geometry, and 1/2 year of trigonometry; 1 year each of chemistry and physics, and 4 years of English. See Index for specific admission requirements.

Placement in mathematics, English, and chemistry will generally be based on high school preparation and test scores. Advanced placement is possible for exceptionally well-prepared students. Students who are not adequately prepared may be encouraged or required to take additional preparatory coursework and should expect to spend more than the customary time to complete the engineering program. Any coursework which is preparatory or remedial in nature cannot be used to satisfy credit requirements for graduation in any of the engineering curricula.

Basic Program for Professional Engineering Curricula

The first year program is much the same for all professional curricula in the College of Engineering. Each curriculum requires completion of the basic program as well as the curriculum designated requirements. The basic program is a set of courses common to all engineering curricula, while the curriculum designated requirements are courses required by individual curricula. The student who desires to receive the bachelor’s degree in a minimum time will find it desirable to select a curriculum as soon as possible.

Entering undergraduates must demonstrate proficiency in trigonometry based on test scores, or by having transfer credits from a college trigonometry course, or by passing one of Math 141, 142 or 149 before enrolling in Math 166 or CE 160.

The Department of English may recommend placement in one or more sections of Engl 101 because of unsatisfactory performance on the English placement test administered to students whose first language is not English.

Basic Program

<table>
<thead>
<tr>
<th>Cr.</th>
<th>Subject</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Mathematics 165, 166</td>
</tr>
<tr>
<td>6</td>
<td>English 104, 105</td>
</tr>
<tr>
<td>4</td>
<td>Chemistry 167 or 177*</td>
</tr>
<tr>
<td>3-4</td>
<td>Engineering 160, 161, CE 160, Cpr E 183 and 184, or E E 183 and 184**</td>
</tr>
<tr>
<td>5</td>
<td>Physics 221</td>
</tr>
<tr>
<td>R</td>
<td>Engineering 101</td>
</tr>
<tr>
<td>0.5</td>
<td>Library 160</td>
</tr>
</tbody>
</table>

Total credits

26.5-27.5

Curriculum Designated Requirements

Aerospace Engineering—Aer E 161 (3 cr.), Aer E 192 (R)

Agricultural Engineering—Chem 167L (1 cr.) or 177L (1 cr.)*, A E 110 (1 cr.), Engr 170 (3 cr.)

Chemical Engineering—Chem 177*, 177L (1 cr.), 178 (3 cr.), 178L (1 cr.)

Civil Engineering—Chem 177**, 177L1 (1 cr.), Chem 178* (3 cr.), Chem 178L1 (1cr.), C E 104 (1 cr.), C E 160**, C E 170 (2 cr.), C E 111 (3 cr.)

(Physics 221 scheduled in sophomore year for students selecting option 1 of the chemistry/physics sequence.)
Computer Engineering—Com S 227 (3 cr.), 228 (3 cr.), Cpr E 183** (2 cr.) and 184 (2cr.) E E 166 (R cr.)

Construction Engineering—Con E 110 (R cr.), Psych 101 (3 cr.), Engr 170 (3 cr.)

Electrical Engineering—E E 183** (2 cr.) and 184 (2 cr.), Com S 207 or 227 (3 cr.), E E 166 (R cr.)

Engineering Applications—SSH elective (3 cr.)

Engineering Science—Chem 167L (1 cr.), Engr 170 (3 cr.)

Industrial Engineering—E I 101 (R cr.), SSH elective (3 cr.), Engr 161**

Materials Engineering—Chem 177*, 177L (1 cr.), 178 (3 cr.), 178L (1 cr.), Engr 170 (3 cr.), (Physics 221 scheduled in sophomore year.)

Mechanical Engineering—Chem 167L (1 cr.), Engr 170 (3 cr.), M I 102 (R cr.)

The student’s adviser may require or recommend courses in addition to those specified above if the preparation and progress of the student are such that additional courses are necessary or desirable.

*Students planning to enroll in A E (Biosystems Engineering Option), C E 1, Ch E, or Mat E will find Chem 177 to be a better preparation for Chem 178. However, Chem 167 is accepted as a substitute for 177 for those students declaring one of these curricula after having completed 167. The Chem 155-165 sequence is an acceptable substitute for Chem 167.

**Recommended choices by program:

C E: C E 160 (3 cr.)
Cpr E: Cpr E 183 (2 cr.) and Cpr E 184 (2 cr.)
E E: E E 183 (2 cr.) and E E 184 (2 cr.)
I I: Engr 161 (3 cr.)

Students enrolling in Cpr E and E E must take both 183 and 184 in order to meet basic program requirements. However, credit hours for graduation will be given for any of Engr 160, Engr 161, Cpr E 183 and 184, E E 183 and 184, or C E 160 without increasing a curriculum’s minimum number of credits required for graduation. Students in Cpr E or E E who take 160 or 161 will have their technical elective requirement increased by 1 credit hour.

†Students in the general emphasis in C E have two chemistry/physics sequence options.

Option 1—Students taking Chem 177, 177L, 178, 178L are required to take only one physics course, Phys 221.

Option 2—Students may substitute Phys 222 for Chem 178, 178L.

Requirement for Entry into Professional Program

Students enrolled in the College of Engineering must satisfy both of the following requirements before enrolling in the professional courses (200-level and above) offered by departments in the Engineering College:

1. Completion of the basic program with a grade point average of 2.00 or better in the basic program courses.

2. A cumulative grade point average of 2.00 or better for all courses taken at Iowa State University.

The following are the only exceptions to this rule:

a. Students who have completed all of their coursework while enrolled in the College of Engineering, but have not met the two basic program requirements, may enroll for not more than one semester in 200-level or above courses offered by departments in the College of Engineering. This exception may be extended to two semesters for students whose curriculum requires Chem 178 and 178L (i.e. Ch E, C E 1, and Mat E).

b. Students transferring to the College of Engineering from another college or university, or from a program outside this college, who have not met the two basic program requirements may enroll for not more than two semesters in 200-level or above courses offered by departments in the College of Engineering.

c. Iowa State students not pursuing an engineering degree may generally take engineering courses with restrictions provided they meet the prerequisites and space is available.

d. Only the first two semesters of 200-level and above engineering courses, taken at ISU while a student is not enrolled in the College of Engineering, can be applied toward an engineering degree.

General Emphasis Program

In order to graduate in a professional engineering curriculum, a student must have a minimum GPA of 2.00 in a department-designated group of 200-level and above courses known as the Core. These courses will total no fewer than 24 nor more than 48 semester credits.

Engineering Minors

The College of Engineering offers an undergraduate minor in Nondestructive Evaluation. It is open only to engineering students who have met the basic program requirements and are not on temporary enrollment. The NDE minor consists of one common core course, at least two NDE specific technique courses and at least two supporting courses. Both technique and supporting courses must be selected from lists approved by the advisory committee. A student’s minor program in Nondestructive Evaluation must include at least nine credits which are beyond the total used to meet curriculum requirements. The minor is supervised by an interdisciplinary faculty committee. Interested students may contact the AEEM department to obtain more specific guidelines and requirements.

Undergraduate Majors and Minors Outside the College of Engineering

In addition to the engineering degree program, students may earn majors or minors in other colleges of the university. A major or minor program must meet all requirements of the offering department or program and its college and contain credits beyond the requirements for a B.S. degree in engineering. A minimum of 15 additional credits is required for each major area of study and an additional 9 credits for each minor. The purpose of the advising system in the College of Engineering is to work constructively with students in developing their individual academic programs and to maintain close contact with students during their college careers.

The college offers an orientation program during the spring and summer for students planning to enter in the fall and during the fall for students planning to enter in the spring. All entering students are encouraged to attend an orientation session. Tests given during the orientation program help determine the student’s level of achievement and enable the adviser to prepare an appropriate program for the student.

Special Programs

All engineering students are strongly encouraged to participate in either the cooperative education or internship programs. Students who are qualified to participate in the engineering honors program are also urged to do so. These programs are integrated into the professional engineering curricula and may require additional work. However, both these professional and academic programs offer opportunities that will enhance the student’s academic experience.

a. Cooperative Education Program—The College of Engineering offers, through its curriculum, a cooperative education program. Enrollment in the program allows students to gain practical experience in their career field while attending college. In general, students enrolled in the co-op program will require an additional year to complete curriculum requirements.

These programs are arranged so that the student alternates academic work with employment periods. The student has the opportunity to assess career paths within her/his chosen curriculum and the employer evaluates the student’s potential as a future full-time employee. Both domestic and international co-op programs are available.

Cooperative education students pay no fees to the university during their work periods and do not receive credit hours for their work experience. Students register for a non-credit cooperative education course (298, 398, or 498) for each work period and are considered full time students while enrolled in these courses. For additional information contact your academic adviser and the Office of Engineering Career Services.

b. Internship Program. Internships are a mechanism by which a student may work full-time for one semester while maintaining her/his status as a full-time student.

Internship students pay no fees to the university during their work periods and do not receive credit hours for their work experience. Students may register for the internship course (397) for a fall or spring semester work period or (396) for the summer term are considered to be full time students. For additional information contact your academic adviser and the Office of Engineering Career Services.
Curriculum in Aerospace Engineering

Administered by the Department of Aerospace Engineering and Engineering Mechanics.

Leading to the degree bachelor of science.
Total credits required: 127.5. See also Basic Program and Cooperative Programs.

Professional Program

Sophomore Year

<table>
<thead>
<tr>
<th>Cr.</th>
<th>Fall</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Calculus III—Math 265</td>
</tr>
<tr>
<td>5</td>
<td>Introduction to Classical Physics II—Phys 222</td>
</tr>
<tr>
<td>3</td>
<td>Statics of Engineering—E M 274</td>
</tr>
<tr>
<td>3</td>
<td>Introduction to Aerospace Engineering—Aer E 201*</td>
</tr>
<tr>
<td>2</td>
<td>Instrumentation Laboratory—Aer E 202*</td>
</tr>
<tr>
<td>R</td>
<td>Aerospace Seminar—Aer E 291</td>
</tr>
<tr>
<td>17</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cr.</th>
<th>Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Elementary Differential Equations and Laplace Transforms—Math 267</td>
</tr>
<tr>
<td>3</td>
<td>Mechanics of Materials—E M 324*</td>
</tr>
<tr>
<td>3</td>
<td>Dynamics—E M 345</td>
</tr>
<tr>
<td>3</td>
<td>Aerodynamics I—Aer E 243*</td>
</tr>
<tr>
<td>0.5</td>
<td>Aerodynamics Laboratory—Aer E 243L*</td>
</tr>
<tr>
<td>3</td>
<td>SSH elective1</td>
</tr>
<tr>
<td>R</td>
<td>Aerospace Seminar—Aer E 292</td>
</tr>
<tr>
<td>16.5</td>
<td></td>
</tr>
</tbody>
</table>

Junior Year

<table>
<thead>
<tr>
<th>Cr.</th>
<th>Fall</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Thermodynamics and Gas Dynamics for Aerospace Engineers—Aer E 311*</td>
</tr>
<tr>
<td>0.5</td>
<td>Gas Dynamics Laboratory—Aer E 311L*</td>
</tr>
<tr>
<td>3</td>
<td>Introduction to Material Science and Engineering—Mat E 271</td>
</tr>
<tr>
<td>5</td>
<td>Flight Structures I—Aer E 322*</td>
</tr>
<tr>
<td>4</td>
<td>Aircraft Performance and Stability—Aer E 386*</td>
</tr>
<tr>
<td>R</td>
<td>Flight Experience—Aer E 301</td>
</tr>
<tr>
<td>R</td>
<td>Aerospace Seminar—Aer E 391</td>
</tr>
<tr>
<td>16</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cr.</th>
<th>Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Aerodynamics II—Aer E 343*</td>
</tr>
<tr>
<td>1</td>
<td>Advanced Aerodynamics and Propulsion Laboratory—Aer E 343L*</td>
</tr>
</tbody>
</table>

Senior Year

<table>
<thead>
<tr>
<th>Cr.</th>
<th>Fall</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Modern Design Methodology with Aerospace Applications—Aer E 461*</td>
</tr>
<tr>
<td>3</td>
<td>Technical elective2</td>
</tr>
<tr>
<td>3</td>
<td>Technical elective2</td>
</tr>
<tr>
<td>3</td>
<td>SSH elective1</td>
</tr>
<tr>
<td>R</td>
<td>Aerospace Seminar—Aer E 392</td>
</tr>
<tr>
<td>16</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cr.</th>
<th>Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Design of Aerospace Systems—Aer E 462*</td>
</tr>
<tr>
<td>3</td>
<td>Technical elective2</td>
</tr>
<tr>
<td>3</td>
<td>Technical elective2</td>
</tr>
<tr>
<td>3</td>
<td>SSH elective1</td>
</tr>
<tr>
<td>R</td>
<td>Aerospace Seminar—Aer E 491</td>
</tr>
<tr>
<td>15</td>
<td></td>
</tr>
</tbody>
</table>

English Proficiency

The department requires a grade of C (2.0) or better in Engl 104 and 105 to be eligible for English Proficiency Certification. Students satisfying this requirement who are not cited for deficiencies in reports, laboratory reports, or other writings required in other courses, are certified during the semester prior to their semester of graduation. Students not satisfying these requirements are referred to the department’s Academic Standards Committee for corrective action.

1The social sciences and humanities (SSH) electives are to be selected from the department-approved list of courses, subject to department guidelines. Not to be taken under the P-NP policy.

2Twelve elective credits scheduled to be taken at the senior year are of three types: (1) Aerospace Program Technical Electives, 3 credits; (2) Technical Electives, 3 credits; and (3) Career Electives, 6 credits. Aerospace Program Technical Electives and the Technical Electives must be chosen from department-approved lists for each type. All electives must be chosen following published department guidelines. These courses are not to be taken under the P-NP policy.

*Core professional curriculum. A student must have a minimum grade-point average of 2.00 in this group of courses in order to graduate.

Curriculum in Agricultural Engineering

Administered by the Department of Agricultural and Biosystems Engineering.

With options in biosystems engineering, environmental and natural resources engineering, food and process engineering, power and machinery engineering, and structures and environmental systems engineering.

Administered jointly by the College of Agriculture and the College of Engineering.

Leading to the degree bachelor of science.
Total credits required: 127.5. See also Basic Program and Cooperative Programs.

Sophomore Year

<table>
<thead>
<tr>
<th>Cr.</th>
<th>Fall</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Agricultural Engineering Fundamentals—A E 215*</td>
</tr>
<tr>
<td>5</td>
<td>Introduction to Classical Physics II—Phys 222*</td>
</tr>
<tr>
<td>3</td>
<td>Statics of Engineering—E M 274*</td>
</tr>
<tr>
<td>4</td>
<td>Option Requirement2</td>
</tr>
<tr>
<td>1</td>
<td>Engineering Applications of Parametric Solid Modeling—A E 271* or Parametric Solid Models, Drawings, and Assemblies Using ProENGINEER-AE 272*.</td>
</tr>
<tr>
<td>16</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cr.</th>
<th>Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Agricultural Engineering Fundamentals II—A E 216*</td>
</tr>
<tr>
<td>3</td>
<td>Mechanics of Materials—E M 324*</td>
</tr>
<tr>
<td>1</td>
<td>Mechanics of Materials Laboratory—E M 327*</td>
</tr>
<tr>
<td>3</td>
<td>Principles of Microeconomics—Econ 101 or Principles of Macroeconomics—Econ 102</td>
</tr>
<tr>
<td>3</td>
<td>Elementary Differential Equations—Math 266*</td>
</tr>
<tr>
<td>3</td>
<td>Engineering Statistics—Stat 305</td>
</tr>
<tr>
<td>16</td>
<td></td>
</tr>
</tbody>
</table>

Junior Year

<table>
<thead>
<tr>
<th>Cr.</th>
<th>Fall</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Thermodynamics—M E 330*</td>
</tr>
<tr>
<td>13</td>
<td>Option requirement2</td>
</tr>
<tr>
<td>16</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cr.</th>
<th>Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>Option requirements2</td>
</tr>
<tr>
<td>3</td>
<td>SSH elective1</td>
</tr>
<tr>
<td>3</td>
<td>Communications requirement3</td>
</tr>
<tr>
<td>16</td>
<td></td>
</tr>
</tbody>
</table>

Senior Year

<table>
<thead>
<tr>
<th>Cr.</th>
<th>Fall</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>Senior Seminar—A E 401</td>
</tr>
<tr>
<td>2</td>
<td>Agricultural Engineering Design I—A E 445*</td>
</tr>
<tr>
<td>6</td>
<td>SSH elective1</td>
</tr>
<tr>
<td>8</td>
<td>Option requirements2</td>
</tr>
<tr>
<td>16</td>
<td></td>
</tr>
</tbody>
</table>
English Proficiency
The department requires a grade of C or better in Engl 104 and 105 (or 105H) and a grade of C or better in the course taken to meet the communication requirement.

1Social sciences and humanities (SSH) electives are to be chosen from the department-approved list. The courses chosen must meet departmental requirements.

2After the freshman year, each student elects one of the options and takes courses listed for the selected option. The elective courses must be selected from the department-approved list.

3One course must be taken from Sp Cm 212, Engl 309, Engl 314.

*Core professional curriculum. A student must have a minimum grade-point average of 2.00 in this group of courses in order to graduate.

Options
Biosystems Engineering—A E 363, 409; 6 credits from A E 451, 465, 469; 6 credits from Micro 201, 302; Biol 301, BBMB 301, 451; Biol 202; Ch E 356, 357; Chem 178, 231, 231L; and 11 credits from department-approved electives list.

Environmental and Natural Resources Engineering—A E 303, 363, 409, 422; Agron 154, Biol 202; Chem 231, 231L; C E 326, 360, 372; E M 378; Micro 201 and 8 credits from department-approved electives list.

Food and Process Engineering—A E 363, 409, select 6 credits from A E 451, 465, 469; Biol 202; Chem 231, 231L, Ch E 356 or E M 378; Ch E 357; FS HN 311, 420, Micro 201; and 12 credits from department-approved electives list.

Power and Machinery Engineering—A E 303, 342, 363, 413, 447; select one course from A E 404, 408, 422, 478, ME 436; Agron 154, E M 345, 378; Mat E 272, M E 324, 325; 3 credits in biological and natural resource science from department-approved list; 7 or 8 credits from department-approved electives list.

Structures and Environmental Systems Engineering—A E 363, 404, and 3 credits from A E 342, 422, 451, 465, 469; and 6 credits from A E 471, 472, 473, 478; E M 378; ME 436; 6 credits biological and natural sciences from department-approved list; and 17 or 18 credits from department-approved electives list.

Curriculum in Chemical Engineering

Leading to the degree bachelor of science. Total credits required: 125.5. See also Basic Program and Cooperative Programs.

Professional Program

Sophomore Year

<table>
<thead>
<tr>
<th>Cr.</th>
<th>Fall</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Material and Energy Balances—Ch E 210*</td>
</tr>
<tr>
<td>4</td>
<td>Calculus III—Math 265</td>
</tr>
<tr>
<td>5</td>
<td>Introduction to Classical Physics II—Phy 222</td>
</tr>
<tr>
<td>3</td>
<td>Organic Chemistry—Chem 331</td>
</tr>
<tr>
<td>15</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cr.</th>
<th>Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Transport Phenomena I—Ch E 356*</td>
</tr>
<tr>
<td>3</td>
<td>Chemical Engineering Thermodynamics—Ch E 381*</td>
</tr>
<tr>
<td>3</td>
<td>Chemistry elective*</td>
</tr>
<tr>
<td>3</td>
<td>Statistics elective*</td>
</tr>
<tr>
<td>16</td>
<td>Communication elective</td>
</tr>
</tbody>
</table>

Junior Year

<table>
<thead>
<tr>
<th>Cr.</th>
<th>Fall</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Transport Phenomena II—Ch E 357*</td>
</tr>
<tr>
<td>3</td>
<td>Chemical Engineering—Ch E 357*</td>
</tr>
<tr>
<td>3</td>
<td>Chemistry elective</td>
</tr>
<tr>
<td>3</td>
<td>Statistics elective</td>
</tr>
<tr>
<td>3</td>
<td>Communication elective</td>
</tr>
<tr>
<td>15</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cr.</th>
<th>Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Separations—Ch E 358*</td>
</tr>
<tr>
<td>2</td>
<td>Chemical Engineering Laboratory I—Ch E 326*</td>
</tr>
<tr>
<td>3</td>
<td>Chemical Reaction Engineering—Ch E 382*</td>
</tr>
<tr>
<td>3</td>
<td>Chemistry elective</td>
</tr>
<tr>
<td>3</td>
<td>SSH elective</td>
</tr>
<tr>
<td>3</td>
<td>SSH elective</td>
</tr>
<tr>
<td>R</td>
<td>Seminar—Ch E 202</td>
</tr>
<tr>
<td>16</td>
<td></td>
</tr>
</tbody>
</table>

Senior Year

<table>
<thead>
<tr>
<th>Cr.</th>
<th>Fall</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Process Control—Ch E 421*</td>
</tr>
<tr>
<td>3</td>
<td>Engineering elective</td>
</tr>
<tr>
<td>3</td>
<td>Professional elective</td>
</tr>
<tr>
<td>3</td>
<td>SSH electives</td>
</tr>
<tr>
<td>3</td>
<td>SSH electives</td>
</tr>
<tr>
<td>15</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cr.</th>
<th>Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Process and Plant Design—Ch E 430*</td>
</tr>
<tr>
<td>3</td>
<td>Professional elective</td>
</tr>
<tr>
<td>3</td>
<td>SSH elective</td>
</tr>
<tr>
<td>3</td>
<td>Chemical Engineering elective</td>
</tr>
<tr>
<td>2</td>
<td>Chemical Engineering Laboratory II—Ch E 426*</td>
</tr>
<tr>
<td>15</td>
<td></td>
</tr>
</tbody>
</table>

English Proficiency
The department requires satisfactory completion of Engl 104, 105 (or 105H), and the Communications elective.

1Selected from list of department-approved social sciences and humanities (SSH) courses.
2Selected from department-approved list.
3Selected from department-approved list.
4Selected from department-approved list.

Curriculum in Civil Engineering

Administered by the Department of Civil and Construction Engineering

Leading to the degree bachelor of science. Total credits required: 129.5 general (G) emphasis; 129.5 environmental specialization (E) emphasis. For any area of emphasis, see the department. Also see 2001-2003 Student Guide to Civil Engineering. Also see Basic Program and Cooperative Programs.

For those interested in construction engineering, a curriculum is provided which leads to the degree bachelor of science in construction engineering. For particulars, see Curriculum in Construction Engineering.

Sophomore Year

<table>
<thead>
<tr>
<th>Cr.</th>
<th>Fall</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Differential Equations—Math 266</td>
</tr>
<tr>
<td>5</td>
<td>Introduction to Classical Physics I—Phys 221</td>
</tr>
<tr>
<td>3</td>
<td>Statics and Dynamics—E M 307* (G)</td>
</tr>
<tr>
<td>3</td>
<td>Statics—E M 274* (E)</td>
</tr>
<tr>
<td>2</td>
<td>Civil Engineering Synthesis I—CE 203</td>
</tr>
<tr>
<td>3</td>
<td>Statistics elective* (E)</td>
</tr>
<tr>
<td>R</td>
<td>Technical Lecture—C E 101* (E)</td>
</tr>
<tr>
<td>15 (G); 16 (E)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cr.</th>
<th>Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Mechanics of Materials—E M 324*</td>
</tr>
<tr>
<td>1</td>
<td>Mechanics of Materials Laboratory—E M 327</td>
</tr>
<tr>
<td>3</td>
<td>Geology for Engineers—Geol 201</td>
</tr>
<tr>
<td>3</td>
<td>Fundamentals of Public Speaking—Sp Cm 212</td>
</tr>
<tr>
<td>2</td>
<td>Civil Engineering Synthesis II—C E 204</td>
</tr>
<tr>
<td>3</td>
<td>Introductory Biology—Biol 109 (E)</td>
</tr>
<tr>
<td>3</td>
<td>Statistics Elective* (G)</td>
</tr>
<tr>
<td>3</td>
<td>Numerical Analysis Elective (E)</td>
</tr>
<tr>
<td>15 (G); 18 (E)</td>
<td></td>
</tr>
</tbody>
</table>

Junior Year

<table>
<thead>
<tr>
<th>Cr.</th>
<th>Fall</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Mechanics of Fluids—E M 378*</td>
</tr>
<tr>
<td>2</td>
<td>Professional Issues in Civil Engineering—C E 303*</td>
</tr>
<tr>
<td>3</td>
<td>Principles of Environmental Engineering—C E 326*</td>
</tr>
<tr>
<td>3</td>
<td>Structural Analysis I—C E 332*</td>
</tr>
<tr>
<td>3</td>
<td>Soil Engineering—C E 360*</td>
</tr>
<tr>
<td>3</td>
<td>Numerical Analysis elective (G)</td>
</tr>
<tr>
<td>2</td>
<td>General Microbiology—Micro 201 (E)</td>
</tr>
<tr>
<td>17 (G); 16 (E)</td>
<td></td>
</tr>
</tbody>
</table>
Curriculum in Computer Engineering

Administered by the Department of Electrical and Computer Engineering.

Leading to the degree bachelor of science.

Total credits required: 123.5. See also Basic Program and Cooperative Programs.

Sophomore Year

<table>
<thead>
<tr>
<th>Cr.</th>
<th>First Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Introduction to Digital Design—Cpr E 210*</td>
</tr>
<tr>
<td>4</td>
<td>Electric Circuits—E E 201*</td>
</tr>
<tr>
<td>4</td>
<td>Elementary Differential Equations and Laplace Transforms—Math 267</td>
</tr>
<tr>
<td>5</td>
<td>Introduction to Classical Physics II—Phys 222</td>
</tr>
<tr>
<td>17</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cr.</th>
<th>Second Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Introduction to Microcontrollers—Cpr E 211*</td>
</tr>
<tr>
<td>3</td>
<td>Theoretical Foundations of Computer Engineering—Cpr E 310*</td>
</tr>
<tr>
<td>4</td>
<td>Calculus III—Math 265</td>
</tr>
<tr>
<td>4</td>
<td>Electronic Devices and Circuits—E E 333*</td>
</tr>
<tr>
<td>15</td>
<td></td>
</tr>
</tbody>
</table>

Junior Year

<table>
<thead>
<tr>
<th>Cr.</th>
<th>First Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>General Education Elective¹</td>
</tr>
<tr>
<td>4</td>
<td>Computer Systems Organization and Architecture—Cpr E 305*</td>
</tr>
<tr>
<td>3</td>
<td>Data Structures and Algorithm Analysis—Com S 311*</td>
</tr>
<tr>
<td>1</td>
<td>The Engineering Professional—E E 391</td>
</tr>
<tr>
<td>3</td>
<td>Technical Communication—Engl 314</td>
</tr>
<tr>
<td>14</td>
<td></td>
</tr>
</tbody>
</table>

Senior Year

<table>
<thead>
<tr>
<th>Cr.</th>
<th>Second Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Software Engineering—Com S 309*</td>
</tr>
<tr>
<td>4</td>
<td>Software Systems Integration—Cpr E 308*</td>
</tr>
<tr>
<td>3</td>
<td>Electromagnetics Applications in Computer Systems—E E 213*</td>
</tr>
<tr>
<td>6</td>
<td>General education electives¹</td>
</tr>
<tr>
<td>16</td>
<td></td>
</tr>
</tbody>
</table>

English Proficiency

The department requires a grade of C or better in Engl 104, 105 (or 105H), and 314.

Transfer Grade Requirements

The Electrical and Computer Engineering Department requires a grade of C or better for any transfer credit course that is applied to the degree program.

¹General Education Electives-Students must propose and have approved by their faculty adviser a general education program of 15 credits that meets the university diversity and international perspectives requirements and an objective developed by the student. Courses chosen must not be remedial courses in the university, six (6) credits must be chosen at the 300 level or higher, and courses in engineering, physical and mathematical sciences must not be included. Pass-Not Pass credit is not accepted.

²Computer Engineering, Computer Science, and general technical electives must be chosen to satisfy departmental requirements concerning content, distribution, and level. All technical electives must be chosen from lists approved by the department. Details are available in the E CPE Undergraduate Student Services Office or on the Web. Pass/not pass credit not accepted. Six credits of Computer Engineering, three credits of Computer Science, and six credits of general technical electives are required. One credit of 490 may be used to partially meet these requirements.

³The student must choose one of the following math courses (pass/not pass credit not accepted): Math 273, 307, 314, 317, 365, 385, 395, 471 or 481. Credit in 490 may not be used to fulfill this elective requirement.
Outcomes Assessment: Students are required to prepare and to maintain a portfolio of their technical and non-technical skills. This portfolio is evaluated for student preparation during the student’s curriculum planning process. Results of the evaluation are used to advise students of core strengths and weaknesses. Prerequisite material exams are given at key points in the curriculum. These exams are to assist student evaluation of progress made during the academic experience as the material covered in several courses are the foundation of more advanced courses. The results of these assessments are also used to evaluate the curriculum and to implement improvements.

*Core professional curriculum. A student must have a minimum grade-point average of 2.00 in this group of courses in order to graduate.

Curriculum in Construction Engineering

Administered by the Department of Civil and Construction Engineering.

Leading to the degree bachelor of science. Total credits required: 122.5 Building emphasis; 123.5 Heavy emphasis; 125.5 or 126.5 Mechanical/Electrical emphasis. See also Basic Program and Cooperative Programs.

B - Building construction emphasis.
H - Heavy construction emphasis.
M/E - Mechanical/Electrical construction emphasis.

Undesignated courses are for all emphases.

Sophomore Year

<table>
<thead>
<tr>
<th>Cr.</th>
<th>Fall</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Fundamentals of Surveying—Con E 111</td>
</tr>
<tr>
<td>4</td>
<td>Contractor Organization and Management of Construction—Con E 221</td>
</tr>
<tr>
<td>4</td>
<td>Calculus III—Math 265</td>
</tr>
<tr>
<td>5</td>
<td>Introduction to Classical Physics II—Phys 222</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cr.</th>
<th>Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Professional Development—Con E 210</td>
</tr>
<tr>
<td>3</td>
<td>Economics elective¹</td>
</tr>
<tr>
<td>3</td>
<td>Statics of Engineering—E M 274*</td>
</tr>
<tr>
<td>3</td>
<td>Construction Materials and Methods—Con E 241</td>
</tr>
<tr>
<td>3</td>
<td>Elementary Differential Equations—Math 266 (B, H) or Elementary Differential Equations with Laplace—Math 267 (M/E)</td>
</tr>
<tr>
<td>3</td>
<td>Financial Accounting—Acct 284</td>
</tr>
<tr>
<td>16</td>
<td>B, H; 17 M/E</td>
</tr>
</tbody>
</table>

Junior Year

<table>
<thead>
<tr>
<th>Cr.</th>
<th>Fall</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Construction Contract Documents—Con E 245</td>
</tr>
<tr>
<td>3</td>
<td>Mechanics of Materials—E M 324*</td>
</tr>
<tr>
<td>3</td>
<td>Engineering Thermodynamics I—M E 231* (M/E)</td>
</tr>
<tr>
<td>3</td>
<td>Engineering Law—Con E 380 (B, H)</td>
</tr>
<tr>
<td>3</td>
<td>Construction Equipment and Heavy Construction Methods—Con E 322* (B, H)</td>
</tr>
<tr>
<td>4</td>
<td>Electric Circuits—E E 201 (M/E)</td>
</tr>
<tr>
<td>3</td>
<td>Social Science & Humanities Elective ² (B, H)</td>
</tr>
<tr>
<td>3</td>
<td>Mechanics of Fluids—E M 378*</td>
</tr>
<tr>
<td>17</td>
<td>B, H; 15 M/E</td>
</tr>
</tbody>
</table>

Senior Year

<table>
<thead>
<tr>
<th>Cr.</th>
<th>Fall</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Structural Analysis I—C E 332*</td>
</tr>
<tr>
<td>3</td>
<td>Energy Systems & Power Electronics—E E 303 (M/E)</td>
</tr>
<tr>
<td>3</td>
<td>Principles of Environmental Engineering—C E 326 (H)</td>
</tr>
<tr>
<td>3</td>
<td>Concrete and Steel Construction—Con E 340 (B, H)*</td>
</tr>
<tr>
<td>4</td>
<td>Mechanical/Electrical Systems for Buildings—Con E 351 (B, M/E)</td>
</tr>
<tr>
<td>3</td>
<td>Soil Engineering—C E 360* (B, H)</td>
</tr>
<tr>
<td>2</td>
<td>Engineering Science elective¹ (H)</td>
</tr>
<tr>
<td>1</td>
<td>Mechanics of Materials Lab—E M 327 (B, H)</td>
</tr>
<tr>
<td>3</td>
<td>Engineering Law—Con E 380 (M/E)</td>
</tr>
<tr>
<td>3</td>
<td>Business Communication elective¹, ³ (M/E)</td>
</tr>
<tr>
<td>14</td>
<td>B, 16 M/E; 15 H</td>
</tr>
</tbody>
</table>

English Proficiency

All English courses taken, including those in the Basic Program, require a grade of C or better. A C– grade or less requires additional composition coursework.

1 Chosen from curriculum-approved lists. All electives must be taken for a grade. Pass-Not Pass grades are not acceptable.

2 Social sciences and humanities (SSH) electives chosen from curriculum-approved list. One of these must have a prerequisite of Psych 101 or a previously taken social sciences and humanities elective. Most students meet university requirements for diversity and international perspective by selecting appropriate courses from this area.

3 All English courses taken, including those in the basic program, require a C or better. C– or less requires additional composition coursework. All electives must be taken for a grade. Pass/Not Pass credits are not acceptable.

*Core professional curriculum. A student must have a minimum grade-point average of 2.00 in this group of courses in order to graduate.

Curriculum in Electrical Engineering

Administered by the Department of Electrical and Computer Engineering.

Leading to the degree bachelor of science. Total credits required: 125.5. See also Basic Program and Cooperative Programs.

Sophomore Year

<table>
<thead>
<tr>
<th>Cr.</th>
<th>First Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Electric Circuits—E E 201*</td>
</tr>
<tr>
<td>4</td>
<td>Introduction to Digital Design—Cpr E 210*</td>
</tr>
<tr>
<td>4</td>
<td>Elementary Differential Equations and Laplace Transforms—Math 267</td>
</tr>
<tr>
<td>5</td>
<td>Introduction to Classical Physics II—Phys 222</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cr.</th>
<th>Second Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Electronic Devices and Circuits—E E 333*</td>
</tr>
<tr>
<td>4</td>
<td>Introduction to Microcontrollers—Cpr E 211*</td>
</tr>
<tr>
<td>3</td>
<td>Calculus III—Math 265</td>
</tr>
<tr>
<td>3</td>
<td>Theory of Matrices—Math 307</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cr.</th>
<th>Junior Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Energy Systems and Power Electronics—E E 303*</td>
</tr>
<tr>
<td>3</td>
<td>Introduction to Electromagnetic Fields—E E 312*</td>
</tr>
<tr>
<td>3</td>
<td>Semiconductor Materials and Devices—E E 332*</td>
</tr>
<tr>
<td>3</td>
<td>Signals and Systems—E E 321*</td>
</tr>
<tr>
<td>3</td>
<td>General education elective¹</td>
</tr>
<tr>
<td>1</td>
<td>The Engineering Professional—E E 391</td>
</tr>
</tbody>
</table>

16
Curriculum in Engineering Applications

Administered by a supervisory committee appointed by the dean of the College of Engineering.

Leading to the degree bachelor of science.

Total credits required: 121.5. Additional credits required for some emphases. See also Basic Program and Cooperative Education Program.

Program Requirements

<table>
<thead>
<tr>
<th>Cr.</th>
<th>Basic Program</th>
</tr>
</thead>
<tbody>
<tr>
<td>26</td>
<td>Math/Basic Sciences</td>
</tr>
<tr>
<td>6</td>
<td>See Engineering Basic Program</td>
</tr>
</tbody>
</table>

Math/Basic Sciences

<table>
<thead>
<tr>
<th>Cr.</th>
<th>Fall</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Math 265, 266</td>
</tr>
<tr>
<td>5</td>
<td>Phys 222</td>
</tr>
<tr>
<td>3</td>
<td>Select one: Stat 105, 231, 305</td>
</tr>
<tr>
<td>15</td>
<td>Total</td>
</tr>
</tbody>
</table>

Engineering Applications Core

A student must have a minimum grade point average of 2.00 in this group of courses in order to graduate.

<table>
<thead>
<tr>
<th>Cr.</th>
<th>Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Calculus III—Math 265*</td>
</tr>
<tr>
<td>5</td>
<td>Introduction to Classical Physics II—Phys 222</td>
</tr>
<tr>
<td>3</td>
<td>Statics of Engineering—E M 274*</td>
</tr>
<tr>
<td>3</td>
<td>SSH electives*</td>
</tr>
<tr>
<td>15</td>
<td></td>
</tr>
</tbody>
</table>

Junior Year

<table>
<thead>
<tr>
<th>Cr.</th>
<th>Fall</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Communications Skills Elective</td>
</tr>
<tr>
<td>4</td>
<td>Probability and Statistical Inference for Engineers—Stat 231*</td>
</tr>
<tr>
<td>3</td>
<td>Dynamics—E M 345*</td>
</tr>
<tr>
<td>3</td>
<td>Computational Methods Requirement</td>
</tr>
<tr>
<td>3</td>
<td>Mechanics of Fluids—E M 378*</td>
</tr>
<tr>
<td>16</td>
<td></td>
</tr>
</tbody>
</table>

Supporting

<table>
<thead>
<tr>
<th>Cr.</th>
<th>Fall</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Acct 284 or I E 305 or M I S 330</td>
</tr>
<tr>
<td>3</td>
<td>Con E 380 or Acct 215</td>
</tr>
<tr>
<td>3</td>
<td>Sp Cm 212</td>
</tr>
<tr>
<td>3</td>
<td>Engl 314 or 302</td>
</tr>
<tr>
<td>9</td>
<td>Select courses to strengthen program objectives or to serve as prerequisites for courses in other groups.</td>
</tr>
<tr>
<td>21</td>
<td>Total</td>
</tr>
</tbody>
</table>

Senior Year

<table>
<thead>
<tr>
<th>Cr.</th>
<th>Fall</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Depth/technical elective</td>
</tr>
<tr>
<td>3</td>
<td>Mathematics Elective</td>
</tr>
</tbody>
</table>

Curriculum in Engineering Science

Administered by the Department of Aerospace Engineering and Engineering Mechanics.

Leading to the degree bachelor of science.

Total credits required: 123.5. See also Basic Program and Cooperative Programs.

Sophomore Year

<table>
<thead>
<tr>
<th>Cr.</th>
<th>Fall</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Calculus III—Math 265*</td>
</tr>
<tr>
<td>5</td>
<td>Introduction to Classical Physics II—Phys 222</td>
</tr>
<tr>
<td>3</td>
<td>Statics of Engineering—E M 274*</td>
</tr>
<tr>
<td>3</td>
<td>SSH electives*</td>
</tr>
<tr>
<td>15</td>
<td></td>
</tr>
</tbody>
</table>

Professional

12 Select 300-level and above courses to support professional objectives.

English Proficiency

Engineering applications students must earn a grade of C (not C–) or higher in each of Sp Cm 312 and Engl 302 or 314.
Bachelor of Science Program

Administered by the Department of Industrial Engineering

Sophomore Year

<table>
<thead>
<tr>
<th>Cr.</th>
<th>Fall</th>
<th>3 SSH elective</th>
<th>4 Senior Engineering Science Design Project II—E Sci 482</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Depth/technical elective</td>
<td>15</td>
<td>Cr.</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td>Spring</td>
</tr>
<tr>
<td>4</td>
<td>Senior Engineering Science Design Project II—E Sci 482</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Total credits required: 120.5

Leading to the Degree Bachelor of Science

The department requires a grade of C (2.0) or better in ENGL 104 and 105 to be eligible for English Proficiency Certification. Students satisfying this requirement who are not cited for deficiencies in reports, laboratory reports, or other writings required in other courses are referred to the department’s Academic Standards and Program Quality Committee for corrective action.

1Any of the following courses are acceptable for satisfying the communications skills elective: ENGL 220, 302, 309, 314, 415; SP CM 212.

2These electives are to be chosen from the department-approved list of social sciences and humanities (SSH) courses. At least one sequence consisting of two or three courses is required as part of the 15 credits of social sciences and humanities electives.

3Each student will select electives that support their educational goals and objectives statement. Electives must be approved by the adviser.

4Design courses in Aerospace Engineering, Computer Engineering, Electrical Engineering, Industrial Engineering, or Mechanical Engineering may be appropriate for some students based on the area of emphasis selected by the student. Appropriate substitutions may be made with the advice and approval of the student’s advisor.

5Any of the following courses are acceptable for satisfying the computational methods requirement: AE E 361, MATH 273, 471, 481.

*Core professional curriculum. A student must have a minimum grade-point average of 2.00 in this group of courses in order to graduate.

English Proficiency

The department requires a grade of C (2.0) or better in ENGL 104 and 105.

Junior Year

<table>
<thead>
<tr>
<th>Cr.</th>
<th>Fall</th>
<th>3 Quality Control—I E 361</th>
<th>4 Introduction to Circuits, Instruments, & Electronics—E E 441</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td></td>
<td>5 Stochastic Analysis—I E 313</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>6 SSH elective</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td>Cr.</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td>Spring</td>
</tr>
<tr>
<td>3</td>
<td>Solidification Processes—I E 348</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Fundamentals of Mechanics—E M 301</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Engineering Economic Analysis—I E 305</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Production Systems—I E 341</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Management elective</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Senior Year

<table>
<thead>
<tr>
<th>Cr.</th>
<th>Fall</th>
<th>3 Professional Communication—ComSt 214</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Manufacturing Systems Modeling—I E 419</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Technical Communication—ENGL 314</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Manufacturing Systems Engineering—I E 448</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Focus elective</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td></td>
<td>Cr.</td>
</tr>
<tr>
<td>3</td>
<td>Thermodynamics—M E 330</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Focus elective</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Management elective</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>SSH elective</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Industrial Engineering Design—I E 441</td>
<td></td>
</tr>
</tbody>
</table>

Total credits required: 124.5

Curriculum in Materials Engineering

Administered by the Department of Materials Science and Engineering.

Leading to the degree bachelor of science.

Professional Program

Sophomore Year

<table>
<thead>
<tr>
<th>Cr.</th>
<th>Fall</th>
<th>2 Integrated Materials Design—Mat E 213</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Structural Characterization of Materials—Mat E 214</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Introduction to Classical Physics II—Phys 222</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Statics of Engineering—E M 274</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>SSH elective</td>
<td></td>
</tr>
</tbody>
</table>

Implementation of the IMSE Curriculum

The IMSE curriculum provides students with the opportunity to obtain depth in a topic area of their choice. Two courses, selected from a department-approved list, must be taken from one of the following areas:

Operations Research: which is concerned with the design and analysis of quantitative models and methods having applications in production and service systems such as inventory control, scheduling, transportation, and logistics.

Manufacturing: which is concerned with the design, analysis, operation, and control of manufacturing processes and systems.

Human Factors: which is concerned with the relationships between people and their work tasks, machines, information, and environment.

Enterprise Computing and Information Management: which is concerned with the integration of information within the functional units of an enterprise as well as between multiple enterprises.

Engineering Management: which is concerned with the strategies necessary for solving internal and external problems of a company in areas such as production, quality, project management, sales, and marketing strategies.

General: for students who did not want to specialize in any of the four focus areas above, can choose to combine electives from a number of areas.

Curriculum in Materials Engineering

Administered by the Department of Materials Science and Engineering.

Leading to the degree bachelor of science.

Total credits required: 124.5. See also Basic Program and Cooperative Programs.

Professional Program

Sophomore Year

<table>
<thead>
<tr>
<th>Cr.</th>
<th>Fall</th>
<th>2 Integrated Materials Design— Mat E 213</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Structural Characterization of Materials—Mat E 214</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Introduction to Classical Physics II—Phys 222</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Statics of Engineering—E M 274</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>SSH elective</td>
<td></td>
</tr>
</tbody>
</table>

Implementation of the IMSE Curriculum

The IMSE curriculum provides students with the opportunity to obtain depth in a topic area of their choice. Two courses, selected from a department-approved list, must be taken from one of the following areas:

Operations Research: which is concerned with the design and analysis of quantitative models and methods having applications in production and service systems such as inventory control, scheduling, transportation, and logistics.

Manufacturing: which is concerned with the design, analysis, operation, and control of manufacturing processes and systems.

Human Factors: which is concerned with the relationships between people and their work tasks, machines, information, and environment.

Enterprise Computing and Information Management: which is concerned with the integration of information within the functional units of an enterprise as well as between multiple enterprises.

Engineering Management: which is concerned with the strategies necessary for solving internal and external problems of a company in areas such as production, quality, project management, sales, and marketing strategies.

General: for students who did not want to specialize in any of the four focus areas above, can choose to combine electives from a number of areas.

Curriculum in Materials Engineering

Administered by the Department of Materials Science and Engineering.

Leading to the degree bachelor of science.

Total credits required: 124.5. See also Basic Program and Cooperative Programs.

Professional Program

Sophomore Year

<table>
<thead>
<tr>
<th>Cr.</th>
<th>Fall</th>
<th>2 Integrated Materials Design— Mat E 213</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Structural Characterization of Materials—Mat E 214</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Introduction to Classical Physics II—Phys 222</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Statics of Engineering—E M 274</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>SSH elective</td>
<td></td>
</tr>
</tbody>
</table>

Implementation of the IMSE Curriculum

The IMSE curriculum provides students with the opportunity to obtain depth in a topic area of their choice. Two courses, selected from a department-approved list, must be taken from one of the following areas:

Operations Research: which is concerned with the design and analysis of quantitative models and methods having applications in production and service systems such as inventory control, scheduling, transportation, and logistics.

Manufacturing: which is concerned with the design, analysis, operation, and control of manufacturing processes and systems.

Human Factors: which is concerned with the relationships between people and their work tasks, machines, information, and environment.

Enterprise Computing and Information Management: which is concerned with the integration of information within the functional units of an enterprise as well as between multiple enterprises.

Engineering Management: which is concerned with the strategies necessary for solving internal and external problems of a company in areas such as production, quality, project management, sales, and marketing strategies.

General: for students who did not want to specialize in any of the four focus areas above, can choose to combine electives from a number of areas.
Areas of specialization from which a student selects two:
Ceramic Materials 321, 322, 423, 424
Electronic Materials 331, 332, and 334 or 432, 433
Metallic Materials 341, 342, 443, 444
Polymeric Materials 351, 352, 453, 454

Curriculum in Mechanical Engineering

Leading to the degree bachelor of science.
Total credits required: 128.5. See also Basic Program and Cooperative Programs.

Sophomore Year

<table>
<thead>
<tr>
<th>Cr.</th>
<th>First Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Calculus III—Math 265</td>
</tr>
<tr>
<td>5</td>
<td>Introduction to Classical Physics II—Phys 222</td>
</tr>
<tr>
<td>5</td>
<td>Statics and Mechanics of Materials—E M 306*</td>
</tr>
<tr>
<td>2</td>
<td>Principles of Materials Science and Engineering—Mat E 272</td>
</tr>
<tr>
<td>16</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cr.</th>
<th>Second Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Elementary Differential Equations and Laplace Transforms—Math 267</td>
</tr>
<tr>
<td>3</td>
<td>Dynamics—E M 345*</td>
</tr>
<tr>
<td>3</td>
<td>Engineering Statistics—Stat 305</td>
</tr>
<tr>
<td>3</td>
<td>Introduction to Mechanical Engineering Design—M E 270*</td>
</tr>
<tr>
<td>3</td>
<td>Engineering Thermodynamics I—M E 231*</td>
</tr>
<tr>
<td></td>
<td>Mechanical Engineering Seminar—M E 202</td>
</tr>
<tr>
<td>16</td>
<td></td>
</tr>
</tbody>
</table>

Junior Year

<table>
<thead>
<tr>
<th>Cr.</th>
<th>First Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Engineering Thermodynamics II—M E 332*</td>
</tr>
<tr>
<td>4</td>
<td>Manufacturing Engineering—M E 324*</td>
</tr>
<tr>
<td>3</td>
<td>General Education electives¹</td>
</tr>
<tr>
<td>3</td>
<td>Technical Communication—Engl 314</td>
</tr>
<tr>
<td>2</td>
<td>Introduction to Circuits and Instruments—E E 442*</td>
</tr>
<tr>
<td>2</td>
<td>Introduction to AC Circuits and Motors—E E 449*</td>
</tr>
<tr>
<td>17</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cr.</th>
<th>Second Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Mechanism and Machine Design—M E 325*</td>
</tr>
<tr>
<td>3</td>
<td>Engineering Measurements and Instrumentation—M E 370*</td>
</tr>
<tr>
<td>3</td>
<td>General Education electives¹</td>
</tr>
<tr>
<td>3</td>
<td>Technical elective²</td>
</tr>
<tr>
<td>4</td>
<td>Fluid Flow—M E 335*</td>
</tr>
<tr>
<td>17</td>
<td></td>
</tr>
</tbody>
</table>

English Proficiency

The Department of Materials Science and Engineering requires a grade of C or better in Engl 104 and 105 and certification from the departmental curriculum committee.

¹Social sciences and humanities (SSH) electives must be departmentally approved.

²Course in first area of emphasis (specialization).

³Course in second area of emphasis (specialization).

⁴Technical electives must be department approved.

⁵The free elective may be SSH, Technical, or other graded course not of remedial nature.

⁶If Electronics is chosen as a specialization and 432 selected as an elective, then this course is 4 credits and the technical elective credit is reduced to 2 credits.

*Core professional curriculum. A student must have a minimum grade-point average of 2.00 in this group of courses and certification by the department curriculum committee in order to graduate.
Carol B. Meeks, Dean
Beverly J. Crabtree, Emeritus Dean
Ruth E. Deacon, Emeritus Dean
JaneAnn Stout, Associate Dean
Suzanne Hendrich, Associate Dean
Mary Winter, Associate Dean

Departments of the College

Family and Consumer Sciences Education and Studies
Food Science and Human Nutrition
Hotel, Restaurant, and Institution Management
Human Development and Family Studies
Textiles and Clothing

The College of Family and Consumer Sciences (CFCS) is committed to advancing the well-being of families, consumers, and related business organizations through the creation, application, and dissemination of knowledge. These objectives are accomplished by fostering a supportive community committed to optimizing student learning, promoting high quality scholarship that addresses important issues for individuals, families, communities, and related business organizations, and engaging key constituents and partners in addressing needs of families, communities, societies, and related business organizations around the world. The fields of study encompassed by the College are represented within the departments described above. The College faculty and staff work to create and communicate knowledge not only in a given field, but to combine that knowledge into an integrated whole. Each part of that whole is needed to achieve the goal of enhancing quality of life for all people.

Students in CFCS learn how to contribute to the well-being of society through a variety of careers. At the baccalaureate level, students are prepared to become family and consumer sciences educators, early childhood educators, childcare providers, housing specialists, personal financial managers, apparel designers, merchandisers and entrepreneurs; also restaurant, hotel and institution managers; food scientists, dietitians and nutritionists. They also are prepared to pursue postbaccalaureate education at other institutions in such areas as social work, law, medicine or other health care professions. In addition, the College offers masters and doctorate programs in each department. Graduates are prepared for careers as researchers, educators, marriage and family therapists, or upper level managers and administrators in professional fields.

Faculty and staff members of the College of Family and Consumer Sciences aspire to create personal well-being. There is a strong commitment to a love of learning and to nurturing students through rigorous and dynamic curricula. Extensive extracurricular opportunities, both local and international, for the personal and professional development of students are provided. These commitments are the foundation for becoming the best FCS College in the nation.

Accreditation

All degree programs in the College of Family and Consumer Sciences are accredited by the American Association of Family and Consumer Sciences (AAFCS). Accreditation includes commitment to self-regulation, ongoing self-study, peer and external evaluation, and regular review by the Council for Accreditation for the AAFCS. These accreditation activities ensure that graduates of the College of Family and Consumer Sciences have had educational experiences of high quality and relevance as judged against nationally accepted standards. Throughout the United States, only a small number of colleges and universities offering bachelors degrees in Family and Consumer Sciences meet the high standards of the AAFCS accreditation.

In addition to the College accreditation, the following program-specific accreditation/registrations have been attained by Departments within the College:

Department of Family and Consumer Sciences Education and Studies:
Family and Consumer Sciences Education Teacher Licensure Program by the Iowa Department of Education and the Iowa Board of Educational Examiners.

Department of Food Science and Human Nutrition:
Food Science and Technology by the Institute of Food Technologists;
Dietetics Internship has initial accreditation and the Didactic program in Dietetics is currently granted approval status by the Commission on Accreditation/Approval for Dietetics Education of The American Dietetic Association, 216 W. Jackson Blvd., Chicago, IL 60606-6995, 312/699-4876.

Department of Hotel, Restaurant, and Institution Management: by the Accreditation Commission for Programs in Hospitality Administration, the accrediting agency of the International Council on Hotel, Restaurant, and Institutional Education.

Department of Human Development and Family Studies:
Early Childhood, Birth - Grade 3 by the Iowa Department of Education;
Early Childhood Education-Unified by the Iowa Department of Education;
Marital and Family Therapy by the Commission on Accreditation for Marriage and Family Therapy Education;
Child Development Laboratory by the National Academy for Early Childhood Programs;
Financial Counseling and Family Resource Management curricula by the Association for Financial Counselors and Planning Education.

Department of Textiles and Clothing:
Production focus of the Apparel Merchandising, Design, and Production major is endorsed by the American Apparel Manufacturers Association.

Curricula in Family and Consumer Sciences

The College of Family and Consumer Sciences is fully accredited by the American Association of Family and Consumer Sciences Council for Accreditation. The curricula are planned to meet a variety of academic interests, abilities, and goals of the student. Each curriculum requires depth in a discipline. Breadth is acquired through general education and careful use of electives.

Apparel Merchandising, Design, and Production—Options: Merchandising; Design; Production
Child and Family Services—Options: Child Programs; Youth Programs; Adult Programs; Family Programs; Policy and Advocacy
Dietetics
Early Childhood Education
Family and Consumer Sciences Education and Studies—Options: Teacher Licensure; Educational Services; General Studies
Family Resource Management and Consumer Sciences—Options: Family Resource Management and Consumer Sciences; Family Financial Counseling
Food Science—Options: Food Science and Technology; Consumer Food Science; Food Science and Industry
Hotel, Restaurant, and Institution Management
Housing and the Near Environment
Nutritional Science

Minors

Minors are available to all Iowa State students including family and consumer sciences majors. Minors consist of at least 15 credits and are available in the following areas:
Apparel Merchandising, Design, and Production
Child and Family Services
Educational Services in Family and Consumer Sciences
Family Resource Management and Consumer Sciences
Food Science
Gerontology (interdisciplinary minor)
Hotel, Restaurant, and Institution Management
Housing and the Near Environment
Nutrition
See Index for minor requirements for specific departments and programs.
Special Interest Programs

International and Cross Cultural Programs

Study abroad opportunities are available and encouraged through the College of Family and Consumer Sciences to broaden international and cross-cultural perspectives. Scholarships and other forms of financial assistance are available which provide partial support for students studying abroad. The college has established programs with Glasgow Caledonian University, Glasgow, Scotland; University of Otago, Dunedin, New Zealand; and the International College of Hospitality Administration, Brig, Switzerland. Students also study at the London College of Fashion, London, England, and participate in group study abroad programs to Europe, Africa, Costa Rica, and Mexico. Other opportunities may be developed through consultation with the associate dean of undergraduate programs and the student’s adviser; for example, students have acquired internships and studied in such countries as Kenya, Spain, Puerto Rico, Ireland, Guatemala, Switzerland, England, Australia, Germany, and France. Faculty members bring diversity and global perspectives to instruction and research, through their work in the Pacific Rim, India, South Korea, Latin America, Asia, Africa, and many countries in Europe.

Families Extension

Students may prepare for a career in the Cooperative Extension Service by enrolling in any curriculum in the College of Family and Consumer Sciences that provides them with a broad subject matter base for conducting educational programs for families. Advice on choice of courses should be sought from the associate dean and director of Iowa State University Extension to Families programs, the director of Iowa State University Extension to Youth and 4-H programs, or the Extension Human Resources Office.

Honors Program

High achieving students, with a grade point average of above 3.35, are invited to apply to the Honors Program. Honors students are encouraged to develop a creative program of study expanding their interests while meeting individual educational objectives. Students in the Honors Program also participate in University Honors Seminars and complete an honors project. For further information, contact the College Honors Committee or academic adviser. Also see Index, Honors Program.

Dietetics Internship (DI)

This postbaccalaureate program, administered by the Department of Food Science and Human Nutrition, has initial accreditation from the American Dietetic Association (ADA). The purpose of the program is to enable those who meet the academic requirements of the ADA to obtain at least 900 hours of practice supervised by registered dietitians in medical nutrition therapy, community nutrition, and foodservice management to meet ADA performance requirements for entry level dietitians.

Students who satisfactorily complete the DI will be eligible to take the national registration examination administered by the Commission on Dietetic Registration.

Open Option Status

The College of Family and Consumer Sciences offers an open option for entering students who have not selected a specific area of study. Family and Consumer Sciences Orientation (FCEdS 110) helps students explore the opportunities available. Program planning information can be obtained from general college advisers.

Secondary School Preparation

Preparation required for admission is: 4 years English/foreign languages; 3 years mathematics; 3 years science; 2 years social studies.

Advising System

Each student in the College of Family and Consumer Sciences works closely with an academic adviser. Freshmen are advised by general college advisers. After the freshman year, each student is assigned an adviser in the department of the chosen curriculum. Freshmen students in Food Science and Human Nutrition are advised by a departmental adviser. The adviser assists the student in making adjustments to the university and provides information and guidance on course work, opportunities for professional and personal development and career choices.

Planned Transfer Programs

By careful planning with the College of Family and Consumer Sciences Academic Programs Office, students may begin their education at another college, then transfer their courses to a curriculum within the College of Family and Consumer Sciences with maximum efficiency in meeting the degree requirements. The College has developed program-to-program transfer plans with community colleges in Iowa and surrounding states. In addition, personalized plans may be developed for students attending other colleges. For more information, call 1-800-522-0683 or contact the associate dean for undergraduate programs, College of Family and Consumer Sciences, 124 MacKay, Iowa State University.

Preparation for Graduate Study

Students considering graduate studies should gain background knowledge in basic subjects related to their area of interest. Undergraduate mathematics, statistics, and research methods courses are useful as preparation for advanced study in graduate school. Upon completion of graduate programs, students are qualified for leadership positions in public and private institutions and for teaching, research, and extension positions in colleges and universities.

Professional Career and Employment Opportunities in Family and Consumer Sciences

Employment of Family and Consumer Sciences graduates remains at a high level. The flexibility of College of Family and Consumer Sciences programs allows for a wide range of career opportunities in diverse areas such as government, industry, education, health and human services, business, extension, and community agencies, locally, nationally, and internationally. A few examples of the positions in these various fields are: dietitian; housing specialist; vocational family and consumer sciences teacher; infant, preschool, or special education teacher; hotel, club, or restaurant manager; financial counselor; apparel merchandiser, designer, or production specialist; food or textile researcher; sales representative; early childhood educator; consumer product specialist; and supervisor for a human service agency. Some students prepare for professional programs such as medicine, law, or health administration while pursuing a B.S. degree. The strength of the College programs lies in its capacity to enhance the graduate’s ability to develop and deliver products, programs, or services to families and consumers, as well as to strengthen the communication and leadership skills needed in representing the interests of families and consumers.

In a required career opportunity course students learn to identify their strengths, interests, and values related to professional goals and to match them to career opportunities. Students learn to write resumes and letters, network with professionals, and develop interviewing skills. Technologically up-to-date services such as Web Walk-up facilitate contacts with potential employers using resume referrals, and a “Positions Available List”. Career related materials and employer information are available in the College and in departments.

General Education

Each department within the college requires students to select and/or elect courses to fulfill a specific number of credits in prescribed areas.

Minimum Group Requirements in the College of Family and Consumer Sciences

Cr.	9.5	I. Communications and Library
9	11. Natural sciences and mathematical disciplines	
9	III. Social sciences	
8	IV. Humanities	
8	V. Family and Consumer Sciences*	

Independent Study

Students may pursue independent work by enrolling in 490 courses in individual departments. No more than a total of nine semester credits of independent study may be applied to a degree in family and consumer sciences.

*Assumes additional credits will be necessary for meeting the objectives of the College of Family and Consumer Sciences, including the areas of management, aesthetics, educational principles, public policy, and requirements in specific degrees.
Curriculum in Apparel Merchandising, Design, and Production

Administered by the Program of Textiles and Clothing. Leading to the degree bachelor of science. Total credits required: 123.5 including a minimum of 18 credits in AMDP at Iowa State University for the degree.

The major in apparel merchandising, design, and production provides a broad based program of study with flexibility in creating program options. Courses are required in the following groups: general education, family and consumer sciences core, and textiles and clothing core. To complete the program, a student combines structured clusters of courses to form primary and secondary program options.

A minor in apparel merchandising, design, and production is available; the requirements appear under Textiles and Clothing, Courses and Programs.

<table>
<thead>
<tr>
<th>Cr.</th>
<th>Degree Requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.5</td>
<td>Communications and library</td>
</tr>
<tr>
<td>6.5</td>
<td>Engl 104, 105; Lib 160</td>
</tr>
<tr>
<td>3</td>
<td>Select from Engl 302, 309, 314</td>
</tr>
<tr>
<td>3</td>
<td>HD FS 230 or Sp Cm 212</td>
</tr>
<tr>
<td>14-18</td>
<td>Natural sciences and mathematical disciplines</td>
</tr>
<tr>
<td>3-5</td>
<td>Select from biology, chemistry, geology, physics, zoology</td>
</tr>
<tr>
<td>3-4</td>
<td>Mathematics (Math 150 recommended for Merchandising and Production Options)</td>
</tr>
<tr>
<td>4</td>
<td>Com S 103</td>
</tr>
<tr>
<td>4-5</td>
<td>Stat 101 or 227</td>
</tr>
<tr>
<td>9</td>
<td>Social sciences</td>
</tr>
<tr>
<td>3</td>
<td>Econ 101</td>
</tr>
<tr>
<td>6</td>
<td>Select from the approved FCS list</td>
</tr>
<tr>
<td>9</td>
<td>Humanities</td>
</tr>
<tr>
<td>3-5</td>
<td>Select from the FCS-approved list (all T C courses excluded except 257 and 342). Must include one history course; foreign language recommended. For design primary option, one course must be art history.</td>
</tr>
<tr>
<td>8</td>
<td>Family and consumer sciences core</td>
</tr>
<tr>
<td>8</td>
<td>FCEDs 110, 160, 310, 460; FS HN 167; HD FS 102</td>
</tr>
</tbody>
</table>

Professional courses

<table>
<thead>
<tr>
<th>Cr.</th>
<th>Textiles and clothing core</th>
</tr>
</thead>
<tbody>
<tr>
<td>32</td>
<td>T C 131, 165, 204, 231, 245, 375, 380 or 381, 410</td>
</tr>
<tr>
<td>3</td>
<td>Human studies</td>
</tr>
<tr>
<td>3</td>
<td>Select from T C 342, 354, 355, 467</td>
</tr>
<tr>
<td>3-4</td>
<td>Product development</td>
</tr>
<tr>
<td>3</td>
<td>Select from T C 225, 305, 321, 331, 404</td>
</tr>
<tr>
<td>3</td>
<td>International</td>
</tr>
<tr>
<td>3</td>
<td>T C 362 or 472</td>
</tr>
</tbody>
</table>

Primary options

Select one cluster from primary options

<table>
<thead>
<tr>
<th>15-17</th>
<th>Merchandising</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>T C 375L, 376; Acct 284</td>
</tr>
<tr>
<td>8-10</td>
<td>Select three courses from T C 377, 470, 472, 474; HRI 287; ADVRT 320; Mkt 340, 410, 446, 448; Mgmt 370, 371</td>
</tr>
<tr>
<td>19</td>
<td>Design</td>
</tr>
<tr>
<td>14</td>
<td>T C 121, 225, 245L, 278, 496</td>
</tr>
<tr>
<td>3</td>
<td>Select one course from T C 321, 325, 326, 354, 355, 470</td>
</tr>
<tr>
<td>15</td>
<td>Production/Apparel Engineering</td>
</tr>
<tr>
<td>13</td>
<td>T C 331, 470; Acct 284; I E 271</td>
</tr>
<tr>
<td>3</td>
<td>Select from: I E 375; I Tec 360, 408; POM 320</td>
</tr>
</tbody>
</table>

Secondary options

Select a second cluster from the remaining primary option areas or from the secondary option areas.

<table>
<thead>
<tr>
<th>9-10</th>
<th>Business/Entrepreneurship</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Select one course from T C 472 or T C 474</td>
</tr>
<tr>
<td>6-7</td>
<td>Select two courses from Acct 215 or 285; Econ 301, 355, 385; Fin 301; HRI 287, Mgmt 310, 313, 370, 414; Mkt 340; POM 320; Trlog 360</td>
</tr>
<tr>
<td>9</td>
<td>Consumer behavior/marketing</td>
</tr>
<tr>
<td>6</td>
<td>T C 467; Mkt 340</td>
</tr>
<tr>
<td>3</td>
<td>Select from T C 470, 499; Advrt 230; Hist 376; HRI 440; Jl MC 205, 220, 320, 330; Mkt 410, 442, 444, 446, 447, 448</td>
</tr>
<tr>
<td>9</td>
<td>Creative Design</td>
</tr>
<tr>
<td>3</td>
<td>T C 326</td>
</tr>
<tr>
<td>6</td>
<td>Select two courses from T C 321, 325, 355, 404; Art 130, Arts 208, 224, 229, 343, 344, 345, 346, 347</td>
</tr>
<tr>
<td>9</td>
<td>History/Theatre Costume</td>
</tr>
<tr>
<td>9</td>
<td>Select three courses from T C 257, 354, 355, 362, 470, 499; art history; Thtr 106, 110, 255</td>
</tr>
<tr>
<td>9</td>
<td>Human Relations/Communications</td>
</tr>
<tr>
<td>9</td>
<td>Select three courses from T C 467, 470, 499; ComSt 218, 310, 314, 317; HD FS 370; Mgmt 370; Psych 450, Soc 380, Sp Cm 212</td>
</tr>
<tr>
<td>9</td>
<td>Technical Design</td>
</tr>
<tr>
<td>6</td>
<td>Select two courses from T C 121, 225, 305, 321, 325, 404, 470, 499</td>
</tr>
<tr>
<td>3</td>
<td>T C 331 is required</td>
</tr>
<tr>
<td>9-10</td>
<td>Quality Assurance</td>
</tr>
<tr>
<td>6</td>
<td>T C 305, 331</td>
</tr>
<tr>
<td>3-4</td>
<td>Select from T C 404, 470, 499; I E 271, 361; I Tec 360; Stat 495</td>
</tr>
<tr>
<td>9</td>
<td>International Trade</td>
</tr>
<tr>
<td>3</td>
<td>T C 362 or 472</td>
</tr>
<tr>
<td>3-5</td>
<td>Select 6-8 credits from one foreign language or 6 credits from T C 381, Anth 233, 325, 326; FCEDs 421, IntSt 120, 220, 235, 320, 420; Mgmt 414; Mkt 448</td>
</tr>
</tbody>
</table>

Electives

Select courses to broaden or complement the options (see adviser). 123.5 Total credits

Curriculum in Child and Family Services

Administered by the Department of Human Development and Family Studies. Leading to the degree bachelor of science. Total credits required: 128.5.

The child and family services curriculum, with options in child programs, youth programs, adult programs, family programs, and policy and advocacy, prepares students for professional work with children, adults, and families in a variety of public and private human service agencies and organizations. Examples include schools, child care programs, youth programs, adult programs, services to the elderly, community action, policy/advocacy work, and crisis intervention.

A minor in child and family services is available; the requirements appear under Human Development and Family Studies, Courses and Programs.

The following requirements are for the child programs, youth programs, adult programs, family programs, and policy and advocacy options:

<table>
<thead>
<tr>
<th>Cr.</th>
<th>Degree Requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.5</td>
<td>Communications and library</td>
</tr>
<tr>
<td>9.5</td>
<td>Engl 104, 105; Lib 160; Sp Cm 212</td>
</tr>
<tr>
<td>3</td>
<td>Select from Engl 302, 309, 310, 314</td>
</tr>
<tr>
<td>12-14</td>
<td>Natural sciences and mathematical disciplines</td>
</tr>
<tr>
<td>3-4</td>
<td>Stat 101 or Math 105, 140, 142, 150, 165, 195</td>
</tr>
<tr>
<td>3</td>
<td>Zool 155* or 258</td>
</tr>
<tr>
<td>3-4</td>
<td>Com S 103 or I C 120</td>
</tr>
<tr>
<td>3</td>
<td>Select from natural sciences or statistics</td>
</tr>
<tr>
<td>9</td>
<td>Social sciences</td>
</tr>
<tr>
<td>9</td>
<td>Select from American history, anthropology, economics, political science, psychology, sociology</td>
</tr>
<tr>
<td>9</td>
<td>Humanities</td>
</tr>
<tr>
<td>3</td>
<td>Select from approved list.</td>
</tr>
<tr>
<td>8</td>
<td>Family and consumer sciences core</td>
</tr>
<tr>
<td>8</td>
<td>FCEDs 110, 160, 310, 460; FS HN 167; HD FS 102</td>
</tr>
<tr>
<td>17</td>
<td>HD FS core</td>
</tr>
<tr>
<td>14</td>
<td>HD FS 269, 449, 491</td>
</tr>
<tr>
<td>3</td>
<td>Select HD FS other than declared child and family services option</td>
</tr>
<tr>
<td>20</td>
<td>Child and Family Services core</td>
</tr>
<tr>
<td>17</td>
<td>HD FS 218, 349, 367, 370, 395, 445</td>
</tr>
<tr>
<td>3</td>
<td>Select from HD FS 239, 283 or 378</td>
</tr>
<tr>
<td>21</td>
<td>Child Programs Option</td>
</tr>
<tr>
<td>6</td>
<td>HD FS 220, 221</td>
</tr>
<tr>
<td>4</td>
<td>HD FS 340, 343</td>
</tr>
<tr>
<td>11</td>
<td>HD FS 240, 345 or 460; C I 250; H S 105</td>
</tr>
<tr>
<td>21</td>
<td>Youth Programs Option</td>
</tr>
<tr>
<td>6</td>
<td>HD FS 226, 227</td>
</tr>
<tr>
<td>3</td>
<td>HD FS 276</td>
</tr>
<tr>
<td>3</td>
<td>C I 250 or Soc 331</td>
</tr>
</tbody>
</table>
Curriculum in Early Childhood Education

The curriculum in early childhood education is planned for students preparing to teach young children and work with their families. This program leads to careers in working with young children who are typically developing and those with special needs from birth through age eight. Graduates in this curriculum may teach in early childhood classrooms and home based programs, with emphasis on inclusive services; graduates may be employed by either public or private agencies or schools. This curriculum has been approved by the Iowa Department of Education and meets the requirements for the early childhood education unified teacher license, which permits individuals to teach general and special education for children from birth through age eight. The program is administered jointly by the Department of Curriculum and Instruction within the College of Education, and the Department of Human Development and Family Studies within the College of Family and Consumer Sciences.

For details concerning the professional teacher education requirements and admission to the undergraduate teacher education program, see Teacher Education, Courses and Programs.

Foreign Language Requirement
Early childhood education majors must satisfy a graduation requirement equivalent to the first year of university-level study in one foreign language (normally, completion of a two-semester sequence in any one foreign language). The requirement may be met by completion of three or more years of high school study in one foreign language.

Students who have completed three or more years of French, German, or Spanish in high school may not receive graded credit for 101-102 in those languages; test-out credit (T credit) may be obtained by passing an appropriate examination or by completing an advanced sequence (200-level or higher) in that language. If these students choose to take 101-102 on a remedial basis, they will be graded S-F.

Curriculum in Family and Consumer Sciences Education and Studies

Administered by the Family and Consumer Sciences Education and Studies Program Unit. Leading to the degree bachelor of science. Total credits required: 128.5.

This curriculum provides a broad-based program of study focusing on preparation for professional careers related to education or community participation. Courses are required in general education, the family and consumer sciences core, and the program core. Students select one program option.

There are three choices for this curriculum. Option 1, teacher licensure, Option 2, educational services, and Option 3, general studies. In all options, students are prepared with a broad-based understanding of family and consumer sciences.

Option 1, teacher licensure, is designed for students seeking careers as family and consumer sciences educators in a variety of settings such as middle, junior, and senior high schools. With additional credits students may also be approved to teach in specific occupa-
tional areas: child care, fashion merchandising, and foodservice. Further information about licensure programs appears under College of Education.

Option 2, educational services, is designed for students seeking careers in extension, business, community agencies, community colleges, and adult education programs.

Option 3, general studies, is designed to provide students with the opportunity to pursue an individualized program which is planned with their academic advisors.

Opportunities to participate in study abroad, international internships, field study, and international supervised student teaching experience build a solid base for work in a global world.

The program offers a minor in educational services in family and consumer sciences; the requirements appear under Family and Consumer Sciences Education and Studies, Courses and Programs.

Option 2: Educational Services

<table>
<thead>
<tr>
<th>Cr.</th>
<th>Degree Requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.5</td>
<td>Communications and library</td>
</tr>
<tr>
<td>6</td>
<td>Engl 104, 105</td>
</tr>
<tr>
<td>3</td>
<td>Select from: ComSt 102, 218, HD FS 370, Sp Cm 212</td>
</tr>
<tr>
<td>0.5</td>
<td>Lib 160</td>
</tr>
<tr>
<td>9</td>
<td>Natural sciences and mathematical disciplines</td>
</tr>
<tr>
<td>3</td>
<td>Zool 155 or Biol 109</td>
</tr>
<tr>
<td>3</td>
<td>Select a course from the mathematical disciplines (Teacher licensure option must select Math course)</td>
</tr>
<tr>
<td>3</td>
<td>Select additional course in natural science. (Both teacher licensure option and educational services option must complete Chem 160 or high school chemistry)</td>
</tr>
<tr>
<td>9</td>
<td>Social sciences</td>
</tr>
<tr>
<td>3</td>
<td>Econ 101 or 102</td>
</tr>
<tr>
<td>3</td>
<td>Soc 134</td>
</tr>
<tr>
<td>3</td>
<td>Select from anthropology, economics, psychology, sociology</td>
</tr>
<tr>
<td>9</td>
<td>Humanities</td>
</tr>
<tr>
<td>9</td>
<td>Courses from approved list (Teacher licensure must complete 3 credits of American history or political science)</td>
</tr>
<tr>
<td>9</td>
<td>Family and consumer sciences core</td>
</tr>
<tr>
<td>2</td>
<td>FCEdS 110, 160, 310, 460</td>
</tr>
<tr>
<td>3</td>
<td>FS HN 167</td>
</tr>
<tr>
<td>3</td>
<td>HD FS 102 or Psych 230</td>
</tr>
<tr>
<td>12</td>
<td>Family and Consumer Sciences Education and Studies core</td>
</tr>
<tr>
<td>5-10</td>
<td>FCEdS 314, 419B</td>
</tr>
<tr>
<td>3</td>
<td>HD FS 293 or 378</td>
</tr>
<tr>
<td>3</td>
<td>HD FS 474 or T C 474 or HRI 474</td>
</tr>
<tr>
<td>17-22</td>
<td>Select from FCEdS, FSHN, HRI, HD FS, T C</td>
</tr>
<tr>
<td>3</td>
<td>Select from: Anthr 417; T C 342, 362, Phil 340</td>
</tr>
<tr>
<td>9</td>
<td>Social sciences</td>
</tr>
<tr>
<td>3</td>
<td>Econ 101 or 102</td>
</tr>
<tr>
<td>3</td>
<td>Soc 134</td>
</tr>
<tr>
<td>3</td>
<td>Select from anthropology, economics, psychology, sociology</td>
</tr>
<tr>
<td>9</td>
<td>Humanities</td>
</tr>
<tr>
<td>9</td>
<td>Courses from approved list (Teacher licensure must complete 3 credits of American history or political science)</td>
</tr>
<tr>
<td>9</td>
<td>Family and consumer sciences core</td>
</tr>
<tr>
<td>2</td>
<td>FCEdS 110, 160, 310, 460</td>
</tr>
<tr>
<td>3</td>
<td>FS HN 167</td>
</tr>
<tr>
<td>3</td>
<td>HD FS 102 or Psych 230</td>
</tr>
<tr>
<td>12</td>
<td>Family and Consumer Sciences Education and Studies core</td>
</tr>
<tr>
<td>5-10</td>
<td>FCEdS 314, 419B</td>
</tr>
<tr>
<td>3</td>
<td>HD FS 293 or 378</td>
</tr>
<tr>
<td>3</td>
<td>HD FS 474 or T C 474 or HRI 474</td>
</tr>
<tr>
<td>17-22</td>
<td>Select from FCEdS, FSHN, HRI, HD FS, T C</td>
</tr>
<tr>
<td>3</td>
<td>Select from: Anthr 417; T C 342, 362, Phil 340</td>
</tr>
<tr>
<td>9</td>
<td>Social sciences</td>
</tr>
<tr>
<td>3</td>
<td>Econ 101 or 102</td>
</tr>
<tr>
<td>3</td>
<td>Soc 134</td>
</tr>
<tr>
<td>3</td>
<td>Select from anthropology, economics, psychology, sociology</td>
</tr>
<tr>
<td>9</td>
<td>Humanities</td>
</tr>
<tr>
<td>9</td>
<td>Courses from approved list (Teacher licensure must complete 3 credits of American history or political science)</td>
</tr>
<tr>
<td>9</td>
<td>Family and consumer sciences core</td>
</tr>
<tr>
<td>5</td>
<td>FCEdS 314, 419B</td>
</tr>
<tr>
<td>3</td>
<td>HD FS 293 or 378</td>
</tr>
<tr>
<td>3</td>
<td>HD FS 474 or T C 474 or HRI 474</td>
</tr>
<tr>
<td>17-22</td>
<td>Select from FCEdS, FSHN, HRI, HD FS, T C</td>
</tr>
<tr>
<td>3</td>
<td>Select from: Anthr 417; T C 342, 362, Phil 340</td>
</tr>
<tr>
<td>9</td>
<td>Social sciences</td>
</tr>
<tr>
<td>3</td>
<td>Econ 101 or 102</td>
</tr>
<tr>
<td>3</td>
<td>Soc 134</td>
</tr>
<tr>
<td>3</td>
<td>Select from anthropology, economics, psychology, sociology</td>
</tr>
<tr>
<td>9</td>
<td>Humanities</td>
</tr>
<tr>
<td>9</td>
<td>Courses from approved list (Teacher licensure must complete 3 credits of American history or political science)</td>
</tr>
<tr>
<td>9</td>
<td>Family and consumer sciences core</td>
</tr>
<tr>
<td>5</td>
<td>FCEdS 314, 419B</td>
</tr>
<tr>
<td>3</td>
<td>HD FS 293 or 378</td>
</tr>
<tr>
<td>3</td>
<td>HD FS 474 or T C 474 or HRI 474</td>
</tr>
<tr>
<td>17-22</td>
<td>Select from FCEdS, FSHN, HRI, HD FS, T C</td>
</tr>
<tr>
<td>3</td>
<td>Select from: Anthr 417; T C 342, 362, Phil 340</td>
</tr>
<tr>
<td>9</td>
<td>Social sciences</td>
</tr>
<tr>
<td>3</td>
<td>Econ 101 or 102</td>
</tr>
<tr>
<td>3</td>
<td>Soc 134</td>
</tr>
<tr>
<td>3</td>
<td>Select from anthropology, economics, psychology, sociology</td>
</tr>
<tr>
<td>9</td>
<td>Humanities</td>
</tr>
<tr>
<td>9</td>
<td>Courses from approved list (Teacher licensure must complete 3 credits of American history or political science)</td>
</tr>
<tr>
<td>9</td>
<td>Family and consumer sciences core</td>
</tr>
<tr>
<td>5</td>
<td>FCEdS 314, 419B</td>
</tr>
<tr>
<td>3</td>
<td>HD FS 293 or 378</td>
</tr>
<tr>
<td>3</td>
<td>HD FS 474 or T C 474 or HRI 474</td>
</tr>
<tr>
<td>17-22</td>
<td>Select from FCEdS, FSHN, HRI, HD FS, T C</td>
</tr>
<tr>
<td>3</td>
<td>Select from: Anthr 417; T C 342, 362, Phil 340</td>
</tr>
<tr>
<td>9</td>
<td>Social sciences</td>
</tr>
<tr>
<td>3</td>
<td>Econ 101 or 102</td>
</tr>
<tr>
<td>3</td>
<td>Soc 134</td>
</tr>
<tr>
<td>3</td>
<td>Select from anthropology, economics, psychology, sociology</td>
</tr>
<tr>
<td>9</td>
<td>Humanities</td>
</tr>
<tr>
<td>9</td>
<td>Courses from approved list (Teacher licensure must complete 3 credits of American history or political science)</td>
</tr>
</tbody>
</table>

Curriculum in Family Resource Management and Consumer Sciences

Administered by the Department of Human Development and Family Studies. Leading to the degree bachelor of science. Total credits required: 128.5.

This curriculum focuses on the behavior of families as they allocate and manage their resources. A minor in family resource management and consumer science is available; the requirements appear under Human Development and Family Studies, Courses and Programs.

<table>
<thead>
<tr>
<th>Cr.</th>
<th>Degree Requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.5</td>
<td>Communications and library</td>
</tr>
<tr>
<td>6</td>
<td>Engl 104, 105, FCEdS 310*</td>
</tr>
<tr>
<td>11-12</td>
<td>Mathematical sciences</td>
</tr>
<tr>
<td>3</td>
<td>Math 165 and 166 or 181 and 182, Stat 101 or 104</td>
</tr>
<tr>
<td>23</td>
<td>Physical sciences</td>
</tr>
<tr>
<td>13</td>
<td>Biological sciences</td>
</tr>
<tr>
<td>9</td>
<td>Social sciences</td>
</tr>
<tr>
<td>9</td>
<td>Humanities</td>
</tr>
</tbody>
</table>

Curriculum in Food Science

Administered by the Department of Food Science and Human Nutrition.

Option 1. Food Science and Technology

<table>
<thead>
<tr>
<th>Cr.</th>
<th>Degree Requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.5</td>
<td>Communications</td>
</tr>
<tr>
<td>11-12</td>
<td>Mathematical sciences</td>
</tr>
<tr>
<td>23</td>
<td>Physical sciences</td>
</tr>
<tr>
<td>13</td>
<td>Biological sciences</td>
</tr>
<tr>
<td>9</td>
<td>Social sciences</td>
</tr>
<tr>
<td>9</td>
<td>Humanities **</td>
</tr>
</tbody>
</table>

*Cr.: Credit Hours

Additional credits
Option 3. Consumer Food Science

Degree Requirements

<table>
<thead>
<tr>
<th>Cr.</th>
<th>Subject</th>
<th>Courses</th>
</tr>
</thead>
<tbody>
<tr>
<td>18.5</td>
<td>Communications</td>
<td>Engl 104, 105; FCEdS 310*; Lib 160; JI MC 205, 220, or 347; ComSt 214 or Sp Cm 212</td>
</tr>
<tr>
<td>6-7</td>
<td>Mathematical sciences</td>
<td>3 cr. college-level math; Stat 101 or 104</td>
</tr>
<tr>
<td>13</td>
<td>Physical sciences</td>
<td>Chem 163, 163L, 231, 231L; Phys 106</td>
</tr>
</tbody>
</table>

Total credits: 120

*These courses fulfill the requirements for the CFCS core.

**3 credits each of U.S. diversity and international perspectives should be included in at least one of these sections.

†Credit allowed for FS HN 101 only if taken prior to enrollment in or during the first year in FS HN Department.

Option 2. Food Science and Industry

Degree Requirements

<table>
<thead>
<tr>
<th>Cr.</th>
<th>Subject</th>
<th>Courses</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.5</td>
<td>Communications</td>
<td>Engl 104, 105; FCEdS 310*; Lib 160; JI MC 205, 220, or 347; ComSt 214 or Sp Cm 212</td>
</tr>
<tr>
<td>6-8</td>
<td>Mathematical sciences</td>
<td>Math 151 or 160; Stat 101 or 104</td>
</tr>
<tr>
<td>13</td>
<td>Physical sciences</td>
<td>Chem 163, 163L, 231, 231L; Phys 106</td>
</tr>
<tr>
<td>12-13</td>
<td>Biological sciences</td>
<td>BMBB 301; Biol 201, 202; Micro 201 or 302, 201L</td>
</tr>
<tr>
<td>12</td>
<td>Social sciences, economics and business</td>
<td>HD FS 102 or Psych 230*; Econ 101; select 6 credits from Acct 215, 284, 285; Econ 301, 320, 322; Mgmt 310, 370, 371, 414, 472; Mis 330; Mkt 340, 447, 448</td>
</tr>
<tr>
<td>9</td>
<td>Humanities**</td>
<td>42.5-43.5</td>
</tr>
<tr>
<td>34.5</td>
<td>Food science and human nutrition</td>
<td>FS HN 110*, 167*, 203*, 272, 311, 351, 403, 405, 410, 412, 420, 421, 471, 472, 480*; plus 5-6 FS HN credits at 200-level or above or An S 270, 360, or 470.†</td>
</tr>
<tr>
<td>9-13</td>
<td>Electives</td>
<td>7-8</td>
</tr>
<tr>
<td>120</td>
<td>Total credits</td>
<td>120</td>
</tr>
</tbody>
</table>

*These courses fulfill the requirements for the CFCS core.

**3 credits each of U.S. diversity and international perspectives should be included in at least one of these sections.

†Credit allowed for FS HN 101 only if taken prior to enrollment in or during the first year in FS HN Department.

Curriculum in Food Science and Technology-B.S./M.S.

Administered by the Department of Food Science and Human Nutrition.

Undergraduate Program:

<table>
<thead>
<tr>
<th>Cr.</th>
<th>Subject</th>
<th>Courses</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.5</td>
<td>Communications and library</td>
<td>Engl 104, 105; FCEdS 310*; Lib 160; ComSt 214 or Sp Cm 212</td>
</tr>
<tr>
<td>11-12</td>
<td>Mathematical sciences</td>
<td>Math 165 and 166 or 181 and 182; Stat 101 or 104</td>
</tr>
<tr>
<td>23</td>
<td>Physical sciences</td>
<td>Chem 177L, 178L, 331, 331L, 332; Phys 111, 112</td>
</tr>
<tr>
<td>16</td>
<td>Biological sciences</td>
<td>BMBB 404, 405; Biol 201, 202; Micro 201L, 302</td>
</tr>
<tr>
<td>9</td>
<td>Social sciences</td>
<td>HD FS 102 or Psych 230*; 6 additional credits**</td>
</tr>
<tr>
<td>34.5</td>
<td>Food science and human nutrition</td>
<td>FS HN 110, 167*, 203*, 311, 351, 403, 410, 412, 420, 421, 471, 472, 480*; plus 5-6 FS HN credits at 200-level or above or An S 270, 360, or 470 to total 34.5 credits†</td>
</tr>
<tr>
<td>7-8</td>
<td>Electives</td>
<td>7-8</td>
</tr>
<tr>
<td>120</td>
<td>Total credits</td>
<td>120</td>
</tr>
</tbody>
</table>

*These courses fulfill the requirements for the CFCS core.

**3 credits each of U.S. diversity and international perspectives should be included in at least one of these sections.

†Credit allowed for FS HN 101 only if taken prior to enrollment in or during the first year in FS HN Department.

Graduate Program:

<table>
<thead>
<tr>
<th>Cr.</th>
<th>Subject</th>
<th>Courses</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>Communications and library</td>
<td>Engl 104, 105, 302; Lib 160; Sp Cm 212</td>
</tr>
<tr>
<td>12-13</td>
<td>Natural sciences and mathematical disciplines</td>
<td>Math 104, 140 or 150; Stat 101; and 5-6 credits of natural sciences</td>
</tr>
<tr>
<td>9</td>
<td>Social sciences</td>
<td>Econ 101; Psych 101; Soc 134</td>
</tr>
<tr>
<td>9</td>
<td>Humanities</td>
<td>A list of courses may be obtained from the departmental office. Must include an approved art principles course and 3 cr. each in U.S. diversity and international perspectives.</td>
</tr>
<tr>
<td>5</td>
<td>Family and consumer sciences</td>
<td>FCEdS 110, 160, 310, 460; HD FS 102</td>
</tr>
<tr>
<td>33-34</td>
<td>Hotel, Restaurant, and Institution Management core</td>
<td>HRI 101, 233, 287, 333, 352, 380, 380L, 393 or 491, 433, 438, 440, 460</td>
</tr>
<tr>
<td>11</td>
<td>Hotel, Restaurant, and Institution Management electives</td>
<td>Select from HRI 289, 360, 383, 437, 439, 452, 455, 474, 480, 485, 487</td>
</tr>
<tr>
<td>19</td>
<td>Other professional courses</td>
<td>Acct 215, 284; Com S 103; FS HN 111*, 167*, Mkt 340</td>
</tr>
<tr>
<td>16-18</td>
<td>Electives</td>
<td>16-18</td>
</tr>
<tr>
<td>128.5</td>
<td>Total credits</td>
<td>128.5</td>
</tr>
</tbody>
</table>

*A student who has not had high school biology is required to take Biol 109.

**A student who has not had high school chemistry is required to take Chem 160.
Curriculum in Housing and the Near Environment

Administered by the Department of Human Development and Family Studies. Leading to the degree bachelor of science. Total credits required: 128.5.

The curriculum in housing and the near environment focuses on housing needs, issues and trends, such as housing alternatives for families and children; housing for the elderly and persons with disabilities; residential property management; and public policy. Graduates of this curriculum are prepared for employment in the housing industry, including housing-service organizations; public and private (profit and not-for-profit) agencies; real estate and lending institutions, housing management and administration; housing equipment/ furnishings industries; and housing advocacy. A minor in housing and the near environment is available; the requirements appear under Human Development and Family Studies, Courses and Programs.

<table>
<thead>
<tr>
<th>Cr.</th>
<th>Degree Requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.5</td>
<td>Communications and library</td>
</tr>
<tr>
<td>9.5</td>
<td>Engl 104, 105; FCEdS 310*; Lib 160; ComSt 214 or Sp Cm 212</td>
</tr>
<tr>
<td>3</td>
<td>Select from Engl 302, 309, 310, 314</td>
</tr>
<tr>
<td>9-11</td>
<td>Natural sciences and mathematical disciplines</td>
</tr>
<tr>
<td>3</td>
<td>Select from natural sciences</td>
</tr>
<tr>
<td>3-4</td>
<td>Select from mathematics or statistics</td>
</tr>
<tr>
<td>3-4</td>
<td>Select from computer science</td>
</tr>
<tr>
<td>9</td>
<td>Social science</td>
</tr>
<tr>
<td>9</td>
<td>Select from anthropology, economics, geography, political science, psychology, sociology</td>
</tr>
<tr>
<td>9</td>
<td>Humanities</td>
</tr>
<tr>
<td>9</td>
<td>Select from approved list</td>
</tr>
<tr>
<td>8</td>
<td>Family and consumer sciences core</td>
</tr>
<tr>
<td></td>
<td>FCEdS 110, 160, 310, 460; FS HN 167; HD FS 102</td>
</tr>
<tr>
<td>17</td>
<td>HD FS core</td>
</tr>
<tr>
<td>14</td>
<td>HD FS 269, 449, 491</td>
</tr>
<tr>
<td>3</td>
<td>Select HD FS other than housing curriculum</td>
</tr>
<tr>
<td>15</td>
<td>Housing</td>
</tr>
<tr>
<td>39</td>
<td>Related professional courses</td>
</tr>
<tr>
<td>12</td>
<td>Select from HD FS, T C, HRI, FCEdS, or FS HN</td>
</tr>
<tr>
<td>27</td>
<td>Select from accounting, anthropology, architecture, business administration, community and regional planning, design studies, economics, education, finance, gerontology, health studies, human development and family studies, interior design, political science, psychology, social work, sociology, speech communication</td>
</tr>
<tr>
<td>8-10</td>
<td>Electives</td>
</tr>
<tr>
<td>128.5</td>
<td>Total credits</td>
</tr>
</tbody>
</table>

Curriculum in Nutritional Science

Administered by the Department of Food Science and Human Nutrition.

<table>
<thead>
<tr>
<th>Cr.</th>
<th>Degree Requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.5</td>
<td>Communications and Library</td>
</tr>
<tr>
<td>7-12</td>
<td>Mathematical sciences</td>
</tr>
<tr>
<td>4</td>
<td>credits in calculus (2 semesters preferred); Stat 101 or 104</td>
</tr>
<tr>
<td>24</td>
<td>Physical sciences</td>
</tr>
<tr>
<td></td>
<td>Chem 177, 177L, 178, 331, 331L, 332, 332L; Phys 111, 112</td>
</tr>
<tr>
<td>23</td>
<td>Biological sciences</td>
</tr>
<tr>
<td></td>
<td>Biol 201, 201L, 202, 202L, 301, 302; Micro 201L, 302; Zool 355</td>
</tr>
<tr>
<td>9</td>
<td>Social Sciences</td>
</tr>
<tr>
<td></td>
<td>HD FS 102 or Psych 230*; 6 additional credits**</td>
</tr>
<tr>
<td>9</td>
<td>Humanities**</td>
</tr>
<tr>
<td>27.5-31.5</td>
<td>Food science and human nutrition</td>
</tr>
<tr>
<td></td>
<td>FS HN 110*, 203*, 214 or 311, 261, 360*, 362, 480*; select 14-16 credits from FS HN 361, 403, 4121, 419 or 519, 461, 463, 464, 466, 490C, 499, 560, 562, 565, 575</td>
</tr>
<tr>
<td>2-4</td>
<td>Management</td>
</tr>
<tr>
<td></td>
<td>HRI 287, Mgmt 370, or FS HN 4121</td>
</tr>
<tr>
<td>0-9</td>
<td>Electives</td>
</tr>
<tr>
<td>120</td>
<td>Total credits</td>
</tr>
</tbody>
</table>

*These courses fulfill the requirement for CFCS core. **3 credits each of U.S. diversity and international perspectives should be included in at least one of these sections. †Satisfies FCS requirement for management.

Curriculum in Nutrition B.S./M.S.

Administered by the Department of Food Science and Human Nutrition.

Undergraduate Program:

<table>
<thead>
<tr>
<th>Cr.</th>
<th>Degree Requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.5</td>
<td>Communications and Library</td>
</tr>
<tr>
<td>7-12</td>
<td>Mathematical sciences</td>
</tr>
<tr>
<td>4</td>
<td>credits in calculus (2 semesters preferred); Stat 101 or 104</td>
</tr>
<tr>
<td>24</td>
<td>Physical sciences</td>
</tr>
<tr>
<td></td>
<td>Chem 177, 177L, 178, 331, 331L, 332, 332L; Phys 111, 112</td>
</tr>
<tr>
<td>20-22</td>
<td>Biological sciences</td>
</tr>
<tr>
<td></td>
<td>BBMB 404 and 405, or 420; Biol 201, 201L, 202, 202L; Micro 201L, 302; Zool 355</td>
</tr>
<tr>
<td>9</td>
<td>Social sciences</td>
</tr>
<tr>
<td></td>
<td>HD FS 102 or Psych 230*; 6 additional credits**</td>
</tr>
<tr>
<td>9</td>
<td>Humanities**</td>
</tr>
<tr>
<td>27.5-31.5</td>
<td>Food science and human nutrition</td>
</tr>
<tr>
<td></td>
<td>FS HN 110*, 203*, 214 or 311, 261, 360*, 362, 480*; select 14-16 credits from: FS HN 361, 403, 4121, 419 or 519, 461, 463, 464, 466, 490C, 499, 560, 562, 565, 575</td>
</tr>
<tr>
<td>2-4</td>
<td>Management</td>
</tr>
<tr>
<td></td>
<td>HRI 287, Mgmt 370, or FS HN 4121</td>
</tr>
<tr>
<td>0-12</td>
<td>Electives</td>
</tr>
<tr>
<td>120</td>
<td>Total credits</td>
</tr>
</tbody>
</table>

*These courses fulfill the requirement for CFCS core. **3 credits each of U.S. diversity and international perspectives should be included in at least one of these sections. †Satisfies FCS requirement for management.

Graduate Program:

<table>
<thead>
<tr>
<th>Cr.</th>
<th>Degree Requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>30</td>
<td>Graduate-level coursework including research</td>
</tr>
</tbody>
</table>

- 2001-2003 Family and Consumer Sciences 101
College of Liberal Arts and Sciences

Peter W. Rabideau, Dean
Zora D. Zimmerman, Associate Dean
Steven R. Rodermel, Associate Dean
Wolfgang H. Kliemann, Associate Dean
Ruth W. Swenson, Associate Dean Emerita

Departments of the College
Air Force Aerospace Studies
Anthropology
Biochemistry, Biophysics, and Molecular Biology
Botany
Chemistry
Computer Science
Economics
English
Foreign Languages and Literatures
Geological and Atmospheric Sciences
Greenlee School of Journalism and Communication
History
Mathematics
Military Science
Music
Naval Science
Philosophy and Religious Studies
Physics and Astronomy
Political Science
Psychology
Sociology
Statistics
Zoology and Genetics

In the College of Liberal Arts and Sciences, students select from a wide and rich range of program options. The goal of the college is to prepare the student to enter the world beyond the university with skills in reasoning, analysis, and communication; with an appreciation of history and culture, an understanding of the challenges of the future, and a sensitivity toward people and their environments. To achieve this goal, the college asks students to acquire depth in learning within disciplines of their own choice, by way of single or multiple majors and breadth through elective courses and courses fulfilling general education requirements.

The College of Liberal Arts and Sciences is the academic home, the foundation, for many essential learning disciplines. The college provides students with all the components of a modern liberal education. Students may choose to study in various fields of the physical, biological, and social sciences; in mathematical disciplines; in methods and systems of communication; and in the arts and humanities.

The flexible degree requirements in the curriculum in Liberal Arts and Sciences permit programs of study suited to a variety of interests and goals. Students having academic interests not fully met by a departmental major may pursue a major offered by one of the College’s interdepartmental programs or may apply for an undergraduate major in interdisciplinary studies (See Index, Liberal Arts and Sciences, Cross-Disciplinary Studies). The college participates in the University Honors Program; thus, students of exceptional academic promise can develop unique and challenging programs of study.

The college has three curricula: a curriculum in Liberal Arts and Sciences, leading to the bachelor of arts or the bachelor of science degree; a curriculum in music, leading to the bachelor of music degree; and a curriculum in liberal studies, leading to the bachelor of liberal studies degree.

High School Preparation/ Admission Requirements
Students entering the college are required to present evidence of the following high school preparation:

4 years of English (Typically this preparation includes courses in British, American, and world literature in which critical reading and writing skills are emphasized and courses in speech and composition, including at least one senior-level writing course.)

3 years of social studies (Typically such preparation includes two semesters of world history, two semesters of American history, and a semester of American government. Electives can be chosen from areas such as economics, sociology, or psychology.)

2 years of a single foreign language (Three years or more of a single foreign language are strongly recommended for students who wish to continue their work in that language. Three years of a single foreign language will also exempt students from the foreign language graduation requirement in the College of Liberal Arts and Sciences.)

3 years of mathematics (Such preparation shall include two semesters of beginning algebra, two semesters of geometry, and two semesters of intermediate algebra. A fourth year of study involving analytic geometry, trigonometry, linear algebra, and/or calculus is strongly recommended for students who will major in mathematical or scientific disciplines.)

3 years of science (At least two years of such preparation shall be chosen from biology, chemistry, and physics.)

Recommended but not required as a condition of admission to the College of Liberal Arts and Sciences is one semester of computer science. (Such a course should stress problem-solving with computers and should not substitute for courses in mathematics. In schools where computer use is an integral part of most courses, separate instruction in computers is not necessary.)

Students who transfer from another college or university with at least 24 credits of satisfactory coursework may be exempt from most of these requirements. Students who do not meet the requirements listed here may be admitted with a limited number of deficiencies, provided that they can be removed by the end of the first academic year. Iowa State courses taken to remove deficiencies are subject to certain restrictions with regard to their applicability to students’ college degree programs. Contact the college office for further information about these restrictions and about remedying deficiencies in general.

Transfer Students
To graduate from the College of Liberal Arts and Sciences, a transfer student must complete the general requirements of the college as well as those of the university. Students planning to transfer to Iowa State University for the purpose of enrolling in the College of Liberal Arts and Sciences are advised to contact the college office for information concerning degree program requirements. Prospective transfer students are urged to learn about the academic programs that are of interest to them well before arriving on campus so that pretransfer courses are appropriate to the planned major and transferable toward graduation from ISU. Additional information concerning transfer credit evaluation may be obtained through the Office of Admissions as well as the department in which a student is interested.

A transfer student in the College of Liberal Arts and Sciences may choose to graduate under the catalog in effect at the time of his or her graduation or under one of the two immediately preceding catalogs, provided that it covers the period of his or her enrollment either at Iowa State or any other accredited school. Full requirements of the chosen catalog must be met except that adjustments will be made in instances where courses are no longer available or where programs have been changed. A transfer student is responsible for reviewing his/her transfer credit evaluation with the academic adviser during the first semester of enrollment.

University Requirements
The university requirements for the bachelor’s degree, including statements of academic standards, the university residence requirement, the English proficiency requirement, U.S. diversity and international perspectives requirement, and the library requirement, appear in the Colleges and Curricula portion at the beginning of this bulletin.
Curriculum in Liberal Arts and Sciences

To obtain a bachelor’s degree from the College of Liberal Arts and Sciences, curriculum in liberal arts and sciences, an undergraduate student must earn a minimum of 124.5 semester credits including a minimum of 32 semester credits earned in residence at Iowa State University. In addition, the student must meet general education, English proficiency, library proficiency, foreign language, and advanced credit requirements, as well as the requirements of a major. Courses taken on a pass/not pass basis may be counted toward the required total of 124.5 credits, and may be used to meet the advanced credit requirement, if appropriate, but may not be used to satisfy any other graduation requirement. No more than 9 credits of 490 (Independent Study) courses in a single discipline may be counted toward graduation.

General Education Requirements

Students must earn the minimum credits listed in each of the four general education groups in courses outside the department of the first major listed on the degree program. Interdisciplinary courses may be used to satisfy requirements in any group for which they have been approved, but a student may not apply the same course to more than one group.

Credit by Examination Program

Individual departments may use CLEP Subject Test for testout of specific courses. Students in the College of Liberal Arts and Sciences may use CLEP General Test credits as free electives but not toward any of the general education group requirements.

General Education Groups

I. Arts and humanities (minimum 12 credits).
 The student should develop an understanding of human cultural heritage and history, and an appreciation of reasoning and the aesthetic value of human creativity.*

II. Verbal communication (minimum 2 credits).
 The student should develop skill in and an understanding of the principles involved in effective communication among people.*

III. Natural sciences and mathematical disciplines (minimum 11 credits including 3 in the mathematical disciplines and 8 in the natural sciences). The student should experience science as a rational search for understanding the structure and behavior of the natural world, and should appreciate mathematics as a valuable tool of the sciences and as an intrinsically important way of thinking.*

IV. Social sciences (minimum 9 credits).
 The student should develop an appreciation of the principal methods of studying human behavior and an understanding of the structure and functioning of institutions. Courses must be taken in at least two disciplines represented in Group IV.*

*Lists of approved courses are available from advisers or the Office of the Dean, College of Liberal Arts and Sciences.

Other Requirements

English Proficiency

The faculty of Iowa State University believes that its graduates should acquire competence in written communication during their undergraduate careers. All students must earn an average grade of C– or better in required basic composition courses (e.g., Engl 104 and 105). This should be regarded as a minimally acceptable grade standard. Departments may have stricter criteria as appropriate to their disciplines.

The continued development of communication skills following the freshman year is the responsibility of the student’s major department. The department shall promote this development by adopting measures to certify the writing proficiency of its own majors. Certification is to occur a reasonable time before graduation and shall be based upon satisfactory completion of a designated course in the student’s program in which writing is evaluated or an advanced writing course offered in the English department (e.g. Engl 302, 308, or 314).

Library Proficiency

A library minimum proficiency requirement must be met by satisfactory completion of one of the following options:

1. Library 160
2. A test-out examination for credit to be administered by the library staff, who will control the testing procedure and will determine those students who are eligible to take the examination.

Foreign Language Requirement

The faculty of the College of Liberal Arts and Sciences believes that undergraduate students should acquire elementary practical experience in a second language, should be introduced to the theoretical study of language structure, and should begin to develop an understanding of a second culture through study of that culture’s language. As a means of achieving this objective, a student must satisfy a graduation requirement equivalent to the first year of university-level study in one foreign language (normally, completion of a two-semester sequence in any one foreign language).

Students who have completed three or more years of high-school foreign language study are deemed to have completed the LAS Foreign Language Requirement. These students may not enroll in or receive credit for 101-102, 110, or 160 in those languages; test-out credit may be obtained by passing an appropriate examination or by completing an advanced sequence (200-level or higher) in that language. 101-102 may not be taken on a remedial basis.

Students who have completed more than one year but less than three years of high-school foreign language study may not enroll in 101 in the same language. These students may satisfy the foreign language requirement by (a) passing the test-out exam at the 101-102 level, (b) receiving a passing grade in a 102 foreign language course, or (c) receiving a passing grade in a foreign language course at the 200-level or higher. (Courses taught in English do not satisfy the foreign language requirement).

Certification in American Sign Language is recognized by the University and satisfies the LAS foreign language requirement.

Students with disabilities who need to satisfy the foreign language requirement may direct questions to the Advising Coordinator in the Foreign Language Department and the Disability Resource Office.

Credits applied toward the foreign language requirement cannot be used to satisfy the general education requirements, but students who have fulfilled the foreign language requirement may apply additional courses in foreign languages toward the appropriate general education groups.

Majors in any foreign language are deemed to have fulfilled the college foreign language requirement. International students for whom English is a second language may satisfy the foreign language requirement by completion of Engl 104 and 105 at ISU with an average grade of C– or better. See Foreign Languages and Literatures for additional information on international students.

Advanced Credit Requirements

To obtain a baccalaureate degree from the College of Liberal Arts and Sciences, curriculum in liberal arts and sciences, a student must earn at least 45 credits at the 300 level or above taken at a four-year college. Three of the 45 credits must be earned in a group outside of the group of the major. Credits earned in electives taken on a pass/not pass basis or in the major or a minor may be used to meet this requirement.

Major

Students must complete the requirements of a major which will include 24 to 48 credits in the major discipline as specified by the major department or program. Tracks within a major must have a common 24 credit core. Some courses outside the major discipline may also be required as supporting work for the major. (See Index for page reference to individual department and program requirements.) The major must contain at least 8 credits in courses taken at Iowa State University that are numbered 300 or above and in which the student’s grade is C or higher. In addition, the average grade of all courses in the major (those courses listed under major on the degree audit) must be 2.0 or higher. Courses in the department or discipline of the first major listed on the degree program may not be counted in the general education groups. Courses in general education may be counted in meeting the requirements of additional majors. Students must check each additional major as some majors do not allow double majors with certain other majors.

Liberal Arts and Sciences 103
The major shall be chosen from the following list, which also indicates the degree(s) offered in the respective majors.

Advertising, B.A.
Anthropology, B.A., B.S.
Applied Physics, B.S.
Biochemistry, B.S.
Biological/Pre-Medical Illustration, B.A.
Biology, B.S.
Biophysics, B.S.
Botany, B.S.
Chemistry, B.A., B.S.
Communication Studies, B.A.
Computer Science, B.S.
Earth Science, B.A., B.S.
Economics, B.A.* , B.S.
English, B.A., B.S.
Environmental Science, B.S.
Environmental Studies (may be taken as a second major with the degree to be determined by the first major)
French, B.A.
Genetics, B.S.
Geology, B.S.
German, B.A.
History, B.A., B.S.
Interdisciplinary Studies, B.A., B.S.
International Studies (may be taken as a second major with the degree to be determined by the first major)
Journalism and Mass Communication, B.A., B.S.
Linguistics, B.A.
Mathematics, B.S.
Meteorology, B.S.
Music, B.A., B. Mus.
Performing Arts, B.A.
Philosophy, B.A.
Physics, B.S.
Political Science, B.A.
Psychology, B.A., B.S.
Religious Studies, B.A.
Russian Studies, B.A.
Sociology, B.A., B.S.
Spanish, B.A.
Speech Communication, B.A., B.S.
Statistics, B.A.
Women’s Studies, B.A., B.S.
Zoology, B.S.

*Available only to students who were enrolled as majors before the 1995-1996 year. (See Index, Economics.)

The major in interdisciplinary studies (B.A., B.S.) is available for undergraduate students who have unique interdisciplinary educational goals. Such a major is designed by the faculty and the student and is approved only when the educational goals cannot be met by a reasonable combination of existing majors, minors, and electives. (See Index, Interdisciplinary Studies.)

A curriculum in liberal studies leading to a bachelor of liberal studies degree (B.L.S.) is also available. (See Index, Liberal Studies.)

Double Majors
Students may elect a second major from the departments and program areas listed above, or from a major field offered for the bachelor’s degree in another college of the university. Double majors between the following are prohibited: Chemistry with Biochemistry and Agricultural Biochemistry; Biology with Animal Ecology, Agricultural Biochemistry, Biochemistry, Botany, Genetics, Microbiology, and Zoology.

The major departments must then approve the degree program, and if those majors involve two colleges, both deans must approve. Such programs must fulfill the general education requirements of the college of the primary major. If one major leads to the B.A. degree and the other to the B.S. degree, the degree awarded will be the one offered by the department of the primary major. If the primary major may lead to either a B.A. or a B.S., a student may choose to receive either degree. In all cases, the student must satisfy the requirements of each major and of the degree that is chosen for the primary major. Majors from the Curriculum in Liberal Arts and Sciences may not be added to a Bachelor of Liberal Studies degree or a Bachelor of Music degree.

A student may earn two degrees in this curriculum with two appropriate majors and at least 30 additional credits. Either the B.A. or the B.S. in this curriculum may be earned with the bachelor of music. Any degree offered by this college may be earned together with a degree with a major in any other college of the university. For the requirements for two degrees, see Index, Bachelor’s Degree Requirements.

Minor
A minor, which is optional, must consist of at least 15 credits, with at least 6 credits in courses numbered 300 and above taken at ISU with a grade of C or higher. (See Index, Minors.)

The following minors are offered by the college of Liberal Arts and Sciences:

Advertising
African American Studies
American Indian Studies
Anthropology
Astronomy
Biochemistry
Biological Illustration
Botany
Chemistry
Classical Studies
Criminal Justice Studies
Economics
English
Environmental Science
Environmental Studies
French
Genetics
Geology
German
History
International Studies
Journalism and Mass Communication
Latin
Linguistics
Mathematics
Meteorology
Military Studies
Music
Performing Arts
Philosophy
Physics
Political Science

Portuguese
Psychology
Religious Studies
Russian Studies
Sociology
Spanish
Speech Communication
Statistics
Technology and Social Change
Women’s Studies
Zoology

Courses applied toward the general education groups may be used to meet the requirements of a minor. (For restrictions, see the Index, Minors.)

If a student declares a minor and completes the requirements specified by the offering department/program, the minor will be recorded on the transcript.

Electives
Students will take additional courses, freely elected, sufficient to accumulate a total of 124.5 credits. These additional courses together with the general education courses may be used to meet the requirements of a minor or of another major, provided that they are taken on a graded basis.

Planning the Program of Study
Careful, comprehensive planning is important for meeting graduation requirements and taking advantage of the resources offered by the university. Each student is encouraged to work with his or her academic adviser in developing a four year plan as soon as possible after declaration of the major. A degree audit listing all completed courses and those remaining to be taken for fulfillment of the degree requirements in the student’s chosen major is provided to the student and the adviser each semester. The student should review the audit each semester and consult with the adviser when changes are required. Any changes to the audit must be approved by the academic adviser and by the dean’s office. It is essential that the audit be reviewed and updated in a timely fashion in order to avoid delay in the student’s graduation.

During the first year, students should meet proficiency requirements in English and in library. They should also make progress toward meeting the general education requirements, a large part of which should be completed by the end of the second year. The third and fourth years should emphasize completion of the major (and minor, if elected) and of general education requirements, and should give the student an opportunity to take electives.

The Open Option
Recognizing the fact that many students entering Iowa State University will not have selected a major, the College of Liberal Arts and Sciences provides the open option in order to give them time to explore possible majors and programs. Open option students who enter as freshmen are expected to declare a major by the beginning of the third semester of enrollment. Entering students who have completed three semesters in another school and stu-
Preprofessional Study

Experiential Learning (Internship/Co-op) Program

It may take students participating in the spring, summer, fall, or on an alternating basis (work, school, work, etc.) during any semester (fall, spring, summer) to complete their academic curriculum requirements. For additional information, contact Business/Liberal Arts and Sciences Career Services.

Curriculum in Music

This curriculum leads to the degree bachelor of music and is an alternative to the curriculum in liberal arts and sciences with a major in music. To obtain a bachelor of music degree, a student must earn a minimum of 125.4 credits including a minimum of 32 credits in residence at Iowa State University and a minimum of 45 advanced credits (credits in courses numbered 300 or above) and must meet all of the requirements specified below. Courses taken on a pass/not pass basis may be counted toward the required total of 125.4 credits, and may be used to meet the advanced credit requirement, if appropriate, but may not be used to satisfy any other graduation requirement. No more than 9 credits in 490 (Independent Study) courses in a single discipline may be counted toward graduation. See Index, Music.

A minor in music is available; the requirements appear under Music, Courses and Programs.

Cr. Degree Requirements

32 General Education Requirements

Students choosing the music education option should consult their advisers regarding general education requirements.

6 Social sciences

6 Humanities

6 Music 383, 384

3 Phys 198

6 Mathematical, physical, and biological sciences

5 Electives

6.5-14.5 Other Requirements

6 Engl 104, 105†

0.5 Library 160

0-8 Foreign language (one)††

47 Music core

22 Music 120, 230, 231, 232, 331, 332, 337, 338, 361

12 Music 119, 219, 319, 419

3 One of the following: Music 472, 473, 474, 475, 476

3 One of the following: Music 430, 440, 448

7 Ensembles

33-47 Area of concentration

(select one of the following options)

35-47 Music education**

Licensure options: Vocal K-12, Vocal K-6, Vocal 7-12, Instrumental K-12, Instrumental K-6, Instrumental 7-12

14 All licensure options

Music 248, 268, 366, 466; C I 204, 406, 415

9 All vocal options

Music 327, 358A, 360, 362A, music theater or opera studio

23 Vocal K-12 option—46 total cr.

Music 367, 465; C I 426; LAS 417K, 417L

12 Vocal K-6 option—35 total cr.

LAS 417L

19 Vocal 7-12 option—42 total cr.

Music 367, 465; C I 426; LAS 417K

12 All Instrumental options

20-21 Instrumental K-12 option—46-47 total credits

Music 368 or 369; C I 426; LAS 417K, 417L

12 Instrumental K-6 option—38 total credits

LAS 417L

16–17 Instrumental 7-12 option—42-43 total credits

Music 368 or 369; C I 426; LAS 417K

33 Organ

4 Music 119B, 219B

8 Music 319C, 419C

8 Music 417, Additional music history

3 Additional music theory

8 Additional foreign language

2 Electives

33 Piano

12 Music 119, 219, 319, 419

12 Music 321, 417

3 Additional music theory

6 Electives

33 String instruments

12 Music 119, 219, 319, 419

6 Music 181, 321

3 Additional music theory

4 Music 417

8 Electives

33 Composition

8 Applied music

4 Music 362A, 362B

13 Additional music theory and composition

8 Electives

33 Voice

4 Music 327 and 119B, 119C, or 119K

8 Music 319A, 419A

6 Music 324, 325, 360

3 Additional music theory

2 Music 417

8 Additional foreign language

2 Electives

33 Wind or percussion instrument

12 Music 119, 219, 319, 419

1-3 Music 351-352 or 353-354 or 355

3 Music 321

3 Additional music theory

4 Music 417

8-10 Electives

124.5-140.5 Total credits

†A student must earn an average grade of C- or better in Engl 104 and 105.
The bachelor of liberal studies degree (B.L.S.) was established by the three Iowa Regent universities to meet the needs of Iowans who want to earn a college degree but whose circumstances present obstacles to completing a traditional on-campus degree program. The degree may be earned from Iowa State University, the University of Iowa, or the University of Northern Iowa.

The B.L.S. is a general studies degree in the liberal arts. There is no traditional major. Instead, students take coursework in three areas of distribution. These areas may be focused in a single discipline or diversified over several disciplines. With the assistance of a B.L.S. adviser, students can structure a program that meets their individual educational, vocational or personal goals.

Up to three-fourths of the total degree requirements can be transferred from accredited institutions. Work done in community colleges or other accredited colleges and universities can be applied toward the degree, as can applicable courses taken at any of the three Iowa Regent universities, whether on or off campus.

The B.L.S. program has no residence requirements. To complete the degree, students may offer credits earned in various study formats: correspondence courses; telecourses; Saturday and evening courses; off-campus courses, including those with distance-learning formats; and regular on-campus courses. Students may also earn credits by proficiency or test-out examinations.

Requirements for the B.L.S. Degree

The B.L.S. candidate must earn a total of 124 credits in accordance with requirements listed below. Courses taken at Iowa State University on a pass/not pass basis may be counted toward graduation only as electives. No more than 9 credits of 490 (Independent Study) courses in a single discipline may be counted toward graduation.

<table>
<thead>
<tr>
<th>Cr.</th>
<th>General Education Requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Basic English composition</td>
</tr>
<tr>
<td>8</td>
<td>Foreign language*</td>
</tr>
<tr>
<td>12</td>
<td>Arts and humanities</td>
</tr>
<tr>
<td>3</td>
<td>Mathematics, statistics, or computer science</td>
</tr>
<tr>
<td>8</td>
<td>Natural sciences</td>
</tr>
<tr>
<td>9</td>
<td>Social sciences from at least two different disciplines</td>
</tr>
</tbody>
</table>

A list of courses acceptable in the general education groups can be obtained from the college office.

Distribution Requirements

A minimum of 12 credits is required in each of the five distribution areas listed below.

- **Humanities** (literature, philosophy, history, religion, art and music appreciation)
- **Communications and arts** (journalism, speech, writing, drama, art, foreign language)

Admission

Admission to the B.L.S. program is open to persons who meet either of the following levels of previous educational attainment:

- Hold the associate in arts (A.A.) or associate in science (A.S.) degree from an accredited two-year college. (Holders of the associate in applied science or associate in applied arts degree are not automatically eligible, although some courses may be found applicable upon review.)
- Have at least 62 semester credits of collegiate work acceptable toward graduation at ISU with a total cumulative grade point average of at least 2.00 (a C average).
College of Veterinary Medicine

Norman F. Cheville, Interim Dean
Elizabeth A. Riedesel, Associate Dean
Donald L. Reynolds, Associate Dean

Departments of the College

Biomedical Sciences
Veterinary Clinical Sciences
Veterinary Diagnostic and Production Animal Medicine
Veterinary Microbiology and Preventive Medicine
Veterinary Pathology

Other units of the college include the Veterinary Medical Research Institute, the Veterinary Medical Diagnostic Laboratory, the Veterinary Teaching Hospital, and Biomedical Communications. The college also participates in interdisciplinary majors in genetics, molecular cellular and developmental biology, toxicology, immunobiology, and neuroscience.

The instructional objective of the College of Veterinary Medicine is to enable students to assume vital roles in society as productive health care deliverers and biomedical scientists. Such an education provides students with general learning, communication, and problem solving abilities; veterinary medical practice and research skills; and professional and ethical values.

The curriculum incorporates basic biomedical and clinical principles, clinical decision making skills, and exceptional clinical experience in production medicine, food animal medicine and surgery, companion animal medicine and surgery, and equine medicine and surgery.

The college is uniquely qualified to provide education in veterinary medicine. Located in the heart of one of the world’s most intensive livestock producing areas, the college provides diverse and extensive production animal medicine experiences and numerous diagnostic cases for study. A nearby metropolitan area and a regionally recognized referral hospital and community practice provide experience in companion animal and equine medicine and surgery.

The professional curriculum is a progressively integrated four-year course of study leading to the doctor of veterinary medicine degree. Students are admitted into the fall semester of the first year of the professional curriculum after completing a minimum of 60 semester credits in a preprofessional program. A strong and reputable basic science education during the first two years of the professional curriculum prepares veterinary students for a wide range of clinical experience during the last two years of the educational program. The students’ education can be enhanced during the fourth year of the curriculum by participation in preceptorships in private practice, other colleges, research laboratories, industry, or government agencies. Outstanding research programs in neuroscience, immunobiology, infectious diseases, and other areas provide opportunities for qualified students to participate in research.

Concurrent D.V.M./M.S., Ph.D. programs are available for exceptionally qualified students who wish to obtain both veterinary and graduate degrees. Students must have a bachelor’s degree or a minimum of 128 semester credits in preprofessional and professional curriculum in order to participate in the concurrent degree program. Admission to the concurrent D.V.M./graduate degree program is subject to the approval of the dean of the College of Veterinary Medicine and the dean of the Graduate College.

The College of Veterinary Medicine is an important recruiting center for employers seeking veterinarians for private practice; industry; educational institutions; international agencies; federal, state and local governments; the armed forces; departments of public health; zoological gardens; laboratory animal medicine agencies; and other related fields of professional activity. Graduates are highly sought after and typically have multiple employment offers upon graduation. A career development office is available to help match students with appropriate employers.

Preventive Medicine Preparation

Admission Requirements

The College of Veterinary Medicine seeks students with diverse backgrounds and encourages students to enroll in baccalaureate programs in the college of their choice. Preventive students are strongly encouraged to complete a bachelor’s degree before enrolling in the College of Veterinary Medicine. When deciding which major to pursue as an undergraduate, the preventive student should consider the area of veterinary medicine in which they intend to emphasize when they become a veterinarian. For example, those interested in food animal practice may wish to pursue a degree in biological science, animal science, agricultural economics, or business. Future companion animal practitioners may wish to consider a biological science, physical science, business, social science, or humanities degree. These examples are only suggestions. They should be considered as but a few of the numerous possibilities. For the most current information regarding applications and admission to the College of Veterinary Medicine, please refer to the College website at http://www.vetmed.iastate.edu/.

Applicants for admission to the College of Veterinary Medicine must have attended a regionally accredited college or university, have completed 40 semester credits prior to the deadline for filing an application for admission, and have completed 60 semester credits prior to the end of the spring term of the year in which the applicant seeks to be admitted to the College of Veterinary Medicine. Beginning with the 2002-2003 application cycle for students entering Fall 2003, all preveterinary science requirements must be fulfilled by the time of filing or scheduled for completion by the end of Fall term of the year in which the applicant applies. Credits earned must include the following Iowa State semester course offerings or their equivalents:

- English Composition (may include business and/or technical writing)
 - Engl 104, 105, 302, 309, or 314: 6 cr.
- Public Speaking
 - Sp 212, ComSt 214 or Ag Ed 311: 3 cr.
- General Chemistry with Laboratory
 - Chem 177-177L, 178: 8 cr.
- Organic Chemistry with Laboratory
 - Chem 331, 331L, 332: 7 cr.
- Biochemistry
 - BBMB 301 or Biol 302: 3 cr.
- General Physics with Laboratory
 - Phys 111, 112: 8 cr.
- Biology with Laboratory
 - Biol 201, 201L, 202, 202L: 8 cr.
- Genetics
 - Biol 301: 3 cr.
- Mammalian Anatomy or Physiology
 - An S 214, BMS 329: 7 cr.
- Zool 155, or Zool 255 or Zool 355: 9 cr.
- Humanities or Social Sciences: 9 cr.
- Electives: 2 cr.

TOTAL: 60 cr.

Credits in the previously specified courses will normally be earned on the traditional four-letter grading system with A as the highest grade and D as the lowest passing grade. All required courses must be completed with a grade of “C” or better. It is generally expected that required courses have been completed within the past eight (8) years. However, credits earned by the credit by examination program in accordance with the regulations relating to this procedure at Iowa State University are also acceptable. Credits in the preceding specified courses will not be accepted if earned under the pass-not pass grading system or similar options.

Application and Admission

Request for the professional curriculum application packet should be addressed to the Office of Admissions, 100 Alumni Hall, Iowa State University, Ames, Iowa 50011. Residents applying to multiple schools and non-residents may also apply through Veterinary Medical College Application Service (VMCAS). For further information contact the College of Veterinary Medicine at 515-294-6808. Applicants with any international course work, including study abroad, must apply directly to Iowa State University. Completed applications and all supporting materials (transcripts, recommendations, and GRE score) must be postmarked by October 1 of the year prior to the year in which the applicant seeks to be admitted.
All preveterinary requirements must be fulfilled by the end of Spring term of the year in which the applicant seeks to be admitted. Beginning with the 2002-2003 application cycle for students entering Fall 2003, all preveterinary science requirements must be fulfilled by the time of filing or scheduled for completion by the end of Fall term of the year in which the applicant applies. A list of courses in progress at the time of filing or scheduled for completion by the end of Spring term should accompany the application and transcripts. Preprofessional college credits must average at least 2.50 on a 4.00 marking system for the application to be accepted. The preceding scholastic requirements are minimum and do not assure admission even though these requirements have been fulfilled.

Admission to the College of Veterinary Medicine is on a competitive and selective basis. Scholastic performance in preprofessional courses, Graduate Record Examination scores (General), general achievement and experience related to veterinary medicine are given consideration in the selection of candidates.

The majority of the positions in the entering class are reserved for residents of Iowa. Two states, North Dakota (10) and South Dakota (6), have contracts for up to 16 students in each entering class. A similar contract is in place with the state of New Jersey for up to 4 positions. In addition, a number of positions are available to residents of other states. A few highly qualified international students may also be accepted. Consideration is given equally to all applicants without regard to race, color, national origin, gender, religion, disability, or age, political beliefs, or marital or familial status.

Curriculum in Veterinary Medicine

Leading to the degree doctor of veterinary medicine.

First Year

<table>
<thead>
<tr>
<th>Cr.</th>
<th>Fall</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Principles of Morphology I—B M S 330</td>
</tr>
<tr>
<td>3</td>
<td>Comparative Veterinary Physiology I—B M S 349</td>
</tr>
<tr>
<td>4</td>
<td>Microscopic Anatomy—B M S 332</td>
</tr>
<tr>
<td>3</td>
<td>Physiological Chemistry—BBMB 420</td>
</tr>
<tr>
<td>2</td>
<td>Case Study I—B M S 345</td>
</tr>
<tr>
<td>R</td>
<td>Professional Orientation—V Med 300</td>
</tr>
<tr>
<td>R</td>
<td>Seminar—V C S 385/VDPAM 385</td>
</tr>
<tr>
<td>17</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cr.</th>
<th>Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Principles of Morphology II—B M S 331</td>
</tr>
<tr>
<td>5</td>
<td>Comparative Veterinary Physiology II—B M S 350</td>
</tr>
<tr>
<td>3</td>
<td>Neurobiology—B M S 337</td>
</tr>
<tr>
<td>2</td>
<td>Veterinary Immunology—V MPM 380</td>
</tr>
<tr>
<td>1</td>
<td>Radiology—V C S 391</td>
</tr>
<tr>
<td>2</td>
<td>General Pathology—V Pth 342</td>
</tr>
<tr>
<td>1</td>
<td>Case Study II—B M S 346</td>
</tr>
<tr>
<td>R</td>
<td>Seminar—V C S 385/VDPAM 385</td>
</tr>
<tr>
<td>18</td>
<td></td>
</tr>
</tbody>
</table>

Second Year

<table>
<thead>
<tr>
<th>Cr.</th>
<th>Fall</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Ethical Issues in Veterinary Medicine—V Med 303</td>
</tr>
<tr>
<td>4</td>
<td>Veterinary Parasitology—V Pth 376</td>
</tr>
<tr>
<td>3</td>
<td>Systemic Pathology—V Pth 372</td>
</tr>
<tr>
<td>5</td>
<td>Veterinary Microbiology—V MPM 386</td>
</tr>
<tr>
<td>2</td>
<td>Case Study III—V Pth 377</td>
</tr>
<tr>
<td>1</td>
<td>Integrative Physiology—B M S 355</td>
</tr>
<tr>
<td>R</td>
<td>Seminar—V C S 385/VDPAM 385</td>
</tr>
<tr>
<td>17</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cr.</th>
<th>Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>General Pharmacology—B M S 354</td>
</tr>
<tr>
<td>1</td>
<td>Anesthesiology—VCS 398</td>
</tr>
<tr>
<td>3</td>
<td>Veterinary Virology—V MPM 387</td>
</tr>
<tr>
<td>3</td>
<td>Public Health—V MPM 388</td>
</tr>
<tr>
<td>6</td>
<td>Surgery—V C S 397</td>
</tr>
<tr>
<td>2</td>
<td>Case Study IV—V MPM 378</td>
</tr>
<tr>
<td>R</td>
<td>Seminar—V C S 385/VDPAM 385</td>
</tr>
<tr>
<td>18</td>
<td></td>
</tr>
</tbody>
</table>

1 Electives—minimum accumulated

Third Year

<table>
<thead>
<tr>
<th>Cr.</th>
<th>Fall</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Clinical Pathology—V Pth 425</td>
</tr>
<tr>
<td>2</td>
<td>Infectious Diseases and Preventive Medicine—V MPM 436</td>
</tr>
<tr>
<td>5</td>
<td>Clinical Medicine I—V C S 444</td>
</tr>
<tr>
<td>3</td>
<td>Surgery Laboratory—V C S 449</td>
</tr>
<tr>
<td>4</td>
<td>Disturbances of Reproduction—V C S 450/VDPAM 450</td>
</tr>
<tr>
<td>3</td>
<td>Pharmacology and Therapeutics—B M S 443</td>
</tr>
<tr>
<td>R</td>
<td>Introduction to Clinics—V C S 440/VDPAM 440</td>
</tr>
<tr>
<td>R</td>
<td>Seminar—V C S 385/VDPAM 385</td>
</tr>
<tr>
<td>20</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cr.</th>
<th>Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Special Pathology—V Pth 422</td>
</tr>
<tr>
<td>3</td>
<td>Infectious Diseases and Preventive Medicine—V MPM 437</td>
</tr>
<tr>
<td>5</td>
<td>Clinical Medicine II—V C S 445/VDPAM 445</td>
</tr>
<tr>
<td>3</td>
<td>Veterinary Toxicology—VDPAM 426</td>
</tr>
<tr>
<td>2</td>
<td>Radiology—V C S 448</td>
</tr>
<tr>
<td>1</td>
<td>Ophthalmology—V C S 399</td>
</tr>
<tr>
<td>R</td>
<td>Seminar—V C S 385/VDPAM 385</td>
</tr>
<tr>
<td>18</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Electives—minimum accumulated</td>
</tr>
</tbody>
</table>
Fourth Year

The fourth year of the veterinary medical curriculum is designed to be flexible and to provide for species emphasis. Students must complete 38 credits during their fourth year. They must take a required block and at least one option block. The remainder of the fourth year credits are acquired by selecting additional option blocks, elective Veterinary Teaching Hospital clinical assignment, off-campus clinical electives, or other electives. Additional off-campus clinical elective credits can be earned through V C S 419/VDPAM 420 at approved agencies, research labs, veterinary practices, and other university hospitals. As many as 7 of the 38 credits required in the fourth year can be applied toward the general veterinary curriculum requirement of 11 elective credits.

Required Block

<table>
<thead>
<tr>
<th>Cr.</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Anesthesiology—V C S 466</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Radiology—V C S 480</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Necropsy Laboratory—V Pth 456</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Laboratory in Clinical Microbiology—VDPAM 488</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Intensive Care—V C S 468</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Clinical Pathology—V Pth 457</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Laboratory in Public Health—V MPM 486</td>
<td>1</td>
</tr>
<tr>
<td>R</td>
<td>Seminar—V C S 495/VDPAM 495</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>14</td>
</tr>
</tbody>
</table>

Small Animal Option Block

<table>
<thead>
<tr>
<th>Cr.</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Small Animal Soft Tissue Surgery—V C S 455</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Small Animal Orthopedic Surgery—V C S 456</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Ophthalmology—V C S 469</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Small Animal Medicine I—V C S 453</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Small Animal Medicine II—V C S 454</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Community Practice—V C S 463</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>12</td>
</tr>
</tbody>
</table>

Food Animal Option Block

<table>
<thead>
<tr>
<th>Cr.</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Production Animal Medicine and Service—VDPAM 411</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Diagnostic Laboratory Practicum—VDPAM 455</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Production Animal Medicine Block

<table>
<thead>
<tr>
<th>Cr.</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Production Animal Medicine—VDPAM 411</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Diagnostic Laboratory Practicum—VDPAM 455</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Species Emphasis Courses (minimum of 6 credits required)</td>
<td></td>
</tr>
<tr>
<td>2-6</td>
<td>Swine Production Medicine Series—VDPAM 478, 479, 480</td>
<td></td>
</tr>
<tr>
<td>2-6</td>
<td>Beef Production Medicine Series—VDPAM 481, 482, 483</td>
<td></td>
</tr>
<tr>
<td>2-4</td>
<td>Introduction to Dairy Production Medicine—VDPAM 484, 485</td>
<td></td>
</tr>
<tr>
<td>2-4</td>
<td>Introduction to Small Ruminant Production Medicine—VDPAM 486</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Equine Option Block

<table>
<thead>
<tr>
<th>Cr.</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Equine Medicine—V C S 457</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Equine Surgery—V C S 458</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>38</td>
<td>Required</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Electives—minimum accumulated</td>
<td></td>
</tr>
</tbody>
</table>

Graduation Requirements

To be awarded the degree doctor of veterinary medicine, candidates must have passed all required courses in the curriculum in veterinary medicine, have earned at least 4 elective credits on a graded basis of A, B, C, D while enrolled in the College of Veterinary Medicine, have at least a 2.0 grade-point average in the veterinary medicine curriculum, and have passed the prescribed comprehensive examinations during the third and fourth years.

Reinstatement

Any student who voluntarily withdraws from the College of Veterinary Medicine or who is dropped for cause, after having successfully completed one or more semesters forfeits his/her standing and must make written application for reinstatement to this college a minimum of 60 days prior to the opening of the semester for which they seek to re-enter. Any student who voluntarily withdraws from the College of Veterinary Medicine prior to completion of one semester must re-apply for admission to the college in the general applicant pool.

Veterinary Medical Societies

All veterinary students are encouraged to become active members of the Iowa State Student Chapter of the American Veterinary Medical Association. The monthly meetings of the chapter serve to promote the professional development of the members. Students of veterinary medicine may also qualify for membership in the national honor societies of Phi Zeta, Phi Kappa Phi, Alpha Zeta, and Gamma Sigma Delta. Graduate students may qualify for membership in Sigma Xi.
The Graduate College and graduate faculty at Iowa State University are responsible for the quality of graduate education, for supervising students’ graduate programs, and for obtaining research support from various governmental, industrial, and private agencies.

The graduate faculty in various programs handle admission and classification of graduate students, establish requirements for advanced degrees, and have charge of instruction and research at the graduate level. Graduate faculty members also teach graduate courses, serve on program of study (POS) committees, and direct work of master’s and doctoral students. All graduate courses offered for major or nonmajor credit are taught by graduate faculty members or graduate lecturers.

Graduate study was offered soon after the university was founded, and the first graduate degree was conferred in 1877. Experimentation and research also started early, first in agriculture and shortly thereafter in home economics, engineering, science, and veterinary medicine. In 1913, the graduate faculty was organized formally and an executive graduate committee was appointed. In 1915, the graduate faculty held its first meeting, and in 1916, it granted the first doctor of philosophy degree.

Graduate education is vital to the quality of university teaching. The creative efforts of graduate faculty members and graduate students result in knowledge necessary to help society solve problems in educational, scientific, technological, and socio-economic areas. The Graduate College encourages educational exchange and contact with undergraduate areas of the university to promote improved teaching on both the undergraduate and graduate levels. A part of this exchange is accomplished by the publication of books and technical articles which are made possible by graduate research.

The degrees master of arts, master of science, and doctor of philosophy are research oriented. In many fields master’s degrees are also awarded without a thesis, but a written report of independent study, called a creative component, is generally required. For those individuals interested in advanced study directed toward meeting vocational or professional objectives, the following degrees are offered: master of accounting, master of agriculture, master of architecture, master of business administration, master of community and regional planning, master of education, master of engineering, master of family and consumer sciences, master of fine arts, master of landscape architecture, master of public administration, and the master of school mathematics.

The Graduate College Handbook lists policies and procedures of the Graduate College. It is available in the Graduate College, in program offices, and at the Graduate College’s Web site: www.grad-college.iastate.edu/. Each new graduate student is urged to obtain a copy. It is mailed to graduate faculty members. Most of the forms in this bulletin are also available online at www.grad-college.iastate.edu

Admission

Admission to the Graduate College may be granted to a graduate of an institution in the United States that is accredited by a recognized regional association or to a graduate of a recognized institution in another country whose requirements for the bachelor’s degree are substantially equivalent to those of Iowa State University. For information concerning graduate study in a particular academic discipline, prospective students should correspond with the chair of the major program in which they wish to study.

Application forms, available from the Office of Admissions, should be completed and returned to 100 Alumni Hall with a $20 application fee ($50 for international applicants). An electronic application is also available on the ISU’s graduate college web site at www.grad-college.iastate.edu. The electronic application fee must be paid by credit card. The fee is $25 for domestic students and $57 for international students. University application deadlines are: June 1 for fall, November 1 for spring, and March 1 for summer, prior to the term for which admission is sought. (International applicants should apply at least six months before the term in which they wish to enter.) Because many programs have earlier admittance deadlines, the applicant should check with the appropriate program for this information. The application fee is required of all applicants except those who have attended Iowa State as undergraduates, or those applying for admission in the nondegree admission status.

In addition, an applicant must request that each previous college or university attended send official transcripts of grades and credits earned, and request that the institution from which the degree was granted provide a statement of the degree received and the applicant’s quartile class rank.

Categories of Graduate Admission

An applicant pursuing an advanced degree must be recommended by the program in which he/she will be pursuing an advanced degree and must be approved by the Dean of the Graduate College.

There are three admission categories for students who wish to pursue an advanced degree:

1. Graduate in the upper one-half of the graduating class with a bachelor’s degree from a regionally accredited U.S. institution; or
2. Graduate in the upper one-half of the graduating class from a recognized foreign institution where the requirements for the bachelor’s degree are similar to those at Iowa State.

Provisional admission status may be granted to students who meet the requirements for full admission (listed above), but have academic or prerequisite deficiencies to remedy. Transfer from provisional admission to full admission status requires the completion of the graduate English requirement, completion of the coursework prescribed to remedy the background deficiencies with a grade average of B or better, and the written recommendation of the major professor and approval by the dean of the Graduate College.

Restricted admission status may be granted to students who do not rank in the upper one-half of their graduating class and/or lack adequate undergraduate preparation in the proposed field of study. Restricted admission may be granted to graduates of non-English-speaking foreign institutions, even though the student ranks in the upper one-half of the graduating class. Advancement from restricted to full admission status requires completion of 9 semester credits of graduate level coursework as a graduate student with a cumulative grade average of B or better and satisfaction of the Graduate College English requirement. The recommendation is submitted in writing by the major professor and must be approved by the Dean of the Graduate College.

Graduate Admission Without a Declared Major

Admission without a declared major is a category for graduates of regionally accredited institutions in the United States who do not intend to seek an advanced degree from Iowa State University. Such students usually include:

1. Those who intend to transfer graduate credits earned at Iowa State University to other institutions.
2. Those who intend to use graduate credits earned for professional certification.
3. Those who enroll for personal satisfaction.
4. Those who enroll occasionally in off-campus graduate courses.

Students who wish to apply to Iowa State University without a declared major need to contact the Office of Admissions, 100 Alumni Hall (1-800-262-3910) for the nondegree application form for students in this category.

Applications and schedules for such students with an undeclared major are processed directly by the Office of Admissions and the Graduate College office; no program approvals are required. Applications and schedules for
students declaring a major require program evaluation and approval.

A student without a declared major who subsequently seeks full, provisional, or restricted admission must apply to and be accepted by a graduate program and by the Graduate College for degree study. A new application, the application fee (unless the student attended Iowa State University as an undergraduate), and transcripts from all colleges attended are required.

For those students originally admitted to the Graduate College on a nondegree basis, no more than 9 semester hours of graduate credit earned under the nondegree option may be applied if the student later chooses to undertake a graduate degree program. The student’s program of study committee will recommend to the Graduate College which courses (if any) taken on a nondegree basis may be included in the degree program.

Graduate Admission of International Students
An applicant who is a graduate of a recognized foreign institution is subject to the same criteria for admission as a graduate from an institution in the United States and may be recommended for the same admission categories described above except that of the nondegree option. International applicants for nondegree status may be considered for admission at the discretion of the Graduate College dean. Application and admission deadlines for international students can be obtained from the publication Information for International Graduate Applicants.

International students are required to show evidence of financial support and to carry adequate health and accident insurance while in residence.

Admission Examinations
Graduate Record Examination. The Graduate Record Examination (GRE) is not a university-wide requirement for all applicants. However, many programs require or recommend submission of GRE scores; individual program statements appearing in the publication Graduate Admissions Bulletin should be consulted for this information.

English Requirement for Native Speakers
The English requirement for native speakers is fulfilled by passing the Graduate English Examination, a test of English grammar, usage, spelling, and punctuation. Performance on that test will determine whether a student must take an additional writing proficiency test.

Students (except those admitted on a nondegree) should satisfy the Graduate College English requirement before completing 12 credit hours of graduate work at Iowa State University.

English Requirements for Non-native Speakers
Applicants whose native language is not English and who have not earned a bachelor’s or master’s in a country where the only official language is English are required to submit Test of English as a Foreign Language (TOEFL) scores as part of their application for admission. A minimum score of at least 173 on the computer-based TOEFL test is required for admission to the Graduate College. Because some programs require a higher score, applicants should check directly with the program to which they desire admission or see the bulletin information for International Graduate Applicants for this information.

Graduate students whose native language is not English and who do not have an undergraduate degree from Iowa State University must also take the English Placement Test at the beginning of their first semester of enrollment. This test is administered by the Department of English in lieu of the Graduate English Examination. Students who do not pass this examination are assigned to one or more courses in the English 101 series. This coursework must be completed during the first year of study.

Graduate students whose native language is not English, but who have an undergraduate degree from Iowa State University, must take the Graduate English Examination for International Students, also administered by the Department of English, at the beginning of their first semester of graduate work. Students who do not pass this examination must complete English 101D during their first year of study.

New teaching assistants whose native language is not English are evaluated for their ability to communicate effectively in English before their assistantship assignments are made. Tests of oral proficiency and teaching skills (SPEAK and TEACH) are given before the beginning of each semester. A prospective teaching assistant who does not pass is required to complete coursework in speaking and teaching skills and must be retested.

Graduate Appointments
Graduate assistantships, fellowships, and research grants have been established at Iowa State University to encourage graduate work and to promote research. Such appointments and research opportunities are available through the various departments of instruction and the research centers on campus.

Graduate assistantships, the most common form of graduate student support, are available in three categories: the research assistantship, the teaching assistantship, or the administrative assistantship. A half-time graduate assistantship permits the holder to enroll for a maximum of 12 semester credits. Recipients of these assistantships are assessed fees at full Iowa resident rates regardless of the number of credits for which they register. Students who are graduates of a regionally accredited college or university in the United States or of a recognized institution in another country whose requirements for the bachelor’s degree are substantially equivalent to those of Iowa State University, who graduated in the top half of their respective classes and who present the requisite undergraduate or graduate preparation, may apply for these appointments. Students registered on a restricted basis or those placed on academic probation are eligible for assistantship appointment only on a term by term basis. Students admitted without a declared major are not eligible for assistantship appointments. Further information may be obtained by writing to the appropriate graduate program.

The satisfactory completion of one appointment, plus satisfactory academic performance, will ordinarily make a student eligible for reappointment. After a period of three years of full time study for the master’s degree or five years for the doctorate, the student will not normally be continued on assistantship support (shorter periods may be stipulated by the student’s program or department).

Postdoctoral Study
Opportunities are provided for postdoctoral study through the extensive research programs of the university. Inquiries should be directed to the appropriate program, institute, or to the dean of the Graduate College.

Graduate Study by Staff Members
Any full-time member of the research, instructional, or extension staff at the rank of instructor, research associate, or assistant scientist may carry up to six course credits per semester and three credits per summer session, subject to the approval of the head of the program or section, and provided it does not interfere with other duties. This privilege may be extended to members of the research, instructional, or extension staffs at the rank of assistant professor with approval of the college dean and the Dean of the Graduate College. Staff members at the rank of professor or associate professor cannot become candidates for graduate degrees from ISU.

Registration
Graduate students are encouraged to register for courses through the Touch-tone Registration System or on the ISU web site (www.iastate.edu) via Access Plus. Students who are unable or who choose not to register through these systems may use a walk-through registration procedure. Students who do not register by the published deadline for initiation of a schedule through the touch-tone or Access Plus systems must use the walk-through procedure. The approved Touch-tone Registration Worksheet must be presented to the Student Scheduling Office, 10 Alumni Hall. New graduate students should report to their program offices for assistance in completing the ISU Touch-tone Registration Worksheet. For complete information on registration, see the ISU Schedule of Classes.

Credit Limits
Registration is limited to a maximum of 15 credits per semester. Schedules for graduate assistants on one-half time appointments are limited to a maximum of 12 credits. For full-time staff members, the limit is 6 credits. (Different credit limits apply during the summer session; see the Graduate College Handbook for more details.)

Interim Registration
Registration for special work between semesters and during certain vacation periods cannot exceed one credit for each week that the student is in residence.
In Absentia Registration

Students completing research or thesis preparation may register in absentia; these credits do not apply toward residence requirements.

Off-campus Course Registration

Students who take off-campus courses taught by members of the graduate faculty must register for off-campus credit. Instructions for registering for off-campus credits are available from the ISU Extended and Continuing Education Office (102 Scheman, 515-294-6222, www.lifelearner.iastate.edu/).

Continuous Registration

Even when Ph.D. graduate students have completed course work and residence requirements, they are required to register and pay fees whether or not university facilities and equipment are used or staff consulted—either in person or in absentia.

After the preliminary oral examination is taken and if university facilities, equipment, and staff time are used, the Ph.D. candidate must register for the appropriate number of credits in the major department or program and pay the appropriate graduate tuition and fees.

After the preliminary oral examination is taken and if university facilities, equipment, and staff time are not used, the Ph.D. candidate may register for Gr St 680 (Continuous Registration) and pay the Continuous Registration fee.

The Ph.D. candidate must be aware that registration for Gr St 680 is allowed only after the Ph.D. candidate passes the preliminary oral examination, is required only in fall and spring semesters, is not allowed after the completion of the final oral examination, and is not sufficient registration for the terms of the preliminary or final oral examinations.

If students take the final examination during the interim between terms (including the first day of classes), registration can be for the term either before or after the examination is held.

Auditing

Audit registration means taking courses without receiving formal credit. An agreement to audit a 500 or 600 level course must be negotiated between the student and the course instructor. An audited course counts for only one credit in the graduate student’s allowable course load; however, fees will be assessed for the full number of credits for the course. Audited courses do not appear on the student’s permanent record unless the “Request for Audit(s) to Appear on Transcript” form is completed and signed by the student, course instructor, and major professor. Copies of this form, which are available from the Graduate College or from the Graduate College’s web site at www.grad-college.iastate.edu/forms/forms.html, must be filed with the Graduate College, 207 Beardshear Hall. After the fifth class day, if a student changes a regular course to an audit, that course will appear on the student’s permanent record as a drop.

Graduate Courses Taken by Seniors

Certain graduate level courses listed in the ISU General Catalog may be used in the program of study even though they were taken for graduate credit by the student as an undergraduate senior at ISU. The following conditions must be met: the POS committee can request approval from the Dean of the Graduate College that up to nine hours of such credit to be applied toward meeting advanced degree requirements (these courses must be clearly marked on the POS); credits earned in those courses must be in addition to those used to meet requirements for the bachelor’s degree and must have grades of B or better; the student must be classified as an undergraduate senior and not a special student (credits taken as a special student are not allowed); a letter of certification must be obtained from the Graduation Office (10A Alumni Hall) indicating that the courses were not taken as a special student and were not used toward fulfillment of the undergraduate degree program. This letter must be submitted with the POS form.

Admission of Undergraduates to Concurrent Graduate Degree Programs

Programs in nine departments (Agricultural and Biosystems Engineering, Animal Science, Biochemistry and Biophysics, Civil and Construction Engineering, Electrical and Computer Engineering, Food Science and Human Nutrition, Materials Science and Engineering, Psychology, and Zoology and Genetics) provide opportunities for well qualified ISU juniors and seniors majoring in those curricula to apply for admission to programs leading to both an M.S. and a B.S. awarded at the end of a fifth year of study. Students interested in a research career may apply for graduate research assistantships during their fourth and fifth years of study. Students should contact the above departments about applying to these programs early in their undergraduate careers. Undergraduate students seeking admission to concurrent graduate degree programs in fields other than the nine above must submit a written proposal for an individualized program, co-signed by their advisers, to the Graduate College for review and approval. Official enrollment and fee payment will be as a graduate student. Credits transferred from the graduate permanent record to the undergraduate permanent record are no longer available for use on a graduate program of study.

Veterinary Medicine Students in Concurrent Graduate Degree Programs

Students may be concurrently enrolled in the professional curriculum leading to the D.V.M. degree and in a graduate program leading to the M.S. or Ph.D. degree after completion of 128 semester credits. The graduate program may be in the College of Veterinary Medicine or in another college.

Interested students must complete a graduate application, complete a “Concurrent Enrollment Request” form available in the Graduate College office or on the web site at www.grad-college.iastate.edu/forms/forms.html, submit both forms with appropriate transcripts and letters of recommendation to the Office of Admissions (100 Alumni Hall). (Copies of the forms may be obtained from the Office of Admissions.), and state on the application that the application is for a concurrent degree program.

Courses Taken as a Special Student

A person classified as a “special student” is considered an undergraduate and may not use courses taken under that status in a graduate degree program. A student who has received the baccalaureate degree must register as a graduate student if he/she is to receive graduate credit for courses.

Grading

Grade Point Average (GPA)

The GPA is determined by dividing the number of grade points earned by the total number of ISU cumulative hours. The grade given when an incomplete (I) is resolved is figured into the cumulative grade point average, but not into a particular semester’s average. Marks of I, S, P, NP, T, and X are not counted in the grade point average; a mark of F (even if taken S/F) is counted in the grade point average. Creative Component/Research (599 and 699) credits are not used in the calculation of the GPA. In the case of repeated courses, only the grade achieved the last time the course is taken is used in computing the grade point average.

Grading Research and Creative Component Credits

Creative Component/Research credits may be graded as A, B, C, D, I, S, or F. Plus and minus grades are optional. These credits are not calculated in a student’s GPA.

Pass (P)/Not Pass (NP) Course Credit

Pass/Not Pass courses are those that a student, with the approval of the major professor, may take for personal enrichment, but not for satisfying prerequisites or deficiencies in the undergraduate background. P/NP marks may not be used in a POS, nor do P/NP marks contribute to the student’s GPA. Full credit for P/NP courses is used in calculating tuition assessment and credit load limitations. For more information, see the Graduate College Handbook.
Satisfactory/Fail (S/F) Grading
S/F grading is not the same as P/NP grading. S/F grading is by instructor option; all students in a particular course receive S/F grading. P/NP grading is generally a student option. A P mark is equivalent to at least a D- grade whereas an S mark is equivalent to at least a B grade at the graduate level. No special registration procedures are required for S/F grading. An S mark in a course taken S/F is not counted in the grade point average, but an F mark in a course taken S/F is counted in the grade point average and is equivalent to an F in a regularly graded (A-F) course. No more than 20 percent of the total credits (excluding creative component, thesis or dissertation research) in the program of study may be earned on an S/F basis.

S/F grading may be used only for approved courses offered as seminars, symposia, workshops, special topics, and research. Programs must submit requests for S/F grading to the Dean of the Graduate College. The Graduate College Curriculum and Catalog Committee reviews and approves or rejects all S/F courses.

Grievances about Grades
A graduate student who feels that a course grade has been unjustly assigned, and whose attempts to resolve the matter with the instructor have failed, may appeal through the grievance procedures described in the Graduate College Handbook.

Probation
If a graduate student does not maintain a cumulative 3.0 grade point average on all course work taken, exclusive of research credit, he or she may be placed on academic probation by the Dean of the Graduate College. Grades earned by graduate students in undergraduate courses are included in the calculation of the grade point average. Academic probation judgments are made on the basis of grades in course work only.

While on academic probation a student will not be admitted to candidacy for a degree and if appointed to a graduate assistantship, the student will not receive a Graduate College tuition scholarship.

To insure that registration does not take place without a review by the program, the Graduate College places a hold on future registrations by a student on probation. Before the student registers for each term, the program must review his or her record and recommend whether the Graduate College should continue to permit registration. Some programs conduct reviews by their entire graduate faculty; others assign the responsibility to POS committees. Before graduation is approved, the student must complete all courses listed on the program of study with a minimum grade of C and have achieved a 3.0 GPA or greater.

Exceptions must be recommended in writing by the student’s POS committee and DOGE and approved by the Dean of the Graduate College.

Master’s Degrees
General requirements for all master’s degrees are as follows:

General Requirements
Appointment of the Student’s Program of Study (POS) Committee. Faculty in a major field have the responsibility for establishing specific course requirements and research requirements appropriate to the master’s programs in the major. These requirements may place additional responsibilities on the student, the major professor, or the student’s POS committee beyond those listed in this bulletin or the Graduate College Handbook as deemed appropriate to the goals of the major program.

New graduate students at ISU may be assigned a temporary academic adviser by the major program in the first semester of the student’s residence. This faculty member guides the student in selection of a field of study and in development of a graduate program of study until the major professor and POS committee are selected. After the POS committee has been selected, it guides and evaluates the student during the remainder of graduate study.

A master’s POS committee consists of at least three members of the graduate faculty. For a complete listing of graduate faculty and associated majors, see the Graduate College’s web site at www.grad-college.iastate.edu. It must include two members, including the major professor, from inside the major or program. The committee must include members from different majors or different departments so as to ensure diversity of perspectives. A term member of the graduate faculty may participate in the direction of a student’s master’s research as a co-major professor if a member of the graduate faculty serves as a co-major professor and jointly accepts responsibility for the direction of a program of study.

Program of Study. The student and major professor develop the program of study with the consultation and approval of the POS committee. This agreement between the student and the Graduate College should be submitted as early as possible for approval. It is recommended that the committee be formed and the POS form submitted as early as the second semester of graduate study. In no case can the committee be formed later than the term before the final oral examination.

Residence. There is no on-campus residence requirement for the master’s degree.

Credits. Unless otherwise noted, at least 30 credits of acceptable graduate work must be completed in all master’s programs. At least 22 graduate credits must be earned from Iowa State University unless noted in the descriptions under “Specific Master’s Degree” in this bulletin.

Transfer Credits. At the discretion of the POS committee, and with the approval of the program and the Graduate College, graduate credits earned as a graduate student at another institution or through a distance education program offered by another institution may be transferred if the grade was B or better. Such courses must have been acceptable toward an advanced degree at that institution and must have been taught by individuals having graduate faculty status at the institution. If a student wishes to transfer credits from graduate courses taken at another university as an undergraduate student, it is the student’s responsibility to provide verification by letter from that institution that these graduate courses were not taken to satisfy undergraduate requirements for a degree.

A transcript must accompany the POS in order to transfer credits. The POS committee may ask for other materials, such as a course outline or accreditation of the institution, to evaluate the course. Transfer courses not completed when the POS is submitted must be completed before the term in which the student graduates. A transcript must then be submitted for review and final approval.

Research credits earned at another institution are generally not transferred. In rare circumstances, the transfer of S or P marks may be accepted for research credits only. It is the responsibility of the POS committee to obtain a letter from the responsible faculty member at the other institution stating that research credits recommended for transfer with S or P marks are considered to be worthy of a B grade or better.

Major. A major is an approved area of study leading to a graduate degree. The exact number of credits in a major is not prescribed.

Minor. Students may request a minor in any program approved to grant a graduate degree and in programs approved to offer only a minor. Requirements for declared minors are determined by the minor program and the faculty member representing the minor field on the student’s POS committee. The minor subject area must be tested at the final oral examination and cannot be placed on the transcript after graduation unless it was approved on the program of study, listed on all examination reports, and recorded on the “Application for Graduation” form (diploma slip).

Department/Program Change. To change from one program to another, a graduate student must obtain the written permission of the directors of graduate education (DOGEs) and the approval of the Dean of the Graduate College. A “Request to Transfer From One Program to Another” form must be completed. This form is available from the department, the Graduate College office, or on its web site at www.grad-college.iastate.edu/forms/forms.html.

Time Limits. It is expected that work for the master’s degree shall be completed within five years. In special circumstances the student’s POS committee may recommend that the Dean of the Graduate College extend these degree time limits. Cases in which the student leaves Iowa State during his or her graduate career and later returns are dealt with individually by the student’s POS committee and the Graduate College. The inclusion in the student’s program of study of course work that is beyond the time limits (“over-age” courses) must be justified by the POS committee in a statement accompanying the submission of the program of study.
Application for Graduation. Students planning to graduate must submit an “Application for Graduation” form (diploma slip) to the Graduate Office by the end of the first week of the semester (fall or spring) in which he/she expects to receive the degree, or by the last day of spring semester when wishing to graduate during summer.

Before submitting this form, a student must have submitted and had approved by the Graduate College a “Recommendation for Committee Appointment” form and a “Program of Study” form. Also the student must have been fully admitted to a program and have met the Graduate English requirement. Graduation may be delayed if the “Application for Graduation” form filing deadline is not met. If it becomes apparent that a student cannot graduate during the indicated term, he/she should call the Graduate College (515-294-4531) and cancel the previously submitted “Application for Graduation” form. The student must then file a new form for the next planned term of graduation.

Thesis. A master’s thesis is a scholarly composition that demonstrates the ability of the author to do independent and creative work. A thesis is required in all fields in which a master’s degree is awarded, except where specific provision is made for a nonthesis degree program. A minimum of three research credits is required on every program of study for a thesis master’s degree.

Responsibility for writing and editing of the thesis rests with the student, under the supervision of the major professor, and not with the Thesis Office. The Graduate College does not permit joint authorship of theses.

The Graduate College Thesis Manual, available free of charge from the Thesis Office (203 Beardshear Hall, 515-294-2668) or online at www.grad-college.iastate.edu/thesis/thesis.html, outlines the details of Graduate College requirements covering the preparation and submission of theses. An unbound copy of the thesis must be submitted to the Thesis Office for a format review at least two weeks prior to the final oral examination or no later than the First Submission deadline for the term in which the student intends to graduate whichever date falls first. Copies must be submitted to the members of the POS committee at least two weeks before the final oral examination.

After the final oral examination, two unbound, signed copies of the thesis must be submitted to the Thesis Office no later than the Final Submission deadline for the term of graduation. Some colleges, programs, and departments require the submission of additional copies of the thesis either to the Thesis Office or directly to the program (see the Graduate College Thesis Manual for a list of the units requiring submission of an additional copy to the Thesis Office). A thesis processing fee is charged during the term in which the student intends to graduate.

Creative Component. Every nonthesis student must present substantial evidence of individual accomplishment (e.g., a special report, capstone course, integrated field experience, annotated bibliography, research project, design, or other creative endeavor). A minimum of two credits of such independent work is required on every program of study for a nonthesis master’s degree. Some programs require more credits. (For more information, contact the individual program or consult the Specific Master’s Degrees section in this bulletin.) The element of independent study must be explicitly identified on the program of study. The format of the creative component is determined in cooperation with the POS committee. As with a thesis, a creative component should be submitted to members of the POS committee two weeks before the final oral examination. However, no first submission or final submission of a creative component is turned in to the Thesis Office or Graduate College for review and approval.

Final Oral Examination. All master’s (except M.B.A. students) and Ph.D. degree candidates must pass final oral examinations. The final oral examination must be held by the final examination deadline date for the semester in which the degree is granted. All coursework in the program of study must either be completed or in progress before the final examination can be scheduled. This examination is oral; it may also include a written component if specified by the student’s (POS) committee.

Graduate students must register for the equivalent of two credits, or for the R-credit course GR ST 600 (Examination Only) if no course work is needed, during the semester in which the final examination is taken. Taking only an R-credit course where the fee is not equivalent to the 2-credit minimum charge is not acceptable for the term of the final oral examination. If the examination is taken during the interim between terms (including the first day of classes), registration can be for either the term before or the term after the examination is held. For more information, see the Graduate College Handbook.

Graduate Student Approval Slip for Graduation. Every candidate for an advanced degree is required to complete a “Graduate Student Approval Slip for Graduation” form. It is sent to the major professor or program to give to the student after the “Request for Final Examination” form is received and approved by the Graduate College. Signatures are required by the major program, the Thesis Office (for those completing a thesis), and the Graduate College. Final clearance of academic requirements will be made when current term grades have been submitted and evaluated by the Graduate College.

All incompletes from previous terms must be completed by the deadline for completion of the Graduate Student Approval Slip. If a conditional pass was recommended at the final oral examination, the major professor and the committee members, if so specified, must notify the Graduate College in writing no later than the due date for the Graduate Student Approval Slip for the term of graduation that the conditions have been met.

Specific Master’s Degrees

The number of credits in a major for a master’s degree will vary according to the degrees listed below. General credit requirements for all master’s degrees include: a minimum of 30 graduate credits is required for all master’s programs at ISU; at least 22 graduate credits must be earned at ISU unless noted in descriptions; any transfer of graduate credits from another institution must be recommended in the program of study by the POS committee; and graduate credit earned as a graduate student will be approved for transfer only if a B grade or better was earned.

Master of Arts or Master of Science—Thesis

At least 30 credits of acceptable graduate work must be completed, not less than 22 of which must be earned from ISU. Students are expected to research and write a thesis that demonstrates independent and creative work. A minimum of 3 semester credits is required for thesis research.

Master of Arts or Master of Science—Nonthesis

In certain programs a nonthesis degree program is offered. (For more information on requirements, contact the individual program or department.) This option requires the satisfactory completion of at least 30 graduate credit hours of acceptable work (not including research credit), not less than 22 of which must be earned from Iowa State University, and satisfactory completion of a comprehensive final oral examination. In addition, every nonthesis master’s program must present substantial evidence of individual accomplishment (e.g., a special report, capstone course, integrated field experience, annotated bibliography, or other creative endeavor). A minimum of two semester hours of such independent work (referred to as the creative component) is required on every program of study for a nonthesis master’s degree and is applied toward the credit-hour requirement. This element of creative independent study must be explicitly identified on the program of study. Detailed requirements may vary with fields. Reference should be made to the Courses and Programs section in this catalog.

Master of Accounting. The Department of Accounting offers a 32-credit Master of Accounting graduate degree. The program requires 15 credits of graduate accounting courses, at least 9 credits of non-accounting graduate electives, a communications course, an international course from an approved list, and a creative component. The degree is appropriate for any student wanting to pursue a variety of accounting careers. Additionally, the program is designed to help interested candidates meet the 150-hour education requirement for the CPA certification in Iowa.

Master of Agriculture. The major in professional agriculture is an off-campus, nonthesis program leading to the master of agriculture degree. It is available to students wishing to pursue graduate study in agriculture without taking formal coursework on campus. The program is considered to be a terminal master’s degree. Students are required to take a minimum of two courses in each of three disci-
Master of Education. For the master of education degree is available as a thesis or nonthesis option. Any of their present jobs or progress in their careers. Both options require a written and oral integrative final exam.

Master of Fine Arts. For this degree a minimum of 36 graduate credits is required, 61 for the MFA in Integrated Visual Arts, including the completion of a thesis-exhibition or a thesis.

Master of Landscape Architecture. The master of landscape architecture degree requires a minimum of 36 graduate credits and the satisfactory completion of a thesis or a creative component.

Master of Public Administration. This is a professional program designed to provide training needed to administrate a public or quasi-public bureaucracy. A minimum of 37 graduate credit hours is required in six subject areas. Either an internship in a governmental unit or a thesis is required.

Master of School Mathematics. This degree is designed primarily for inservice secondary mathematics teachers. Its prescribed program of study requires 36 graduate credits, two of which come from the writing of an approved creative component, 15 from courses offered for graduate credit, and 13 from courses offered for nonmajor graduate credit. At least 22 credit hours must be earned at ISU.

Master’s Double Degree Programs

A double degree requires fulfillment of the requirements for two graduate majors for which two differently named master’s degrees. Students planning to pursue double degrees must complete a double degree request form and submit it to the Dean of Graduate College for approval. Just one “Recommendation for Committee Appointment” form and one “Program of Study (POS)” form need to be submitted for the two degrees. However, two “Application for Graduation” forms, one for each degree, will need to be submitted. All forms should show clearly that the student is enrolled in a double-degree program.

Like other master’s programs, three graduate faculty members can constitute a POS committee; however, POS committees for double degrees must include co-major professors from each of the majors. Although specific degree programs may require more, the program of study must include at least 44 hours of non-overlapping credit (22 for each major) in the two degrees.

Six such combinations are currently available:

1. Master of Architecture/Master of Business Administration;
2. Master of Architecture/Master of Community and Regional Planning;
3. Master of Community and Regional Planning/Master of Business Administration;
4. Master of Landscape Architecture/Master of Community and Regional Planning;
5. Master of Public Administration/Master of Community and Regional Planning; and

If a student outside of the Drake University grades are transferred as pass-fail. Special arrangements for combined degree programs may be approved with the Drake University Law School. ISU and Drake offer a combined J.D.-M.A. in political science and J.D.-Ph.D. in economics. Drake Law School students are permitted to transfer the equivalent of nine semester credits of specified law courses to ISU for nonmajor graduate credit. Because of the different graduate programs, the Law School grades are transferred as pass-fails, provided the student has achieved a grade of C or better in those courses at Drake for the political science program or a grade of B or better for the economics program.

Students planning to pursue double degrees must complete a double degree request form and submit it to the Dean of Graduate College for approval. Just one “Recommendation for Committee Appointment” form and one “Program of Study (POS)” form need to be submitted for the two degrees. However, two “Application for Graduation” forms, one for each degree, will need to be submitted. All forms should show clearly that the student is enrolled in a double-degree program.

Like other master’s programs, three graduate faculty members can constitute a POS committee; however, POS committees for double degrees must include co-major professors from each of the majors. Although specific degree programs may require more, the program of study must include at least 44 hours of non-overlapping credit (22 for each major) in the two degrees.

Six such combinations are currently available:

1. Master of Architecture/Master of Business Administration;
2. Master of Architecture/Master of Community and Regional Planning;
3. Master of Community and Regional Planning/Master of Business Administration;
4. Master of Landscape Architecture/Master of Community and Regional Planning;
5. Master of Public Administration/Master of Community and Regional Planning; and

If a student outside of the Drake University grades are transferred as pass-fail. Special arrangements for combined degree programs may be approved with the Drake University Law School. ISU and Drake offer a combined J.D.-M.A. in political science and J.D.-Ph.D. in economics. Drake Law School students are permitted to transfer the equivalent of nine semester credits of specified law courses to ISU for nonmajor graduate credit. Because of the different graduate programs, the Law School grades are transferred as pass-fails, provided the student has achieved a grade of C or better in those courses at Drake for the political science program or a grade of B or better for the economics program.

Students planning to pursue double degrees must complete a double degree request form and submit it to the Dean of Graduate College for approval. Just one “Recommendation for Committee Appointment” form and one “Program of Study (POS)” form need to be submitted for the two degrees. However, two “Application for Graduation” forms, one for each degree, will need to be submitted. All forms should show clearly that the student is enrolled in a double-degree program.

Like other master’s programs, three graduate faculty members can constitute a POS committee; however, POS committees for double degrees must include co-major professors from each of the majors. Although specific degree programs may require more, the program of study must include at least 44 hours of non-overlapping credit (22 for each major) in the two degrees.

Six such combinations are currently available:

1. Master of Architecture/Master of Business Administration;
2. Master of Architecture/Master of Community and Regional Planning;
3. Master of Community and Regional Planning/Master of Business Administration;
4. Master of Landscape Architecture/Master of Community and Regional Planning;
5. Master of Public Administration/Master of Community and Regional Planning; and
Program of Study. The student and the major professor develop the program of study with the consultation and approval of the POS committee. Early selection of a major professor, appointment of a POS committee, and development of a program of study are very important. It is recommended that the committee be formed as early as the second semester of graduate study. In no case can the committee be formed later than the term before the preliminary oral examination.

Credits. A minimum of 72 graduate credits must be earned for a Ph.D. degree. At least 36 graduate credits, including all dissertation research credits, must be earned at Iowa State University. At least 24 of these credits must be earned during two consecutive semesters or during a continuous period including two semesters and a summer session while in residence at the university. (This requirement does not apply to doctoral students who are employed more than half time at ISU.) There is no specific university requirement regarding the number of credits to be taken inside or outside the major/program.

Transfer Credits. At the discretion of the POS committee, and with the approval of the program and the Graduate College, graduate credits earned as a graduate student at another institution or through a distance education program offered by another institution may be transferred if the grade was B or better. Such courses must have been acceptable toward an advanced degree at that institution and must have been taught by individuals having graduate faculty status at that institution. If a student wishes to transfer credits from graduate courses taken at or through another university as an undergraduate student, it is that student’s responsibility to provide verification by letter from that institution that those graduate courses were not taken to satisfy undergraduate requirements for a degree.

A transcript must accompany the POS in order to transfer credits. The POS committee may ask for other materials, such as a course outline or accreditation of the institution, to evaluate the course. Transfer courses not completed when the POS is submitted must be completed before the term in which the student graduates. A transcript must then be submitted for review and final approval.

Research credits earned at another institution are generally not transferred. In rare circumstances, the transfer of S or P marks may be accepted if the university requires these credits. The responsibility of the POS committee to obtain a letter from the responsible faculty member at the other institution stating that research credits recommended for transfer with S or P marks are considered to be worthy of a B grade or better.

Residence. At least 24 semester credits must be earned during two consecutive semesters or during a continuous period including two semesters and a summer session. This requirement does not apply to doctoral students who are employed at least half-time by Iowa State University and government laboratories located in Ames. Of the 72 graduate credits required for a Ph.D. at least 36 credits, including all dissertation research credits, must be earned under the supervision of the student’s POS committee.

Major. A major is the area of study or academic concentration in which a student chooses to qualify for the award of a graduate degree. Majors are listed at the end of this section of the bulletin. Opportunities also exist for majoring in more than one area of study (co-major or joint major programs).

Minor. Students may request a minor in any program approved to grant a graduate degree and in programs approved to offer only a minor. Requirements for declared minors are determined by the minor program and the faculty member representing the minor field on the student’s POS committee. The minor subject area must be tested at the preliminary oral and final oral examinations. A minor cannot be added to a program of study after the preliminary oral examination has been taken, nor can a minor be placed on the transcript after graduation, unless it was approved on the program of study, listed on all examination reports, and recorded on the “Application for Graduation” form (diploma slip).

Time Limits. A student beginning a Ph.D. degree program at Iowa State with a master’s degree from another institution is expected to complete the Ph.D. within five years, while a student beginning a Ph.D. degree program without the master’s degree is expected to complete the program within seven years. If warranted, the Program of Study (POS) Committee may request by letter that the Dean of the Graduate College extend these time limits. Cases in which the student leaves Iowa State during his or her graduate career and later returns are dealt with individually by the student’s program of study committee and the Graduate College. The inclusion in the program of study of coursework that is beyond the time limits (“over-age” courses) must be justified by the POS committee in a statement accompanying the submission of the program of study.

Preliminary Examination. The Graduate College requires a preliminary oral examination of Ph.D. degree students; most programs add a written portion to the preliminary oral examination. The Ph.D. degree preliminary oral examination rigorously tests a graduate student’s knowledge of major, minor, and supporting subject areas as well as the student’s ability to analyze, organize, and present subject matter relevant to the field. A “Request for Preliminary Examination” form must be submitted to the Graduate College by the major professor at least two weeks before the proposed date of the examination.

The following conditions should be met before the “Request for Preliminary Examination” form is submitted to the Graduate College: admitted to full admission status in a Ph.D. granting program, approved “Recommendation for Committee Appointment” form, approved POS form, English requirement met, not on probation, time limit not exceeded, qualifying examination (if required by program) passed, and registration for at least the equivalent of 2 credits, or for the R-credit course GR ST 600 (Examination Only) if no course work is needed, during the term in which the preliminary oral examination is taken. (Taking only an R-credit course where the fee is not equivalent to the 2-credit minimum charge is not acceptable for the term of the preliminary oral examination.)

A preliminary oral examination will not be scheduled for a student on provisional or restricted admission or on academic probation. Upon successful completion of the preliminary oral examination, the student is admitted to candidacy for the Ph.D. degree. If the graduate student fails all or part of the preliminary oral examination, he/she must pass all or part of it the next time it is offered. Six months must elapse between the first attempt and the next. The entire POS committee must be convened for the preliminary oral examination. The preliminary oral examination must be passed at least six months prior to the final oral examination. An exception to the rule is allowed if a request, signed by the entire POS committee, is approved by the Dean of the Graduate College.

Application for Graduation. Application for graduation should be made by the end of the first week of the semester (fall or spring) in which the student expects to receive the degree, or by the last day of the spring semester if graduation is planned during summer session. To apply for graduation, the student is required to submit to the Graduate College a signed “Application for Graduation” form, available in the program office or on the web at www.grad-college.iastate.edu/forms/forms.html. Before submitting this form, a student must have submitted and had approved by the Graduate College a “Recommendation for Committee Appointment” form and a “Program of Study” form. Also the student must have been fully admitted to a program and have met the Graduate English requirement. Graduation may be delayed if the “Application for Graduation” form filing deadline is not met. If it becomes apparent that a student cannot graduate during the indicated term, he/she should call the Graduate College (515-294-4831) and cancel the previously submitted “Application for Graduation” form. The student must then file a new form for the next planned term of graduation.

Dissertation. A doctoral dissertation must demonstrate conclusively the ability of the author to conceive, design, conduct, and interpret independent, original, and creative research. It must attempt to describe significant original contributions to the advancement of knowledge and must demonstrate the ability to organize, analyze, and interpret data. In most instances, a dissertation includes a statement of purpose, a review of pertinent literature, a presentation of methodology and results obtained, and a critical interpretation of conclusions in relation to the findings of others. When appropriate, it involves a defence of objectives, design, and analytical procedures. Dissertation research should be worthy of publication and should appear in appropriate professional journals or in book form.

Responsibility for writing and editing of the dissertation rests with the student, under the supervision of the major professor, and not with the Thesis Office. The Graduate College
does not permit joint authorship of dissertations.

The Graduate College Thesis Manual, available free of charge from the Thesis Office (203 Beardshear Hall, 515-294-2666) or online at www.grad-college.iastate.edu/thesis/thesis.html, outlines the details of Graduate College requirements covering the preparation and submission of dissertations.

An unbound copy of the dissertation must be submitted to the Thesis Office for a format review at least two weeks prior to the final oral examination or not later than the First Submission deadline for the term in which the students intends to graduate whichever date falls first. Copies must be submitted to the members of the POS committee at least two weeks before the final oral examination.

After the final oral examination, two unbound, signed copies of the dissertation must be submitted to the Thesis Office no later than the Final Submission deadline for the term of graduation. Some colleges, programs, and departments require the submission of additional copies of the dissertation either to the Thesis Office or directly to the program (see the Graduate College Thesis Manual for a list of the units requiring submission of an additional copy to the Thesis Office).

During the term of graduation, a fee for processing the dissertation is billed by the university accounting system.

Final Oral Examination. The Ph.D. final oral examination, conducted after the dissertation is finished, is oral and often limited to a defense of the dissertation. To receive the degree at the end of a given semester, the student must hold the final oral examination before the final oral examination deadline for the semester.

The candidate is responsible for initiating the “Request for Final Oral Examination” form, which must be submitted to the Graduate College at least two weeks before the examination. The entire POS committee must be convened for the final oral examination. Any request to change the makeup of the committee needs to be submitted in writing to the Graduate College and approved by the Dean of the Graduate College before the final oral examination is held. For more information on the requirements, see the Graduate College Handbook.

Graduate Student Approval Slip for Graduation. Every candidate for an advanced degree is required to complete a “Graduate Student Approval Slip for Graduation” form. It is sent to the major professor or program to give to the student after the “Request for Final Examination” form is received and approved by the Graduate College. Signatures are required by the major program, the Thesis Office, and the Graduate College. Final clearance of academic requirements will be made when current term grades have been submitted and evaluated by the Graduate College.

All incompletes from previous terms must be completed by the deadline for completion of the Graduate Student Approval Slip. If a conditional pass was recommended at the final oral examination, the major professor and the committee members, if so specified, must notify the Graduate College in writing no later than the due date for the Graduate Student Approval Slip for the term of graduation that the conditions have been met.

Summary of Graduate Majors

(More information on each major can be found in the Courses and Programs section of this catalog under the department or program listed in parentheses after the degree information.)

Accounting: M.Acc. (see Accounting)
Aerospace Engineering: M.Eng., M.S., Ph.D. (see Aerospace Engineering)
Agricultural Economics: M.S., Ph.D. (see Economics)
Agricultural Education: M.S., Ph.D. (see Agricultural Education and Studies)
Agricultural Engineering: M. Eng., M.S., Ph.D. (see Agricultural Engineering)
Agricultural History and Rural Studies: Ph.D. (see History)
Agricultural Meteorology: M.S., Ph.D. (see Agronomy)
Agronomy: M.S. (see Agronomy)
Analytical Chemistry: M.S., Ph.D. (see Chemistry)
Animal Breeding and Genetics: M.S., Ph.D. (see Animal Science)
Animal Ecology: M.S., Ph.D. (see Animal Ecology)
Animal Nutrition: M.S., Ph.D. (see Animal Science)
Animal Physiology: M.S., Ph.D. (see Animal Science)
Animal Science: M.S., Ph.D. (see Animal Science)
Anthropology: M.A. (see Anthropology)
Applied Mathematics: M.S., Ph.D. (see Mathematics)
Applied Physics: M.S., Ph.D. (see Physics and Astronomy)
Architectural Studies: M.S. (see Architecture)
Architecture: M. Arch., M. Arch./M.B.A., M. Arch./M.C.R.P. (see Architecture)
Art and Design: M.A. (see Art and Design)
Astrophysics: M.S., Ph.D. (see Physics and Astronomy)
Biochemistry: M.S., Ph.D. (see Biochemistry, Biophysics and Molecular Biology)
Bioinformatics and Computational Biology: M.S., Ph.D. (see Bioinformatics and Computational Biology)
Biomedical Engineering: M.S., Ph.D. (see Biomedical Engineering)
Biophysics: M.S., Ph.D. (see Biochemistry, Biophysics and Molecular Biology)

Botany: M.S., Ph.D. (see Botany)
Business: M.S. (see Business Administration)
Chemical Engineering: M. Eng., M.S., Ph.D. (see Chemical Engineering)
Chemistry: M.S., Ph.D. (see Chemistry)
Civil Engineering: M.S., Ph.D. (see Civil Engineering)
Computer Engineering: M.S., Ph.D. (see Computer Engineering)
Computer Science: M.S., Ph.D. (see Computer Science)
Condensed Matter Physics: M.S., Ph.D. (see Physics and Astronomy)
Crop Production and Physiology: M.S., Ph.D (see Agronomy)
Earth Science: M.S., Ph. D. (see Geological and Atmospheric Sciences)
Ecology and Evolutionary Biology: M.S., Ph.D. (see Ecology and Evolutionary Biology)
Economics: M.S., Ph.D. (see Economics)
Education: M.Ed., M.Ed. Practitioner, M.S., Ph.D. (see Curriculum and Instruction, Educational Leadership and Policy Studies)
Electrical Engineering: M.S., Ph.D. (see Electrical and Computer Engineering)
English: M.A. (see English)
Entomology: M.S., Ph.D. (see Entomology)
Exercise and Sport Science: M.S. (see Health and Human Performance)
Family and Consumer Sciences: M.F.C.S. (see College of Family and Consumer Sciences)
Family and Consumer Sciences Education: M.Ed., M.S., Ph.D (see Family and Consumer Sciences Education and Studies)
Fisheries Biology: M.S., Ph. D. (see Animal Ecology)
Food Science and Technology: M.S., Ph.D. (see Food Science and Human Nutrition)
Forestry: M.S., Ph.D. (see Forestry)
Genetics: M.S., Ph.D. (see Genetics)
Geology: M.S., Ph.D. (see Geological and Atmospheric Sciences)
Graphic Design: M.F.A. (see Art and Design)
Health and Human Performance: Ph.D. (see Health and Human Performance)
High Energy Physics: M.S., Ph.D. (see Physics and Astronomy)
History: M.A. (see History)
Materials Science and Engineering: M.S., Ph.D. (see Materials Science and Engineering)
Mathematics: M.S., Ph.D. (see Mathematics)
Meat Science: M.S., Ph.D. (see Animal Science, Food Science and Human Nutrition
offered as Ph.D. only jointly with Animal Science)
Mechanical Engineering: M.S., Ph.D. (see Mechanical Engineering)
Meteorology: M.S., Ph.D. (see Geological and Atmospheric Sciences)
Microbiology: M.S., Ph.D. (see Microbiology)
Molecular, Cellular, and Developmental Biology: M.S., Ph.D. (see Molecular, Cellular, and Developmental Biology)
Neuroscience: M.S., Ph.D. (see Neuroscience)
Nuclear Physics: M.S., Ph.D. (see Physics and Astronomy)
Nutrition: M.S., Ph.D. (see Food Science and Human Nutrition)
Operations Research (must be a joint major with Statistics): M.S. (see Industrial Engineering/Statistics)
Organic Chemistry: M.S., Ph.D. (see Chemistry)
Physical Chemistry: M.S., Ph.D. (see Chemistry)
Physics: M.S., Ph.D. (see Physics and Astronomy)
Physiology: M.S., Ph.D. (see Biomedical Sciences)
Plant Breeding: M.S., Ph.D. (see Agronomy)
Plant Pathology: M.S., Ph.D. (see Plant Pathology)
Plant Physiology: M.S., Ph.D. (see Plant Physiology)
Political Science: M.A., M.P.A. (see Political Science)
Professional Agriculture: M.Ag. (see Professional Agriculture)
Psychology: M.S., Ph.D. (see Psychology)
Public Administration: M.P.A., M.P.A./M.C.R.P. (see Political Science)
Rhetoric and Professional Communication: Ph.D. (see English)

Rural Sociology: M.S., Ph.D. (see Sociology)
School Mathematics: M.S.M. (see Mathematics)
Sociology: M.S., Ph.D. (see Sociology)
Soil Science: M.S., Ph.D. (see Agronomy)
Statistics: M.S., M.B.A./M.S., Ph.D. (see Statistics)
Sustainable Agriculture: M.S., Ph.D. (see Sustainable Agriculture)
Systems Engineering: M.Eng. (see Systems Engineering)
Textiles and Clothing: M.S., Ph.D. (see Textiles and Clothing)
Toxicology: M.S., Ph.D. (see Toxicology)
Transportation: M.S. (see Transportation)
Veterinary Anatomy: M.S., Ph.D. (see Biomedical Sciences)
Veterinary Clinical Sciences: M.S. (see Veterinary Clinical Science)
Veterinary Microbiology: M.S., Ph.D. (see Veterinary Microbiology and Preventive Medicine)
Veterinary Pathology: M.S., Ph.D. (see Veterinary Pathology)
Veterinary Preventive Medicine: M.S. (see Veterinary Microbiology and Preventive Medicine)
Water Resources: M.S., Ph.D. (see Water Resources)
Wildlife Biology: M.S., Ph.D. (see Animal Ecology)
Zoology: M.S., Ph.D (see Zoology and Genetics)
Information About Courses

Course Numbers
The courses in each department are numbered from 1 to 699, according to the following groups:

<table>
<thead>
<tr>
<th>Course Number Range</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-99</td>
<td>Courses not carrying credit toward a degree.</td>
</tr>
<tr>
<td>100-299</td>
<td>Courses primarily for freshman and sophomore students.</td>
</tr>
<tr>
<td>300-499</td>
<td>Courses primarily for junior and senior students.</td>
</tr>
<tr>
<td>500-599</td>
<td>Courses primarily for graduate students, but open to qualified undergraduates.</td>
</tr>
<tr>
<td>600-699</td>
<td>Courses for graduate students only.</td>
</tr>
</tbody>
</table>

Credits and Contact Hours
The academic value of each course is stated in semester credits. Each credit is normally earned by attending one (50-minute) hour of lecture or recitation per week for the entire semester, or by attending a laboratory or studio period of two or three hours per week. As a guideline, undergraduate students typically will be expected to spend two hours in preparation outside of class for each lecture or recitation hour; additional outside work may be required for laboratory or studio classes.

Each course states the number of semester credits assigned to the course, preceded in parentheses by the number of hours in class (contact hours) expected of the student. The first of the two contact-hour numbers indicates the number of lecture or recitation class hours per week for the semester. The second is the number of laboratory or studio hours required per week. Laboratory and studio hours may include some time devoted to lectures and recitations. For example, Com S 103 is listed as (3-2) Cr. 4. In that case, the course is 4 semester credits, 3 hours of lecture and two hours of laboratory each week.

The term "Cr. arr." means that the amount of credit is arranged in advance between the student and the instructor. The credit to be earned depends on the amount of work expected of the student, in accordance with the policy that some combination of teacher-student contact and outside work by the student involving at least three hours per week for the entire semester is required for each credit.

The term "Cr. R." means that the course is required in a certain curriculum or as cognate to one or more other courses. It is also used for cooperative education courses and for some optional inspection trips, study tours, and professional development courses for which numerical credit is not granted.

Semester of Offering
Within each course description may be found one or more of the following letters: F, S, SS, indicating which term—fall, spring, summer session—of the academic year the course is offered. “Alt.” is the abbreviation for alternate. If there is sufficient demand, courses may be offered more frequently than announced. Insufficient demand or unforeseen staffing problems may result in the cancellation of announced offerings. Students are advised to refer to the Schedule of Classes or consult with departments for up-to-date course schedule information.

Course Prerequisite
A prerequisite indicates the specific academic background or general academic maturity considered necessary for the student to be ready to undertake the course. Prerequisites are usually stated in terms of specific courses, but equivalent preparation is usually acceptable.

An instructor may, however, direct a student whose background does not meet the stated prerequisite, or its equivalent, to drop the course. Conversely, an instructor may waive the prerequisite for a course for which he or she is responsible. Thus, permission of the instructor is understood to be an alternate to the stated prerequisites in all courses.

Cross-listed Courses
A course may be listed with its complete description in one department, and without its description in another department. In both cases, the department with which the course is cross-listed is noted in parentheses. The department in which the full description appears is responsible for the course, but credit for the course may also be obtained through the department in which it is cross-listed.

Co-listed Courses
A course, including its complete description, may be listed in two or more departments, with the department or departments co-listing the course being noted in parentheses in each case. All departments in which the course is listed share responsibility for its offering, and credit for it may be obtained through any of the departments in which it is listed.

Dual-listed Courses
Dual-listed courses permit undergraduate and graduate students to be in the same class but to receive credit under different course numbers. Credit in the graduate course is not available to students who have received credit in the corresponding undergraduate course. Both graduates and undergraduates receive the same amount of credit for the course, but additional work is required of all graduate students taking the course under the graduate-level course number. This extra work may take the form of additional reading, projects, examinations, or other assignments as determined by the instructor. The instructor must be a member of the Graduate Faculty or a Graduate Lecturer. Each dual-listed course is designated in the catalog with the phrase “Dual-listed with,” although the student’s official transcript of credits, both graduate and undergraduate, does not identify dual-listed courses as such. There is a limit to the number of dual-listed course credits that may be used to meet the requirement for an advanced degree. (For information about procedures for requesting permission to offer dual-listed courses, faculty should consult the Graduate Faculty Handbook.)

Priority Enrollment
High demand for courses in certain areas has necessitated enrollment management for some courses. When enrollment priority is established for a course, first consideration is given to students whose curriculum/major explicitly requires the course. After those needs are met, priority is based on the classification of the student, with those nearest graduation receiving first consideration. The Schedule of Classes, published semiannually, contains current information as to the courses for which priority enrollment is in use.

Special Course Fees
Courses for which special course fees are assessed are designated in the Schedule of Classes. Special course fees may be assessed for such extraordinary costs as materials fees (which may include consumable materials or equipment replacement), field trip expenses, developmental math fees, and camp fees. In some cases, special course fee amounts vary from term to term. Billing and collection of special fees are handled through the university’s Accounts Receivable system.

Additional information on camp fees and the developmental math fee may be found in the fees and expenses section. See Index, Fees.

Designators
For a list of abbreviations designating departments and programs see Index, Designators.

Graduate Programs

Graduate Major
A major in the Graduate College is the area of academic professional concentration, approved by the Board of Regents, in which the student chooses to qualify for the award of a graduate degree.

Graduate Area of Specialization
Areas of specialization are indicated in the graduate statements of some departments. This is a subdivision of a major in which a strong graduate-level program is available. When approved by the Graduate College, such areas of specialization are shown parenthetically after the major on official records, including transcripts and thesis/dissertation title pages.

Interdepartmental Programs
Interdepartmental programs are available at both graduate and undergraduate levels. An interdepartmental program is an administrative structure usually not functioning as a department, ordinarily headed by a supervisory committee, and offering a degree with major(s) in that subject area. Interdepartmental programs have been officially approved and may offer courses.
Nonmajor Graduate Credit

All courses included on the Program of Study of a graduate student must be approved by the student's program of study committee. Usually courses in the major are selected from 500- and 600-level courses in the major. Courses outside of the major can be selected from other 500- and 600-level courses and from 300- and 400-level courses which have been approved for nonmajor graduate credit. In the catalog, the approved 300- and 400-level courses are indicated by the words "Nonmajor graduate credit" in the course description.
Nonmajor Graduate Credit
All courses included on the Program of Study of a graduate student must be approved by the student’s program of study committee. Usually courses in the major are selected from 500- and 600-level courses in the major. Courses outside of the major can be selected from other 500- and 600-level courses and from 300- and 400-level courses which have been approved for nonmajor graduate credit. In the catalog, the approved 300- and 400-level courses are indicated by the words “Nonmajor graduate credit” in the course description.

Accounting

David B. Smith, Chair of Department
Professors: Hira, Smith
Professors (Emeritus): Brown, Elvik, Handy
Associate Professors: Bouillon, Dilla, Doran, Jeffrey, Kurtenbach, Murphy, Ravenscroft, Swanson
Assistant Professors: Caplan, Clem, Janvrin
Assistant Professors (Adjunct): Curtis
Instructors (Adjunct): Blanshan, Duffy, Mazzitelli

Undergraduate Study
For undergraduate curriculum in business, major in accounting, see College of Business, Curricula.

The primary purpose of accounting is to provide relevant information to both internal users (management) and external users such as investors, creditors, government, and the general public. Accounting is an integral part of the management of business and public organizations. Accountants, therefore, participate in planning, evaluating, and controlling the activities of the firm. Accounting is needed by external users in order to make investment decisions, grant or withhold credit, and, in the case of government, to collect revenue and gather statistical information. In order to provide useful information, accountants collect, analyze, synthesize, and report data in an understandable manner.

The instructional objective of the Accounting Program is to provide a well-rounded professional education in accounting. Such an education should provide the student with: (1) a mastery of basic accounting concepts; (2) an ability to think critically and creatively about accounting problems; (3) an ability to communicate effectively and work with others as a member of a team; (4) an awareness and sensitivity for dealing with ethical concerns.

The major in accounting is designed to give students a conceptual foundation as well as to provide a wide range of basic skills and analytical tools for use in reporting for both public and private concerns. Students who complete the accounting major are well prepared to accept positions in industry, government, and the public accounting profession. The require-
Aerospace Engineering

(Administered by the Department of Aerospace Engineering and Engineering Mechanics)

Thomas J. Rudolph, Chair of Department

Distinguished Professors: R. B. Thompson
Professors: Chimenti, Greer, Holger, Inger, McDaniel, Munson, Pierson, Rogge, Rohach, Rothmayer, Rudolph, Schmerr, Tannehill, Tsai, Zachary

Professors (Adjunct): Hsu

Distinguished Professors (Emeritus): D. Thompson, Young

Professors (Emeritus): Akers, Iversen, Jenison, McConnell, Rizzo, Weiss, Wilson

Associate Professors: Dayal, Flattau, Hilliard, Hindman, Lu, Mann, Mitra, Rajagopalan, Sarkar, Sherman, Sturges, Trulin, Vogel

Associate Professors (Adjunct): Roberts

Associate Professors (Emeritus): Hermann, Severske

Assistant Professors: Bastawros, Chavez, Jacobson

Assistant Professors (Adjunct): Gray, Legg

Undergraduate Study

For undergraduate curriculum in aerospace engineering leading to the degree bachelor of science, see College of Engineering, Curricula. This curriculum is accredited by the Engineering Accreditation Commission of the Accreditation Board for Engineering and Technology.

The aerospace engineer is primarily concerned with the design, analysis, testing, and overall operation of vehicles which operate in an atmosphere, a fluid medium, or outer space as well as on water and land surfaces. The curriculum is designed to provide the student with an education in the fundamental principles of aerodynamics, flight mechanics, propulsion, structural mechanics, controls, design, testing, and space technologies. A wide variety of opportunities awaits the aerospace engineering graduate in research, development, design, production, sales, and management in the aerospace industry, and in many related industries in which fluid flow, control, and transportation problems play major roles.

A cooperative education program in aerospace engineering is available in cooperation with several industries and government agencies. The usual four-year curriculum is extended over a five-year span to permit alternate industrial experience periods and academic periods. This arrangement offers valuable practical experience and financial assistance during the college years. See College of Engineering, Cooperative Programs.

Program Educational Objectives:
1. Coordinate the Aerospace Engineering Program’s mission, educational objectives, and learning outcomes with the Iowa State University, College of Engineering, and AEE Department mission, objectives, and outcomes.
2. Educate students to be proficient in the application of fundamental principles of aerodynamics, flight mechanics, propulsion, structural mechanics, controls, design, testing, and space technologies to the solution of significant aerospace problems.
3. Prepare students to be successful in the workplace utilizing non-technical skills that include: communication skills, teamwork, leadership, ethical and societal responsibility considerations.
4. Provide students with applied engineering experiences through hands-on laboratory courses, internships, and cooperative education experiences.
5. Maintain an ongoing consultation with students, faculty, industry, and aerospace professionals for the continuous process of academic improvement.

Program Learning Outcomes:
1. Apply a basic knowledge of mathematics and/or science and the knowledge of engineering to aerospace engineering problems.
2. Identify, formulate, and solve aerospace engineering problems.

Courses and Programs Aerospace Engineering
programs in aerospace engineering, a student whose prior undergraduate or graduate education has been in allied engineering and/or scientific fields may also qualify. In such cases, it may be necessary for the student to take additional work to provide the requisite background. A prospective graduate student is urged to specify the degree program and the specific field of interest on the application for admission.

Courses normally will be offered at the times stated in the course description. Where no specific time is offering is stated, the course may be offered during any semester provided there is sufficient demand.

Courses open for nonmajor graduate credit:

Courses Primarily for Undergraduate Students

Aer E 161. Numerical and Graphical Techniques for Aerospace Engineering. (2-2) Cr. 3. F.S. Prereq: Math 141 or 142 or satisfactory scores on mathematics placement examinations; credit or enrollment in Math 165, proficiency in FORTRAN or C programming languages.

Aer E 181. Introduction to Aerospace Engineering. (3-0) Cr. 1. F.S. Prereq: Aer E 101.

Aer E 192. Aerospace Seminar. (1-0) Cr. R.S. Professional skills development activities. Designed to encourage involvement in a variety of aerospace engineering activities and related professional activities. Academic program planning, short course and departmental symposium participation.

Aer E 201. Introduction to Aerospace Engineering. (3-0) Cr. 3. F.S. Prereq: Math 168, Phys 221, Engr 160 or 161. Introduction to aerospace disciplinary topics, including: aerodynamics, structures, propulsion, flight mechanics and performance.

Aer E 202. Instrumentation Laboratory. (1-2) Cr. 2. F.S. Prereq: Math 165, Engr 160 or 161, credit or enrollment in Phys 221. Proficiency in basic instrumentation utilized in other Aer E laboratory courses. Computer usage. Probes and data acquisition equipment for fluid mechanics and structural mechanics. Operation, accuracy analysis, instruments, experiment design, reporting results, and observation of basic phenomena.

Aer E 243L. Aerodynamics Laboratory. (0-0) Cr. 0.5 S.S. (8 weeks) Prereq: Aer E 243. Introduction to fluid dynamic principles and instruments in aerodynamics through laboratory studies and experiments. Report writing.

Aer E 265. Scientific Balloon Engineering and Operations. (Same as Mteor 265) (0-2) Cr. 1. F.S. Engineering aspects of scientific balloon flights. Integration of science mission objectives with engineering requirements. Operations team certification. FAA and FCC regulations, communications, and command systems. Flight path prediction and control.

Aer E 291. Aerospace Seminar. (1-0) Cr. R.F. Professional skills development activities. Designed to encourage involvement in a variety of aerospace engineering activities and related professional activities. Academic program planning, short course and departmental symposium participation.

Aer E 292. Aerospace Seminar. (1-0) Cr. R.S. Professional skills development activities. Designed to encourage involvement in a variety of aerospace engineering activities and related professional activities. Academic program planning, short course and departmental symposium participation.

Aer E 298. Cooperative Education. Cr. R.F.S.S. Prereq: Permission of department. First professional work period in the cooperative education program. Students must register for this course prior to commencing work.

Aer E 301. Flight Experience. Cr. R.F.S.S. Prereq: Credit or enrollment in 256E. Two hours of in-flight training and necessary ground instruction. Course content prescribed by the Aerospace Engineering and Engineering Mechanics Department. Four hours of flight training certified in a pilot log book can be considered by the course instructor as evidence of satisfactory performance in the course.

Aer E 311. Thermodynamics and Gas Dynamics for Aerospace Engineers. (4-0) Cr. 4. F.S. Prereq: 243, enrollment in 311L. 1st and 2nd laws of thermodynamics, properties of liquids and gases, thermodynamic processes and relations, energy equation, compressible flow, shock and expansion waves, isentropic flow, Fanno and Rayleigh flow. Nonmajor graduate credit.

Aer E 311L. Gas Dynamics Laboratory. (0-3) Cr. 0.5 S.F. (8 weeks) Prereq: 243, 243L, enrollment in 311L. Introduction to experimental compressible flow and propulsion principles, techniques and instruments through laboratory studies and experiments. Report writing.

Aer E 340. Introduction to Aerodynamics and Space Flight. (3-0) Cr. 3. F.S. Prereq: Math 265, Phys 221. Aerodynamics of flight vehicles. Dynamics of space flight. For nonaerospace engineering students.

Aer E 343. Aerodynamics II. (3-0) Cr. 3. S.S. Prereq: 311, enrollment in 343L. Incompressible, subsonic, transonic, supersonic, hypersonic flow over airfoils and wings. Viscous flow theory. Laminar boundary layers. Transition and turbulent flow. Nonmajor graduate credit.

Aer E 361. Computational Techniques for Aerospace Design. (1-4) Cr. S. S. Prereq: Credit or enrollment in 322, 343 and 396. Advanced programming, workstation environment, and development of computer models and aerospace analysis and design. Nonmajor graduate credit.

Aer E 391. Aerospace Seminar. (1-0) Cr. R. F. Professional skills development activities. Designed to encourage involvement in a variety of aerospace engineering technical and related professional activities. Academic program planning, short course and departmental symposium participation.

Aer E 392. Aerospace Seminar. (1-0) Cr. R. S. Professional skills development activities. Designed to encourage involvement in a variety of aerospace engineering activities and related professional activities. Academic program planning, short course and departmental symposium participation.

Aer E 396. Summer Internship. Cr. R. SS. Prereq: Permission of department. Summer professional work period.

Aer E 397. Engineering Internship. Cr. R. F. S. Prereq: Permission of department. Professional work period, one semester maximum per academic year.

Aer E 398. Cooperative Education. Cr. R. F. S. S. S. Prereq: 298, permission of department. Second professional work period in the cooperative education program. Students must register for this course prior to commencing work.

Aer E 412. Aerospace Vehicle Propulsion II. (3-0) Cr. 3. F. Prereq: 312, 343. Liquid and solid rocket propulsion, including cold gas, bi-propellant and monopropellant rocket propulsion. Magnetohydrodynamics, Hall thrusters and electric propulsion. Space mission requirements. Advanced and exotic space propulsion concepts. Nonmajor graduate credit.

Aer E 422. Advanced Aerospace Structural Analysis. (3-0) Cr. 3. S. Prereq: 322. Advanced topics in flight structural analysis and testing. Application of finite element techniques to beams, thermal and/or dynamic loads on structures. Laboratory demonstrations. Nonmajor graduate credit.

Aer E 442. V/STOL Aerodynamics and Performance. (3-0) Cr. 3. F. Prereq: 356. Introduction to the aerodynamics, performance, stability, control and critical maneuvering characteristics of V/STOL vehicles. Topics include hovercrafts, jet flaps, ducted fans and thrust vectored engines. Nonmajor graduate credit.

Aer E 461. Modern Design Methodology with Aerospace Applications. (2-2) Cr. 3. F. Prereq: 361. Modern engineering design process including quality and manufacturability, design optimization, probabilistic design, materials and strength considerations, durability, reliability and damage tolerance. Nonmajor graduate credit.

Aer E 471. Theory and Practice in Modern Experimental Aerothermal Sciences. (2-2) Cr. 3. S. Prereq: 391. Modern engineering design process including quality and manufacturability, design optimization, probabilistic design, materials and strength considerations, durability, reliability and damage tolerance. Nonmajor graduate credit.

Aer E 491. Aerospace Seminar. (1-0) Cr. R. F. S. Professional skills development activities. Designed to encourage involvement in a variety of aerospace engineering activities and related professional activities. Academic program planning, short course and departmental symposium participation.

Aer E 492. Aerospace Seminar. (1-0) Cr. R. F. S. Professional skills development activities. Designed to encourage involvement in a variety of aerospace engineering activities and related professional activities. Academic program planning, short course and departmental symposium participation.

Aer E 493. Aerospace Symposium. (1-0) Cr. R. F. S. Prereq: Senior classification. Presentation of a technical paper at the departments fall or spring Aerospace Symposium or at a recognized student or professional meeting of the American Institute of Aeronautics and Astronautics (AIAA).

Aer E 498. Cooperative Education. Cr. R. F. S. S. Prereq: 398, permission of department. Third and subsequent professional or cooperative education programs. Students must register for this course before commencing work.

Aer E 499. Senior Project. Cr. 1 to 3 each time taken. F. S. Prereq: Senior classification. Development of aerospace principles and concepts through individual or group projects.

Courses Primarily for Graduate Students, Open to qualified undergraduate students

Aer E 517. Experimental Stress Analysis. (Same as E M 517.) See Engineering Mechanics.

Aer E 521. Airframe Analysis. (3-0) Cr. 3. F. Prereq: 421 or E M 425. Analysis of static stresses and deformation in continuous aircraft structures. Various analytical and approximate methods of analysis of isotropic and anisotropic plates and shells.

Aer E 531. Automatic Control of Flight Vehicles. (3-0) Cr. 3. S. Prereq: 331. Applications of classical and modern linear control theory to automatic control of flight vehicles. Linear-quadratic regulator and pole-placement design applications.

Aer E 546. Computational Fluid Mechanics and Heat Transfer I. (Same as M 546.) (3-0) Cr. 3. F. Introduction to finite difference and finite volume methods used in modern engineering. Basic concepts of discretization, consistency, and stability. Applications of numerical methods to selected model partial differential equations.
Aer E 547. Computational Fluid Mechanics and Heat Transfer II. (Same as M E 547.) (3-0) Cr. 3. S. Prereq: 546. Application of computational methods to current problems in aerospace and mechanical engineering. Focus on analysis, numerical solution, and solution transfer. Methods for solving the Navier-Stokes and reduced equation sets such as Euler, boundary layer, and parallelized forms of the conservation equations. Introduction to turbulence and aerodynamic turbulence modeling.

Aer E 552. Entry Dynamics. (3-0) Cr. 3. S. Prereq: 551. Atmospheric entry and entry dynamics of missiles and spacecraft. Trajectory control. Descent and landing. Thermal protection considerations. Entry vehicle attitude control.

Aer E 561. Modern Aerospace Design Methodology. (2-0) Cr. 3. S. Prereq: 322, 331, 343, 351, and proficiency in FORTRAN programming. Principles and methodology of optimal and statistical design applied to aerospace structural, fluid dynamic, flight dynamic, control systems, and applications.

Aer E 565. Systems Engineering and Analysis. (Same as E E 565, I E 565.) (3-0) Cr. 3. S. Prereq: 547, Graduate classification in engineering. Introduction to organized multidisciplinary approach to designing and developing systems. Concepts, principles, and practice of systems engineering as applied to large integrated systems. Life-cycle costing, scheduling, risk management, functional analysis, conceptual and detail design, test evaluation, and systems engineering planning and organization.

Aer E 566. Avionics Systems Engineering. (Same as E E 566.) (3-0) Cr. 3. S. Prereq: 565. Avionics functions. Applications of systems engineering principles to avionics. Top-down design of avionics systems. Automated design tools.

Aer E 571. Environmental Aerodynamics. (3-0) Cr. 3. Alt. S., offered 2002. Prereq: 541. Survey of atmospheric turbulence, turbulent diffusion, and velocity profile within the atmospheric boundary layer with emphasis on modeling by means of the environmental wind tunnel.

Aer E 599. Creative Component. Cr. 1 to 5.

Courses for Graduate Students

Aer E 620. Seminar. (1-0) Cr. 1.

Aer E 631. Modern Flight Control Systems. (3-0) Cr. 3. F. Prereq: 578, 579. Applications of modern control theory to flight control. Controller design based on optimal control techniques. Nonlinear system theory applications. Typical aerospace control methods such as model following, load alleviation, and flux balance. Recent advances in aerospace vehicle control.

Aer E 635. Optimization in Aerospace Engineering I. (3-0) Cr. 3. Prereq: 531, 541, 551. Applications of unconstrained and constrained parameter optimization, dynamic programming, and optimal control theory to problems in aerodynamics, aerospace structures, flight dynamics and control, and aerospace design. Special emphasis on numerical methods of optimization.

Aer E 636. Optimization in Aerospace Engineering II. (3-0) Cr. 3. Prereq: 635. Applications of unconstrained and constrained parameter optimization, dynamic programming, and optimal control theory to problems in aerodynamics, aerospace structures, flight dynamics and control, and aerospace design. Special emphasis on numerical methods of optimization.

Aer E 646. Computational Methods for Internal and Low Speed Flows. (Same as M E 646.) (3-0) Cr. 3. Alt. F., offered 2001. Prereq: 547. Emphasis is on algorithms suitable for low speed and internal flows at speeds up through transonic. Topics include pressure-based schemes, pseudo-compressibility methods, use of preconditioning to develop algorithms suitable for all speeds. Entropy, eddy simulations, algorithms for unstructured grids, and finite elements in fluids.

Aer E 650. Fluid Mechanics Seminar. (Same as M E 650.) (1-0) Cr. 1 each time. Prereq: F. Prereq: Permission of instructor. Special topics of current research interest to students and staff of departments concerned.

African American Studies

www.iastate.edu/~catalog/catalog/courses/afri can.htm

(Interdepartmental Undergraduate Program)

Program Committee: D. Anderson, R. Baum, J. Berry, H. Blake, S. Dunlap, K. Hickok, D. Rollins, V. Sheares, G. Tartakov, Y. Teshome

Undergraduate Study

African American Studies, a cross-disciplinary program in the College of Liberal Arts and Sciences, offers an opportunity to explore African Americans’ contributions to American culture. Analysis of the African American experience—in history, literature, art, religion, and society—provides students with skills, sensitivities, and information to help them function more effectively in today’s diverse society.

African American Studies at Iowa State University is an expanding program. Most of the courses in the program satisfy general education requirements in the College of Liberal Arts and Sciences, the human relations requirement for teachers, and the university’s diversity requirement. At present students can minor or even design their own Interdisciplinary Studies major with an emphasis in African American Studies.

A minor in African American Studies requires six courses in the program with a minimum of 18 credits, including Introduction to African American Studies (Af Am 201) and Seminar in African American Culture (Af Am 460). The remaining credits must come from at least two departments, with at least two courses taken at the junior level or above. Independent study and internship opportunities are available for credit, but do not count in the minimum requirements for the minor.

Graduate Study

Courses open for nonmajor graduate credit: 334, 347, 348, 349, 350, 460, 475.

Courses Primarily for Undergraduate Students

Af Am 201. Introduction to African American Studies. (3-0) Cr. 3. F. S. An interdisciplinary introduction to the study of African American culture. Includes history, the social sciences, literature, religion, and the arts, as well as conceptual frameworks for investigation and analysis of the African American experience.

Af Am 252. African American Theatre Production. (Same as Thtr 262.) See Theatre.

Af Am 310. Introduction to African History I. (Same as Hist 310.) See History.

Af Am 311. Introduction to African History II. (Same as Hist 311.) See History.

Af Am 325. Peoples and Cultures of Africa. (Same as Anthr 325.) See Anthropology.

Af Am 333. African American Ethnology. (Same as Anthr 333.) See Anthropology.

Af Am 347. Survey of African American Literature. (Same as Engl 347.) See English. Nonmajor graduate credit.

Af Am 348. Contemporary African American Literature. (Same as Engl 348.) See English. Nonmajor graduate credit.

Af Am 350. African American Women. (Same as W S 350.) See Women’s Studies. Nonmajor graduate credit.

Af Am 354. History of African Americans II. (Same as Hist 354.) See History.

Af Am 460. Seminar in African American Culture. (3-0) Cr. 3. S. Intensive study of a selected topic in African-American Studies in one or more disciplines. Selected readings of various authors, movements, eras, or genres. Primary and secondary source materials. Nonmajor graduate credit.

Af Am 490. Independent Study. Cr. 1 to 3 each time taken, maximum of 3. Prereq: 6 credits in African American Studies, and permission of instructor and of the chair of the African American Studies Program.

Courses Offered by Other Departments

Engl 345. Selected Topics in Multicultural Literatures of the United States. See English. Available only when offered as a course in African American literature. Nonmajor graduate credit.

Relig 475. Seminar: Issues in the Study of Religion. See Religious Studies. When content is appropriate, may be taken as Relig 475. Nonmajor graduate credit.

Agricultural Education and Studies

Robert A. Martin, Head of Department

Professors: Acker, Carter, Crawford, Martin, W. Miller, Williams

Professors (Emeritus): Gamon, Gauger, Hoener, Lawrence, Parsons

Associate Professors: Bogue, Honeyman, Jones, G. Miller, Trede

Associate Professors (Emeritus): Brune

Assistant Professors: Grudens-Schuck, Morris, Polito, Trelker

Assistant Professors (Adjunct): Brown

Undergraduate Study

For undergraduate curricula in agricultural education, agricultural extension education, agricultural studies, and professional agriculture (off campus) leading to the degree of bachelor of science, see College of Agriculture, Curricula.

The department administers the interdepartmental graduate program in professional agriculture designed for off-campus students pursuing a master of agriculture degree; see Off-Campus Credit Courses and Programs.

Courses and workshops are offered, both on and off campus, for extension educators, agricultural education educators, teachers, and industry personnel.
Courses open to students for nonmajor graduate credit: 412, 414, 416, 417, 480, 496.

Courses for Undergraduate Students

AgEds 110. Orientation. (1-0) Cr. 0.5. F. Orientation to the department. Careers in agriculture.
A. Agricultural Education
B. Agricultural Studies
C. General Agriculture

AgEds 117. Orientation for Agricultural Excellence Scholars. (1-0) Cr. 1. Each time taken, maximum of 2 credits. F. Prereq: Enrollment as an agricultural excellence scholar. The roles of professionals in agriculture, academic preparation for assuming the role of a professional in agriculture, and meeting the demands of the scholar’s curriculum.

AgEds 112. Agriculture Biotechnology Colloquium. (1-0) Cr. 1. S. Prereq: Enrollment as an agricultural excellence scholar. The scientific basis of biological and social sciences in agriculture.

AgEds 211. Early Field Based Experience. (1-0) Cr. 1. Each time taken, maximum of 3 credits. F.S.SS. Prereq: 110. Five days on-site in an agricultural setting observing competencies and issues in problem solving, decision-making, initiative taking, teamwork, leadership, written and oral communications, critical thinking and creativity. When students register it is their responsibility to make an appointment with the department coordinator (very early in the semester) to plan their experience.
A. High School Agriculture Program
B. Extension
C. Agricultural Industries and Agencies

AgEds 282. Educating Youth Through Horticulture. (Same as Hort 282.) (2-0) Cr. 3. S. Planning, developing, and implementing science-based educational programs in a public garden setting. Through hands-on experiences at Reiman Gardens, students will learn about horticulture, learning theory, and the application of science principles as they pertain to educating youth.

AgEds 290. Special Problems in Agricultural Education and Studies. Cr. 1-3 each time taken, maximum of 6. F.S.SS.

AgEds 310. Foundations of Agricultural Education Programs. (2-0) Cr. 2. F.S. Historical development of agricultural education programs. Philosophic premises, program goals and objectives. Educational and social issues impacting the implementation of agricultural education programs.

AgEds 311. Presentation and Sales Strategies for Agricultural Audiences. (3-0) Cr. 3. S. F.S. Utilizing instructional methods, techniques, and problem solving, presentation and sales strategies with agricultural audiences.

AgEds 315. Personal and Professional Leadership in Agriculture. (3-0) Cr. 3. S. F.S. Develop leadership skills and learn leadership theories for personal and professional applications in agricultural education, industry, and communities.

AgEds 401. Planning Agricultural Education Programs. (Dual-listed with 501.) (3-0) Cr. 3. F. S. Prereq: 310. Responsibility of an agricultural education teacher, curriculum development, experiential learning opportunities including FFA and SAЕ, and assessment and maintenance of program quality.

AgEds 402. Methods of Teaching in Agricultural Sciences/Agribusiness. (Dual-listed with 502.) (3-0) Cr. 3. S. Prereq: 401. Topics include: principles of teaching and learning, individualized and group methods, application of learning, instructional management, special populations, and evaluation.

AgEds 412. Internship in Agricultural Education and Studies. 2 to 12 weeks. Cr. 2 to 6 each time taken, maximum of 6. F.S.SS. Prereq: 211; junior classification in AGEDS and permission of instructor.

A supervised learning experience in an approved learning setting with application to educational, agricultural and/or environmental principles and practices. Nonmajor graduate credit.

AgEds 418. Supervised Extension Experience. Cr. 2 to 8. May be repeated to a maximum of 18 credits. F.S.SS. Prereq: 211; junior classification; permission of instructor. Supervised professional experience in an approved county, area or state Cooperative Extension Service office. Nonmajor graduate credit.

AgEds 450. Farm Management and Operation. (1-6) Cr. 3. S. F.S.SS. Prereq: Econ 125, Econ 330, junior classification. Participation in the management and operation of a diversified farming enterprise. The class is responsible for the plans, records, and decisions for buying and selling the farm’s livestock, crops, and equipment. Special speakers on current topics. May be taken for credit 3 times at different times of the year by permission of the instructor. Nonmajor graduate credit.

AgEds 490. Independent Study in Agricultural Education and Studies. Cr. 1 to 3. F.S.SS. Prereq: Junior or senior classification, permission of instructor. A maximum of 6 credits of 490 may be used toward the total of 128 credits required for graduation.
A. Philosophy, Curriculum, and Methods
B. Leadership, Evaluation, and Administration
C. Business, Industry, and Production Agriculture
D. Extension and International Agriculture
E. Instructional Technology
F. Environmental Issues
H. Honors
I. Communications

AgEds 496. Agricultural Travel Course. Cr. 1 to 3. F.S.SS. Prereq: Permission of instructor. Study and tour of agricultural systems in selected countries. Emphasis will be on culture, geography, economy, history, livestock, marketing, and soils of host country. Nonmajor graduate credit.

Courses Primarily for Graduate Students, open to qualified undergraduate students.

AgEds 500. Short Course in Agricultural Education. Cr. 1 to 3 each time taken. F.S. Prereq: Permission of instructor. Specific problems, issues, and content areas in agricultural education. One credit of this course may be taken for credit 3 times at different times of the year by permission of the instructor.

AgEds 501. Planning Agricultural Education Programs. (Dual-listed with 401.) (3-0) Cr. 3. F. S. Prereq: 310. Responsibility of an agricultural education teacher, curriculum development, experiential learning opportunities including FFA and SAЕ, and assessment and maintenance of program quality.

AgEds 502. Methods of Teaching in Agricultural Sciences/Agribusiness. (Dual-listed with 402.) (3-0) Cr. 3. S. Prereq: 401. Topics include: principles of teaching and learning, individualized and group methods, application of learning, instructional management, special populations, and evaluation.

AgEds 510. Introduction to Research in Agricultural Education. (3-0) Cr. 3. S. Prereq: Permission of instructor. Determining your research focus, developing focuses, research problems and objectives, reviewing the literature and establishing a theoretical framework; establishing procedures for data collection and analysis, ethical issues. The primary outcome is the development of a thesis, dissertation or creative component proposal.

AgEds 511. Instructional and Organizational Issues for Beginning Teachers of Agriculture Programs. Cr. 1 to 2. F. Prereq: Permission of instructor. Planning and presenting agricultural programs in secondary schools.

AgEds 514. Organizing Agricultural Information for Professional and Scientific Meetings. (1-2) S. Prereq: Graduate classification in agriculture. Concepts and practices in planning, preparing, and presenting oral and written presentations and scientific papers by agriculturalists with special emphasis on computerized delivery methods.

AgEds 520. Instructional Methods for Teaching in Agricultural Education. (3-0) Cr. 3. F.S. Prereq: Permission of instructor. Preparation of graduate students to become college or university instructors. Addresses the principles of teaching and learning as they influence teaching activities; psychological aspects of learning, development of teaching plans; laboratory teaching; evaluating student learning; motivating students; examining personal teaching behaviors that influence learning, and choosing appropriate teaching methods.

AgEds 521. Leadership Development in Agricultural Education. (3-0) Cr. 3. Alt. F., offered 2002. Prereq: Permission of instructor. Principles and practices of leadership and group dynamics; designing, organizing, implementing and evaluating leadership programs for developing exemplary leaders of agricultural teams and groups.

AgEds 524. Program Development and Evaluation in Agricultural Extension Education. (3-0) Cr. 3. Alt. S., offered 2002. Prereq: Permission of instructor. Teacher and program planning for extension, agricultural education, and other contexts for nonformal education. Considers critical theories of planning to address power and interests in program development, needs assessment, and evaluation.

AgEds 530. Distance Teaching and Learning in Agricultural Education. (3-0) Cr. 3. Alt. F., offered 2001. Prereq: Permission of instructor. Understanding distance learning in agriculture and their educational needs and preferences. Technology options to enhance distance teaching. Methods of teaching at a distance and administrative issues.

AgEds 560. Role of Agricultural Education and Agricultural Extension in Technology Transfer. (3-0) Cr. 3. Alt. S., offered 2003. Prereq: Permission of instructor. Processes of agricultural and extension technology transfer and other agricultural education programs influence introduction and acceptance of agricultural technology, including strategies for technology transfer.

AgEds 561. Agricultural and Extension Education in Developing Countries. (3-0) Cr. 3. Alt. S., offered 2002. Prereq: Permission of instructor. Utilizing systematic approaches to identifying, analyzing, and solving problems in international agricultural education, with emphasis on the impact of agricultural education, formal and nonformal, on development.
Agricultural Engineering
(Administered by the Department of Agricultural and Biosystems Engineering)

Stewart Melvin, Head of Department

University Professors: Baker
Professors: Bern, Bundy, Hurburgh, L. Johnson, Karwar, Melvin, Misra
Professors (Adjunct): Quick
Professors (Collaborators): Colvin, Deboer, Lafen

Distinguished Professors (Emeritus): H. Johnson

Professors (Emeritus): Beer, Bekkum, Bockhop, Bucelle, Hazen, Hoerner, Hull, Keeney, Lovely, Mangold, Marley, Meyer, Peder son, Smith

Associate Professors: Anderson, Batchelor, Glanville, Greiner, Harmon, Hoff, Mickelson, Schwab, Tim, Xin

Assistant Professors: Birrell, Briggs, Brumm, Freeman, Lorinor, Powers-Schilling, Richard, Steward

Assistant Professors (Adjunct): Shahan
Assistant Professors (Emeritus): M. Boyd

Instructors (Adjunct): P. Boyd, Zmolek

Undergraduate Study

For the undergraduate curriculum in agricultural engineering leading to the degree bachelor of science, see College of Engineering, Curricula. This curriculum is accredited by the Engineering Accreditation Commission of the Accreditation Board for Engineering and Technology.

Agricultural Engineering Curriculum Educational Objectives: The goal of the curriculum in agricultural engineering is to train men and women to integrate basic physical and biological sciences through application of engineering fundamentals and design to systems for production, processing, storage, handling, distribution, and use of food, feed, fiber and other biomaterials, and management of related natural resources worldwide.

To achieve this goal, the ABE Faculty, with input from curriculum constituencies, has established the following educational objectives for the agricultural engineering curriculum:

1. To produce graduates competent in methods of analysis involving use of mathematics, fundamental physical and biological sciences, engineering sciences, and in computational skills needed for their future practice of agricultural engineering.

2. To produce graduates with the skills necessary in the design process, including abilities necessary to think creatively, to formulate problem statements, to communicate effectively, to synthesize information, and to evaluate and implement problem solutions.

3. To produce graduates capable of address-
plications other than agricultural engineering. Supporting work will be required depending on the student’s background and area of interest with requirements defined by departmental guidelines.

Well qualified juniors or seniors in Agricultural Engineering who are interested in graduate study may apply for concurrent enrollment in the Graduate College to simultaneously pursue both B.S. and M.S. degrees. Under concurrent enrollment, students are eligible for assistantships and simultaneously take undergraduate and graduate courses.

For the master of science program at least 30 credits of acceptable graduate work must be completed with a minimum of 22 credits of course work; corresponding numbers for the master of engineering program are 31 and 27. For the degree, a doctoral philosophy, the corresponding numbers are 72 and 49; plus an additional 6 hours of coursework are required as an “enrichment component” in some important subject area apart from the major, minor, or other principle thrust area. All graduate students are also expected to have some teaching/extension experience.

The department also participates in the interdepartmental majors in water resources, sustainable agriculture, and toxicology (see Index).

Courses open for nonmajor graduate credit: 342, 363, 405, 409, 413, 422, 445, 446, 447, 478.

Courses Primarily for Undergraduate Students

A E 110. Experiencing Agricultural and Biosystems Engineering. (3-0) Cr. 1. Laboratory-based, team-oriented experiences in a spectrum of topics common to the practice of agricultural and biosystems engineering. Report writing, co-ops, internships, careers, registration planning.

A E 215. Fundamentals of Agricultural and Biosystems Engineering I. (2-2) Cr. 3. F. Prereq: A E 110, Engr 160 or enrollment in Math 166. Application of mathematics and engineering sciences to energy and mass balances in agricultural and biological systems. Emphasis is on solving engineering problems in areas of hydrologic systems; precision farming; and machine systems.

A E 216. Fundamentals of Agricultural and Biosystems Engineering II. (2-2) Cr. 3. S. Prereq: A E 110, Engr 160 or 161, credit or enrollment in Math 166. Application of mathematics and engineering sciences to energy and mass balances in agricultural and biological systems. Emphasis is on solving engineering problems in the areas of air and water vapor systems; electrical systems; grain systems; food systems and bioprocessing.

A E 271. Engineering Applications of Parametric Solid Modeling. (1-2) Cr. 1. 8 weeks. F.S. Prereq: Engr 170 or AST 215 or equivalent. Creating, editing, organizing, and documenting two-dimensional and three-dimensional geometric models. Utilizing the solid models to create design documentation: standard drawing views, dimensions, and notes.

A E 298. Cooperative Education. Cr. R. F.S.SS. Prereq: Permission of department. First professional work period in the cooperative education program. Students must register for this course before commencing work.

A E 446. Agricultural Engineering Design II. (1-2) Cr. 2. S. Prereq: 445. Development of programming solutions to design problems identified in 445 for development by design teams. Presentation of designs through oral and written reports and prototypes. Nonmajor graduate credit.

A E 498. Cooperative Education. Cr. R. F.S.SS. Prereq: 326, permission of department. Third and subsequent professional work periods in the cooperative education program. Students must register for this course before commencing work.

Courses Primarily for Graduate Students, open to qualified undergraduates

A E 504. Instrumentation for Agricultural and Biosystems Engineering. (Dual-listed with 404.) (2-2) Cr. F. Crop Sci. 363 or Cap E 210 or E 447. Interfacing techniques for computer-based data acquisition and control systems. Basic interfacing components including A/D and D/A conversion, signal filtering, multiplexing, and process control. Sensors and their theory of operation applied to practical monitoring and control problems. Individual and group projects required for graduate credit.

A E 505I. Watershed Modeling and GIS. (Same as la LL 505I.) See Iowa Lakeside Laboratory

A E 520. Agricultural Water Quality Engineering. (3-0) Cr. 3-4. Alt. F., offered 2002. Prereq: Agron 163 or 167, Agron 154 or Geol 201, AST 324 or Agron 402 or C E 372. Physical and chemical properties and processes that affect the transport and fate of chemicals that occur in the environment. Methods of measurement of chemical concentrations and loadings on the environment. Modeling of chemical movement and fate. Methods of control of nonpoint source pollution in agricultural systems.

A E 551. Food Process Engineering. (Dual-listed with 451) (2-3) Cr. 3 Alt. S., offered 2002. Prereq: Math 367 or Ch E 357 or M E 436. Properties of agricultural and food materials needed in design, application, and evaluation of unit operations used in processing biological materials into finished products. Rheological, thermal, viscoelastic, hygroscopic, aerodynamic, and mechanical properties. Individual and/or group projects required for graduate credit.

Undergraduate Study

The Department of Agricultural and Biosystems Engineering offers the bachelor of science degree with a major in agricultural systems technology (see College of Agriculture, Curricula). The curriculum prepares men and women for careers requiring integration and application of agricultural and mechanical technology, physical and biological sciences, and business to manage human and natural resources, environmental systems, and systems for producing, processing, and marketing food and other biomaterials worldwide. Graduates have the ability to apply science and technology to problems related to agriculture and manage complex agricultural systems for sustainability. They are able to communicate effectively, have problem-solving skills and awareness of environmental issues. Graduates have developed team building skills and computer proficiency. Graduates find careers with agricultural machinery industries; environmental organizations; governmental agencies; farm builders; grain, feed, seed, fertilizer, and chemical companies; or in production agriculture.

The Department of Agricultural and Biosystems Engineering offers a minor in agricultural systems technology which may be earned by completing a minimum of 15 credits of agricultural systems technology courses, with a maximum of 6 credits of 100- and 200-level courses and at least two credits in 400-level courses. Students may select courses to provide emphasis in areas such as:

1. Machine and energy management
2. Livestock production systems
3. Soil and water resource management
4. Electrical systems
5. Grain operations
6. Environmental systems technology.

For undergraduate curriculum in agricultural systems technology leading to the degree of bachelor of science, see College of Agriculture, Curricula.

Visit our departmental website at www.aa.iastate.edu

Graduate Study

The Department of Agricultural and Biosystems Engineering offers courses for nonmajor graduate credit in agricultural systems technology for students taking major work in other departments, and cooperates in the interdepartmental program in professional agriculture. A minor in agricultural systems technology is offered.

Courses open for nonmajor graduate credit:

Courses Primarily for Undergraduate Students

AST 110. Experiencing Agricultural Systems Technology. (0-2 Cr.) F. Prereq: AST majors only.

AST 120. Introduction to Renewable Resources. (Same as Agron 120, A Ecl 120, Env S 120, For 120.) (3-0) Cr. 4. F. Sustainable use of soil, water, plants, and animals as renewable natural resources in an ecosyste

m context. History and organization of resource management. Concepts of integrated resource management.

AST 210. Fundamentals of Agricultural Systems Technology. (3-0) Cr. 2. F. Prereq: 115. Math 140, 142. Introduction to problem solving related to systems in agricultural power and machinery, environmental and natural resources, structures and animal environments, and electrical circuits. Basic energy and force laws, definitions, and units.

AST 297. Work Experience in Agricultural Systems Technology. Cr. 1 to 2. F.S.SS. Prereq: AST major and approval of adviser required prior to commencing work experience. Work experience must be related to career objectives. Written report and oral presentation required on the work experience. A maximum of 4 credits of 297 may be used toward the total of 128 credits required for graduation.

AST 298. Cooperative Education in Agricultural Systems Technology. Cr. R. F.S.SS. Prereq: Sophomore classification in AST and approval of cooperative coordinator. All cooperative education students must register for this course prior to commencing each work period.

AST 324. Soil and Water Conservation Management. (2-0) Cr. 2. F. S. Prereq: Math 140. Introduction to engineering principles applied to the planning of erosion control systems, water control structures, water quality management, drainage and irrigation systems, and farm water resource development.

AST 326. Conservation Surveying and Design. (0-3) Cr. 1. F. Prereq: Credit or enrollment in 324. Agricultural surveys for field area measurement and mapping. Handbook design of drainage systems and farm water control structures. Layout of conservation structures.

AST 335. Tractor Power. (3-0) Cr. 4. F. Prereq: 210. Math 140, 142. Theory and construction of tractor engines; mechanisms; power trains and hydraulic systems. Introduction to traction, chassis mechanics, and hydraulic power.

AST 397. Internship in Agricultural Systems Technology. Cr. R. F.S.SS. Prereq: Junior classification in AST and approval of cooperative coordinator. All cooperative education students must register for this course prior to commencing each work period.

AST 425. Impacts of Agriculture on Water Quality. (2-0) Cr. 2. F. Prereq: One of the following: 324, Agron 154, Math 154. Relationship between agriculture and water quality; chemical use; erosion and conservation tillage; water quality monitoring techniques; animal waste and water quality; nonpoint source pollution; management systems to reduce chemical leaching to groundwater. Nonmajor graduate credit.

AST 460. Agricultural Electronics. (1-3) Cr. 2. Alt. S.; offered 2002. Prereq: 360. Electronics to sense, monitor, and control processes in power and machinery, grain operations, animal environment, and natural resources. Semiconductors, digital logic circuits; speed, pressure, position, temperature, and moisture sensors; electromechanics; programmable logic controllers. Nonmajor graduate credit.

Agronomy

Steven L. Fales, Chair of Department

Distinguished Professors: Fehr, Hallauer

Professors (Collaborators): Hatfield, Jaynes, Karlen, Kaspar, Lantkem, Palmer, Shoemaker

Distinguished Professors (Emeritus): Black, Brenner, Frey, Pesek, Russell, Shaw

Professors (Emeritus): Anderson, Atkins, Benson, Burns, I. Carlson, R. Carlson, George, Green, Hodges, Immsande, Keeney, Larson, Pearce, Schafcr, Schaller, A. Scott, Shibles, Shrader, Skrdla, Strelitz, H. Thompson, L. Thompson, Traeh, Voss, Wedin, Woolley

Associate Professors: Brummer, Dekker, Knapp, Liebman, Mallarino, Manu, Peterson, Salvador, Sawyer, M. Thompson, Westgate, Wiedenhofet

Associate Professors (Adjunct): Wang

Associate Professors (Collaborators): Cambardella, Grant, Kelling, Laird, Logsdon, Moorman, Olson, Pollak

Assistant Professors: Al-Kaisi, Bectart, Bhattacharyya, Burns, Deiate, Farnham, Gibson, Goggi, Gu, Halveren, Henning, Jannik, Muenchach, Pollo

Assistant Professors (Adjunct): Borges, Heuchelin, Toddy

Assistant Professors (Collaborators): Gardner, Guan, Prueger, Sauer, M. Scott, Widlechner

Instructors: Ziegler

You can get additional departmental information at our website: http://www.agron.iastate.edu

Undergraduate Study

For undergraduate curriculum in agronomy, see College of Agriculture, Curricula.

The Department of Agronomy provides a curriculum for students interested in crop science, soil science, agricultural meteorology, and environmental science.

Students selecting agronomy as a major will elect an option in general agronomy, environmental science, or science.

Graduates have the theoretical and practical knowledge needed for efficient and sustainable production of food, feed, and fiber. They have a broad understanding of the role and diversity of plants, soils, and climates of the world. Graduates are skilled in communications, critical thinking, problem solving and working effectively with others. Students develop these skills in our required courses.

They understand the ethical, cultural, and environmental dimensions of issues facing professionals in agriculture and natural resources.

Courses and Programs Agronomy 131

An agronomy major prepares students for employment in agricultural business and industry, agricultural service organizations, crop production and soil management, environmental and natural resource management, farm management, and governmental agencies. Graduates pursue careers in the seed, fertilizer, and agricultural chemical industries as field agronomists, crop and soil management specialists, research technicians, sales and marketing specialists, and production managers. State and federal agencies employ agronomists as extension specialists, county extension directors, environmental and natural resource specialists, research associates, soil surveyors, soil conservationists, and in regulatory agencies as plant, food, and grain inspectors. Additional areas of work open to agronomists include integrated pest management, land appraisal, agricultural finance, turfgrass management, and the home lawn care industry.

The department offers a minor in agronomy. Students are required to complete an approved minor program that includes Agron 114, 154, 212, 354, and 6 additional credits, of which a minimum of 3 credits must be at the 300+ level. A minimum of 15 credits in agronomy must be earned at Iowa State for both the minor and the major. Students work with an agronomy advisor to select courses in crops, soils, and meteorology that are appropriate to their career goals. A list of approved courses is available from an agronomy advisor.

Students can also design a strong basic science education in crop science, soil science, agricultural meteorology, or biotechnology to prepare themselves for science-based jobs, graduate study, or for research careers.

Graduate Study

The department offers the degrees master of science and doctor of philosophy, with majors in agricultural meteorology, crop production and physiology, and specialization in seed science and weed science; plant breeding; and soil science with specialization in soil chemistry, soil fertility, soil management, soil microbiology and biochemistry, soil morphology and genesis, or soil physics. Minor work is offered for students with majors in other departments. A M.S. nonthesis option is available for students desiring a general degree program with additional coursework and a written creative component substituting for thesis research. The nonthesis option is not intended to prepare students for entering a Ph.D. program.

Graduates have a broad knowledge base germane to their area of study. They are trained to integrate and apply knowledge to different situations. Students develop skills in scientific reasoning, organization, and logical presentation of ideas.

A master of science degree in agronomy designed for the continuing education of professional agronomists is offered by the department. The program is taught at a distance using computer-based instructional media. It is a nonthesis degree requiring completion of a written creative component.

Agron 283. Pesticide Application Certification. (Same as Ent 286.) Cr. 3. R. F. Pogranichny. Certification in activities or completion of a course that enhances the development of leadership and group-dynamic skills. See adviser for departmental requirements.

Agron 110. Professional Development in Agronomy: Orientation. 11-0 Cr. R. F. Pogranichny. Orientation to college life, the profession of agronomy, and the agronomy curriculum.

Agron 120. Introduction to Renewable Resources. (Same as A Ecl 120, AST 120, Env S 120, For 120.) (3-0) Cr. 3. F.S. Overview of soil, water, plants, and animals as renewable natural resources in an ecosystems context. History and organization of resource management. Concepts of integrated resource management.

Agron 154. Fundamentals of Soil Science. (2-2 to 4 individualized study) Cr. 3. F.S. Prereq: Chem 163. Manu. Introduction to physical, chemical, and biological properties of soils, their formation, classification, and distribution. Use of soil survey and computer database information in balancing agronomic, economic, and environmental concerns in soil management. Credit for only one of 154, 155, or 156 may be applied toward graduation, not both.

Agron 155. Soils for Horticultural Scientists. (2-2 to 4 individualized study) Cr. 3. F.S. Prereq: Agron 163. Restricted to students in Horticulture. Manu. Physical, chemical and biological properties of natural and manufactured soils. Use of soil information when producing plants in natural and manufactured soils. Credit for only one of 154, 155, or 156 may be applied toward graduation.

Agron 156. Soils for Urban Use. (2-2 to 4 individualized study) Cr. 3. F.S. Restricted to students outside the College of Agriculture. Manu. Fundamental properties of soils and their application to urban settings. Development of a site plan for area of land using data from soil survey and computerized data bank information. Field trip. Credit for only one of 154, 155, or 156 may be applied toward graduation, not both.

Agron 206. Introduction to Meteorology. (Same as Mteor 206.) (3-0) Cr. 3. F.S. R. T. Taylor or Yarger. Basic concepts in meteorology, including atmospheric measurements, radiation, stability, precipitation, winds, fronts, forecasting, and severe weather. Applied topics include global warming, ozone depletion, El Nino, world climates, weather safety, and atmospheric optics. Self study section available to resident and distant education students all semesters.

Agron 283. Pesticide Application Certification. (Same as Ent 286.) Cr. 3. R. F. Pogranichny. Certification in activities or completion of a course that enhances the development of leadership and group-dynamic skills. See adviser for departmental requirements.

Agron 110. Professional Development in Agronomy: Orientation. 11-0 Cr. R. F. Pogranichny. Orientation to college life, the profession of agronomy, and the agronomy curriculum.

Agron 120. Introduction to Renewable Resources. (Same as A Ecl 120, AST 120, Env S 120, For 120.) (3-0) Cr. 3. F.S. Overview of soil, water, plants, and animals as renewable natural resources in an ecosystems context. History and organization of resource management. Concepts of integrated resource management.

Agron 154. Fundamentals of Soil Science. (2-2 to 4 individualized study) Cr. 3. F.S. Prereq: Chem 163. Manu. Introduction to physical, chemical, and biological properties of soils, their formation, classification, and distribution. Use of soil survey and computer database information in balancing agronomic, economic, and environmental concerns in soil management. Credit for only one of 154, 155, or 156 may be applied toward graduation, not both.

Agron 155. Soils for Horticultural Scientists. (2-2 to 4 individualized study) Cr. 3. F.S. Prereq: Agron 163. Restricted to students in Horticulture. Manu. Physical, chemical and biological properties of natural and manufactured soils. Use of soil information when producing plants in natural and manufactured soils. Credit for only one of 154, 155, or 156 may be applied toward graduation.

Agron 156. Soils for Urban Use. (2-2 to 4 individualized study) Cr. 3. F.S. Restricted to students outside the College of Agriculture. Manu. Fundamental properties of soils and their application to urban settings. Development of a site plan for area of land using data from soil survey and computerized data bank information. Field trip. Credit for only one of 154, 155, or 156 may be applied toward graduation, not both.

Agron 206. Introduction to Meteorology. (Same as Mteor 206.) (3-0) Cr. 3. F.S. R. T. Taylor or Yarger. Basic concepts in meteorology, including atmospheric measurements, radiation, stability, precipitation, winds, fronts, forecasting, and severe weather. Applied topics include global warming, ozone depletion, El Nino, world climates, weather safety, and atmospheric optics. Self study section available to resident and distant education students all semesters.
sizes field investigation of watershed-scale processes. Nonmajor graduate credit.

Agron 402. Watershed Hydrology and Surficial Processes. (Same as la LL 402.) See Iowa Lakeside Laboratory. Nonmajor graduate credit.

Agron 404. Global Change. (Same as EnSci 404, Env S 404, Mteor 404, Sec 404, 3-0) Cr. 3. S. Prequer. Four courses in physical or biological sciences or engineering. Take all. Biogeochemical cycles, ozone chemistry, global energy balance, structure and circulation of the atmosphere. Emphasis on modeling, climate variability, implications for agriculture, water resources, energy use, sustainable development and public policy. Human dimensions and ethical issues of global environmental change. Nonmajor graduate credit.

Agron 406. Climate of the Continents. (Same as Mteor 406.) (2-0) Cr. 2. F. Prequer. Agron/Mteor 206. Arritt. The major climate controls and how they affect the world climate. Climate classification. Combining controls and classification to explain the pattern of climates of the different continents and the world. Nonmajor graduate credit.

Agron 410. Professional Development in Agronomy: Senior Forum. (1-0) Cr. 1. F. S. Prequer. Senior classification. Staff. Development of an appropriate content for professionalism. Topics include professional certification, ethics, and maintaining an active network of information sources and professional contacts in support of lifelong learning. Student interpretation, writings, presentations, and discussions.

Agron 434. Forage Utilization. (2-0) Cr. 2. Alt. F. Prequer. 334. Barnhart. Systems of forage utilization including grazing, hay, and silage. Nutritional chemistry of forage plants and the genetic, environmental, and post-harvest influences on utilization. Students enrolling for graduate credit will be expected to complete an additional class project. Nonmajor graduate credit.

Agron 446. World Agronomic Systems. (3-0) Cr. 3. S. Prequer. 114, 154, 206. Muenchhart. Interdisciplinary study and comparison of agricultural systems around the world, including analysis of biophysical, social, economic, and political determinants of the systems. Emphasis on the interrelationships among system components. Analysis of system constraints and solution strategies. Evaluation of the productivity and sustainability of the systems. Team project and report.

Agron 450. Issues in Sustainable Agriculture. (Same as EnSci 450) (2-0) Cr. 2. F. Salvador. Agricultural science as a human activity; contemporary agricultural issues from agroecological perspective. Comparative analysis of intended and actual consequences of development of industrial agricultural practices.

Agron 457. Agronomic Applications of Site-Specific Management. (2-2) Cr. 3. F. Prequer. Agron 212, 384; Stat 101 or 104 or 105. Staff. Introduction and exploration of agronomic applications of site-specific management for improved resource management and environmental quality. Emphasis on developing a better understanding of the evolving technologies that are applicable to production agriculture and how these technologies can contribute to an improved environment.

Agron 460. Agroforestry Systems. (Dual-listed with 560, same as For 480.) See Forestry.

Agron 473. Soil Genesis and Landscape Relationships. (Same as EnSci 473) (2-3) Cr. 4. S. Prequer. Agron 154 or 402 or EnSci 402. Sandor. Relationships between soil formation, geomorphology, and environmental processes. Soil description, classification, genesis, geography, mapping, and interpretation for land use. Credit for only 473 or 473I may be applied for graduation, not both.

Agron 490. Independent Study. Cr. 1 to 3 each taken; 4 cr. maximum allowed toward the total of 128 credits required for graduation. F.S.S.S. Prequer. Junior or senior classification with at least 8 credits in agronomic courses. Instructor in specialty area consultation. Selected studies in crops, soils, or agricultural meteorology according to the needs and interests of the student. H. Honors.

Agron 491. Seed Science Experience. Cr. 2 to 4. F. S.S. Prequer. 338, advance approval and participation of employer and instructor. Staff. A professional work experience and creative project for seed science majors. The project requires the prior approval and participation of the employer and instructor and a written report.

Agron 495. Agricultural Travel Course Preparation. (0-1) Cr. May be repeated. F. S. Prequer. Permission of instructor. Limited enrollment. Students enrolled in this course also register for An S 496. Prequer. Agron 496 and An S 496 the following term. Topics will include the agricultural industries, climate, crops, culture, economics, geography, history, livestock, marketing, soils, and preparation for travel to locations to be visited. Information normally available 9 months before departure.

Agron 496. Agricultural Travel Course. Cr. arr. Approx. one-half credit per week traveled each An S 496 and Agron 496. May be repeated. Prequer. Permission of instructor. Limited enrollment. Students enroll in both An S 496 and Agron 496. Tour and study of production methods in major crop and livestock regions of the world. Influence of climate on crop, animal and production systems, market, and other factors on crop and livestock production. Location and duration of tours will vary. Summer tour will usually visit a northern location and winter tour will usually visit a southern location. Information usually available 9 months before departure. Tour expenses paid by students.

A. International Tour
B. Domestic Tour

Agron 497. Cooperative Education. Cr. R each time taken. F.S.S. Prequer. Permission of departmental cooperative education coordinator, senior classification. Required of all cooperative education students. Students must register for this course prior to commencing each work period.

Courses Primarily for Graduate Students, open to qualified undergraduates

Agron 500. Orientation Seminar. (2-0) Cr. 1. F. Prequer. International agronomy graduate students only. Pesek and staff. An introduction to Iowa and U.S. agriculture for international students in agronomic majors. Field trips that will give glimpses of the major agricultural regions of the United States, role in the functioning of research, teaching, and extension in fulfilling the charge given the land-grant university. Offered on a satisfactory-fail grading basis only.

Agron 502. Chemistry, Physics, and Biology of Soils. (2-0) Cr. 2. F. Prequer. Agron 114, 154, Biol 109, Chem 163, and Math 140. Borges. Soil chemical, physical, and biological properties that control processes within the soil, their influence on plant/soil interactions, and soil classification. Basic concepts in soil science and their applications. Required course for the Master of Science in Agronomy degree program. Restricted to graduate students enrolled in degree programs at Iowa State University.

Agron 503. Climate and Crop Growth. (2-2) Cr. 2. F. Prequer. Agron 114 and Math 140. Today, Taylor. Applied climatology in crop growth and development with emphasis on the climate-agriculture relationship and the microclimate-agriculture interaction. Required course for the Master of Science in Agronomy degree program. Restricted to graduate students enrolled in degree programs at Iowa State University.

Agron 504. Global Change. (Dual-listed with 404; same as Mteor 504.) See Geophysical and Atmospheric Sciences, Meteorology.

Courses and Programs Agronomy 133
Agron 561. Population and Quantitative Genetics for Breeding. (Same as An S 561.) (3-0) Cr. 4. F.
Prereq: Stat 401. Population and quantitative genetics for plant and animal breeding. Topics include: forces that change gene frequency, covariance between relatives, response to artificial selection, inbreeding depression, heterosis, cross-breeding, genotype-by-environment interaction, linkage analysis, mapping of quantitative trait loci, and marker assisted selection.

Agron 575. Soil Morphology, Genesis, and Classification. (3-0) Cr. 3. Alt., offered 2002.

Agron 577. Soil Physics. (3-0) Cr. 3. S. Prereq: 354; Math 186 recommended. Horton. The physical soil system: the soil components and their physical interactions; transport processes involving water, air, and heat.

Agron 578. Laboratory Methods in Soil Physics. (0-3) Cr. 1. S. Prereq: 577 concurrent. Horton. Methods of measuring soil physical properties such as texture, density, and water content, and transport of heat, water, and gases.

Agron 585. Soil Microbiology and Biochemistry. (Same as Micro 585) (2-0 or 2-3) Cr. 2 or 3. S. Prereq: 485, one course in biochemistry. Loymanch. Ecological and environmental considerations of soil microorganisms, organic matter, enzymes, carbon, and other nutrient cycles. Laboratory emphasizes creative component.

Agron 590. Special Topics. Cr. arr. Prereq: 15 credits in agronomy. Literature reviews and conferences on selected topics in crops, soils, or agricultural meteorology according to needs and interest of student.

Agron 591. Agronomic Systems Analysis. (3-0) Cr. 3. S. Prereq: 517, 513, 531, 532, 533.
Wienhoffs. Analysis of cropping systems from a problem-solving perspective. Case studies will be used to develop the students’ ability to solve agronomic problems. Required course for the Master of Science in Agronomy degree program. Restricted to graduate students enrolled in degree programs at Iowa State University.

Agron 592. Current Issues in Agronomy. (3-0) Cr. 3. S. Prereq: 501, 503, 511, 512, 514. Knapp. Study and discussion of topics of current interest to the field of agronomy. While Agron 591 deals with agronomics at the farm and landscape level, Agron 592 seeks to address issues on a broader scale including off-farm agricultural impacts. Required course for the Master of Science in Agronomy degree program. Restricted to graduate students enrolled in degree programs at Iowa State University.

Agron 593. Workshop in Agronomy. C. arr each time taken. Prereq: Graduate classification:
A. Crops
B. Soils
C. Agricultural Meteorology
D. Microcomputers in Agronomy
E. Seed Science
F. Weed Science
G. Agronomy Field Laboratory

Agron 594. Workshop in Agronomy. (0-1) Cr. 1. S. Prereq: 4 credits completed in the M.S. in Agronomy Distance Education Program. Tody. Hands-on field and laboratory experience including integrated pest management, climatology, soils, crops, and statistics. Required course for the Master of Science in Agronomy degree program. Restricted to graduate students enrolled in degree programs at Iowa State University.

Agron 599. Creative Component. Cr. arr. Prereq: Nonthesis M.S. option only. A written report based on research, library readings, or topics related to the student’s area of specialization and approved by the student’s advisory committee.
A. Agricultural Meteorology
B. Crop Production and Physiology
C. Plant Breeding
D. Soil Chemistry
E. Soil Fertility
F. Soil Management
G. Soil Microbiology and Biochemistry
H. Soil Physics and Genesis
I. Soil Physics
K. Seed Science
L. Weed Science
M. Agronomy

Courses for Graduate Students

Agron 600. Seminar. (1-0) Cr. 1 each time taken. Reports and discussion of recent literature and research.
A. Plant Breeding, M. Lee (F); K. Lamkey (S).
B. Soils, F. S. Staff.
C. Crop Production and Physiology, F. Staff.
600C offered on a satisfactory-fail grading basis only.

Agron 609. Agricultural Meteorology Conference. (1-0) Cr. 1 each time taken. F.S.S. Prereq: Permission of instructor. Staff. Literature reviews related to agricultural meteorology, beyond the scope of current courses offered.

Prereq: 516; Bot 513; SPMR 404; permission of instructor. Westgate. An in-depth treatment of physiological and biochemical processes and their relationships to crop growth and development. Emphasis on individual study followed by in-class presentations and discussion.

Agron 696. Seminar in Plant Physiology and Molecular Biology. (Same as Bot 696). See Botany.

Agron 698. Agronomy Teaching Practicum. Cr. 1 to 2 each time taken. F.S.S. Prereq: Graduate classification in agronomy and permission of instructor. Staff. Graduate student experience in the agronomy teaching program. Offered on a satisfactory-fail grading basis only.

A. Agricultural Meteorology
B. Crop Production and Physiology
C. Plant Breeding
D. Soil Chemistry
E. Soil Fertility
F. Soil Management
G. Soil Microbiology and Biochemistry
H. Soil Morphology and Genesis
I. Soil Physics
J. Plant Physiology
K. Seed Science
L. Weed Science

Air Force Aerospace Studies

Courses and Programs Air Force Aerospace Studies

www.iastate.edu/~airforce/
Kenneth H. Schindele, Chair of Department
Professors: Schindele
Assistant Professors (Adjunct): Bergman, Brandau, Pierce

Undergraduate Study

The objectives of the Department of Air Force Aerospace Studies are to provide qualified students the opportunity to earn a commission as an officer in the active duty Air Force, and to build better citizens for those not interested in joining the Air Force.

The curriculum is divided into two basic phases, the general military course (GMC) and the professional officer course (POC). The GMC is introductory and consists of four consecutive 1-hour courses normally taken during the freshman and sophomore years. GMC completion is not a prerequisite for entry into the POC, although it is recommended by the department.
Prior to entry into the POC, most students complete field training at an Air Force base. Students who have completed the GMC participate in a 4-week program, which provides a concentrated experience in the Air Force environment. The training program includes junior officer training, aircraft and aircrew orientation, career orientation, survival training, an introduction to typical base functions, and physical training. A 5-week training program is provided for those students entering the POC who did not complete the GMC. This program includes all that is offered in the 4-week program, plus academic and leadership laboratory experiences included in the on-campus GMC courses.

Selection for the professional officer course is on a competitive basis, and cadets enrolling in this course must meet certain academic, mental, physical, and moral standards. Qualified cadets may be selected as flight candidates and receive flight instruction prior to attending Undergraduate Pilot Training (UPT). Upon enrollment in the POC, all cadets are required to complete a contractual agreement with the Air Force, which obligates them to 4 years of active duty as an officer in the United States Air Force. Air Force active duty commitment is 10 years for pilots and 6 years for navigators. Uniforms and AFROTC texts are supplied to the cadets, and those in the POC receive a subsistence allowance of $200 per month.

Students who fail to observe the contract terms may be called to active duty in an enlisted grade or be required to repay monies received from the Air Force. Air Force ROTC scholarships are available and provide payment of full tuition, fees, and textbooks. In addition, Scholarship cadets receive a $200 monthly subsistence allowance. Upon acceptance of a scholarship, the student executes a contract with the Air Force. Scholarships can be awarded for periods of 2, 3, or 4 years, with up to 1 additional year for qualified applicants in selected majors. To determine eligibility and initiate application procedures for the scholarship program, interested students should contact the department.

Entry into the program is not dependent on departmental major or year in the university. The AFROTC program is open to both male and female students.

The College of Liberal Arts and Sciences offers a minor in military studies. Requirements for the minor include taking a minimum of 15 credit hours of ROTC instruction, which may be taken from one or a number of the ROTC programs. At least 6 credit hours must be in courses numbered 300 or above.

Courses Primarily for Undergraduate Students

AFAS 101. Leadership Laboratory I. (0-2) Cr. 1. Air Force customs and courtesies; drill and ceremonies, issuing military commands, instructing, directing and evaluating the preceding skills, teaching the environment of an Air Force officer and learning about areas of opportunity available to commissioned officers. This laboratory is required if taking AFAS 142 and considering application in the POC. Leadership Laboratory is open to students who are members of the Reserve Officer Training Corps or are eligible to pursue a commission as determined by the professor of aerospace studies. Offered on a satisfactory-fail grading basis only.

AFAS 102. Leadership Laboratory II. (0-2) Cr. 1. Air Force customs and courtesies; drill and ceremonies, issuing military commands, instructing, directing and evaluating the preceding skills, teaching the environment of an Air Force officer and learning about areas of opportunity available to commissioned officers. This laboratory is required if taking AFAS 142 and considering application in the POC. Leadership Laboratory is open to students who are members of the Reserve Officer Training Corps or are eligible to pursue a commission as determined by the professor of aerospace studies. Offered on a satisfactory-fail grading basis only.

AFAS 141. The United States Air Force Today. (1-0) Cr. 1. F. Development of the Air Force, its mission and organization; emphasis on functions of U.S. strategic offensive, defensive, and special purpose forces; relationships and interaction with Army and Navy forces. Introduction of oral, written, and interpersonal communication skills. Initial military training related to officerhood and professionalism, engaging in military customs and courtesies, and participating in military ceremonies.

AFAS 142. The United States Air Force Today. (1-0) Cr. 1. S. Development of the Air Force, its mission and organization; emphasis on functions of U.S. strategic offensive, defensive, and special purpose forces; relationships and interaction with Army and Navy forces. Introduction of oral, written, and interpersonal communication skills. Initial military training related to officerhood and professionalism, engaging in military customs and courtesies, and participating in military ceremonies.

AFAS 201. Leadership Laboratory II. (0-2) Cr. 1. Air Force customs and courtesies, drill and ceremonies, issuing military commands, instructing, directing, and evaluating the preceding skills, the environment of an Air Force officer and learning about areas of opportunity available to commissioned officers. Continued military training related to wearing the uniform, engaging in military customs and courtesies, and participating in military ceremonies. This laboratory is required if taking AFAS 241 and applying for the POC. Leadership Laboratory is open to students who are members of the Reserve Officer Training Corps or are eligible to pursue a commission as determined by the professor of aerospace studies. Offered on a satisfactory-fail grading basis only.

AFAS 202. Leadership Laboratory II. (0-2) Cr. 1. Air Force customs and courtesies, drill and ceremonies, issuing military commands, instructing, directing, and evaluating the preceding skills, the environment of an Air Force officer and learning about areas of opportunity available to commissioned officers. Continued military training related to wearing the uniform, engaging in military customs and courtesies, and participating in military ceremonies. This laboratory is required if taking AFAS 241 and applying for the POC. Leadership Laboratory is open to students who are members of the Reserve Officer Training Corps or are eligible to pursue a commission as determined by the professor of aerospace studies. Offered on a satisfactory-fail grading basis only.

AFAS 241. The Development of Air Power. (1-0) Cr. 1. F. Study of military air power through historical events, leaders, technology and politics. Introduction into the basics of leadership, teamwork and ethics/values. Demonstration of oral, written and interpersonal communication skills.

AFAS 242. The Development of Air Power. (1-0) Cr. 1. S. Study of military air power through historical events, leaders, technology and politics. Introduction into the basics of leadership, teamwork and ethics/values. Demonstration of oral, written and interpersonal communication skills.

AFAS 301. Leadership Laboratory III. (0-3) Cr. 1. Advanced leadership experiences involving the planning and controlling of the Air Force activities of the AFROTC cadet corps, the preparation and presentation of briefings and oral and written communications, and the providing of interviews, guidance, and information that will increase the understanding, motivation, and performance of other cadets. This lab is required if taking AFAS 341 and pursuing a commission. Leadership Laboratory is open to students who are members of the Reserve Officer Training Corps or are eligible to pursue a commission as determined by the professor of aerospace studies. Offered on a satisfactory-fail grading basis only.

AFAS 302. Leadership Laboratory II. (0-3) Cr. 1. Advanced leadership experiences involving the planning and controlling of the Air Force activities of the AFROTC cadet corps, the preparation and presentation of briefings and oral and written communications, and the providing of interviews, guidance, and information that will increase the understanding, motivation, and performance of other cadets. This lab is required if taking AFAS 342 and pursuing a commission. Leadership Laboratory is open to students who are members of the Reserve Officer Training Corps or are eligible to pursue a commission as determined by the professor of aerospace studies. Offered on a satisfactory-fail grading basis only.

AFAS 341. Air Force Management and Leadership. (3-0) Cr. 3. Students will learn the skills, management, and leadership: listening, speaking, and writing skills required by an Air Force officer; management tools, practices, and controls; management principles and functions; leadership theory and practices. Introduction to Quality Air Force. Advanced leadership training pertaining to planning, organizing, supervising, and conducting military activities through experiential exercises.

AFAS 342. Air Force Management and Leadership. (3-0) Cr. 3. Communication skills, management, and leadership: listening, speaking, and writing skills required by an Air Force officer; management tools, practices, and controls; management principles and functions; leadership theory and practices. Introduction to Quality Air Force. Advanced leadership training pertaining to planning, organizing, supervising, and conducting military activities through experiential exercises.

AFAS 401. Leadership Laboratory IV. (0-3) Cr. 1. Advanced leadership experiences involving the planning and controlling of the military activities of the AFROTC cadre corps, the preparation and presentation of briefings and oral and written communications, and the providing of interviews, guidance, and information that will increase the understanding, motivation, and performance of other cadets. This lab is required if taking AFAS 442 and pursuing a commission. Leadership Laboratory is open to students who are members of the Reserve Officer Training Corps or are eligible to pursue a commission as determined by the professor of aerospace studies. Offered on a satisfactory-fail grading basis only.

AFAS 402. Leadership Laboratory IV. (0-3) Cr. 1. Advanced leadership experiences involving the planning and controlling of the military activities of the AFROTC cadre corps, the preparation and presentation of briefings and oral and written communications, and the providing of interviews, guidance, and information that will increase the understanding, motivation, and performance of other cadets. This lab is required if taking AFAS 442 and pursuing a commission. Leadership Laboratory is open to students who are members of the Reserve Officer Training Corps or are eligible to pursue a commission as determined by the professor of aerospace studies. Offered on a satisfactory-fail grading basis only.

American Indian Studies

(Interdepartmental Undergraduate Minor)
Program Director: Sidner Larson

The American Indian Studies Program is a cross-disciplinary program in the College of Liberal Arts and Sciences which offers an opportunity to learn more about the cultural heritage of American Indians, their historical relationship with non-Indians, and their participation in contemporary American society. This program emphasizes perspectives from American Indian Studies, anthropology, art, history, literature, political science, and sociology.

The courses in the American Indian Studies Program provide added background for students whose career interests may include multicultural services, legal services, or public administration.

Within the College of Liberal Arts and Sciences, courses in American Indian studies can be used as electives, in a minor, or in an interdisciplinary studies major (for details, see Index, Interdisciplinary Studies). Students majoring in another college who wish to use these courses should consult with their advisers.

A minor in the College of Liberal Arts and Sciences must include at least 15 credits of courses in the field. A minor in American Indian studies must include 210, two courses chosen from among the following: 310, 322, 332 and 346, and two additional courses chosen from the program courses listed below. The American Indian Studies Program Committee will, upon application by the student and review of the program, certify that the student has completed a minor in American Indian Studies.

Because course offerings vary from year to year, any student interested in a minor in American Indian Studies should contact the American Indian Studies office for advising. (See Index, LAS Cross-Disciplinary Programs.)

Courses open for nonmajor graduate credit: 346.

Courses Primarily for Undergraduate Students
Am In 210. Introduction to American Indian Studies. (3-0) Cr. 3. Each time taken, maximum of 6 F. S. Issues within specific topical areas of American Indian society and culture, such as social work with Indian families, tribal government, and environmental policy.
Am In 315. Archaeology of North America. (Same as Anthr 315.) See Anthropology.
Am In 322. The American Indian. (Same as Anthr 322.) See Anthropology.
Am In 323. Peoples and Cultures of Latin America. (Same as Anthr 323.) See Anthropology.
Am In 328. American Indian Religions. (Same as Relig 328.) See Religious Studies.
Am In 346. American Indian Literature. (Same as Engl 346.) See English. Nonmajor graduate credit.
Am In 420. Cultural Continuity and Change on the Prairie-Plains. (Same as Anthr 420.) See Anthropology.
Am In 432. American Indians Today. (Same as Anthr 432.) See Anthropology.
Am In 490. Independent Study. Cr. var. Prereq: 6 credits in American Indian studies; permission of instructor. Designed to meet the needs of students who wish to study in areas other than those in which courses are offered. No more than 9 credits in Am In 490 may be counted toward graduation.

Courses Offered by Other Departments
Anthr 428. Archaeological Laboratory Methods and Techniques. See Anthropology.
Anthr 429. Archaeological Field School. See Anthropology.
C I 280C. Native American Tutoring. See Curriculum Instruction.
Hist 370. History of Iowa. See History.
P ol S 312. Minicourse in American Government and Politics. See Political Science. Acceptable only when offered as a course in American Indian tribal government and political theory.

Animal Ecology

Bruce W. Menzel, Chair of Department
University Professors: Atchison
Professors: Best, Clark, Dinsmore, Downing, Menzel, Summerfelt
Professors (Collaborator, Emeritus): Klaas
Distinguished Professors (Emeritus): Carlander
Professors (Emeritus): M. Bachmann, R. Bachmann, Franklin, Moorman
Associate Professors: Danielson, Debinski, Morris
Assistant Professors: Pease
Assistant Professors (Collaborators): Hohman, Koford, Pierce

Undergraduate Study

The department offers work for the bachelor of science degree with a major in animal ecology (see College of Agriculture, Curricula). For further information visit our departmental home page at: www.a ecl.iastate.edu

The animal ecology curriculum provides its majors with an understanding of ecological principles and processes and their applications to natural resource management. It is oriented toward students desiring a general and flexible program in environmental biology and for those planning graduate study. Students may select from six options: Aquaculture, Ecology, Fisheries and Aquatic Sciences, Interpretation of Natural Resources, Preveterinary and Wildlife Care, or Wildlife. Graduates find employment as aquaculturists, wildlife biologists, fisheries biologists, and ecologists for industry, environmental consulting firms, natural resource and environmental agencies and organizations, zoos, and as educators.

Graduates of the Animal Ecology program understand the basic principles of animal biology, ecology and management, and relevant aspects of scientific communication, basic mathematics and sciences, computing applications, and personal and professional development. Six specific options prepare students for careers in aquaculture, fisheries and aquatic sciences, ecology, wildlife, interpretation of natural resources, wildlife care and veterinary sciences. Each option has specific outcomes expectations that include (1) the scope of the specialization and its relationships to broader aspects of animal ecology, biotic resource management, and other allied scientific disciplines and professions, (2) career opportunities and requirements, and (3) knowledge and skills appropriate for employment at technical and practitioner levels in each discipline.

Graduates are able to communicate and work effectively in the multidisciplinary arena of ecology and natural resource management.

This curriculum requires three months of relevant work experience or study at a biological station prior to graduation. The latter may be accomplished at the university’s affiliate field stations: Iowa Lakeside Laboratory at West Lake Okoboji, and Gulf Coast Research Laboratory at Ocean Springs, Mississippi. Information on these laboratories is available from the department’s Student Services Center.

The department participates in interdisciplinary programs in biology, environmental studies, and pest management. By proper selection of free and restricted elective courses, students can obtain a minor or a secondary major in environmental studies or pest management.

Preveterinary medicine preparation may be achieved while satisfying degree requirements in animal ecology.

Additional education and training can lead to other opportunities in such areas as research and management, natural resources planning and administration, teaching, and environmental consulting, among others. Graduate training is necessary for many specialized positions within the fields of animal ecology. Majors preparing for graduate study should consult with their academic adviser concerning appropriate coursework.

Students seeking certification to teach biology in secondary schools must meet requirements of the College of Education as well as those of the Department of Animal Ecology. In addition, they must apply formally for admission to the teacher education program (see Index, Teacher Education Program). Students with an interest in careers in outdoor writing are encouraged to obtain a minor or a second major in journalism (see Index, LAS Cross-Disciplinary Programs). Students who wish to pursue a job as a conservation officer may wish to minor in criminal justice (see Index, Criminal Justice Studies).

Courses and Programs

Animal Ecology 137
The Department of Animal Ecology provides several scholarships; application information is available in the departmental Student Services Center.

The department offers a minor in animal ecology that may be earned by taking 15 credits in the department including 120, 310, 312 plus five additional credits of Animal Ecology courses at the 300 level or above.

Graduate Study

The department offers work for the degrees of master of science and doctor of philosophy with majors in animal ecology, fisheries biology, and wildlife biology. Students may also major in interdepartmental graduate majors in ecology and evolutionary biology, toxicology, or water resources (see Index).

An M.S. in Animal Ecology nomenclature option is available for students desiring a general degree program with additional coursework and a creative component substituting for thesis research.

Graduates have a broad understanding of the basic principles of animal biology, ecology and management, and relevant aspects of basic mathematics and natural sciences, computing applications, and personal and professional development. They are able to execute rigorous independent research, have developed problem-solving and critical-thinking skills, and can communicate effectively with scientific colleagues and the general public in both formal and informal settings.

Personnel of the Biological Resources Division of the U.S. Geological Survey, through the Iowa Cooperative Fish and Wildlife Research Unit, and the Iowa Department of Natural Resources contribute to the graduate programs of the department.

No more than two dual-listed animal ecology courses may be applied for major graduate credit. Additional work is expected of students taking a dual-listed course for credit at the 500 level.

Courses open for nonmajor graduate credit: 350, 410L, 410L, 413, 419L, 430, 451, 455, 460.

Courses Primarily for Undergraduate Students

A Ecl 104. Practical Work Experience. Cr. R. Three months of relevant work experience or study at a summer biological station. See adviser for specific requirements.

A Ecl 120. Introduction to Renewable Resources. (Same as Agric 120, AST 120, Env S 120, For 120.) (3-0) Cr. F. S. S. Overview of soil, water, plants, and animals as renewable natural resources in an ecosystems context. History and organization of resource management. Concepts of integrated resource management.

A Ecl 130. Wildlife and Agriculture. (2-0) Cr. 2. S. Survey of the ecology and management of fish and wildlife resources in areas of intensive agriculture, with emphasis on Iowa. Wildlife conservation and management practices on private agricultural lands. Designed for nonmajors.

A Ecl 301L. Iowa Natural History. (Same as la LL 301L) See Iowa Lakeside Laboratory.

A Ecl 303. Internship. Cr. 1 to 3. F.S.S. Prereq: Permission of instructor and sophomore standing. Placement with county conservation boards, camps, zoos, parks, etc., for experience as interpreters, rangers, and technicians. A total of 6 credits may be used toward degree requirements.

A Ecl 303L. Undergraduate Internship. (Same as la LL 303L) See Iowa Lakeside Laboratory.

A Ecl 305. Seminar. (2-0) Cr. 1 each time taken; may be taken more than once for graduation credit. F.S. Prereq: Permission of instructor. Current topics in animal ecology, fisheries and wildlife biology, and environmental issues.

A Ecl 312. Ecology. (Same as Biol 312.) See Biology. A Ecl 312L. Ecology. (Same as la LL 312L) See Iowa Lakeside Laboratory.

A Ecl 321. Fish Biology. (Dual-listed with 521.) (2-3) Cr. 3. F. S. Prereq: Anatom, physiology, behavior, and ecology of fishes.

A Ecl 326L. Ornithology. (Same as la LL 326L) See Iowa Lakeside Laboratory.

A Ecl 330. Interpretation of Natural Resources. (2-3) Cr. 3. S. Prereq: 6 credits in biological sciences. History, objectives, forms, and techniques of natural resources interpretation in the settings of county, state, and national parks.

A Ecl 350. Ecological Methods and Analyses. (2-2) Cr. 3. S. Prereq: 120, 312, Stat 101 or 104. Quantitative techniques used in management of natural resources with emphasis on inventory and manipulation of habitat and animal populations. Nonmajor graduate credit.

A Ecl 361. Natural History of Fishes. (0-3) Cr. 1. F. Prereq: 310, 312. Natural history and ecology of Midwest fishes, including identification, survey methods, habitat requirements, foods and feeding, reproduction, communities and other ecological factors which affect species well-being.

A Ecl 362. Natural History of Reptiles and Amphibians. (0-3) Cr. 1. S. Prereq: 310, 312. Natural history and ecology of Midwest reptiles and amphibians, including identification, survey methods, habitat requirements, foods and feeding, reproduction, communities and other ecological factors which affect species well-being.

A Ecl 363. Natural History of Birds. (0-3) Cr. 1. S. Prereq: 310, 312. Natural history and ecology of Midwest birds, including identification, habitat requirements, distribution, foods and foraging, and reproduction.

A Ecl 384. Natural History of Mammals. (3-0) Cr. 1. F.S. Prereq: 310, 312. Natural history and ecology of Midwest mammals, including identification, survey methods, habitat requirements, foods and feeding, reproduction, communities and other ecological factors which affect species well-being.

A Ecl 404L. Behavioral Ecology. (Same as la LL 404L) See Iowa Lakeside Laboratory.

A Ecl 410. Aquatic Ecology. (Same as EnSci 410.) (2-0) Cr. 2. F. Prereq: Biol 202, 202L. Recommended. Structure and function of aquatic ecosystems with application to management, fisheries, and pollution problems. Nonmajor graduate credit.

A Ecl 410L. Aquatic Ecology Laboratory. (Same as EnSci 410L.) (3-0) Cr. 1. F. Prereq: Concurrent enrollment in 410. Field trips and laboratory exercises to accompany 410. Hands-on experience with aquatic research and monitoring techniques and concepts. Nonmajor graduate credit.

A Ecl 413. Community Ecology and Management. (2-2) Cr. 3. S. Prereq: Biol 312. The effect of interspecific interactions on the structure and dynamics of natural and managed communities, including concepts of guild structure and trophic web dynamics and their importance to the productivity, diversity, stability, and sustainability of communities. The implications of interspecific interactions in the management of wild species will be emphasized with illustrative case histories of interactions between plants, invertebrates, and vertebrates. Nonmajor graduate credit.

A Ecl 419L. Vertebrate Ecology and Evolution. (Same as la LL 419L) See Iowa Lakeside Laboratory. Nonmajor graduate credit.

A Ecl 420L. Amphibians and Reptiles. (Same as la LL 420L.) See Iowa Lakeside Laboratory.

A Ecl 425. Aquatic Insects. (Dual-listed with 525; same as Ent 425.) See Entomology.

A Ecl 430. Media Techniques in Natural Resources Interpretation. (3-0) Cr. 3. Alt. F., offered 2001. Prereq: J-320. Media techniques used by interpreters for teaching the public about natural resources. Nonmajor graduate credit.

A Ecl 440. Fishery Management. (Dual-listed with 540.) (2-2) Cr. 3. F. S. Prereq: 120, 312, credit or enrollment in 410; Stat 101 or 104. Biological basis of fishery management, fishery problems, and management practices for freshwater, anadromous, and marine fisheries.

A Ecl 442. Aquaculture. (Dual-listed with 542.) (2-3) Cr. 3. S. Prereq: 410; 410L, credit or enrollment in 321. Concepts related to the culture of aquatic organisms including culture systems, water quality, nutrition, genetics, and diseases.

A Ecl 455. International Wildlife Issues. (3-0) Cr. 3. S. Prereq: 120, 310, 312 or graduate standing. Biological, political, social, and economic factors affecting the management of international wildlife resources. Nonmajor graduate credit.

A Ecl 460. Controversies in Renewable Resource Management. (3-0) Cr. 3. F. Prereq: 120, and 312 or For 301. Junior classification. Analysis of controversial renewable resource issues using a case approach that considers strategy and adequacy of information and scientific understanding. Ecological, social, political, economic, and ethical implications of each issue will be analyzed. Nonmajor graduate credit.

A Ecl 490L. Undergraduate Independent Study. (Same as la LL 490L) See Iowa Lakeside Laboratory.

A Ecl 493. Workshop. (1-0) Cr. 1. S. Prereq: Permission of instructor. Workshop in ecological and fishery and wildlife management practices for landowners and farm managers. Not for students majoring in animal ecology. May be taken more than once for graduation credit.

A Ecl 496. Animal Ecology Travel Course. (Dual-listed with 596.) Cr. 1-3. May be repeated. Prereq: Permission of instructor. Limited enrollment. Extended field trips to study ecological topics in forests, grasslands, deserts, wetlands, coastal, marine or other environments. Location and duration of trips will vary. Pre-trip sessions arranged. Trip expenses paid by students. A. International B. Domestic
Courses for Graduate Students

A Ecl 505. Seminar. (2-0) Cr. 1 each time taken; may be taken more than once for graduation credit. F.S. Prereq: Permission of instructor or graduate classification. Current problems in fish and wildlife management, and environmental problems related to fish or wildlife resources.

A Ecl 508L. Aquatic Ecology. (Same as la LL 508L) See Iowa Lakeside Laboratory.

A Ecl 510. Histology and Pathology of Fish Diseases. (Same as Zool 510L) (2-3) Cr. 3. Alt. S., offered 2002. Prereq: A course in vertebrate histology or ichthyology. Histology of teleost fishes; pathogen biology and analysis of cell and tissue changes in the major teleost diagnoses.

A Ecl 514. Evolutionary Ecology. (3-0) Cr. 3. Alt. F., offered 2004. Prereq: 588; Biol 303, graduate standing. Relationships between animals and their environment, with major emphasis on adaptive strategies and evolutionary mechanisms.

A Ecl 542. Aquaculture. (Dual-listed with 442.) (2-3) Cr. S. S. Prereq: Biol 410, 410L, credit or enrollment in 321. Concepts related to the culture of aquatic organisms including culture systems, water quality, nutrition, genetics, and diseases.

A Ecl 544. Aquatic Toxicology. (Same as EnSci 544, Tox 544) (3-0) Cr. 3. Alt. F., offered 2002. Prereq: 410. Environmental chemistry and the biochemical, physiological, behavioral and population level effects of contaminants on aquatic organisms.

A Ecl 570. Landscape Ecology. (Same as Bot 570) (2-3) Cr. 3. Alt. F., offered 2002. Prereq: SBB, permission of instructor. The study of ecological and evolutionary processes within a spatial context with emphasis on behavior, population, and community dynamics.

A Ecl 593. Workshop in Animal Ecology. (Same as la LL 590L) See Iowa Lakeside Laboratory.

Courses Offered at the Gulf Coast Research Laboratory (GCRL), Ocean Springs, Mississippi

The Gulf Coast Research Laboratory is affiliated with the University of Southern Mississippi. Iowa State students may register for the following University of Southern Mississippi/GCRL courses and transfer them to their ISU degree programs. Written permission of the ISU coordinator for the GCRL, 201 Bessey, is required for this arrangement. Inquire at 201 Bessey for further information.

MAR 405. Marine Ecology. Cr. 3. SS. Prereq: 16 hours of biological sciences including general zoology, general botany, and invertebrate zoology. A consideration of the relationship of marine organisms to their environment, including the effects of temperature, salinity, light, nutrient concentration, currents, and food on their abundance and distribution.

MAR 405L. Marine Ecology Lab. Cr. 2. SS. Lab to accompany MAR 405.

MAR 406. Fauna and Faunistic Ecology of Tidal Marshes. Cr. 1. SS. Prereq: 16 hours of biological sciences and junior standing. Survey and discussion of the taxonomy, distribution, trophic relationships, reproductive strategies and adaptation of tidal marsh animals with emphasis on those occurring in northern Gulf marshes.

MAR 406L. Fauna and Faunistic Ecology of Tidal Marshes Lab. Cr. 3. SS. Lab to accompany MAR 406.

MAR 407. Marine Aquaculture. Cr. 3. SS. Prereq: General zoology or invertebrate zoology. A lecture, laboratory, and field course designed to introduce aquatic and marine biology students to the history, principles, problems, and procedures relating to the culture of commercially important crustaceans, fish, and mollusks along the Gulf Coast.

MAR 407L. Marine Aquaculture Lab. Cr. 3. SS. Lab to accompany MAR 407.
Animal Science

www.public.iastate.edu/~ans/

Dennis N. Marple, Head of Department

Distinguished Professors: Anderson, Beitz, Rothschild, Trenkle

University Professors: Keeney, Parrish, Sebranek

Professors (Collaborators): Acker, Horst, Quigley, Reinhardt

Distinguished Professors (Emeritus): Freeman, Jacobson, Seil, Willingham

Professors (Emeriti): Brackelsberg, Ewan, Ewing, Foreman, Haynes, Kiser, Owings, Rust, Self, Speer, Stevermer, Voelker, Wickersham, Wunder, Young, Zimmerman, Zmolek

Associate Professors: Ahn, Dekkers, Dickson, Faust, Honeyman, Huiatt, Miller-Auwerda, Skar, Timms, Tyler, Youngs

Associate Professors (Collaborators): Nonnecke

Assistant Professors: Baas, Lay, E. Lonergan, S. Lonergan, Powers-Schilling, Reecy

Assistant Professors (Adjunct): Ramsey

Assistant Professors (Collaborators): Rasmussen, Rathmacher

Undergraduate Study

Graduates will be able to solve the complex problems of animal enterprise management and will understand the global perspective of agriculture and their part in a world market. Graduates will have acquired the technical knowledge and application skills to be competent in their chosen field and to be a lifelong learner in their profession. Graduates will be able to identify the issues impacting their industry and be aware of methods of addressing these issues. They will have developed integrative problem solving skills desired by their potential employers and required for success in career and personal development. They will possess the communications, team building, and leadership skills which allow them to attain positions of responsibility and leadership within their career field. Those students who wish to pursue graduate studies or professional programs, such as veterinary medicine, can enroll in required coursework to prepare for application.

For undergraduate curricula in animal science and dairy science, see College of Agriculture, Curricula. Visit our web site at: www.iastate.edu/ans/ugrad/

The department offers the degrees bachelor of science in animal science, bachelor of science in dairy science, and complementary degree in animal science also offered. The department offers a minor in Animal Science. The 16-credit minor includes: 114, 114L, 214, 214L, plus courses from a list maintained in the department. Students interested in the minor should contact an Animal Science advisor.

Graduate Study

The department offers work for the degrees master of science and doctor of philosophy with majors in animal breeding and genetics; animal nutrition; meat science; animal physiology; animal science; and molecular, cellular, and developmental biology. Minor work is offered in these areas to students taking major work in other departments.

A strong undergraduate program is required for those students interested in graduate study. Fundamental training in biology, chemistry, mathematics, and statistics is requisite to a satisfactory graduate program. Graduate programs in animal science include supporting work in areas such as agronomy; anatomy, microbiology; biochemistry; chemistry; economics; food science and human nutrition; genetics; physics; physiology; and statistics. Students may choose graduate programs involving a co-major with one of these areas. Graduate work in meat science is offered as a co-major in animal science and food science and human nutrition.

The department also cooperates in the interdepartmental program in professional agriculture and interdepartmental majors in genetics, immunobiology, MCDB (molecular, cellular, and developmental biology), and toxicology (see Index).

The foreign language requirement, if any, is established on an individual basis by the program-of-study committee appointed to guide the work of the student.

Courses Primarily for Undergraduate Students

An S 110. Orientation in Animal Science and ISU. (1-0) Cr. R. F. Orientation to the university and Department of Animal Science. Challenges and opportunities available to the professional animal agriculturalist. Professional goal setting, portfolio development, and development of interpersonal skills in the context of pursuing a career in animal science.

An S 114. Survey of the Animal Industry. (2-0) Cr. 2. F.S.SS. Ways domestic animals serve the basic needs of humans for food, shelter, protection, fuel, and emotional well-being. Terminology, basic structures of the industries surrounding the production, care, and marketing of domestic animals in the U.S.

An S 114L. Working with Animals. (0-3) Cr. 1. F.S. Prereq. Credit or concurrent enrollment in 114. A hands-on introductory course to prepare students for proper care and management of domestic animals. Husbandry skills including health observation, animal movement, identification, management procedures, and environmental assessment are covered.

An S 211. Issues Facing Animal Science. (0-2) Cr. 1. F.S. Prereq. 114: sophomore classification. Overview of the factors that define contemporary ethical and scientifically based issues facing animal agriculture. Life skill development (including interactive skills, communication ability, organization, information gathering, and leadership skills) emphasized in the context of issues study. Offered on a satisfactory-fail grading basis only.

An S 214. Domestic Animal Physiology. (3-0) Cr. 3. F.S. Prereq: Biol 201, Chem 163 or 177. Introduction to anatomy and physiology of the neural, circulatory, respiratory, immune, endocrine, reproductive, and digestive systems of domestic animals.

An S 216. Equine Science. (2-2) Cr. 3. S. Prereq: Course in biology. Introduction to contemporary concepts, and basic practices and decisions necessary when managing horses through stages of their lives.

An S 224. Companion Animal Science. (2-2) Cr. 3. S. Prereq: Course in biology. Introduction of students to contemporary concepts, and basic practices and decisions necessary when caring for the companion animal through stages of its life.

An S 250. Food Animal Science. (2-2) Cr. 3. F.S. Prereq: 114, 114L: course in biology. Introduction to contemporary practices and decisions necessary when managing beef, dairy, poultry, sheep and swine through stages of their respective production cycles.

An S 305. Livestock Evaluation. (0-6) Cr. 3. F.S. Prereq: Junior classification. 250, 270 recommended. Fall semester leads to 475A or D. Breeding animal and market animal evaluation of beef, swine and sheep using contemporary techniques and tools. Communication and decision-making skills are practiced in the context of making selection decisions.

An S 313. Exercise Physiology of Animals. (2-2) Cr. 2. F.S. Prereq: 214, Biol 201, one course in chemistry. Interaction of physiological development relative to athletic performance in domestic animals, primarily equine performance.

An S 316. Training the Horse. (0-8) Cr. 3. F.S. Prereq: 115 or permission of instructor. 216, 313: Modifying the behavior of the horse for performance objectives through bitting, longeing, saddling, and riding.

An S 332. Laboratory Methods in Animal Reproduction. (0-4) Cr. 2. F.S. Prereq. Credit or enrollment in 331. Comparative reproductive anatomy with emphasis on the physiology of normal reproductive function; ways to control and improve reproduction, principles of artificial insemination in farm animals; and selected laboratory exercises with written report. Nonmajor graduate credit.

An S 334. Embryo Transfer Laboratory. (0-2) Cr. 1. F. Prereq. Credit or concurrent enrollment in 333. Selected laboratory exercises related to embryo transfer such as superfutrition, embryo evaluation, microscopy, cryopreservation techniques, and embryo manipulation technologies will be demonstrated and/or performed. Nonmajor graduate credit.

An S 336. Livestock Behavior and Well-Being. (2-2) Cr. 3. F. Prereq: One course in physiology. Principles of behavioral and management care, management and environmental design to ensure animal well-being. Examination of basic neural-endocrine mechanisms involved in the animal’s response to its environment.

An S 360. Fresh Meats. (2-2) Cr. 3. F. Prereq: 270. course in organic or biochemistry. Impact of muscle structure, composition, rigor mortis, inspection, fabrication and handling on the palatability, nutritional value, yields, market value, and safety of fresh meat. Nonmajor graduate credit.

An S 411. Addressing Issues in Animal Science. (0-1) Cr. 1. F.S. Sr. Prereq. Senior classification in An S, Lifelong development emphasized in the context of exploring one’s perspective of the most pressing moral and scientific issues facing animal agriculture. Clarification and communication of personal conclusions in small and large group settings expected.

An S 470. Processed Meats. (2-2) Cr. 3. Sr. Prereq: 270. Physical, chemical and biological properties of meat important to processed meat product characteristics. Ingredients, technology and equipment used for cured meats, loaf products and fresh, cooked, dry and semi-dry sausages products. Nonmajor graduate credit.

An S 493. Workshop in Animal Science. (Dual-listed with 593.) Cr. 1 to 3. May be repeated. Offered as demand warrants. Prereq. Permission of instructor. Workshop in livestock production. Includes current concepts in breeding, nutrition, reproduction, meats, and technologies that impact the animal industry. Nonmajor graduate credit.

An S 495. Agricultural Travel Course Preparation. (0-1) Cr. May be repeated. Admission by invitation. Prereq. Permission of instructor. Limited enrollment. Students enrolled in this course will also register for Agron 495 and intend to register in Agron 496 and An S 496 the following term. Topics will include the agricultural industries, climate, crops, culture, history, livestock, marketing, soils, and preparation for travel to locations to be visited. Information normally available 9 months before departure.

An S 496. Agricultural Travel Course. Cr. arr. May be repeated. approved, approx. half credit per week traveled in each An S 496 and Agron 496. Prereq. Permission of instructor, 30 college credits, Limited enrollment. Students enroll in this course will also register for Agron 495 and intend to register in Agron 496 and An S 496 the following term. Topics will include the agricultural industries, climate, crops, culture, history, livestock, marketing, soils, and preparation for travel to locations to be visited. Information normally available 9 months before departure. Tour expenses paid by students. A. International tour B. Domestic tour

Courses and Programs Animal Science 141
Courses Primarily for Graduate Students, open to qualified undergraduates

An S 500. Computer Techniques for Biological Research. (2-0) Cr. 1. F. Introduction to UNIX and SAS for solving research problems, including organization of data files, transfer of files between workstations, developing models, and techniques for analysis of designed experiments. Introduction to matrix algebra for solving animal breeding problems using MATLAB and computer simulation and livestock analysis. Development of a satisfactory-failure grading basis only.

An S 501. Survey of Animal Disciplines. (1-0) Cr. 1. F. Prereq: Graduate standing. Orientation to departmental and graduate school policies and procedures. Discussion of programs of research and outreach in Animal Science. Impacting the animal industry. Offered on a satisfactory-fail grading basis only.

An S 503. Seminar in Animal Production. (1-0) Cr. 1. May be repeated. Prereq: Permission of instructor. Discussion and evaluation of current topics in animal production and management.

An S 518. Digestive Physiology and Metabolism. (4-0) Cr. 4. Prereq: 651, V 569. Flow of nutrients through digestive system. Physiologic and endocrine aspects of metabolism of vitamins and minerals. Integration of cellular biochemistry and physiology of vitamins and minerals.

An S 519. Animal Molecular Biology. (Dual-listed with 451) (2-3) Cr. 2. S. Prereq: 352, BBMB 221 or organic chemistry. BIOL 301. Introduction to use of molecular biology techniques in domestic animal research and production. Restriction endonuclease mapping, gene mapping, gene cloning, DNA sequencing and amplification, and analysis of genetic differences at the molecular level.

An S 549. Advanced Vertebrate Physiology I. (Same as BMS 549) See Biomedical Sciences.

An S 551. Animal Molecular Biology. (Dual-listed with 451) (2-3) Cr. 2. S. Prereq: Zool 355, credit or enrollment in BBMS 420 or 440. Cardiovascular, renal, respiratory, and digestive physiology.

An S 552L. Advanced Vertebrate Physiology Laboratory. (Same as BMS 552L) (0-3) Cr. 1. Prereq: Credit or enrollment in BMS 552. Laboratory for cardiovascular, renal, respiratory, and digestive physiology.

An S 556. Current Topics in Genome Analysis. (3-0) Cr. 3. Alt. S., offered 2002. Prereq: Biochem 405 or Gen 510. Introduction to principles and methodology of molecular genetics useful in analyzing and modifying large genomes. Survey of statistical methods and computer programs for bioinformatics, linkage mapping, radiation hybrid mapping, and mapping quantitative trait loci.

An S 561. Population and Quantitative Genetics for Breeding. (Same as Agron 561) (4-0) Cr. 4. F. Prereq: Stat 401. Population and quantitative genetics for plant and animal breeding. Topics include: forces that change gene frequency, covariance between relatives, response to artificial selection, inbreeding depression, heterosis, cross-breeding, genotype-by-environment interaction, linkage analysis, mapping of quantitative trait loci, and marker assisted selection.

An S 562. Methodologies for Population/Quantitative Genetics. (4-0) Cr. 3. S. Prereq: 561. Basic theory for genetic analysis of animal breeding data. Course A (1st half semester) covers linear models, selection index methods, and basic theory for linear unbiased prediction. Course B (2nd half semester) best linear unbiased prediction, including genetic groups, environmental adjustment, repeated records, multiple trait models, maternal effects models, and theory for maximum likelihood estimation of genetic parameters.

A. Linear Models and Genetic Prediction.

B. Advanced Genetic Prediction and Parameter Estimation.

An S 570. Advanced Meat Science and Applied Muscle Biology. (2-0) Cr. 2. S. Prereq: 470. Ante and postmortem factors impacting composition, structure, and chemistry of red meat and poultry muscle/heart, the conversion of muscle to meat, and the sensory and nutritional attributes of fresh meats. Only open to research reports and a research proposal.

An S 571. Advanced Meat Processing Principles and Technology. (2-2) Cr. 3. F. Prereq: 470 or 570. Physical/chemical relationships during processing. Effects of modern technology, non-meat additives and quality assurance techniques on quality and safety of processed meat. Laboratory demonstration of principles and technology.

An S 580. Sustainable Agriculture Seminar. (Same as AE 580, Ent 580, For 580) (1-0) Cr. 1. May be repeated. S. Issues, opportunities, and research associated with production systems for sustainable agriculture.

An S 590. Special Topics. Cr. 1 to 3. F.S.S. Prereq: Permission of instructor. Special topics in the animal sciences, offered on demand and may be conducted by guest professors.

A. Animal Breeding

B. Animal Nutrition

C. Meat Animal Production

D. Dairy Production

E. Meat Science

F. Physiology of Reproduction

G. Muscle Biology

H. Poutry Nutrition

I. Poultry Products

J. Experimental Surgery

K. Professional Topics

L. Teaching

M. Molecular Biology

An S 593. Workshop in Animal Science. (Dual-listed with 493) Cr. 1 to 3. May be repeated. Offered as demand warrants. Prereq: Permission of instructor. Graduate workshops in animal science and the technologies that impact the animal industry.

An S 599. Creative Component. Cr. 1-8. F.S.S.S. Prereq: Nonthesis M.S. A written report based on research, library readings, or topics related to the student’s area of specialization and approved by the student’s advisory committee.

A. Animal Breeding and Genetics

B. Animal Nutrition

C. Animal Physiology

D. Animal Science

E. Meat Science

Courses for Graduate Students

An S 618. Advanced Nutrition and Metabolism—Minerals and Vitamins. (Same as FS HN 618.) (3-0) Cr. 3. Alt. F., offered 2003. Prereq: BBMB 405. Role of vitamins and minerals in mammalian intermediary metabolism. Integration of cellular biochemistry and physiology of vitamins and minerals.

An S 633. Seminar in Animal Reproduction. (1-0) Cr. 1. May be repeated. F. Prereq: Permission of instructor. Discussion of current literature and preparation of reports on selected topics concerning physiology of reproduction.

A. Breeding Goals and Response to Selection

B. Design and Evaluation of Animal Breeding Programs

An S 653. Applied Animal Breeding Strategies. (2-0) Cr. 2. S. Prereq: 652. Industrial applications of breeding systems, selection methods, and new genetic technologies. One or more field trips to an
Anthropology

www.public.iastate.edu/~anth-info/anthro-pology/homepage.html
Michael B. Whiteford, Chair of Department
Professors: Butler, Huang, Whiteford
Professors (Emeritus): Bower, Gadwohl
Associate Professors: Coinman, Tiffany
Associate Professors (Collaborators): Lange
Associate Professors (Emeritus): Schuster, Wolff
Assistant Professors: Ilihiane, Kessel, Wagner
Instructors (Adjunct): Johnson

Undergraduate Study
An undergraduate major in anthropology can serve as the nucleus for a general liberal education, or as the prerequisite for graduate training qualifying a person for positions in (1) college and university teaching, (2) research, and (3) administrative and applied positions in government, development organizations, museums, and private businesses or corporations.

Anthropology graduates develop a well-rounded professional education in four fields of anthropology: cultural anthropology, linguistic anthropology, archaeology, and biological anthropology. They learn what it means to be human through the study of culture and social relations, human biology and evolution, languages, music, art, architecture, and through the study of past human communities.

Graduates learn the important historical and contemporary issues of our subdivisions, and they learn what it means to be a "modern" anthropologist and a citizen in an international and global community. Graduates develop an appreciation of the value of cultural diversity at the local, national and international level. They acquire a particular holistic vision that requires using a repertoire of methods in order to forge a deeper understanding of cultural contexts, both past and present.

Undergraduate students may obtain experience in archaeological and ethological research.

Anthropology majors may choose either a bachelor of arts or a bachelor of science degree, both of which require 33 credits in anthropology. A bachelor of arts degree is obtained by fulfilling the college general education requirements plus 6 additional credits in Groups I, II, and/or IV. A bachelor of science degree is obtained by fulfilling the college general education requirements plus 6 additional credits in Group III.

Undergraduate students with majors in anthropology are required to take the following anthropology core courses: 306, 307, 308, and 309. One course in statistics and one course in computer science are required.

Undergraduates majoring in anthropology are required to have a minor or a second major. A minor usually consists of 15 credits minimum.

Courses and Programs

Anthropology

A minor in anthropology consists of at least 15 credits and must include 306 or 309 and 307, and at least 6 other credits in courses numbered 300 or above.

English proficiency requirement: The department requires that a student earn a grade of C or better in Engl 105 and either English 302 or 309 or 314.

The principal subdisciplines of anthropology are represented by the following:

3. Linguistic anthropology: 309, 490D.

Graduate Study

The department offers the degree master of arts with a major in anthropology. Graduate courses are offered in the areas of biological anthropology, archaeology, cultural anthropology, linguistic anthropology, history and theory, and methodology. Competence in one foreign language and in statistics is to be demonstrated. A thesis, generally based on original fieldwork, is required.

Courses open for nonmajor graduate credit: 427I.

Courses Primarily for Undergraduate Students

Anth 201. Introduction to Cultural Anthropology. (3-0) Cr. 3. F.S.SS. Comparative study of culture as key to understanding human behaviors in different societies. Using a global, cross-cultural perspective, patterns of family life, economic and political activities, religious beliefs, and the ways in which cultures change are examined.

Anth 202. Introduction to Biological Anthropology and Archaeology. (3-0) Cr. 3. F.S. Human biological and cultural evolution; survey of the evidence from fossil forms and archaeology, as well as living primates and traditional cultures; introduction to methods of study in archaeology and biological anthropology.

Anth 230. Third World Cultures in Global Perspective. (3-0) Cr. 3. F.S. An introduction to understanding other cultures in today’s world with a focus on contemporary life, the arts, and social issues in Latin America, Asia, and Africa.

Anth 306. Comparative Studies of World Cultures. (3-0) Cr. 3. S. Prereq: 201 recommended. A survey of similarities and differences in the world’s major societal types; examination of social institutions in hunting-and-gathering, agricultural, pastoral, and industrial societies; techniques of cross-cultural comparison.

Anth 307. Biological Anthropology. (2-2) Cr. 3. S. Prereq: 202 recommended. Human evolution as known from fossil evidence, comparative primate studies, and genetic variations in living populations. Laboratory-tutorial sessions include study and discussion of human osteology, fossil hominids, simple Mendelian traits, and bio-ethics in applied biological anthropology.
Anthr 308. Archaeology. (2-2) Cr. 3. F. Prereq: 202. Methods and techniques for the recovery and interpretation of archaeological evidence, its role in reconstructing human behavior, and understanding past environments. Laboratory sessions include experience in the interpretation of archaeological evidence, the use of classification systems, and prehistoric technologies such as ceramics and stone tools. Field trips.

Anthr 309. Linguistic Anthropology. (Same as Ling 309.) (2-2) Cr. 3. F. Prereq: 201 recommended. Language as a human attribute; language versus animal communication; human communication in cultural context; paralinguistics, kinesics, proverbs, artifacts as communication tools; language and culture; cross-cultural sociolinguistics; ethno- and language policies. Participatory lab: focus on analysis of a non-Western language and communication system.

Anthr 313. The Family and Kinship in Cross-Cultural Perspective. (Dual-listed with 515) (3-0) Cr. 3. S. Prereq: 201 recommended. Comparative and historical study of the family and kinship systems in cross-cultural perspective; discussion of the structure, norm, and function of family and kinship systems in ethnography, including the family in Western culture; theoretical issues in contemporary family and kinship studies.

Anthr 315. Archaeology of North America. (Dual-listed with 515; same as Am In 315.) (3-0) Cr. 3. Alt. S., offered 2001. Survey of prehistoric and historic cultures of North America as reconstructed from archaeological evidence; analysis of the influences of Euro-American society and technology on Indians of North America; decision making and adaptation through time; the development and spread of Native American cultures; emphasis on the interpretation of material cultural remains in reconstructing past societies.

Anthr 322. The American Indian. (Dual-listed with 522; same as Am In 322.) (3-0) Cr. 3. F.S.S. Prereq: 201 or 306 recommended. Comprehensive survey of life and the material culture of Native Americans, historical background of eighteenth and nineteenth century Indian-White relationships; examination of legal status, the reservation system, treaty violations, Indian militancy, education and urbanization, self-determination, social impact of resource development, and other current concerns.

Anthr 335. Peoples and Cultures of the Middle East. (3-0) Cr. 3. Alt. F., offered 2001. Prereq: 201 or 306 recommended. Anthropological approaches to the study of Middle Eastern peoples, including the study of Middle Eastern material culture, areas, discussion of economic, political, and social and religious issues and systems. Examination of contemporary social movements.

Anthr 337. Andean Archaeology. (3-0) Cr. 3. F., offered 2002. Prerequisites: Survey of prehistoric Andean cultures of Peru, Bolivia and Ecuador; the archaeology of the Incas and their ancestors. Emphasis on prehistoric economic, religious and political organization, the recovery and interpretation of archaeological evidence; and the use of ethnohistoric texts and modern ethnographies to reconstruct the prehistory of Andean societies.

Anthr 340. Magic, Witchcraft, and Religion. (Dual-listed with 540; same as Relig 340.) (3-0) Cr. 3. S. Prereq: 201 or 306. Origin and development of indigenous magico-religious systems; myth and ritual; therapeutic aspects; symbols and meanings; religio-magico-spiritual aspects of prehistoric cultures; the development of New World cultures; theoretical and practical considerations of the role of religion and witchcraft in contemporary and premodern American society.

Anthr 404. Forensic Anthropology. (Dual-listed with 544) (3-0) Cr. 3. Alt. F., offered 2002. Prerequisites: Biology 202 or Zoology 155, 307 or 319 recommended. Comprehensive study of advanced forensic anthropological techniques. Experience with reads of osteological remains from prehistoric and historic cultures.

Anthr 411. Art, Objects and Culture. (Dual-listed with 517) (3-0) Cr. 3. Alt. S., offered 2002. Prerequisites: Anthr 201 or 306. Cross-cultural approaches to the material culture of human societies. Examination of cultural objects and artifacts to subsistence, socio-political and economic organization, religion, ideology and aesthetics. Change processes and global impacts on indigenous art traditions, artists, and mass-scale craft industries. Participation in interpretation and analysis of departmental ethnographic collections. Basics of material culture collection management.

Anthr 420. Cultural Continuity and Change in the Prairie-Plains. (Dual-listed with 520; same as Am In 420) (3-0) Cr. 3. Alt. F., offered 2001. Prerequisite: 201 or 306 recommended. Emphasis on the development of early civilizations on the western rim of the Pacific, including China, Japan, and Korea; survey of prehistoric cultures in Southeast Asia; survey of current issues in ecological, historical, and ideological contexts.
Courses Primarily for Graduate Students, open to qualified undergraduate students.

Anthr 500. Language and Culture. (Same as Ling 500) (3-0) Cr. 3. Alt. S., offered 2003. Approaches to the study of the relationship between language structure, world view, and cognition; social and structural linguistic variation; cross-cultural aspects of verbal and non-verbal communication; linguistic change; contemporary applications of linguistic anthropology.

Anthr 511. Culture Change and Applied Anthropology. (Dual-listed with 411.) (3-0) Cr. 3. F. Prereq: 6 credits in anthropology, 201 rec. recommended. Comparative and historical study of the family and kinship systems in cross-cultural perspective; discussion of the structure, cycle, and functioning of family and kinship systems, including the family in Western culture; theoretical issues in contemporary family and kinship studies.

Anthr 514. Southwestern Archaeology. (Dual-listed with 414.) (3-0) Cr. 3. Alt. S., offered 2002. Prereq: 202 or 306. Survey of the history of the American Southwest as reconstructed from archaeological evidence. Includes an introduction to the intellectual frameworks of Southwestern archaeology and surveys the Paleoindian and Archaic cultural periods, the adoption of agriculture, and the emergence of pueblo societies and regional cultures.

Anthr 515. Archaeology of North America. (Dual-listed with 315.) (3-0) Cr. 3. Alt. S., offered 2003. Prereq: 308. Prehistory and early history of North America as reconstructed from archaeological evidence; peopling of the New World; culture-historical sequences of major culture areas; linkages of archaeological traditions with selected ethnohistorically known Native American groups.

Anthr 516. Environmental Archaeology. (Dual-listed with 416.) (3-0) Cr. 3. Alt. S., offered 2002. Prereq: 308. Examination of relationships between the biological environment and socio-cultural organization in the archaeological record. Survey of methods used in environmental sciences by archaeologists to understand the human ecosystem.

Anthr 517. Art, Objects and Culture. (Dual-listed with 417.) (3-0) Cr. 3. Alt. S., offered 2002. Prereq: Anthr 202 or anthropology/cultural studies. Study of symbolic and material aspects of material culture; basic concepts within cultural anthropology; applied and theoretical approaches to the study of objects within cultural and social context.

Anthr 519. Skeletal Biology. (Dual-listed with 319.) (3-0) Cr. 3. Alt. F., offered 2002. Prereq: Anthr 202, 307 or college level biology recommended. Complete study of the skeletal anatomy, physiology and development, of the human skeleton. Applications to forensic anthropology, paleoanthropology, and bioarchaeology are introduced.

Anthr 520. Cultural Continuity and Change in the Prairie-Plains. (Dual-listed with 420.) (3-0) Cr. 3. Alt. F., offered 2002. Prereq: Anthr 151 or 222. Ecological adaptations, sociocultural changes, and continuities of trade among Prairie and Plains Indian groups through time; impacts of Euro-American society and technology on Indians of the Great Plains; perspectives from ecology, archaeology, ethnology, history, and contemporary literary sources.

Anthr 521. World Prehistory. (Dual-listed with 321.) (3-0) Cr. 3. S. Prereq: 202. Recommended. An introduction to anthropological theory and archaeological methods for research in cultural history; an overview of culture history as an interdisciplinary field.

Anthr 522. The American Indian. (Dual-listed with 322.) (3-0) Cr. 3. F. SS. Prereq: 201 or Am In 210. Origin, distribution, and traditional life of native peoples of North America. Survey of culture areas; ecology and subsistence, language, kinship, life cycle, political, economic and religious systems; impact of European contact.

Anthr 523. Peoples and Cultures of Latin America. (Dual-listed with 323.) (3-0) Cr. 3. S. Prereq: 6 credits in anthropology, 201 or 306 recommended. Origin and distribution of peoples; blending of Old and New World cultures; theoretical problems of peasant and tribal societies; discussion of economic, social, political, and religious systems; processes of change.

Anthr 524. Forensic Anthropology. (Dual-listed with 424.) (3-0) Cr. 3. S. Prereq: Biol 202 or Zool 156; 307 or 319 recommended. Comprehensive study of forensic anthropology, a specialized subfield of biological anthropology. Emphasis is placed on personal identification from extremely fragmentary, commingled, burnt, cremated and incomplete skeletal remains. All parameters of forensic science are included as they pertain to anthropology, including human variation, taphonomy, entomology archaeology, pathology, epidemiology; genetics and the non-biological forensic disciplines. An appreciation for the wide range of radiocarbon and bioethical issues will also be gained.

Anthr 525. Peoples and Cultures of Africa. (Dual-listed with 325.) (3-0) Cr. 3. Alt. F., offered 2001. Prereq: 201 or 306 recommended. Origins and distribution of peoples of Africa; geographical characteristics are related to the environment, including early civilizations; a comparative examination of economic, subsistence, language, and political organization, and religious systems throughout the African continent; the processes of conflict, the nature of contemporary African societies.

Anthr 528. Archaeological Laboratory Methods and Techniques. (Dual-listed with 428.) (3-0) Cr. 3. Alt. S., offered 2003. Laboratory processing and analysis of archaeological materials; experiments in technologies such as stone tools and ceramics, the organization and interpretation of archaeological data. Lab emphasis on the methods and techniques of analyzing and recording various categories of material culture.

Anthr 529. Archaeological Field School. (Dual-listed with 429.) Cr. 4 or 6. SS. 4 or 6 weeks. Prereq: 308. Permission of instructor. Field school for training in archaeological reconnaissance and excavation techniques; documentation and interpretation of archaeological evidence.

Anthr 531. Ethnographic Field School. (Dual-listed with 431) Cr. 4 or 6. SS. Prereq: Permission of instructor. Summer field school for training in ethnographic field methods; students will carry out research projects in social anthropology; process will involve learning ethnographic research techniques commonly used in social sciences.

Anthr 532. American Indians Today. (Dual-listed with 432.) (3-0) Cr. 3. S. Prereq: 6 credits in anthropology, 201 or 306 recommended. Conditions and issues of contemporary Native Americans; historical background of eighteenth and nineteenth century Indian-White relationships; examination of legal status, the reservation system, treaty violations, Indian military, education and urbanization, self-determination, social impact of resource development, and other current concerns.

Anthr 535. Peoples and Cultures of the Middle East. (Dual-listed with 435) Cr. 3. Alt. F., offered 2002. Prereq: 201 or 306 recommended. Anthropological approaches to the study of Middle East cultures. Survey of major culture areas. Discussion of economic, political, and social and religious issues. Examination of contemporary social movements.

Anthr 537. Andean Archaeology. (3-0) Cr. 3. F. Prereq: 202 or 321 recommended. Survey of prehis- toric Andean cultures of Peru, Bolivia and Ecuador; the archaeology of the Incas and their ancestors. Emphasis on prehistoric economies, religious, and political organization, the rich material culture recovered through archaeological records; and the use of ethnographic and archaeological evidence to reconstruct the prehistory of Andean societies.

Anthr 539. Medical Anthropology. (Dual-listed with 439.) (3-0) Cr. 3. Alt. S., offered 2002. Prereq: 6 credits in anthropology, 201 or 306 recommended. Study of human health in cultural and environmental contexts; a comparison of health patterns among western and non-western populations; healing systems; use of epidemiological models in understanding illness and disease etiologies cross-culturally; interpersonal relationships and cultural beliefs.

Anthr 540. Magic, Witchcraft, and Religion. (Dual-listed with 340) (3-0) Cr. 3. S. Prereq: 6 credits in anthropology, 201 or 306 recommended. Origin and development of indigenous magico-religious systems in medieval, myth and ritual; theoretical approaches to symbols, change processes, the impact of colonialism, and the nature of contemporary African societies.
tion of humans and pathogens beginning with early hominids and concluding with the continued impact of infectious diseases on human populations today. The evolution of infectious diseases in humans is studied as a complex interaction of cultural, biological and environmental changes in both pathogen and host. The impact of disease throughout human existence is examined through the interpretation of skeletal lesions and the application of epidemiological models, paleodemographic principles and paleopathological theory.

Anthr 544. Sex and Gender in Cross-cultural Perspective. (Dual-listed with 444.) (3-0) Cr. 3. S. Prereq: 201; 306 recommended. Cross-cultural examination of the social construction of genders out of the biological fact of sex. Emphasis on non-western societies. Topics, presented through examination of ethnographic data, will include the range of gender variation, status and roles, the institution of marriage, and symbols of gender valuation.

Anthr 555. Seminar in Archaeology. (3-0) Cr. 3. Alt. S., offered 2002. Prereq: 308 or 429; permission of instructor. Examination of the history of anthropological archaeology and current issues and debates concerning methods, theories and the ethics of modern archaeology.

Anthr 590. Special Topics. Cr. 1 to 5. Prereq: 10 credits in anthropology; senior or graduate classification.

I. Iowa Lakeside Laboratory (Same as La LL 590I)

Courses for Graduate Students

Anthr 610. Society and Technology in Sustainable Food Systems. (Same as SusAg 610.) See Sustainable Agriculture.

Anthr 699. Research.

I. Iowa Lakeside Laboratory (Same as La LL 699I.)

Architecture

www.arch.iastate.edu

Calvin F. Lewis, Chair of Department

Professors: Block, Bloomer, Engelbrecht, Findlay, Heemstra, Lewis, Mukerjea, Osterberg, Segrest, Shao

Professors (Emeritus): Kainlauri, Kitzman, McKeeown, Shank, Stone

Associate Professors: Bassler, Cardinal-Pett, Chan, Horwitz, Inghram, Palermo, Rakatansky

Associate Professors (Adjunct): Masterson, Rice

Assistant Professors: Bermann, Leslie, Maves, Muecke, Paxson, Schwennesen, Stankard

Assistant Professors (Adjunct): Fisher

Undergraduate Study

The undergraduate program in architecture is a five-year curriculum leading to the bachelor of architecture degree. The program provides opportunities for general education as well as preparation for professional practice and/or graduate study. An optional one-semester foreign study program is offered to fourth year students.

The undergraduate curriculum includes one year of preprofessional coursework and four years of professional coursework. Admission to the professional degree program is based on the applicant’s performance in the completed preprofessional curriculum; previous high school record (or transfer record where applicable); portfolio and essay evaluations; and on available departmental resources.

Objectives of the Bachelor of Architecture program:

The Department is committed to the study of architecture as a cultural discipline in which issues of practice, of the multiplicity of social formations in which buildings exist, and of environmental effect are enfolded with the subject matter of building design - construction, space, material, form and use. Architecture arises from the aspirations that diverse individuals and groups have for their physical environment, and from the social enterprise of designing and fabricating the landscape we inhabit. It involves individual and multiple buildings, the spaces within them, and the exterior landscape.

It is our intent: that our students develop the skills with which to critically assess and research architectural questions and to invent architectural designs through which those questions are addressed; that they develop a working method for designing and that they have the communication, graphic, modeling and computational skills to design and represent their design ideas to others; that they gain knowledge of architectural technologies through which buildings are given form, of which they are constructed and by which they are environmentally tempered; that they understand architectural history, that they understand the theoretical and diverse cultural underpinnings of the discipline of architecture, that they are able to reference architectural precedents and know how to utilize all of these in the development of their ideas; and that they have grounding in the ethical and practical aspects of the architectural profession in society.

For students entering the professional program, the department highly recommends purchase of a laptop/notebook computer and appropriate software. See the Graduate Coordinator or the departmental web pages for hardware and software specifications.

The one-year option is a post-professional course of study leading to the master of architecture and is designed for individuals with an accredited professional degree in architecture (B.Arch. or M.Arch.). The post-professional option affords the opportunity for advanced study in architectural theory and design leading to the thesis. Thirty credits are required.

The graduate program also offers a course of study leading to the degree master of science in architectural studies. This course of study is designed for students without architecture backgrounds and students with previous degrees in architecture wishing to conduct specialized graduate level research in architecture. Students work closely with faculty who are engaged in high-level research and scholarship. Thirty credits are required.

Double-degree programs are currently offered with the Department of Community and Regional Planning (M.Arch./M.C.R.P.) and the College of Business (M.Arch./M.B.A.).

Financial support in the form of teaching and research assistantships is available.

Contact the department office for specific curricula.

Courses open for nonmajor graduate credit: 420, 421, 422, 423, 424, 425, 426, 427, 434, 437, 451, 467, 471

Courses Primarily for Undergraduate Students

Arch 102. Pre-Architecture Design. (1-6) Cr. 4. F.S.

A studio course focused on three-dimensional design and drawing, with emphasis on creative conceptualization, exploration of materials, and analytical thinking. Includes study of architectural precedents and exercises to develop ability to communicate about form and space.

Arch 132. Two-Dimensional Studio. (0-6) Cr. 2. F.S.

Prereq: Enrollment in the preprofessional program. Introduction to free-hand drawing concepts and practices. Course will engage in an exploration of the
sketch as a means of inquiry, conceptualization and representation of form and space. Exercises focus on acquiring proficiency in the perceptual and experiential aspects of drawing. Various media, subjects and environmental contexts.

Arch 182. An Introduction to Architecture. (3-0) Cr. 3. S. Prereq: Open to non-majors. Through the study of architects, buildings, and theories, this course is designed to introduce the discipline of architecture, preprofessional process and architectural works as culturally grounded events and artifacts.

Arch 201. Architectural Design I. (1-15) Cr. 6. F. Prereq: Completion of the preprofessional program and admission into professional program. Introduction to architectural design. An exploration of fundamental architectural ideas - form, space, meaning - through studio projects that focus on human inhabitation of the material environment. Introduction to design processes: research, invention, problem solving, visualization, and communication. Opportunities to develop design media skills. Special emphasis on materials and methods of building construction.

Arch 202. Architectural Design II. (1-15) Cr. 6. S. Prereq: 201. A continuation of 201. Studio projects demand more sophisticated exploration of the relations between ideas and materiality and of the complex cultural intersect within which we design. Further development of design process skills with a special emphasis on the relations between design media and design processes.

Arch 221. History of Western Architecture I. (Same as Dsn S 222.) (3-0) Cr. 3. S. Introductory survey with emphasis on the cultural, visual, natural, and constructed context. Ancient through Renaissance.

Arch 222. History of Western Architecture II. (Same as Dsn S 222.) (3-0) Cr. 3. S. Introductory survey with emphasis on the cultural, visual, natural, and constructed context. Ancient through Renaissance.

Arch 230. Design Communications I. (0-6) Cr. 2. F. Prereq: Admission to the professional program. Investigations of various design media - including computer graphics and freehand drawing - and their applications to design, specifically to the coursework in 201. Exercises to develop manual skill and perceptual sensitivity.

Arch 232. Design Communications II. (0-6) Cr. 2. S. Prereq: 230. Advanced study of various design media - including computer graphics - and their applications to design, specifically to the coursework in 202. Exercises to develop manual skill and perceptual sensitivity.

Arch 240. Materials and Assemblies I. (3-1) Cr. 4. F. Prereq: Completion of the preprofessional program and admission into the professional program. Introduction to common architectural materials, their physical properties, and integration into light construction subsystems. Model building codes, gravitational and climatic forces, and simplified methods of analysis for the preliminary design of building systems.

Arch 242. Architectural Structures I. (3-1) Cr. 4. S. Prereq: 240. Structural performance and preliminary design of wood frame members and systems; principles of equilibrium and material behavior.

Arch 271. Human Behavior and Environmental Theory. (3-0) Cr. 3. F. Prereq: Completion of the preprofessional program and admission into the professional program. Exploration of theories that describe social structure and order and the manner in which individuals and societies organize themselves and structure their environment.

Arch 301. Architectural Design III. (1-15) Cr. 6. F. Prereq: 202. A consideration of landscape as a constructed, cultural artifact. Projects address the perceptual aspects and strategies of situation and location, examination of environmental phenomena and patterns of use as revealed and affected by the architectural artifact. Development of a critical design process is stressed.

Arch 302. Architectural Design IV. (1-15) Cr. 6. S. Prereq: 301 and minimum 2.0 GPA in previous studio courses. A continuation of 301, examining housing in the urban situation; diverse scales of use and occupation within the city as shaped by cultural tendencies. Projects examine collective and individual identities related by the condition of adjacency, the ability to consider varieties of scale within a project, and a further development of critical and technical methods.

Arch 310. Practical Experience. Cr. R. Prereq: Permission of department chair. Students must register for this course prior to commencing each period. Available only to students taking course loads of eleven credits or less.

Arch 335. Three-Dimensional Studio. (Same as ArtS 335.) (1-6) Cr. 2. Each time taken, up to a maximum of 8 credits for 335 and 535 combined. F.S. Investigation of basic sculptural media; modeling in clay, wood carving, stone carving, casting in plaster and metal, welding, and other constructing techniques.

Arch 346. Architectural Structures III. (2-1) Cr. 3. S. Prereq: 344. Structural performance and preliminary design of low to medium rise reinforced concrete and prestressed concrete members and systems. Wind and seismic lateral forces and the principles of equilibrium and material behavior.

Arch 351. Solar Home Design. (Same as Dsn S 351.) (3-0) Cr. 3. S. Prereq: 202. Architectural design and technical analysis of residential structures with emphasis on energy construction and solar energy utilization.

Arch 357. Environmental Forces in Architecture. (3-0) Cr. 3. F. Prereq: Completion of the preprofessional program and admission into the professional program. Introduction to environmental forces that directly affect the structural concepts of human comfort and patterns of occupancy. Emphasis on analytical rules of thumb and calculation methods that contribute to design synthesis. A design process is developed utilizing building climatology, control of thermal, luminous, and acoustic environments.

Arch 372. Design Inquiry. (3-0) Cr. 3. S. Prereq: 271. An overview of methods of inquiry in design. Different ways of thinking about design and design processes in architecture, associating appropriate programming and design activities with project objectives, planning and implementing an effective process to meet those objectives.

Arch 401. Architectural Design V. (1-15) Cr. 6. F. Prereq: 302. Examination of architecture's dialectical relationship with technology and culture; the consideration of the constitution and configuration of public space in its historic and contemporary conditions. Studio projects stress the interpretation and integration of structural, environmental, and communication systems within the architectural construct.

Arch 402. Architectural Design VI. (1-15) Cr. 6. S. Prereq: 401 and minimum 2.0 GPA in previous studio courses. A continuation of 401, closely examining specific urban situations. Advanced studio projects stress the concise condition which create and impact the built environment. Urban design project: foreign study and urban studio option.

Arch 403. Architectural Design VII. (1-15) Cr. 6. F. Prereq: 402. This course provides advanced forums for the demonstration of sophistication in architectural design. Experimentation and innovation are encouraged.

Courses and Programs Architecture

Arch 404. Architectural Design VIII. (1-15) Cr. 6. S. Prereq: 403, 485. This comprehensive studio provides a forum for the demonstration of individual competence in architectural design. The work is rigorously examined relative to the entire undergraduate program of study.

Arch 421. Topics in Ancient Architecture. (Dual-listed with 521.) (3-0) Cr. 3. F. Prereq: Junior classification. The history, theory, and principles of ancient architecture and urban design considering relationships to the culture, visual arts, site, and surroundings. Nonmajor graduate credit.

Arch 422. Topics in Medieval Architecture. (Dual-listed with 522.) (3-0) Cr. 3. F. Prereq: Junior classification. The history, theory, and principles of medieval architecture and urban design considering relationships to the culture, visual arts, site, and surroundings. Nonmajor graduate credit.

Arch 423. Topics in Renaissance to Mid-Eighteenth Century Architecture. (Dual-listed with 523.) (3-0) Cr. 3. S. Prereq: Junior classification. The history, theory, and principles of renaissance to mid-eighteenth century architecture and urban design considering relationships to the culture, visual arts, site, and surroundings. Nonmajor graduate credit.

Arch 424. Topics in Nineteenth Century Architecture. (Dual-listed with 524.) (3-0) Cr. 3. F. Prereq: Junior classification. The history, theory, and principles of nineteenth century architecture and urban design considering relationships to the culture, visual arts, site, and surroundings. Nonmajor graduate credit.

Arch 425. Topics in Twentieth Century Architecture. (Dual-listed with 525.) (3-0) Cr. 3. F. Prereq: Junior classification. Study of built environments of pre-conquest Mexico and Central America including the emergence, florescence, and demise of architecture styles, urban and ceremonial centers, related arts. Nonmajor graduate credit.

Arch 427. History, Theory, and Criticism of Pre-Columbian Mexican Architecture. (Dual-listed with 526.) (3-0) Cr. 3. F. Prereq: Junior classification. Study of built environments of pre-conquest Mexico and Central America including the emergence, florescence, and demise of architecture styles, urban and ceremonial centers, related arts. Nonmajor graduate credit.

Arch 434. Computer-aided Architectural and Environmental Design. (3-0) Cr. 3. S. Prereq: 234, Com S 107 or 205. Emphasis on application of the computer as a design tool, topological applications and computer graphic methods, development of computer software for architectural and environmental problem solving. Nonmajor graduate credit.

Arch 436. Advanced Design Media. (0-9) Cr. 3 each time taken to a maximum of 6 credits. F.S. Prereq: 230, 232. Special topics in design media applications.

Courses Primarily for Graduate Students, open to qualified undergraduate students

Arch 501. Architectural Design and Communication I. (1-1) Cr. 6. F. Prereq: Admission to the M.Arch. program. Emphasis on design process; the elements, procedures, concepts, and precedents of architectural design and graphic communications.

Arch 521. Topics in Ancient Architecture. (Dual-listed with 421.) (3-0) Cr. 3. S. Prereq: 221, 222 and senior classification or graduate standing. The history, theory, and principles of ancient architecture and urban design considering relationships to the culture, visual arts, site, and surroundings.

Arch 522. Topics in Medieval Architecture. (Dual-listed with 422.) (3-0) Cr. 3. S. Prereq: 221, 222 and senior classification or graduate standing. The history, theory, and principles of medieval architecture and urban design considering relationships to the culture, visual arts, site, and surroundings.

Arch 523. Topics in Renaissance to Mid-eighteenth Century Architecture. (Dual-listed with 423.) (3-0) Cr. 3. S. Prereq: 221, 222 and senior classification or graduate standing. The history, theory, and principles of renaissance to mid-eighteenth century architecture and urban design considering relationships to the culture, visual arts, site, and surroundings.

Arch 524. Topics in Nineteenth Century Architecture. (Dual-listed with 424.) (3-0) Cr. 3. F. Prereq: 221, 222 and senior classification or graduate standing, permission of instructor. The history, theory, and principles of nineteenth century architecture and urban design considering relationships to the culture, visual arts, site, and surroundings.

Arch 525. Topics in Twentieth Century Architecture. (Dual-listed with 425.) (3-0) Cr. 3. S. F. Prereq: 221, 222 and senior classification or graduate standing. The history, theory, and principles of twentieth century architecture and urban design considering relationships to the culture, visual arts, site, and surroundings.

Arch 526. History, Theory, and Criticism of Pre-Columbian Mexican Architecture. (Dual-listed with 426.) (3-0) Cr. 3. F. Prereq: Senior classification or graduate standing. Built environments of pre-conquest Mexico and Central America including the emergence, florescence, and demise of architectural styles, urban and ceremonial centers, religion, social structure, and associated arts.

Arch 527. History, Theory, and Criticism of Chinese Architecture. (Dual-listed with 427.) (3-0) Cr. 3. F. Prereq: Senior classification or graduate standing. The history and theoretical concept of Chinese built environment with emphasis on the morphology of built form and its relationship to art, landscape design, and urban structure.

Arch 528. Topical Studies in History, Theory, and Criticism of Architecture. (Same as Dsn S 528.) (2-0 or 3-0) Cr. 2 or 3 each time taken. F.S. Prereq: 221, 222 or senior classification or graduate standing. A. Pre-Modern B. Modern C. American D. World Architecture E. Architects F. Historic Preservation G. Technical, Structural, and Programmatic I. Urban Design J. Vernacular Architecture K. Practice
Arch 573. Post-Occupancy Evaluation. (Same as Dsn S 573.) (3-0) Cr. 3. F. Prereq: Senior classification or graduate standing. Methods of evaluating the physical, social, and psychological performance of buildings following construction and occupancy, with emphasis on behavioral response to the environment and its role in the design process.

Arch 575. Contemporary Urban Design Theory. (Same as Dsn S 575.) (3-0) Cr. 3. S. Prereq: Senior classification or graduate standing. Current urban design theory and its application to urban problems.

Arch 577. Social Impact of the Built Environment. (Same as Dsn S 577.) (3-0) Cr. 3. S. Prereq: Graduate standing. Interdisciplinary review and analysis of social scientific research applied to architectural design.

Arch 582. Professional Practice. (Dual-listed with 482.) (3-0) Cr. 3. F. S. Prereq: Graduate standing. Emphasis on the circumstances and opportunities of the professional practice of architecture: practice as profession, process, organization, business, and evolving models of practice.

Arch 585. Theory I: Contemporary Theories. (3-0) Cr. 3. F. Prereq: Graduate standing. A select study of contemporary architectural texts. Readings will explore the nature of the text, its relationship to architectural practice, and the social, political and intellectual context of its production.

Arch 587. Theory II: Theories and History. (3-0) Cr. 3. F. Prereq: Graduate standing or 401. The relevance of the theoretical device is discussed through the reading of architectural treatises. Interpretations of language, form, and meaning will seek to explore relationships to the production of contemporary architecture.

Arch 589. Theory III: Methods of Inquiry. (3-0) Cr. 3. F. S. Prereq: 401, or graduate standing. Seminar course examining the nature of architectural research, the development of the research topic and methods of inquiry. Research approaches include comparative case studies and evaluative and critical approaches in history; theory and criticism as related to architectural scholarship.

Arch 590. Special Topics. Cr. 1 to 5 each time taken. F.S.S. S. Prereq: Written approval of instructor and department chair on approved form. Investigation of architectural issues having a specialized nature.

Courses for Graduate Students

Arch 603. Advanced Architectural Design III. (1-15) Cr. 6. Each time taken to a maximum of 12 credits. S. Prereq: Professional degree in architecture or advanced standing in the graduate program. Architectural and urban design problems.

Arch 690. Independent Design Study. (1-18) Cr. 6. F.S.S. Prereq: Admission to M. Arch 30 credit program. Independent architectural design projects commensurate with student interests requiring approval of Architecture Graduate Advisory Committee.

Art and Design

Roger Baer, Chair of Department

Professors: Dake, Fowles, Singer, Smith, Stiegelt, Tartakov

Distinguished Professors (Emeritus): Heggan, Miller

Professors (Emeritus): Allen, Bro, Danielson, Evans, Held, Petersen, Pickett, Sontag

Associate Professors: Akkurt, Baer, Croyle, Cunnally, Curran, Fontaine, Gibbs, Hermstad, Jones, Lehrer, Lilligren, Malven, McClath, Mickelson, Stout, Warme

Associate Professors (Adjunct): DeMartino, Pohlman

Assistant Professors (Emeritus): Bruene, McClain, Polster, Sreenivasan

Assistant Professors: Caldwell, Gould, Harris, Iasevoli, Kang, Katz, Martin, Paschke, Raverty, Richards, Satterfield, Tilden

Instructors (Adjunct): Biechler

Undergraduate Study

The department offers work for the degrees of bachelor of fine arts and bachelor of arts. Programs in general studio art and/or art history, integrated studio arts (visual communications or studio research emphasis), graphic design, and interior design are possible within four curricula: art and design—B.F.A., art and design—B.A., graphic design—B.F.A., and interior design—B.F.A.; see College of Design, Curricula. Each of these curricula affords excellent preparation for a variety of career opportunities or a basis for graduate study in art and design disciplines.

The curriculum in art and design leading to the B.F.A. provides a studio concentration. Students select an emphasis in one of the following areas: (1) visual communications (calligraphy, photography, papermaking, computer aided art and design, illustration, mixed media); (2) studio research (calligraphy, wood design, ceramics, jewelry and metals, fibers, painting, printmaking, drawing, two and three dimensional mixed media). The two concentrations emphasize aesthetics, visual problem solving and skill development in a variety of media employing contemporary, historical and cultural thinking with visual languages.

The curriculum in graphic design leads to the B.F.A. degree. Emphasis is on creative problem solving, the design process, and the visual organization of communication media. Graphic design graduates effectively integrate abstract thinking skills; communication design theory, history, and methodology; technology; design process; and communication design systems including typography, symbology, and image creation with an understanding of professional practice.

The curriculum in interior design leads to the B.F.A. degree. Emphasis is on the student’s application of the design process to creatively solve problems of the interior environment based on a knowledge of techniques, materials, resources, human factors, and interrelated professional responsibility. Graduates in interior design are competent in visual communication (sketching, drafting and computer aided design), design problem solving, space planning, lighting for interiors, finish and furniture selection, and detailing interior construction. The curriculum is accredited by the Foundation for Interior Design Education Research (FIDER) as providing professional level education.

Students planning toward the B.A. in art and design pursue studies in a related or supporting area by means of a second major, minor, and/or approved program of study that meets the individual needs of a student. Art history, art education, integrated studio arts, pre-graphic design, and pre-interior design courses may be taken to fulfill the art and design program of study.

Students planning a career in art education, preparing for certification to teach art in grades kindergarten through twelve, should matriculate in the art and design curriculum leading to the B.F.A. degree. This sequencing will provide a strong studio background. Many requirements for teacher certification are course options within general education requirements. Students should work closely with a department advisor in planning their program of study to maximize their ability to meet entrance requirements to the teacher education program. For general requirements for teacher certification, see College of Education.

Transfer students with studio credits from other colleges and universities must present, for department review, a portfolio of work done in those courses in order to have the credits apply toward specific studio requirements. Students are advised to present this portfolio of work upon admission and prior to registration for classes. A fee will be assessed when field trips are indicated. In many courses, fees for materials are required.

The department offers no minor but participates in the undergraduate minor in design studies.

Graduate Study

The department offers work for the degrees of master of arts in art and design, and master of fine arts in graphic design, integrated visual arts, and interior design. Degree specializations leading to the master of arts degree are available in art education and interior design. Graduates have a broad understanding of visual communication, problem solving, and interdisciplinary studies.

Graduate students who have not completed an undergraduate program of study substantially equivalent to that required of undergraduates in the department can expect that additional supporting coursework, determined by the graduate faculty, will be required.

Graduate students in the art education specialization leading to the M.A. degree participate in a 30 credit program of study which is linked...
with the New Art Basics research project. If they do not hold teacher certification, students may work toward acquiring this as part of their graduate study. A creative component is required for the master of arts degree and is fulfilled through individually focused discipline-specific classroom research, culminating in a written summary of research results. Graduates with a specialization in an art education are competent as reflective teachers, experienced in applied, qualitative research in the K-12 classroom. Graduates gain a deep understanding of the New Art Basics approach to visual thinking skills and global, multicultural, visual arts education, with a learner-centered focus.

The master of arts program in interior design requires a minimum of 34 credits including an art and design seminar, a studio concentration, a history/criticism course, elective courses outside the department, and completion of a thesis or thesis-exhibition. Graduates in interior design selecting the M.A. degree focus on research.

The master of fine arts programs in graphic design and interior design require a minimum of 60 credits while the program in integrated visual arts requires a minimum of 61 credits including an art and design seminar, a studio concentration, history and criticism courses, a teaching practicum, elective courses outside the department or area of study, and the completion of a thesis-exhibition or thesis.

The M.F.A. thesis-exhibition is composed of two parts, a substantial exhibition and a written statement that describes the development of the work in the exhibition, its objectives, and its historical and cultural points of reference. A thesis may be an appropriate alternative, but some portion of the work should entail an element of design problem-solving in the form of a visual product.

Master of Fine Arts graduates in graphic design are skilled in communication design, problem solving, and are adept in the use of visual language and symbology. Graduates are proficient in the design of communications and the use of technologies that incorporate human interaction with environments, objects, electronic and traditional publications.

Interior Design graduate students selecting the M.F.A. are proficient in visual communication skills, design theory, and space planning. The M.F.A. degree is considered a terminal degree in the interior design field.

Integrated Visual Arts MFA graduates have skills that link traditional studio disciplines with emerging technologies. Graduates are prepared as visual artists to enter studio research, business, higher education or new interdisciplinary fields. The MFA is recognized as the terminal degree.

Credit earned at Iowa State University or other institution for the master of arts degree may be applied toward the master of fine arts degree at the discretion of the program of study committee.

Applicants to the graduate program should have a undergraduate major in an art or design area and demonstrate the ability to do technically competent and original work through the presentation of a slide portfolio for faculty review. Past academic performance and the quality of studio work are critical in the admission process. A minimum 3.0 GPA in the student’s undergraduate major is the standard for full admission to the graduate program. Admission is also determined by studio space available within the program area, which changes gradually due to graduate students’ progress in their programs of study.

Prospective students are advised to contact the graduate coordinator with specific questions about admission procedures and portfolio review. Application and additional program information may be obtained from the Department of Art and Design, College of Design, Iowa State University, Ames, Iowa 50011-3092.

Courses open for nonmajor graduate credit:

Art (Art) Courses Primarily for Undergraduate Students

Art 110. Orientation to Art and Design. (1-0) Cr. R. F.S. Overview of the department and university with special emphasis on curricula, program planning, and study skills. Advising, policy and procedures, student services. Offered on a satisfactory-fail grading basis only.

Art 130. Drawing I. (1-6) Cr. 3. F.S.S.S. The introductory course in drawing, focusing on the fundamentals of drawing from observation. Subject matter may include working from the still life, architectural settings, landscape and the human figure. Line, shape, perspective and value studies are explored through a variety of drawing media.

Art 230. Drawing II. (0-6) Cr. 3. F.S. Prereq: 130. A continuation of Art 130 (Drawing I). Further development of perceptual drawing skills from a variety of subject matter. Continued practice with drawing materials and techniques with emphasis on tonal and color media.

Art 292. Dimensions of Art and Design. (Same as Dan S 292.) (3-0) Cr. 3. F.S. The work of the artist and designer through an examination of the design process, artistic style, and selected art and design forms. Cross-cultural viewpoints and issues of diversity in relation to the visual arts and design fields. Primarily for nonmajors. Offered on a satisfactory-fail grading basis only.

Art 494. Art and Design in Europe Seminar. (1-0) Cr. 1. Prereq: Permission of instructor and planned enrollment in 495. Cultural and historical aspects of art and design in Western Europe in preparation for study abroad. Area of study varies each time offered. Offered on a satisfactory-fail grading basis only.

Art 495. Art and Design in Europe. (Dual-listed with 595.) Cr. 3. F.S. Prereq: 494, permission of instructor. International study abroad program in western Europe. Visits to design studios, art museums, and educational facilities. Related activities depending on specific area of study which may vary each time offered. Tour expenses to be paid by the student.

A. Fine Arts G. Graphic Design I. Interior Design N. Art History

Art 496. Art and Design Field Study. Arr. Cr. R. Prereq: Enrollment in an art and design studio or art history course, permission of instructor. Study and tours of museums, galleries, artist and/or designer studios and other areas of interest within art and design. Offered on a satisfactory-fail basis. May be repeated.

Art 497. Studio Internship. Arr. Cr. 1 to 6 each time taken, maximum of 6 F.S.S.S. Prereq: Advanced classification in a department curriculum. Written approval of supervising instructor and department chair on required form in advance of semester of enrollment. Supervised experience with a cooperating artist or studio. Offered on a satisfactory-fail grading basis only.

Art 498. Museum/Gallery Internship. Arr. Cr. 1 to 6 each time taken, maximum of 6 F.S.S.S. Prereq: Advanced classification in a department curriculum. Written approval of supervising instructor on required form in advance of semester of enrollment. Supervised experience with a cooperating museum or gallery or art center. Offered on a satisfactory-fail grading basis only.

Art 499. BFA Seminar and Exhibition. Arr. Cr. 2. S. Prereq: Senior classification in the Art and Design-BFA curriculum, portfolio review and written approval of supervising instructor on required form in advance of semester of enrollment. Participation in a group exhibition. Statement of artistic philosophy and career goals; resume development; assembly of final portfolio of work. As the capstone course in the BFA degree program, the work in this class will reflect an integration of the media, processes, historical and theoretical components of each student’s individual degree program. Students should enroll in this course the spring semester prior to completion of the BFA degree.

Courses Primarily for Graduate Students, open to qualified undergraduate students

Art 501. Art and Design Seminar. (3-0) Cr. 3. F.S. Prereq: Permission of instructor. Presentation and discussion of basic issues in contemporary art and design.

Art 511. Seminar in Teaching. (1-0) Cr. R. F.S. Readings and discussion of basic issues in contemporary art and design.

Art 598. Museum/Gallery Internship. Arr. Cr. 1 to 6 each time taken, maximum of 6 F.S.S.S. Prereq: Advanced classification in a department curriculum. Written approval of supervising instructor on required form in advance of semester of enrollment. Supervised experience with a cooperating museum or gallery or art center. Offered on a satisfactory-fail grading basis only.

Art 599. BFA Seminar and Exhibition. Arr. Cr. 2. S. Prereq: Senior classification in the Art and Design-BFA curriculum, portfolio review and written approval of supervising instructor on required form in advance of semester of enrollment. Participation in a group exhibition. Statement of artistic philosophy and career goals; resume development; assembly of final portfolio of work. As the capstone course in the BFA degree program, the work in this class will reflect an integration of the media, processes, historical and theoretical components of each student’s individual degree program. Students should enroll in this course the spring semester prior to completion of the BFA degree.
Courses for Graduate Students

Art 605. Research Methods. (0-0) Cr. 3. Prereq: Permission of instructor. Research strategies related to fine art and technology. Application of selected methods to specific issues.

Art 607. Intermedia. (0-6) Cr. 3. Exploration and application of media with various materials, methods and ideas.

Art 608. Advanced Computer-Aided Art and Design. (0-6) Cr. 3. Prereq: Permission of the instructor. Computer application applied to specific MFA studio concentration.

Art Education (ArtEd)

Courses Primarily for Undergraduate Students

ArtEd 211. Introduction to Art Education. (0-6) Cr. 3. F.S. Design art experiences for the K-12 classroom. Hands on discipline specific and integrated art activities; emphasis on thinking skills.

ArtEd 313. Practicum: Art Education. Art. Cr. 1 each time offered, maximum of 3. F.S. Prereq: Credit or enrollment in 211. Art: permission of instructor in advance of semester of enrollment. Field experience in K-12 or community art education program.

ArtEd 490. Independent Study. Cr. 1 to 3 each time taken. Prereq: Written approval of instructor and department chair on required form in advance of semester of enrollment. Student must have completed art and/or education coursework appropriate to planned independent study. Offered on a graded basis or a satisfactory-fail basis. H. Honors

Courses Primarily for Graduate Students, open to qualified undergraduates

ArtEd 513. Introduction to New Art Basics. Cr. 3 or may be taken for CEU credit. SS. Prereq: Permission of instructor. Taught in the classroom, online, and/or hybrid format; and extended instruction and exploration over the World Wide Web. Overview of higher order thinking skills instruction for visualization, visual thinking, metaphorical thinking, visual logic, and human, cultural, and historic contexts. Design of discipline-specific thinking skills strategies. Some sections will be taught entirely on the World Wide Web.

ArtEd 514. Multicultural Perspectives. (3-0) Cr. 3. F. Prereq: Graduate classification, permission of instructor. Understanding the nature, roles, and functions of the visual arts. Designing methodology for effective classroom instruction in human, cultural, and historical contexts. Observation and teaching experience at classroom based research site.

ArtEd 515. Visual Thinking Skills Education. (3-0) Cr. 3. S. Prereq: 513, admission to the graduate program in art education. Using theory to inform and direct the design of teaching methodology. Effective classroom techniques for promoting visual ideation. Experience in applied teaching research at classroom based research site.

ArtEd 517. Teaching Practicum. Art. Cr. 3 to 6, maximum of 6. S. Prereq: 516, all courses in the art education program; advanced registration required. Supervised experience and individually designed applied research in teaching art in elementary school.

ArtEd 518. Teaching Practicum. Art. Cr. 3 to 6, maximum of 6. S. Prereq: 516, all courses in the art education program; advanced registration required. Supervised experience and individually designed applied research in secondary school.

ArtEd 590. Special Topics. Cr. art. Prereq: Bachelor’s degree in art and/or design, or evidence of satisfactory equivalency in specialized area. Written approval of instructor and department chair on required form in advance of semester of enrollment.

ArtEd 593. Workshop. Cr. 1 to 3 each time taken. SS. Prereq: Graduate classification, evidence of satisfactory experience in area of specialization. Intensive exploration of art education related topic. Topics vary each time offered.

ArtEd 599. Creative Component. Cr. var. Prereq: Concurrent enrollment or credit in 517 and/or 518. Individually focused discipline-specific applied classroom research. Written summary of research; exhibition of research results.

Graphic Design (ArtGr)

Courses Primarily for Undergraduate Students

ArtGr 177. Introduction to Graphic Design. (2-0) Cr. 2. S. Prereq: Art 108, credit or enrollment in Art 109, 130, Dan S 121. Historical, cultural, and social issues related to the practice of visual communication.

ArtGr 270. Graphic Design Studio I. (0-4) Cr. 3. F. Prereq: Art 109, 130, Art 177, Dan S 121, enrollment in 275; admission to the graphic design program through department review. Basic design concepts and color principles used for visual communication. Conceptual and analytical thinking skills through projects and discussions. Decision making for effective visual communication.

ArtGr 275. Graphic Technology I. (0-4) Cr. 2. F. Prereq: enrollment in 270. Basic computer skills for graphic design.

ArtGr 276. Graphic Technology II. (0-4) Cr. 2. S. Prereq: enrollment in 271. Basic computer skills for graphic design.

ArtGr 277. Graphic Design Internship Seminar. (1-0) Cr. 1. F. Prereq: Consent of instructor; enrollment in 270. Procedural and ethical concerns related to the graphic design internship. Personal goals, preparation of resume and plans for internship. Offered on a satisfactory-fail grading basis only.

ArtGr 370. Graphic Design Studio III. (0-6) Cr. 3. F. Prereq: 271, 276, enrollment in a 2-credit option; credit or enrollment in 387. Creation and design of images and symbols for communication. Application and integration of typography with images and symbols.

ArtGr 371. Graphic Design Studio IV. (0-6) Cr. 3. S. Prereq: 270, 376, enrollment in a 2-credit option, credit or enrollment in 388. Development and preparation of design concepts for application to the printing and electronic publishing process. Creative problem-solving skills, introduction to systems design.

ArtGr 372. Graphic Design Materials and Processes. (2-0) Cr. 2. S. Prereq: Credit or enrollment in 371. Lecture about the processes and materials involved in graphic design arts reproduction. Course covers pre-press, paper selection and specification, ink systems, type systems and fonts, output technology, printing presses and bindery operations.

ArtGr 378. Critical Issues in Graphic Design. (2-0) Cr. 2. F. Prereq: Credit or enrollment in 370. Lecture, discussion and writing about the critical issues facing the communications field today and in the future.

ArtGr 387. Graphic Design History/Theory/ Criticism I. (Dual-listed with 588) (3-0) Cr. 3. S. Prereq: 387. Theory and history of contemporary graphic design including designers from the 1960s-present. Analysis of the way new materials and technology are leading to present design forms. Nonmajor graduate credit.

ArtGr 470. Graphic Design Studio V. (0-6) Cr. 3. F. Prereq: 371, enrollment in a 2-credit option. Advanced design systems as applied to corporate identity and environmental graphic design. Symbolism as an integrated component of communication systems.

ArtGr 471. Graphic Design Studio VI. (0-6) Cr. 3. S. Prereq: 470, enrollment in a 2-credit option. Exploration of theoretical and conceptual concerns of visual communication. Portfolio preparation.

ArtGr 472. Photographic Art Direction. (Dual-listed with 572) (0-4) Cr. 2. Prereq: 271, 276, enrollment in 370 or 371, or 470 or 471. Pragmatics as a graphic design component. Compositional and conceptual elements in photographic images. Must have a camera with adjustable shutter speeds and lens openings.

ArtGr 473. Time Based Multi-Media. (Dual-listed with 573) (0-4) Cr. 2. Prereq: 271, 276, or 370. The design of visual, aural and written communication for electronic media.

ArtGr 474. Exhibition Design. (Dual-listed with 574.) (0-4) Cr. 2. Prereq: 271, 276, enrollment in 370 or 371, or 470 or 471. Visual communication applied to exhibition design focusing on educational or interactive museum exhibitions, trade show booth design, and modular unit design for traveling exhibitions. Translation of graphic information to a three-dimensional space.

ArtGr 475. Advanced Typography. (Dual-listed with 575.) (0-4) Cr. 2. Prereq: 271, 276, enrollment in 370 or 371 or 470 or 471. Typographic theory exploring traditional and nontraditional forms, both historical and contemporary typographic achievements.

ArtGr 476. Graphic Design Methodology. (0-4) Cr. 2. Prereq: 271, 276, enrollment in 370 or 371 or 470 or 471. Analysis and application of scientific, systemic, and nontraditional problem-solving and problem-solving techniques.

ArtGr 477. Graphic Design Practice. (0-6) Cr. 2. each time taken, maximum of 4. Prereq: 370, portfolio review and permission of instructor. Graphic design outreach and problem solving. Individual and group projects for non-profit clients selected by the instructor.

ArtGr 478. Web Design for E-Commerce/Graphic Applications. (Dual-listed with 578.) (0-4) Cr. 2. S. Prereq: Credit or enrollment in 371. The development of advanced and experimental web design for the applications of e-commerce, education and the communication of visual information.

ArtGr 479. Environmental Graphics. (Dual-listed with 579) (0-4) Cr. 2. Prereq: 271, 276, enrollment in 370 or 371 or 470 or 471. Functional and aesthetic implications of environmental communication. Way-finding systems such as transportation graphics, architectural signage. Environmental graphics for community or corporate identity systems.

ArtGr 480. Graphic Design Internship. Art. Cr. 3. SS. Prereq: 277, 12 credits in graphic design; permission of instructor, registration in advance of enrollment. Graphic design experience in an off-campus professional environment.
ArtGr 481. Graphic Design Professional Practices. (3-0) Cr. 3. F. Prereq: Credit or enrollment in 470. Professional design management; ethics, setting up a new business/entrepreneur/designer relationships, contractual options, billing practices, and effective operating procedures.

ArtGr 482. Professional Presentation. (0-4) Cr. 2. S. Prereq: Credit or enrollment in 471. Required for all students enrolled in 471. Exploration and development of the graphic design portfolio and resume in electronic, print, and photographic form.

ArtGr 484. Selected Studies in Graphic Design. Cr. 1 to 3 each time taken, maximum of 9. Prereq: Permission of instructor. Special issues related to graphic design. Letter grades only; S/U option not offered.

ArtGr 490. Independent Study. Cr. 1 to 6 each time taken. Prereq: Written approval of instructor and department chair on required form in advance of semester of enrollment. Student must have completed related coursework appropriate to planned independent study. Offered on a graded basis or a satisfactory-fail basis. A. Theory, Criticism, and Methodology B. Two-Dimensional Design C. Three-Dimensional Design H. Honors I. Internship/Cooperative (in-depth experience other than ArtGr 480, satisfactory-fail only)

ArtGr 491. Publication Design: Magazines. (0-4) Cr. 2. F. Prereq: Credit or enrollment in 370. The philosophy and structures of magazine design.

ArtGr 492. Publication Design: Books. (0-4) Cr. 2. S. Prereq: Credit or enrollment in 371. The philosophy, concepts and structures of book design.

ArtGr 493. Workshop. Cr. 1 to 3 each time taken. Prereq: Evidence of satisfactory experience in area of specialization. Intensive 2 to 4 week studio exploration. Topics vary each time offered.

Courses Primarily for Graduate Students, open to qualified undergraduate students

ArtGr 570. Advanced Studies in Visual Communication. (0-6) Cr. 3. F. Prereq: Graduate classification. Theory and investigation of systems, structures, principles of visual organization, and typography for communication. Studio problems will be influenced by social, cultural, environmental, or technological factors.

ArtGr 571. Signs, Symbols, Images. (0-6) Cr. 3. S. Prereq: 570. Investigation and application of signs, symbols and semiotic theory for communication. Studio problems will be influenced by social, cultural, environmental, or technological factors.

ArtGr 572. Photographic Art Direction. (Dual-listed with 472.) (0-4) Cr. 2. Prereq: Graduate enrollment. Photography as a graphic design component. Compositional and conceptual elements appropriate to photographic images. Must have a camera with adjustable shutter speeds and lens openings.

ArtGr 573. Time Based Multi-Media. (Dual-listed with 473.) (0-4) Cr. 2. F. Prereq: Graduate enrollment. The design of visual, aural and written communication for electronic media.

ArtGr 574. Exhibition Design. (Dual-listed with 474.) (0-4) Cr. 2. Prereq: Graduate enrollment. Visual communication applied to exhibition design focusing on educational or interactive museum exhibitions, trade show booth design, and modular unit design for traveling exhibitions. Translation of graphic information to a three-dimensional space.

ArtGr 575. Advanced Typography. (Dual-listed with 475.) (0-4) Cr. 2. Prereq: Graduate enrollment. Typographic theory exploring traditional and nontraditional forms both historical and contemporary typographic achievements.

ArtGr 578. Design for E-Commerce/Graphic Applications. (Dual-listed with 478.) (0-4) Cr. 2. S. Prereq: Graduate enrollment. The development of advanced and experimental web design for the applications of e-commerce, education and the communication of visual information.

ArtGr 579. Environmental Graphics. (Dual-listed with 479.) (0-4) Cr. 2. Prereq: Graduate enrollment. Functional and aesthetic implications of environmental communications. Way-finding systems such as transportation graphics, architectural signage. Environmental graphics for community or corporate identity systems.

ArtGr 584. Selected Studies in Graphic Design. Cr. var. Prereq: Graduate classification, permission of instructor. Topics vary each time offered; may be repeated.

ArtGr 587. Graphic Design History/Theory/ Criticism I. (Dual-listed with 387.) (3-0) Cr. 3. F. Prereq: Graduate classification, permission of instructor. History and theory of contemporary graphic design including designers of the 1960s - present. Analysis of the way new materials and technology are leading to present design forms.

ArtGr 590. Special Topics. Cr. arr. Prereq: Bachelor’s degree in graphic design, or evidence of satisfactory equivalency in specialized area. Written approval of instructor and department chair on required form in advance of semester of enrollment. A. Theory, Criticism, and Methodology B. Two-Dimensional Design C. Three-Dimensional Design

ArtGr 591. Publication Design: Magazines. (Dual-listed with 481.) (0-4) Cr. 2. F. Prereq: Graduate enrollment. The philosophy, concepts and structures of magazine design.

ArtGr 592. Publication Design: Books. (Dual-listed with 492.) (0-4) Cr. 2. S. Prereq: Graduate enrollment. The philosophy, concepts and structures of book design.

ArtGr 593. Workshop. Cr. 1 to 3 each time taken. Prereq: Graduate classification; evidence of satisfactory experience in area of specialization. Intensive 2 to 4 week studio exploration. Topics vary each time offered.

Courses for Graduate Students

ArtGr 672. Graphic Design and Human Interaction. (3-0) Cr. 3 each time taken, maximum of 10. F. Prereq: Credit or enrollment in 370. The interface/interaction of the graphic environment with products, systems, and technologies of contemporary society and culture. Studio problems may involve such areas as: exhibition design, electronic interface design, wayfinding, packaging design, and publication design.

ArtGr 690. Advanced Topics. Cr. arr. Prereq: MFA classification, permission of instructor.

Art History (Art H)

Courses Primarily for Undergraduate Students

Art H 181. History of Design. (Same as Dsn S 181.) (3-0) Cr. 3. F.S. Study of issues and artifacts, their relation to the traditional and changing role of the creators, and to western European and American culture.

Art H 280. History of Art I. (Same as Dsn S 280.) (3-0) Cr. 3. F. Development of the visual arts of western civilization including painting, sculpture, architecture, and crafts. From Neolithic through Gothic. Prereq: 281.

Art H 281. History of Art II. (Same as Dsn S 281.) (3-0) Cr. 3. F. Development of the visual arts of western civilization including painting, sculpture, architecture, and crafts. From the Renaissance to the twentieth century. Prereq: 280.

Art H 376. Environmental Art. (Dual-listed with 576; same as L A 376.) See Landscape Architecture.

Art H 380. North American Indian Art. (Dual-listed with 580; same as Am In 380, Dsn S 380) (3-0) Cr. 3. Visual art forms of North American Indian people, focusing on historical development through discovery of major cultural areas and individual artist; emphasis on the cultural context of their artistic production. Nonmajor graduate credit.

Art H 382. Art and Architecture of Asia. (Dual-listed with 582; same as Dsn S 382.) (3-0) Cr. 3. Alt. S., offered 2002. A selective survey of Asian art and architecture from a variety of major Asian traditions, chiefly India, China, Japan, Sri Lanka, Cambodia, and Indonesia. Nonmajor graduate credit.

Art H 383. Greek and Roman Art. (Dual-listed with 583; same as Dsn S 383.) (3-0) Cr. 3. Alt., offered 2003. Greek art from Neolithic and Hellenistic periods. Roman art from the traditional founding to the end of the empire in the West. Nonmajor graduate credit.

Art H 385. Renaissance Art. (Dual-listed with 585; same as Dsn S 385) (3-0) Cr. 3 Alt. S., offered 2002. European art including painting, sculpture, architecture, and crafts, thirteenth through sixteenth centuries. Nonmajor graduate credit.

Art H 386. Baroque and Rococo Art. (Dual-listed with 586; same as Dsn S 386) (3-0) Cr. 3. European art including painting, sculpture, architecture, and crafts, seventeenth and eighteenth centuries. Nonmajor graduate credit.

Art H 394. Women in Art. (Dual-listed with 594; same as Dsn S 394, W 394) (3-0) Cr. 3. Alt. S. offered 2003. Lives, careers, and achievements of women artists and the related cultural environment from the Middle Ages to contemporary times, in Europe and America. Feminist movement beginning in the 1970s and specifically feminist issues in art that are becoming widespread in the artistic culture. Nonmajor graduate credit.

Art H 481. Art and Architecture of India. (Dual-listed with 581; same as Dsn S 481) (3-0) Cr. 3. Alt. F., offered 2001. South Asian art and architecturefrom earliest times to the present day. Development of style, social uses and symbolism that gave imagery its meaning. Nonmajor graduate credit.

Art H 487. Nineteenth Century Art. (Dual-listed with 587; same as Dsn S 487) (3-0) Cr. 3. Alt. S., offered 2002. European and American art and architecture from 1780 to 1900 focusing on the major monuments of western Europe: Neo-Classicism, Romanticism, Realism, Impressionism, and Post-Impressionism. Nonmajor graduate credit.

Art H 488. Modernism and Modern Art: 1880-1945. (Dual-listed with 588; same as Dsn S 488) (3-0) Cr. 3. F. Painting, sculpture, crafts, architecture, photography, and cinema from Post-Impressionism to Surrealism. Nonmajor graduate credit.

Art H 489. European and American Art: 1945-1970. (Dual-listed with 589; same as Dsn S 489) (3-0) Cr. 3. Painting, sculpture, crafts, architecture, photography, cinema and video in the post war period. Nonmajor graduate credit.

Art H 490. Independent Study. Cr. 1 to 6 each time taken. Prereq: Written approval of instructor and department chair on required form in advance of semester of enrollment. Student must have completed an independent study coursework appropriate to planned independent study. Offered on a graded basis or a satisfactory-fail basis. H. Honors

Art H 495. Contemporary Art and Theory Since 1970. (Dual-listed with 595; same as Dsn S 495) (3-0) Cr. 3. Visual art and theory since 1970 to the present. Nonmajor graduate credit.

Art H 496. History of Photography. (Dual-listed with 596; same as Dsn S 496) (3-0) Cr. 3. F. Survey of the evolution of photography and photojournalism from the 1830s to the present, seen from an art historical perspective, emphasizing causative factors, cultural influences, and major masters and schools. Nonmajor graduate credit.
Art H 498. Selected Topics in Art History. (Dual-listed with 598; same as Dsn S 498.) (3-0) Cr. 3 each time taken, maximum of 9. Specialized study in the history of art or design.

Courses Primarily for Graduate Students, open to qualified undergraduate students

Art H 570 Environmental Art. (Dual-listed with 376; same as L A 576.) See Landscape Architecture.

Art H 580. North American Indian Art. (Dual-listed with 380; same as Dsn S 580.) (3-0) Cr. 3.
Prereq: Graduate classification, permission of instructor. South Asian art and architecture from earliest times to the present day. Development of style; social uses and symbolism that give imagery its meaning.

Art H 582. Art and Architecture of Asia. (Dual-listed with 382; same as Dsn S 582.) (3-0) Cr. 3. Alt. S. offered 2002.
Prereq: Graduate classification, permission of instructor. Selective history of visual imagery from a variety of major Asian traditions, chiefly India, China, Japan, Korea, Vietnam, and Indonesia.

Art H 583. Greek and Roman Art. (Dual-listed with 383; same as Dsn S 583.) (3-0) Cr. 3. Alt. S., offered 2003.
Prereq: Graduate classification, permission of instructor. Greek art from Neolithic and Hellenistic periods. Roman art from the traditional founding to the end of the empire in the West.

Art H 585. Renaissance Art. (Dual-listed with 385; same as Dsn S 585.) (3-0) Cr. 3. Alt. S., offered 2002.
Prereq: Graduate classification, permission of instructor. European art including painting, sculpture, architecture, and crafts; thirteenth through sixteenth centuries.

Art H 586. Baroque and Rococo Art. (Dual-listed with 386; same as Dsn S 586.) (3-0) Cr. 3.
Prereq: Graduate classification, permission of instructor. European art including painting, sculpture, architecture, and crafts; seventeenth and eighteenth centuries.

Art H 587. Nineteenth Century Art. (Dual-listed with 487; same as Dsn S 587.) (3-0) Cr. 3. Alt. S., offered 2002.
Prereq: Graduate classification, permission of instructor. European and American art and architecture from 1780 to 1900, focusing on the major monuments of western Europe: Neo-Classicism, Romanticism, Realism, Impressionism, and Post-Impressionism.

Art H 588. Modernism and Modern Art: 1880-1945. (Dual-listed with 488; same as Dsn S 588.) (3-0) Cr. 3. F. S.
Prereq: Graduate classification, permission of instructor. Painting, sculpture, crafts, architecture, photography, and cinema from Post-Impressionism to Surrealism.

Art H 589. European and American Art: 1945-1970. (Dual-listed with 489; same as Dsn S 589.) (3-0) Cr. 3.
Prereq: Graduate classification, permission of instructor. Painting, sculpture, crafts, architecture, photography, cinema and video in the postwar period.

Art H 590. Special Topics. Cr. arr.
Prereq: Bachelor’s degree in art and/or design, or evidence of satisfactory equivalency in specialized area. Written approval of instructor and department chair on required form in advance of semester of enrollment.

Prereq: Graduate classification, permission of instructor. Careers and achievement in art, history of women artists and the related cultural environment from the Middle Ages to contemporary times in Europe and America. Feminist movement beginning in the 1970s and specifically feminist issues in art that are becoming widespread in the artistic culture.

Art H 595. Contemporary Art and Theory Since 1970. (Dual-listed with 495; same as Dsn S 595.) (3-0) Cr. 3.
Prereq: Graduate classification, permission of instructor. Visual arts and critical theory from 1970 to the present.

Art H 596. History of Photography. (Dual-listed with 496; same as Dsn S 596.) (3-0) Cr. 3. F.
Prereq: Graduate classification, permission of instructor. Survey of the development of photography and photojournalism from the 1830s to the present, seen from an art historical perspective, emphasizing causative factors, cultural influences, and major masters and schools.

Art H 598. Selected Topics in Art History. (Dual-listed with 498; same as Dsn S 598.) (3-0) Cr. 3 each time taken, maximum of 9.
Prereq: Graduate classification, permission of instructor. Specialized study in the history or criticism of art and/or design.

Integrated Studio Arts (ArtIS) Courses Primarily for Undergraduate Students

ArtIS 202. Calligraphy. (0-6) Cr. 3. F. S.
Prereq: Art 108 and 130 or equivalent design/drawing course work. Direct stroke letters for calligraphy. Applied design applications.

ArtIS 208. Color. (0-6) Cr. 3.
Prereq: Art 108 or 130 or equivalent design/drawing coursework. The impact of changing visual relationships emphasizing color concepts. Pigment mixture and interaction exercises, using various materials, techniques, and tools.

ArtIS 220. Wood Design I. (0-6) Cr. 3. S. F.
Wood as a design medium. Design and creation of wooden forms, visual communication and hand processes.

ArtIS 222. Ceramics I. (0-6) Cr. 3. F. S.
Visual problem solving through ceramic processes and concepts. Techniques introduced: handbuilding, wheel throwing, glazing and firing.

ArtIS 224. Jewelry and Decorative Metalsmithing II. (0-6) Cr. 3. F. S.
Prereq: Art 108. Further development of concepts and techniques. Students given awareness of external and internal sources for design.

Prereq: 3 credits in craft design. Contemporary issues in craft design through lectures, presentations, and field trips.

ArtIS 326. Introduction to Illustration. (Same as BPM I 326.) (0-6) Cr. 3. F. S.
Prereq: Art 108 or 130 and 3 credits in the biological sciences. Introduction to design, including composition and problem solving methodologies.

ArtIS 327. Illustration as Communication and Interpretive Expression. (Same as BPM I 327.) (0-6) Cr. 3. S. S.
Prereq: Art 108 or 130. Studio exercises to develop an awareness of visual perception in relation to issues of visual communication and problem solving, envisioning information, scientific visualization and visual thinking. Studio assignments to be digitized and sent to a computer for evaluation and critique.

ArtIS 328. Illustration as Communication and Interpretive Expression. (Same as BPM I 328.) (0-6) Cr. 3. S. S.
Prereq: Art 108 or 130. Further investigation of concepts and techniques housed in conceptual art and design. Continuation and expansion of concepts and techniques processes taught in ArtIS 227. Must have camera with manual exposure controls.

ArtIS 330. Drawing I: Life Drawing. (0-6) Cr. 3 each time taken, maximum of 9. S. F.
Prereq: Art 230. Drawing from the human figure.

ArtIS 335. Three-Dimensional Studio. (Same as Arch 335.) (0-6) Cr. 2 each time taken, maximum of 8. F. S.
Prereq: 3 credits in art design and 3 credits in the biological sciences. Studio basics and fundamentals of the three-dimensional application of materials and concepts.

ArtIS 338. Painting II. (0-6) Cr. 3. S. F.
Prereq: Art 238. Painting using acrylic and/or oil media; composition and expression.

Prereq: 6 credits in studio work. Papermaking as a creative forming process. Three-dimensional applications. Nonmajor graduate credit.

ArtIS 355. Mixed Media. (Dual-listed with 505.) (0-6) Cr. 3 each time taken, maximum of 6. F. S.
Prereq: 12 credits in design and/or drawing. Exploration and application of various materials, techniques, and ideas.

ArtIS 380. Introduction to Computer Assisted Animation and Modeling. (0-6) Cr. 3. F. S.
Prereq: Art 109 or permission of instructor. Introduction to the tools, terminology, and concepts of animation as it pertains to 2D animation and communication of ideas and data. Knowledge of 2D software such as Photoshop, etc. is assumed.

ArtIS 380. Sources of Visual Design. (0-6) Cr. 3. F. S.
Prereq: Art 109, 230. Studio exercises to develop an awareness of external and internal sources for design.

ArtIS 382. Ceramics II. (0-6) Cr. 3. F. S.
Prereq: Art 222. Further investigation of concepts and techniques in ceramics; introduction to glaze research and kiln firing.

ArtIS 384. Jewelry and Decorative Metalsmithing II. (0-6) Cr. 3. F. S.
Prereq: Art 224. Design of jewelry and hollow forms combining traditional and contemporary methods.

Prereq: 3 credits in craft design. Contemporary issues in craft design through lectures, presentations, and field trips.

ArtIS 386. Introduction to Illustration. (Same as BPM I 386.) (0-6) Cr. 3. F. S.
Prereq: Art 108 or 130. Further development of concepts and techniques housed in conceptual art and design. Continuation and expansion of concepts and techniques processes taught in ArtIS 227. Must have camera with manual exposure controls.

ArtIS 390. Drawing III: Life Drawing. (0-6) Cr. 3 each time taken, maximum of 9. F. S.
Prereq: Art 230. Drawing from the human figure.

ArtIS 395. Three-Dimensional Studio. (Same as Arch 395.) (0-6) Cr. 2 each time taken, maximum of 8. F. S.
Prereq: 3 credits in studio work and 3 credits in the biological sciences. Studio basics and fundamentals of the three-dimensional application of materials and concepts.

ArtIS 397. Application of Biological Illustration Techniques. (Same as BPM I 397.) (0-6) Cr. 3 each time taken, maximum of 6. S. F.
Prereq: 3 credits in design and 3 credits in the biological sciences. Rendering techniques in two and/or four different types of biological subject matter including computer and airbrush applications. Term project required.
ArtIS 343. Fiber Forms. (0-6) Cr. 3. F.S. Three-dimensional contemporary fiber construction. Visual problem-solving and conceptual idea development using processes and techniques such as knotting, wrapping, plaiting, netting, feltmaking, sculptural fiber manipulation, and basketry.

ArtIS 344. Weaving. (0-6) Cr. 3. Color and pattern development through interlocking yarns. Floor loom and frame loom fabric construction.

ArtIS 345. Fiber and Fabric Design. (0-6) Cr. 3. F. Shaped, patterned, manipulated, and embellished textiles using contemporary and traditional yarn, thread, and cloth techniques.

ArtIS 346. Resist and Dyed Fabric Design. (0-6) Cr. 3. F. Two- and three-dimensional problems in visual imagery using dye and resist processes.

ArtIS 347. Printed Fabric Design. (0-6) Cr. 3. F.S. Repeat pattern and overlapping transparent colors for fabric design using screening and direct application of pigments.

ArtIS 356. Relief Printmaking. (Dual-listed with 556.) (0-6) Cr. 3 each time taken, maximum of 9. F. Prereq: Art 230. Woodcut and linoleum cut printmaking processes in black and white, multiblock color, and reduction color printing. Collographs and forms of relief printmaking used separately and in combination with woodcuts.

ArtIS 357. Monotype. (Dual-listed with 557.) (0-6) Cr. 3 each time taken, maximum of 9. F. Prereq: 238. Monoprint and monotype processes: black and white and color techniques. Basic knowledge, production procedures, and drawing skills; experimentation.

ArtIS 358. Lithography. (Dual-listed with 558.) (0-6) Cr. 3 each time taken, maximum of 9. F. Prereq: Art 230. Planographic printmaking process: theory and practice. Studio procedures, drawing, and printing skills applied to metal plate lithography.

ArtIS 359. Intaglio. (Dual-listed with 559.) (0-6) Cr. 3 each time taken, maximum of 9. F. Prereq: 230. Intaglio printmaking processes. Basic knowledge and production procedures, drawing, and printing skills.

ArtIS 408. Computer-aided Art and Design. (Dual-listed with 508.) (0-6) Cr. 3 each time taken, maximum of 9. S. Prereq: 408. Prereq: Graduate classification, permission of instructor. Computer, software and related techniques as plant media for art and design. Emphasis on use as a tool for concept development, alternative problem solving, communication, pathfinding, and exploration of visual vocabulary, as they apply to still and animated imagery. Nonmajor graduate credit.

ArtIS 420. Wood Design III. (Dual-listed with 520.) (0-6) Cr. 3 each time taken, maximum of 12. F.S. Prereq: 320. Independent design and creation of furniture forms. Research and development of furniture forms utilizing innovative processes. Nonmajor graduate credit.

ArtIS 422. Ceramics III. (Dual-listed with 522.) (0-6) Cr. 3 each time taken, maximum of 12. F.S. Prereq: 322. Course for student with previous professional experience in ceramics or for those desiring further study. Personal directions in advanced ceramic processes and concepts. Nonmajor graduate credit.

ArtIS 424. Jewelry and Decorative Metalsmithing III. (Dual-listed with 524.) (0-6) Cr. 3 each time taken, maximum of 12. F.S. Prereq: 324. Design of jewelry and hollow forms using construction techniques. Nonmajor graduate credit.

ArtIS 430. Drawing IV. (Dual-listed with 530.) (0-6) Cr. 3 each time taken, maximum of 9. S. Prereq: Art 330. Figurative and non-figurative drawing with advanced work in media, composition, and theory. Nonmajor graduate credit.

ArtIS 438. Painting III. (Dual-listed with 538.) (0-6) Cr. 3 each time taken, maximum of 9. S. Prereq: 338. Figurative and non-figurative painting with advanced work in media, composition, and theory. Nonmajor graduate credit.

ArtIS 490. Independent Study. Cr. 1 to 6 each time taken. Prereq: Written approval of instructor and department chair on required form in advance of semester of enrollment. Creative problem-solving and design of individual projects. Source material must be comprehensively documented. Satisfactory-fail basis only.

ArtIS 505. Mixed Media. (Dual-listed with 305.) (0-6) Cr. 3 each time taken, maximum of 6. F.S. Prereq: Graduate classification, permission of instructor. Exploration and application of various materials, techniques, and ideas.

ArtIS 508. Computer-aided Art and Design. (Dual-listed with 408.) (0-6) Cr. 3 each time taken, maximum of 9. S. Prereq: Graduate classification, permission of instructor. Course for students with previous professional experience in computer art and design. Emphasis on use as a tool for concept development, problem solving, communication, pathfinding, and exploration of visual vocabulary, as they apply to still and animated imagery. Nonmajor graduate credit.

ArtIS 520. Wood Design Studio. (Dual-listed with 420.) (0-6) Cr. 3 each time taken, maximum of 12. F.S. Prereq: Graduate classification, permission of instructor. Independent design and creation of furniture forms. Research and development of furniture forms utilizing advanced and/or innovative processes. Nonmajor graduate credit.

ArtIS 522. Ceramics Studio. (Dual-listed with 422.) (0-6) Cr. 3 each time taken, maximum of 12. F.S. Prereq: Graduate classification, permission of instructor. Course for students with previous professional experience in ceramics or for those desiring further study. Personal directions in advanced ceramic processes and concepts. Nonmajor graduate credit.

ArtIS 524. Jewelry and Decorative Metalsmithing Studio. (Dual-listed with 424.) (0-6) Cr. 3 each time taken, maximum of 12. F.S. Prereq: Graduate classification, permission of instructor. Design of jewelry and hollow forms using advanced construction techniques. Nonmajor graduate credit.

ArtIS 530. Drawing. (Dual-listed with 430.) (0-6) Cr. 3 each time taken, maximum of 9. F.S. Prereq: Graduate classification, permission of instructor. Figurative and/or non-figurative drawing with advanced work in media, composition, and theory. Nonmajor graduate credit.

ArtIS 538. Painting. (Dual-listed with 438.) (0-6) Cr. 3 each time taken, maximum of 9. F.S. Prereq: Graduate classification, permission of instructor. Figurative and/or non-figurative painting with advanced work in media, composition, and theory. Nonmajor graduate credit.

ArtIS 547. Fiber/Fabric Studio Problems. (Dual-listed with 447.) (0-6) Cr. 3 each time taken, maximum of 9. S. Prereq: Graduate classification, permission of instructor. Course for students with previous professional experience in fiber and fabric art and design. Exploration of imagery using woven and surface design processes. Personal development and exploration of ideas. Nonmajor graduate credit.
ArtID 261. Graphic Communication for Interior Design I. (4-0) Cr. 2. F. Prereq: Admission to the interior design program through program review and enrollment in 261, 262, 350 or Arch 240; admission to the interior design program through department review. Enhanced creative interior design problem solving, compositional theories and graphic communication as applied to the interior design of small scale environments. Manual visualization techniques.

ArtID 262. Graphic Communication for Interior Design II. (0-0) Cr. 2. F. Prereq: Admission to the interior design program through program review and enrollment in 265. Perspective drawing, design sketching, presentation drawings, sketches, shadows, and reflections. Use of various rendering media and techniques.

ArtID 263. Graphic Communication for Interior Design III. (1-0) Cr. 3. S. Prereq: 261, enrollment in 267. Computer visualization techniques and applications; projects employing computer graphic methods.

ArtID 265. Interior Design Studio I. (1-9) Cr. 4. F. Prereq: Art 109, Art H 181, ArtID 160, 160S, credit or enrollment in 261, 262, 350 or Arch 240; admission to the interior design program through department review. Enhanced creative interior design problem solving, compositional theories and graphic communication as applied to the interior design of small scale environments. Manual visualization techniques.

ArtID 267. Interior Design Studio II. (1-9) Cr. 4. S. Prereq: 261, 262, 265, 350 or Arch 240, Art H 181, enrollment in 351, 355, 263 and T C 204. Human factors issues including ergonomics, human behavior and the requirements of special groups. Residential interior design and medium scale projects. Detail drawings, and expansion of visualization techniques.

ArtID 350. Interior Systems I. (4-0) Cr. 4. Prereq: Admission to the interior design program through department review. Structural principles, mechanical systems, and standard construction methods as related to interior design.

ArtID 351. Interior Systems II. (2-2) Cr. 3. S. Prereq: 265, 350 or Arch 240. Manufactured furniture, interior finishes and related issues. Selection criteria and written specifications.

ArtID 352. Interior Systems III. (3-0) Cr. 3. F. Prereq: 351 and enrollment in 356. Light and color as related to interior spaces. Lighting principles, and techniques to implement lighting design objectives.

ArtID 355. Interior Design History/Theory/Criticism I. (3-0) Cr. 3. S. Prereq: Art H 181. Stylistic evaluation of interior finishes, furnishings, and decorative arts, from a critical, historic and multicultural perspective. Nonmajor graduate credit.

ArtID 356. Interior Design History/Theory/Criticism II. (3-0) Cr. 3. F. Prereq: Art H 181. Theoretical approaches to the design of interior space, from a critical, historic and multicultural perspective, including late twentieth century. Nonmajor graduate credit.

ArtID 359. Junior Field Study. Cr. R. F. Prereq: Enrollment in third year studio course. Study and tours of areas of interest within the interior design profession such as manufacturers, designers, showrooms, museums. Offered on a satisfactory-fail grading basis only.

ArtID 368. International Study Orientation Seminar. (1-0) Cr. 1. Prereq: 365, permission of instructor and planned enrollment in Rome study option. Historic and contemporary architecture and interior design, customs and traditions of Rome and related travel itinerary locations. Required of students participating in the interior design international study option. Offered on a satisfactory-fail grading basis only.

ArtID 369. Interior Design Internship Seminar. (1-0) Cr. 0.5, to be repeated for 1 credit. F. S. Prereq: Enrollment in third year studio course. Procedural and ethical concerns relating to interior design internship. Preparation of placement credentials and formulation of personal goals. Internship plans and agreements. Offered on a satisfactory-fail basis only.

ArtID 459. Senior Field Study. Cr. R. Prereq: Enrollment in fourth year studio course. Study and tours of areas of interest within the interior design profession such as manufacturers, designers, showrooms, museums. Offered on a satisfactory-fail grading basis only.

ArtID 460. Interior Design Internship. Arr. Cr. 3. S. Prereq: Satisfactory completion of all 300-level interior design coursework, T C 204, and Arch 240. Professional internship experience.

ArtID 463. Housing for the Aging. (Same as HD FS 463.) See Human Development and Family Studies.

ArtID 467. Interior Design Studio VI. (1-9) Cr. 4. S. Prereq: 465, credit or enrollment in 464 and all required interior systems and history/theory/criticism courses. Refinement of technical, analytical and theoretical problem-solving methods and comprehensive design documentation. In-depth development of individual projects. Current issues in interior design. Nonmajor graduate credit.

ArtID 490. Independent Study. Cr. 1 to 6 each time taken. Prereq: Written approval of instructor and department chair on required form in advance of semester of enrollment. Student must have completed related interior design coursework appropriate to planned independent study. Offered on a graded basis or a satisfactory-fail basis. H. Honors

ArtID 493. Workshop. Cr. 1 to 3 each time taken. S. Prereq: Evidence of satisfactory experience in area of specialization. Intensive 2 to 4 week studio exploration. Topics vary each time offered.
Undergraduate Study
The department offers majors in biochemistry or biophysics in the College of Liberal Arts and Sciences and a major in agricultural biochemistry in the College of Agriculture.

Biochemists and biophysicists seek to understand life processes in terms of chemical and physical principles. They conduct research in the frontiers of biology such as metabolic networking; structure and function of enzymes, membranes, and hormones; computational approaches; genomics and proteomics; enzyme and protein engineering; plant biotechnology; muscle structure, function; and the design and evaluation of drugs for the treatment of disease. Biochemistry, biophysics and molecular biology provide the basis for much of modern biotechnology. Graduates have opportunities in industry, especially the biotechnology sector, in universities, veterinary medical, and medical schools, and government laboratories. Students who meet the necessary high scholastic standards have the opportunity to continue their studies in a graduate college, medical school, or veterinary medical school.

Graduates of biochemistry, agricultural biochemistry and biophysics understand the chemical principles of biological systems including molecular biology. They have developed laboratory expertise in modern biochemical techniques, including the ability to analyze data and prepare scientific reports. Most have participated in undergraduate research and have developed the skills necessary for both written and oral presentations at a level that will serve the student both within the university and in postgraduate professional life. Graduates have the experience of interacting with persons of different disciplines and cultures. Students have the training in mathematics and physics to solve problems of broad scope in biological, biomedical and environmental sciences and to provide leadership in diverse scientific and technological arenas.

Agricultural Biochemistry Major in the College of Agriculture
For the undergraduate curriculum leading to the degree bachelor of science, see College of Agriculture, Curricula. Agricultural biochemistry is recommended to students interested in the areas of agriculture requiring strong preparation in biochemistry, chemistry, physics, and mathematics, or in preparation for the study of veterinary medicine. Employment opportunities exist in agrochemical industries, and animal and plant biotechnology.

Biochemistry or Biophysics Majors in the College of Liberal Arts and Sciences
For the undergraduate curriculum leading to the degree bachelor of science, see Liberal Arts and Sciences, Curriculum. Biochemistry and biophysics are recommended to students whose career interests involve advanced study or employment in biochemistry or biophysics, or in related areas of the biological or medical sciences.

Undergraduate majors in the College of Liberal Arts and Sciences in biochemistry usually have the following basic courses or their equivalents in their programs: BBMB 101, 102, 404, 405 (or 501, 502), 411, 461 or 551; Chem 177M, 177N, 178, 210 (or 211), 211L, 321, 322, 322L, 331, 332, 333L, 334L; Math 165, 166, 265 (or 266); Phys 221, 222; Biol 201, 201L (or 202L or 301L or 302L), 202, 301, 302, and a minimum of 4 additional credits of biological science courses from biology, botany, genetics, microbiology, and zoology. Undergraduate research, BBMB 499, is strongly recommended.

Undergraduate majors in biochemistries usually include the following basic courses in their programs: BBMB 101, 461 or 551; Chem 177L, 177L, 178, 210 (or 211), 321, 321L (or 322L or Phys 311), 322, 331, 332, Math 165, 166, 265, 266; Phys 221, 222, 324 (or 321), and 232 or Com S 205; Biol 201, 201L (or 202L); Biol 202; and 9 additional credits in 300 or higher level courses in biochemistry, biophysics, biological sciences, chemistry, or physics. BBMB 404, 405 and Biol 301 are recommended in meeting this requirement for students preparing for careers in molecular biochemistry. Students wishing a strong preparation for graduate studies are advised to take undergraduate research and further mathematics courses such as 385 and 465.

These lists of courses should not be regarded as statements of fixed requirements or as complete outlines of the work necessary for the major. They are given solely for the convenience of students or advisers who wish to estimate the amount of basic study that may be needed.

Biochemistry and biophysics majors are advised to meet the College of Liberal Arts and Sciences foreign language requirement with courses in French, German, or Russian. See also the B.S./M.S. program under Graduate Study.

The department offers minors in biochemistry in both the College of Agriculture and the College of Liberal Arts and Sciences, which may be earned by credit in BBMB 404, 405, 311 (or 411), and 451 (or Chem 321), plus additional supporting 300 courses in chemistry or biochemistry for a total of 15 credits.

English proficiency requirement: Majors in agricultural biochemistry must complete Engl 104 and 105 and one course in speech fundamentals with a grade of C or better in each of these courses, and complete a communications intensive requirement equivalent to 3 credits from courses within the major. Majors in the College of Liberal Arts and Sciences must complete Engl 104 and 105 and one of the following with a grade of C- or better: (a) Engl 305, 309, or 314; (b) a written report in BBMB 411, or 499.

Graduate Study
The department offers work for the degrees master of science and doctor of philosophy with majors in biochemistry and biophysics and with interdepartmental majors in genetics, immunobiology, MCDB (molecular, cellular, and developmental biology), plant physiology, and toxicology. Minor work is offered to students taking major work in other departments. Prerequisite to graduate work is a sound undergraduate background in biology, chemistry, mathematics, and physics.

All graduate students are required by the department to teach as part of their training for an advanced degree.

The department offers a B.S./M.S. program in biochemistry that allows students to obtain both the B.S. and M.S. degrees in five years. The program is open to students in the College of Liberal Arts and Sciences and in the College of Agriculture. Students interested in this program should contact the department office for details. Application for admission to the Graduate College should be made near the end of the junior undergraduate (third) year. Students would begin research for the M.S. thesis during the summer semester after their junior year and are eligible for research assistantships.

Courses open for nonmajor graduate credit: 404, 405, 411, 420, 451, 461.

Visit our departmental website at //molebio.istate.edu/mbhtml/homepage.htm

Courses Primarily for Undergraduate Students
BBMB 101, Introduction to Biochemical Activities. (1-0) Cr. F. Research activities, career opportunities in biochemistry and biophysics, and an introduction to the structure of biologically important compounds. For students majoring in biochemistry, agricultural biochemistry or biophysics or considering one of these majors.

BBMB 102, Introduction to Biochemistry. (0-2) Cr. 1. S. Prereq: Credit or enrollment in Chem 177 and 177L. Topics in the scientific background of biochemistry, such as macromolecules, metabolism, and catalysis. May include laboratory experiments as well as literature readings and discussion. A significant component is practice in scientific communication. For students majoring in biochemistry, agricultural biochemistry or biophysics or considering one of these majors.

BBMB 221, Structure and Reactions in Biochemical Processes. (3-0) Cr. 3. F.S. Prereq: Chem 163, 167, or 177L. Emphasis on the fundamentals necessary for an understanding of biochemical processes. Primarily for students in agriculture. Not acceptable for credit toward a major in biochemistry or biophysics. Credit for both 221 and Chem 231 may not be applied toward graduation.

BBMB 301, Survey of Biochemistry. (3-0) Cr. 3. F.S.S.S. Prereq: Chem 231 or 331. A survey of biochemistry: structure and function of amino acids, proteins, carbohydrates, lipids, and nucleic acids; enzymology, metabolism; biosynthesis; and selected topics. Not acceptable for credit toward a major in biochemistry or biophysics.

BBMB 311, Biochemistry Laboratory. (1-3) Cr. 2. F.S. Prereq: Credit or enrollment in 301 or Biol 302. Emphasis on isolation, characterization, and quantification of biological substances. Not acceptable for credit toward a major in biochemistry or biophysics.

BBMB 398, Cooperative Education. Cr. R. F.S.S.S. Prereq: Permission of the department cooperative education coordinator; junior classification. Required of all cooperative education students. Students must register for this course prior to commencing each work period.

BBMB 404, Biochemistry. (3-0) Cr. 3. F. Prereq: Chem 332. A general overview for graduate and advanced undergraduate students in agricultural, biological, chemical and nutritional sciences. Chemistry of amino acids, proteins, carbohydrates, and lipids, vitamins, protein structure, enzymology, carbohydrate metabolism. Credit for both 420 and the 404, 405 sequence may not be applied toward graduation. Nonmajor graduate credit.
BBMB 405. Biochemistry. (3-0) Cr. 3. S. Prereq: 404. A general overview for graduate and advanced undergraduate students in agricultural, biological, chemical, and nutritional sciences. Metabolism of carbohydrates, amino acids, nucleotides and lipids; formation, turnover, and molecular relationships among DNA, RNA, and proteins; genetic code; regulation of gene expression; selected topics in the molecular physiology of plants and animals. Credit for both 420 and the 404, 405 sequence may not be applied toward graduation. Nonmajor graduate credit.

BBMB 411. General Biochemical Research Techniques. (1-0) Cr. 3. F. Prereq: Credit or enrollment in 404 or 501. Chem 210 or 211. Introduction to laboratory techniques for studying biochemistry, including: chromatographic methods; electrophoresis; spectrophotometry; enzyme purification; enzyme kinetics, and chromatography of carbohydrates, proteins, lipids, and nucleic acids. Nonmajor graduate credit.

BBMB 420. Physiological Chemistry. (3-0) Cr. 3. F. Prereq: Chem 332, BBMB 301 or Biol 302. Structure and function of enzymes; enzyme classification; biological oxidation; chemistry and metabolism of carbohydrates, lipids, amino acids and nucleic acids; protein synthesis and the genetic code; relationship of biochemistry to selected animal diseases. Biochemistry of higher animals emphasized. Not acceptable for credit toward a major in agricultural biochemistry, biochemistry or biophysics. Credit for both 420 and the 404, 405 sequence may not be applied toward graduation. Nonmajor graduate credit.

BBMB 451. Physical Biochemistry. (2-0) Cr. 2. F. Prereq: Chem 331, Phys 112 or 222; a previous course in calculus is helpful but not required. Selected topics in physical chemistry in the context of applications to problems in biology, biochemistry and food sciences. Not acceptable for credit toward a major in biochemistry or biophysics. Nonmajor graduate credit.

BBMB 461. Topics in Biochemistry. (2-0) Cr. 2. S. Prereq: 420 or Chem 221 or Phys 204. Biological phenomena viewed as problems in physics, with a focus on structural determinations and macromolecular characterization. Nonmajor graduate credit.

BBMB 490. Independent Study. Cr. arr. F.S.S.S. Prereq: College of Agriculture: junior or senior classification and permission of instructor; a minimum of 9 credits of 490 may be applied toward graduation; College of Liberal Arts and Sciences: permission of instructor; no more than 9 credits of BBMB 490 may be counted toward graduation. Honors

BBMB 498. Cooperative Education. Cr. R. F.S.S.S. Prereq: Permission of the department cooperative education coordinator; senior classification. Required of all cooperative education students. Students must register for this course prior to commencing each work period.

BBMB 499. Undergraduate Research. Cr. 1 to 5. F.S.S.S. Prereq: Permission of staff member with whom student proposes to work. Research under senior staff guidance.

Courses Primarily for Graduate Students, open to qualified undergraduate students

BBMB 501. Comprehensive Biochemistry. (4-0) Cr. 4. F. Prereq: Chem 210 or 211, 322, and 332; a previous course in biochemistry is strongly recommended. Chemical composition of living matter and the chemistry of life processes. Chemical characterization of amino acids, proteins, carbohydrates and lipids; enzymology and co-enzymes; metabolism of carbohydrates; biological oxidations.

BBMB 502. Comprehensive Biochemistry. (4-0) Cr. 4. S. Prereq: 501. Chemical composition of living matter and the chemistry of life processes. Metabolism of lipids, aminoacids, and nucleotides; membrane biochemistry; biosynthesis of DNA, RNA, and proteins; gene regulation; selected topics.

BBMB 503. Bioorganic Chemistry. (Same as Chem 503) See Chemistry.

BBMB 511. Topics in Experimental Biochemistry. (1-6) Cr. 1 each time taken. F.S. Prereq: Credit or enrollment in 404 or 501, Chem 210L or 211L. Taught as individual one-credit modules. Modules include:
A. Protein Chemistry
B. Radiosotopes in biochemistry
C. Flow cytometry
D. Monoclonal antibodies
E. Special techniques

BBMB 520. Genetic Engineering. (Same as Gen 520.) See Zoology and Genetics.

BBMB 540. Signal Transduction. (Same as Zool 540.) See Zoology and Genetics.

BBMB 541. Computational Biochemistry. (1-0) Cr. 1. F. Prereq. A previous course in biochemistry is recommended. Computer applications in biochemical research.

BBMB 542. Introduction to Molecular Biology Techniques. (Same as Zool 542.) See Zoology and Genetics.

BBMB 551. Molecular Biophysics. (3-0) Cr. 3. F. Prereq: Chem 322. An examination of physical methods for the study of molecular structure and organization of biological materials, with emphasis on applications. Spectroscopy, hydrodynamic methods, nuclear magnetic resonance, and X-ray diffraction.

BBMB 581. Seminar. (1-0) Cr. 1. F. Prereq: Permission of instructor. Short presentations by students and discussion on assigned topics. For entering graduate students.

BBMB 590. Special Topics. F.S.S.S. Cr. arr.

BBMB 593. Workshop in Biochemistry and Biophysics. Cr. 1 each time taken. Prereq: Permission of instructor. Graduate workshops in selected topics in biochemistry and biophysics. Credit in this course does not meet the requirement for advanced graduate electives in Biochemistry.

Courses for Graduate Students

BBMB 615. Molecular Immunology. (Same as Gen 615, Micro 615, V MPM 615.) (3-0) Cr. 3. Alt. F., offered 2002. Prereq: 405 or 502. Current topics in molecular aspects of immunology. T and B cell receptors; major histocompatibility complex; antibody structure; immunosuppressive drugs and viruses; and intracellular signaling pathways leading to expression of genes that control and activate immune function.

BBMB 632. Kinetics of Enzyme Action. (2-0) Cr. 1 or 2. 8 or 16 weeks. Alt. S., offered 2003. Fromm. Prereq: 404 or 502. Kinetics; and characterization of carbohydrates, proteins involved in diverse biochemical processes, such as energy transmission transport across membranes, neurotransmission and signal transduction.

BBMB 675. Nucleic Acid Structure and Function. (Same as Gen 675.) (2-0) Cr. 2. Alt. F., offered 2001. Prereq: 405 or 502. In-depth discussion of nucleic acid properties, structures and structure/function relationships. Interactions between nucleic acids and proteins will be emphasized.

BBMB 676. Biochemistry of Gene Expression in Eucaryotes. (Same as MCB 676.) (2-0) Cr. 2. Alt. S., offered 2002. Prereq: 404 or 501, 405 or 502 or Gen 511. Staff. Analysis of the biochemical processes involved in expression of eucaryotic genes and the regulation thereof, including RNA polymerase, transcriptional regulatory proteins, enhancers and silencers, chromosome structure, termination, RNA processing, RNA transport, RNA turnover, translation regulation, protein turnover.

BBMB 681. Advanced Seminar. Cr. 1 each time taken. F.S. Prereq: Permission of instructor. Staff participation.

BBMB 696. Seminar in Plant Physiology and Molecular Biology. (Same as Bot 696.) See Botany.

BBMB 698. Seminar in Molecular, Cellular, and Developmental Biology. (Same as MCB 698.) See Molecular, Cellular, and Developmental Biology.

BBMB 699. Research. Prereq: Permission of instructor.
Bioinformatics and Computational Biology

www.bcb.iastate.edu
bioinformatics@iastate.edu

(Interdepartmental Graduate Major)

Supervisory Committee: D. Dobbs, Chair; D. Voytas, Assoc. Chair; A. Andreotti, D. Ashlock, V. Honavar, P. Schnable

Undergraduate Study

Courses in bioinformatics and computational biology are offered for undergraduates, but a baccalaureate degree is not offered at this time.

Undergraduates wishing to prepare for graduate study in Bioinformatics and Computational Biology should obtain solid undergraduate training in at least one of the foundation disciplines: molecular biology, computer science, mathematics, statistics, and physics.

Undergraduates should elect courses in basic biology, basic transmission and molecular genetics, chemistry, physics, mathematics at least through calculus, statistics, and computer programming.

Graduate Study

Work is offered for the master of science and doctor of philosophy degrees with a major in Bioinformatics and Computational Biology (BCB). Faculty are drawn from several departments: Agronomy; Animal Science; Biochemistry, Biophysics and Molecular Biology; Botany; Chemical Engineering; Computer Science; Electrical and Computer Engineering; Mathematics; Physics and Astronomy; Plant Pathology; Statistics; Veterinary Microbiology and Preventive Medicine; and Zoology and Genetics.

The BCB program emphasizes interdisciplinary training in six related areas of focus: Bioinformatics, Functional and Structural Genomics, Genome Evolution, Macromolecular Structure and Function, Mathematical Biology and Computational Modeling, and Metabolic and Developmental Networks. Additional information about research areas and individual faculty members is available at: www.bcb.iastate.edu.

BCB students are trained to develop an independent and creative approach to science through an integrative curriculum and thesis research projects that include both computational and biological components. First year students are appointed as research assistants and participate in BCB 697 (Graduate Research Rotation), working with three or more different research groups to gain experience in both "wet" (biological) and "dry" (computer) laboratory environments. In the second year, students initiate a thesis research project under the joint mentorship of two BCB faculty mentors, one from the biological sciences and one from the quantitative/computational sciences. The M.S. and Ph.D. degrees are usually completed in two and five years, respectively.

During the first year, all BCB students complete background coursework in calculus, molecular genetics, computer science, statistics and discrete structures, with specific courses determined by prior training. The total course requirements for Ph.D. students include one core course in Computational Molecular Biology (BCB 594), one core course in Molecular Genetics (e.g., Gen 511, BBMB 501), and at least 12 credits of advanced coursework in the areas of Molecular Biology (6 credits) and either Computer Science or Mathematics/Statistics (6 credits in one area). Students make research presentations (BCB 599), attend faculty research seminars (BCB 690), attend faculty research seminars (BCB 691), and participate in workshops/symposia (BCB 591). M.S. students take the above background and core courses, take at least 12 credits of advanced coursework, and may elect to participate in fewer seminars and workshops. Additional coursework may be selected to satisfy individual interests or recommendations of the Program of Study Committee. All graduate students are encouraged to teach as part of their training for an advanced degree. (For curriculum details and sample programs of study, see: www.bcb.iastate.edu.)

Courses open for nonmajor graduate credit: 484, 485.

Courses Primarily for Undergraduate Students

BCB 484, Computational Mathematics for Biologists. (Same as Math 484.) (3-0) Cr. 3. F. Survey of graph theory, linear algebra, discrete math, and algorithms used in computational biology with examples taken from genomics, phylogenetics, and structure problems. This course provides mathematical background for BCB/Gen/Com S/Math 594.

Nonmajor graduate credit.

BCB 495, Molecular Biology for Computational Scientists. (Same as Gen 495.) (3-0) Cr. 3. F. D. Dobbs. Survey of molecular cell biology and molecular genetics for nonbiologists, especially those interested in bioinformatics/computational biology. Basic cell structure and function; principles of molecular genetics; biosynthesis, structure, and function of DNA, RNA, and proteins; regulation of gene expression; selected topics. Provides biological background for BCB/Gen/Com S/Math 594. Nonmajor graduate credit. Credit for graduation will not be allowed for more than one of the following: Gen 411 and 495.

Courses Primarily for Graduate Students, Open to Qualified Undergraduate Students

BCB 549, Advanced Algorithms in Computational Biology. (Same as Cpr E 549, Com S 549.) See Computer Engineering or Computer Science.

BCB 556, Computational Genomics and Evolution. (Same as Gen 556.) (3-0) Cr. 3. Prereq: Biol 301. Gu. Introduction to evolutionary sequence analysis at the genome level. Topics include sequence alignment, phylogenetic inference, molecular clock analysis, ancestral state inference, sequence/structure relation, functional divergence and prediction, evolutionary development, genome duplication, and comparative genomics. Focus will be on data analysis and biological interpretation.

BCB 590. Special Topics. Cr. var. Prereq: Permission of instructor.

BCB 593. Workshop in Bioinformatics and Computational Biology. (1-0) Cr. 1, each time taken. F. S. Current topics in bioinformatics and computational biology research. Lectures by off-campus experts. Students read background literature, attend preparatory seminars, attend all lectures, meet with lecturers.

BCB 594. Computational Molecular Biology. (Same as Gen 594, Math 594, Com S 594.) (3-0) Cr. 3. F. S. Prereq: Biol 301 and 302 or Math 304 and 307 (Math 317 may be used in place of 307) or Com S 311 and 330 or equivalent courses. Introduction to the biological background and the algorithms used in sequence comparison and data base search, fragment assembly and physical mapping of DNA, building of phylogenetic trees, analysis of genome rearrangement, and molecular structure prediction. Practice with some of the software commonly used for these problems.

BCB 596. Genomic Data Processing. (Same as Gen 596, Com S 596.) Cr. 3. Prereq: Com S 208 or 228, and Com S 311. Chou. Introduction to major computational models relevant to modern molecular biology research. Topics include database construction, search and update; data collection and dissipation through Internet; sequence alignment and comparison methods; structure recognition and prediction algorithms; shotgun assembly procedures and algorithms; and scripting languages for linking together an automatic biological data processing pipeline. Focus will be on the analysis and actual implementation of these algorithms.

BCB 599. Creative Component. Cr. var.

Course for Graduate Students

BCB 690. Student Seminar in Bioinformatics and Computational Biology. Cr. 1, each time taken. S. Student research presentations.

BCB 691. Faculty Seminar in Bioinformatics and Computational Biology. (1-0) Cr. 1, each time taken. F. Faculty research series.

BCB 697. Graduate Research Rotation. Cr. var. each time taken. F. S.S. Graduate research projects performed under the supervision of selected faculty members in the Bioinformatics and Computational Biology major.

BCB 699. Research.
A minor in biological illustration is offered. A minimum of 17 credits must be taken, including 8 credits in biological science courses and 9 credits in art and design courses. The biological sciences must include Biol 201, 201L, 202, 202L. The art and design courses must include ArtVS 336 and 337, and an advanced drawing or painting course. For more information, contact the chair of the BPM I Advisory Committee in 201 Bessey Hall.

Courses Primarily for Undergraduate Students

BPM I 326. Introduction to Illustration. (Same as ArtIS 326.) See Art and Design.

BPM I 327. Illustration as Communication and Interpretive Expression. (Same as ArtIS 327.) See Art and Design.

BPM I 336. Biological Illustration Principles and Techniques. (Same as ArtIS 336.) (0-6) Cr. 3 each time taken, maximum of 6. F. Prereq: 6 credits in art and design and 3 credits in biological sciences. Studio basics and fundamentals of traditional biological rendering techniques. Emphasis on tools and materials.

BPM I 337. Application of Biological Illustration Techniques. (Same as ArtIS 337.) (0-6) Cr. 3 each time taken, maximum of 6. S. Prereq: 336. Rendering techniques applied to different types of biological subject matter including computer applications. Term project required.

BPM I 395. Field Illustration. Cr. 1 to 3 each time taken, maximum of 6. S.S. Prereq: Permission of instructor. A combination seminar and field trip course emphasizing nature interpretation, field sketching techniques and preparation of a final illustration based on field experience.

BPM I 398. Cooperative Education. Cr. R. F.S.S. Prereq: Permission of the program cooperative education coordinator, junior classification. Required of all cooperative education students. Students must register for these courses prior to commencing each work period.

BPM I 435I. Illustrating Nature I. Sketching. (Same as la LL 435I.) See Iowa Lakeside Laboratory.

BPM I 436I. Illustrating Nature II. Photography. (Same as la LL 436I.) See Iowa Lakeside Laboratory.

BPM I 490. Independent Study. Cr. 1 to 3 each time taken, maximum of 3. Prereq: Written approval of instructor and advisory committee chair on required form in advance of semester of enrollment.

BPM I 494. Special Topics in Illustration. Cr. 1 to 3 each time taken. Intensive exploration of illustration techniques in a studio or field setting.

BPM I 497. Illustration Internship. Cr. 1 to 6 each time taken, maximum of 6. Prereq: Junior or senior classification in BPMI, written approval of supervising instructor and advisory committee chair on required form in advance of semester of enrollment. Offered on a satisfactory-fail grading basis only.

Biology

www.biology.iastate.edu

Waren D. Dolphin, Program Coordinator

The biological sciences at Iowa State University are organized into 20 departments and programs. These can be grouped into the basic sciences, agricultural sciences, and veterinary sciences. Well over 200 faculty consider themselves life scientists and most teach courses at the undergraduate and graduate levels. Such a large faculty group provides many opportunities for students to learn from some of the national leaders in biological research and teaching and to participate in exciting, meaningful research projects that explore the frontiers in the life sciences. Few other universities have such a wealth of faculty expertise available to undergraduate students.

Biology is an interdepartmental undergraduate major. Students majoring in Biology are able to integrate knowledge from several life science disciplines into a coherent, broadly based undergraduate program of study. Students who wish to study specific areas of the basic biological sciences should declare majors in animal ecology, biochemistry, botany, entomology, genetics, microbiology, or zoology. Course requirements for these majors are listed elsewhere in this bulletin under the department’s name. Although requirements for biology and related majors differ significantly, the courses taken during the first two years are similar. In particular, all require freshman biology and chemistry, must require calculus and organic chemistry, and all require credits in general education courses. As a result and with proper planning, a student is able to transfer from one basic biological science major to another without serious consequences any time during the first two years. For detailed requirements, see the catalog entries under the particular majors.

The biology major is well suited for those who plan to teach biology, who wish to enter government or industrial employment in the health or environmental professions, or who prefer educational breadth as an end in itself. A bachelor’s degree in biology provides excellent preparation for graduate study in many biological disciplines and for entrance into various professional schools, such as human medicine, physical therapy, or veterinary medicine. Students with particular interests can combine biology with a minor or a second major in another area, such as chemistry, environmental studies, a foreign language, journalism, mathematics, or other majors offered by the university.

Undergraduate Study

Of the courses taught by the biology program, Biol 108 is a general presentation of selected biological topics designed primarily for students not majoring in the basic biological sciences. Biol 123, also designed for the non-major, is intended to be an introduction to topics in environmental biology.

A unified biology core serves the various majors in the life sciences. This core consists of six integrated courses with labs that explore the basic principles of the biological sciences. The first year (Biol 201, 202) provides a broad introduction to the nature of life. The second year (Biol 301, 302) provides an integrated foundation in the principles of genetics, cell biology, and elementary biochemistry. The third year (Biol 312, 303) provides an ecological and evolutionary perspective.

A detailed description of the courses required in the biology major is available in 201 Bessey Hall or is available on the WWW at http://wwwbiology.iastate.edu. Biology majors take a minimum of 40 credits in the
biological sciences, including the following courses: Biol 102, 201, 201L, 202, 202L, 301, 301L, 302, 302L, 303, and 312 plus 18 additional credits in approved life science courses numbered 300 or above. A partial listing of approved courses by department follows:

Animal Ecology
- A Ecl 310 Vertebrate Biology I
- A Ecl 311 Vertebrate Biology II
- A Ecl 321 Fish Biology
- A Ecl 325 Bird Study
- A Ecl 350 Ecological Methods & Analysis
- A Ecl 410 Aquatic Ecology
- A Ecl 442 Aquaculture

Biochemistry, Biophysics and Molecular Biology
- BBMB 301 Survey of Biochemistry
- BBMB 311 BioChem Lab or 411
- BBMB 404 Biochemistry I
- BBMB 405 Biochemistry II
- BBMB 420 Physiological Chemistry
- BBMB 451 Physical Biochemistry
- BBMB 461 Biophysics

Biomedical Sciences
- BMS 329 Physiology and Anatomy of Domestic Animals
- BMS 415 Anatomy of Laboratory Animals
- BMS 416 Avian Anatomy

Botany
- Bot 304 Plants & People
- Bot 306 Plant Taxonomy
- Bot 320 Plant Physiology
- Bot 320 Plant Physiology Lab
- Bot 330 Environmental Systems
- Bot 364 Biology of Aquatic Plants and Algae
- Bot 401 Environmental Analysis of Watersheds: Biogeochemical Dynamics
- Bot 404 Plant Anatomy
- Bot 406 Principles of Mycology
- Bot 484 Plant Ecology [S]

Entomology
- Ent 370 Insect Biology
- Ent 374 Insects and Our Health
- Ent 375 Biological Control
- Ent 376 Fundamentals of Entomology & Pest Management

Genetics
- Gen 308 Biotechnology in Agriculture
- Gen 340 Human Genetics
- Gen 410 Transmission Genetics
- Gen 411 Molecular Genetics
- Gen 460 Mathematical Genetics
- Gen 462 Evolutionary Genetics

Microbiology
- Micro 302 Biology of Microorganisms
- Micro 201L Intro Microbiology Lab (201)
- Micro 310 Fundamentals of Microbial Infection & Immunity
- Micro 320 Fundamentals of Microbial Physiology & Genetics
- Micro 402 Microbial Genetics
- Micro 404 Microbial Physiology
- Micro 408 Virology
- Micro 420 Food Microbiology
- Micro 475 Immunology
- Micro 477 Bacterial-Plant Interactions
- Zoology
- Zool 304 Animal Behavior
- Zool 311 Intro Parasitology
- Zool 310 Brain & Behavior
- Zool 320 Comparative Chordate Anatomy
- Zool 322 Vertebrate Histology
- Zool 355 Principles of Physiology
- Zool 405 Invertebrate Biology
- Zool 428 Cell Biology
- Zool 433 Developmental Biology
- Zool 454 Genetics and Comp Endocrinology
- Zool 456 Neurobiology
- Zool 459 Environmental Physiology

Iowa Lakeside Lab
- la LL 3011 Iowa Natural History
- la LL 3021 Plant-animal Interactions
- la LL 3121 Ecology
- la LL 3261 Ornithology
- la LL 3641 Biology of Aquatic Plants
- la LL 3671 Plant Taxonomy
- la LL 3711 Field Entomology
- la LL 4031 Evolution
- la LL 4151 Developmental Biology of Freshwater Invertebrates
- la LL 4191 Vertebrate Ecology and Evolution
- la LL 4221 Prairie Ecology
- la LL 4901 Undergraduate Independent Study

Many courses from the departments of Agronomy, Animal Science, Horticulture and Plant Pathology may also be applied to the Biology major. The complete list of approved courses may be obtained in 201 Bessey Hall or viewed on the WWW at www.biology.iastate.edu

Courses beyond the core must be chosen from at least two departments so that the student’s program of study reflects breadth of preparation. Students are encouraged to participate in research projects by taking Biol 490 (Independent Study) in order to gain research experience prior to graduation. A grade of C- or better is required in all biological science courses applied to the major and the cumulative average in the major must be at least a C.

Supporting course requirements include: 16 credits in chemistry to include two semesters of general chemistry with labs and at least one semester of organic chemistry with lab; after demonstrating competence in algebra and trigonometry, two semesters of calculus or two semesters of statistics chosen from a list of approved courses available in 201 Bessey Hall and a two-semester sequence in general physics.

Because biology is a major in the College of Liberal Arts and Sciences, students must fulfill the foreign language and general education requirements listed in this bulletin for that college.

English Proficiency Requirement. Students must earn a minimum of C in both English 104 and 105 or equivalent composition courses and in one additional writing course numbered Engl 302 through 316, excluding 310.

In addition to courses offered on campus, courses in field and aquatic biology are offered at the Iowa Lakeside Laboratory. Courses in marine biology are available at the Gulf Coast Research Laboratory in Mississippi. Students may also attend summer biological field stations elsewhere and transfer credits back.

Biological sciences should apply directly to one of the life science departments. Interdepartmental graduate offerings in ecology and evolutionary biology (EEB); genetics; molecular, cellular, and developmental biology (MCDB); neurobiology; plant physiology, toxicology, immunobiology; and biomedical engineering, and water resources are also available. (See Index.)

A non-thesis master’s degree in interdisciplinary graduate studies (biological sciences) has been established particularly for teachers who wish to broaden and update their formal training in biology.

Courses open for nonmajor graduate credit: 374, 403.

Courses Primarily for Undergraduate Students

Biol 102. Opportunities in Biology. (1-0) Cr. 5. F. Orientation to the biological sciences, and discussion of professional opportunities. Required of first year biology majors. Offered on a satisfactory-fail grading basis only.

Biol 109. Introductory Biology. (3-0) Cr. 3. F.S.S.S. Life considered at cellular, organism, and population levels. Function and diversity of the living world. Presentation of basic biological principles as well as topics and issues of current human interest. Non-majors only. Students may receive graduation credit for no more than one of the following: 109, 201.

Biol 123. Environmental Biology. (Same as Env S 123.) (3-0) Cr. 3. F. S. An introduction to the structure and function of natural systems at scales from the individual to the biosphere and the complex interactions between humans and their environment. Discussions of human population growth, biodiversity, sustainability, resource use, and pollution. Does not count toward credits required in Biology major.

Biol 201. Principles of Biology I. (3-0) Cr. 3. F.S. Prereq: High school biology and chemistry or credit or enrollment in Chem 163 or 177. Introduction to the nature of life, including the cellular basis of life; the nature of heredity; evolution; diversity of microbrial, plant, and animal life; and principles of ecology.
Biol 201L. Principles of Biology Laboratory. (0-3) Cr. 1. F. S. Prereq: Credit or enrollment in 201. Laboratory to accompany 201.

Biol 202. Principles of Biology II. (3-0) Cr. 3. F. S. Prereq: 201. Introduction to the nature of life, including the cellular basis of life; energy relationships; the nature of heredity, evolution; form and function of microbial, plant, and animal life.

Biol 202L. Principles of Biology Laboratory. (0-3) Cr. 1. F. S. Prereq: credit or enrollment in 202. Laboratory to accompany 202.

Biol 298. Cooperative Education. Cr. R. F.S.S.S. Prereq: Sophomore classification and permission of the department cooperative education coordinator. Required of all cooperative education students. Students must register for this course prior to commencing each work experience.

Biol 301. Principles of Genetics. (Same as Gen 301.) (3-0) Cr. 3. F. S. Prereq: 201L and 202L, credit or enrollment in organic chemistry. Introduction to the principles of transmission and molecular genetics of plants, animals, and bacteria. Recombination, structure and replication of DNA, gene expression, cloning, quantitative and population genetics. Students may receive graduation credit for no more than one of the following: 301 and 301L, Gen 260, Gen 301, Gen 320, and Agron 320.

Biol 301L. Genetics Laboratory. (Same as Gen 301L.) (3-0) Cr. 1. F. S. Prereq: Credit or enrollment in 301. Laboratory to accompany 301. Students may receive graduation credit for no more than one of the following: 301 and 301L, Gen 260, Gen 301, Gen 320, and Agron 320.

Biol 302. Principles of Molecular Cell Biology and Biochemistry. (3-0) Cr. 3. F. S. Prereq. 301. Integration of elementary principles of metabolism, bioenergetics, cell membrane function and function to develop a molecular view of how the cell works.

Biol 302L. Molecular Cell Biology and Biochemistry Laboratory. (0-3) Cr. 1. F. S. Prereq: Credit or enrollment in 302. Laboratory to accompany 302.

Biol 303. Biological Evolution. (Same as Bot 303, Zool 303.) (3-0) Cr. 3. F. S. Prereq: Credit or enrollment in 301. The mechanisms of evolution. Topics in microevolution: population genetics, natural selection, genetic variation, and adaptation. Macroevolution: speciation, extinction, phylogeny, and major evolutionary patterns.

Biol 312. Ecology. (Same as A Ec 312, Bot 312, EnSci 312.) (2-3) Cr. 3. F. S. Prereq: 201L and 202L. Fundamental concepts and principles of ecology dealing with organisms, populations, communities and ecosystems. Laboratory and field exercises examine ecological principles and methods as well as illustrate habitats.

Biol 312L. Ecology. (Same as La 31L2.) See Iowa Lakeside Laboratory.

Biol 374. Insects and Our Health. (Same as Ent 374.) See Entomology. Nonmajor graduate credit.

Biol 394. International Field Trips in Biology. Cr. 1 to 4 each time taken. Prereq: Two courses in the biological sciences and by approval of application. Extended field trips, usually during break periods, to international locations of interest to biologists. Inquire in the Bion Hall for trip schedule.

A. Pre-trip Seminar. Cr. 1. Discussion of relevant biological and cultural topics during semester preceding trip.
B. Field trip. Cr. 1 to 3. Trip to international location under supervision of faculty member. Report required.

Biol 398. Cooperative Education. Cr. R. F.S.S.S. Prereq: Junior classification and permission of the department cooperative education coordinator. Required of all cooperative education students. Students must register for this course prior to commencing each work period.

Biol 403L. Evolution. (Same as La 403L.) See Iowa Lakeside Laboratory. Nonmajor graduate credit.

Biol 433L. Developmental Biology Laboratory. (Same as Zool 433L.) See Zoology and Genetics.

Biol 490. Independent Study. Cr. 1 to 6 each time taken. Prereq: 8 credits in biology and permission of instructor. See also 490 offerings in biological science departments. No more than 9 credits in Biol 490 may be counted toward graduation and of those only 6 credits may be applied to the major.

I. Iowa Lakeside Laboratory. Cr. 1 to 4 each time taken.
R. Biological research. Cr. 1 to 6 each time taken. For students registering to work on an independent research project under the direction of a faculty member.
U. Laboratory teaching experience. Cr. 1 to 2. For students registering to be undergraduate laboratory assistants. Offered on a satisfactory-fail grading basis only.

Biol 495. Undergraduate Seminar. Cr. 1. F. Prereq: 15 credits in biological science. Content varies from year to year and may include detailed discussion of special topics in biology, current issues in biology, or careers in biology.

Biol 498. Cooperative Education. Cr. R. F.S.S.S. Prereq. Senior classification and permission of the department cooperative education coordinator. Required of all cooperative education students. Students must register for this course prior to commencing each work period.

Courses Offered at the Gulf Coast Research Laboratory (GCRL), Ocean Springs, Mississippi

The Gulf Coast Research Laboratory is affiliated with the University of Southern Mississippi. Iowa State students may register for the following University of Southern Mississippi courses and transfer them to their ISU degree programs. Written permission of the ISU coordinator for the GCRL, 201 Bessey, is required for this arrangement. Inquire at 201 Bessey for further information.

MAR 301. Marine Biology. Cr. 3. SS. Prereq. 8 semester hours of biological sciences. A general introduction to marine biology with emphasis on local fauna and flora.

MAR 301L. Marine Biology Lab. Cr. 2. SS. Lab to accompany 301.

MAR 457L. Marine Science for Teachers Lab. Cr. 1 or 2. Lab to accompany 457.

Other courses offered at Gulf Coast are listed or 2. Lab to accompanies 457.

The program of formal courses taken by students is oriented toward developing proficiency in research or design in the interdisciplinary field or in utilizing biomedical principles in clinical situations. Selected background and advanced courses from related disciplines are taken in conjunction with appropriate biomedical engineering courses. The program of formal courses varies, depending upon the background and interests of the student, and is determined in consultation with the student’s advisory committee.

Course Primarily for Undergraduate Students

B M E 401. Scope of Biomedical Engineering. (1-0) Cr. D.S. F. 8 weeks. Topical career development activities in biomedical engineering. For undergraduate students who wish to become familiar with the field of biomedical engineering. Offered on a satisfactory-fail grading basis only.

Courses Primarily for Graduate Students, Open to Qualified Undergraduate Students

B M E 521. Biomechanics. (Same as E M 521, I E 521.) (3-0) Cr. 3. Alt. F., offered 2001. Prereq: Phys 111 or 221, Math 265. For students with interests in the life sciences, ergonomics, or rehabilitation engineering. Topics include equilibrium, motion, energy, stress and deformation, material properties, flow of fluids, dimensional analysis and modeling of biological systems. Illustrative examples taken from biology and medicine.
Courses of Graduate Students

B M E 690. Advanced Topics. Cr. 1 to 5 as arranged.
A. Instrumentation
B. Simulation
C. Transport Phenomena
D. Biomaterials
E. Information Processing
F. Tissue Engineering
G. Biomechanics
H. Virtual Reality
I. Computational Intelligence

Courses Primarily for Professional Curriculum Students

B M S 331. Principles of Morphology II. (Dual-listed with 531.) (2-6) Cr. 4. S. Prereq: First-year classification in veterinary medicine. Comparative and topographic anatomy of domestic animals.

B M S 332. Microscopic Anatomy. (Dual-listed with 532.) (3-3) Cr. 4. F. Prereq: First-year classification in veterinary medicine. Cytology, histology and organology of domestic animals.

B M S 337. Neurobiology. (Dual-listed with 537.) (2-3) Cr. 3. S. Prereq: First-year classification in veterinary medicine. Neurobiology of domestic animals.

B M S 345. Case Study I. (0-4) Cr. 2. F. Prereq: First-year classification in veterinary medicine. Clinical applications of basic sciences taught concurrently in the fall semester of the first year curriculum in veterinary medicine.

B M S 346. Case Study II. (0-2) Cr. 1. S. Prereq: First-year classification in veterinary medicine. Clinical applications of basic sciences taught concurrently in the spring semester of the first year curriculum in veterinary medicine.

B M S 349. Comparative Veterinary Physiology I. (3-3) Cr. 3. F. Prereq: First-year classification in veterinary medicine. Cell physiology, blood, body fluids, endocrinology, renal and gastrointestinal physiology of domestic animals.

B M S 350. Comparative Veterinary Physiology II. (4-3) Cr. 3. S. Prereq: First-year classification in veterinary medicine. Cardiovascular, respiratory, and reproductive physiology of domestic animals.

B M S 354. General Pharmacology. (Dual-listed with 543.) (3-0) Cr. 3. S. Prereq: Principles of pharmacology and physiology of domestic animals.

B M S 355. Integrative Pharmacology. (0-2) Cr. 1. F. Prereq: Second-year classification in veterinary medicine. To integrate all organ systems into a total physiological response to stress, etc. Small group discussions and computer simulations will be utilized.

B M S 443. Pharmacology and Therapeutics. (Dual-listed with 543.) (3-0) Cr. 3. F. Prereq: 354. Pharmacology and therapeutic uses of drugs, anti-microbial drugs and anti-parasitic drugs and adverse drug reactions.

B M S 490. Independent Study. Cr. 1 to 5 each time taken. Prereq: Permission of instructor. H. Honors

Richard J. Martin, Chair of Department

University Professors: Draper

Professors: Ahrens, Bloedel, Dyer, Evans, Ghoshal, Hsu, R. Martin, Randic, Riedesel, Uemura, Ware

Professors (Collaborators): Allison, Bennett, Horst, Whipp

Distinguished Professors (Emeritus): Christensen, Dellmann

University Professors (Emeritus): Adams, Reecé

Professors (Emeritus): Bal, Canithers, Engen, Hembrough, Pineda, Swenson, VanMeter

Associate Professors: Greer, Jeffrinja, Kanthasamy, P. Martin, Sharp

Associate Professors (Collaborators): Goff, Olsen

Associate Professors (Emeritus): Crump

Assistant Professors: Apley, Day, Kim, Sonea

Assistant Professors (Adjunct): Greenlee, Robertson

Assistant Professors (Collaborators): Kesl, Rasmussen

Instructors (Adjunct): Bolser

Biomedical Sciences

Courses and Programs Biomedical Engineering 2001-2003

B M E 540. Biomedical Applications of Chemical Engineering. (Same as Ch E 540.) (3-0) Cr. 3. Alt. F., offered 2001. Prereq: Ch E 210, Math 266, Phys 222. Applications of material and energy balances, transport phenomena, chemical reaction engineering, and thermodynamics to problems in biomedical and biochemical engineering, applied physiology and environmental studies.

B M E 580. Biomaterials. (Same as E M 580, M S E 580.) (5-0) Cr. 3. S. Prereq: Mat E 211 or 272. Presentation of the basic chemical and physical properties of biomaterials as they are related to their manipulation by the engineer for incorporation into living systems. Role of microstructure properties and the choice of biomaterials and design of artificial organs, implants, and prostheses.

B M E 590. Special Topics. Cr. 1 to 5 as arranged. Investigation of problems of special interest in biomedical engineering.

A. Instrumentation
B. Simulation
C. Transport Phenomena
D. Biomaterials
E. Information Processing
F. Tissue Engineering
G. Biomechanics
H. Virtual Reality
I. Computational Intelligence

Professional Program of Study

For professional curriculum in veterinary medicine leading to the degree doctor of veterinary medicine, see Veterinary Medicine, Curriculum.

A good foundation in anatomy and physiology of domestic animals is necessary to understand the mechanisms of animal disease processes and their treatment. Study of mammalian anatomy and physiology prepares students with a background in the structural and functional activities of cells, tissues, organs, and body systems of importance to veterinary medicine.

An understanding of drug action is essential for rational drug therapy. The general pharmacology courses provide students with a background in basic pharmacology to include pharmacodynamics, toxicology, and the clinical application of drugs. Special emphasis is placed on chemical agents and therapeutic practices specific to veterinary medicine.

Graduate Programs

The department offers work for the degrees master of science and doctor of philosophy with majors in veterinary anatomy, physiology or in physiology with pharmacology as a specialization. In veterinary anatomy, both thesis and nonthesis options are available for the master of science degree. Up to 10 credits of dual-listed veterinary anatomy courses may be applied for major graduate credit.

Departmental research facilities provide for training in experimental anatomy, pharmacology, and physiology. Graduate studies are supervised by faculty members recognized in their areas of expertise. Current areas of research include: diabetes mellitus, glia-neuron signaling, neurophysiology of pain, neurotoxicology, physiology and pharmacology of sodium ion-channels, Parkinson’s disease, pharmacology of schistosomiasis, and physiology and pharmacology of thalamic neurons. The objective of the department is to prepare graduate students for successful careers in research and professional service. The department is part of interdepartmental programs in neuroscience, toxicology, and molecular, cellular, and development biology. The combined Ph.D./DVM program is an option.

Foreign language requirements may be established by the student’s program of study committee.

Courses open for nonmajor graduate credit: 354, 421.

Courses Primarily for Undergraduate Students

B M S 329. Anatomy and Physiology of Domestic Animals. (3-0) Cr. 3. S. Prereq: Biol 202, 202L. Survey of body systems of the domestic animals. Provides medical science orientation particularly useful to students in a pre-veterinary medicine curriculum.
Courses Primarily for Graduate Students, Open to Qualified Undergraduate Students

B M S 501. Selected Research Methods in Physiology. (0-8) Cr. 3. F.S.S. Prereq: Graduate classification, permission of pharmacology staff. Experience in pharmacology techniques in selected pharmacology laboratories: cytochemical methods, extracellular and intracellular unit recording, microiontophoresis, spectrophotofluorometric analysis of biogenic amines, atomic absorption spectrometry, radioimmunoassay, gas chromatography, enzyme analysis, use of isotopes in drug studies, intestinal perfusion techniques, renal clearance methods, and isolated tissue bioassay.

A. Ruminant Anatomy.
B. Nonruminant Anatomy

B M S 530. Principles of Morphology I. (Dual-listed with 330.) (3-6) Cr. S. F. Prereq: 10 credits in biological science and permission of the instructor. Comparative anatomy of domestic animals.

B M S 531. Principles of Morphology II. (Dual-listed with 331.) (2-6) Cr. 3. S. Prereq: B M S 530. Comparative and topographic anatomy of domestic animals.

B M S 532. Microscopic Anatomy. (Dual-listed with 332.) (3-3) Cr. 4. F. Prereq: 10 credits in biological science and permission of the instructor. Cytology, histology and organology of domestic animals.

B M S 537. Neurobiology. (Dual-listed with 337.) (2-3) Cr. 3. S. Prereq: 10 credits in biological science and permission of the instructor. Neurobiology of domestic animals.

B M S 543. Pharmacology and Therapeutics. (Dual-listed with 443.) (3-9) Cr. 3. F. Prereq: 554. Concurrent registration in B M S 544 is required for graduate students. Pharmacology and therapeutic uses of fluids, antimicrobial drugs, antimalarial drugs, and antiparasitic drugs, and adverse drug reactions.

B M S 544. Pharmacology and Therapeutics Literature Discussion. (1-0) Cr. 1. F. Prereq: Concurrent registration in B M S 543. Literature review and discussions and computer simulations related to B M S 543

B M S 549. Advanced Vertebrate Physiology I. (Same as An S 549.) (4-0) Cr. 4. F. Prereq: Zool 355; credit or enrollment in BBMB 420 or 404. Neuroendocrinology, sensory systems, muscle, neuroendocrinology, endocrinology, and basic Pharmacology. Laboratory for cardiovascular, renal, respiratory, and digestive physiology.

B M S 554. General Pharmacology. (Dual-listed with 354; Same as Tox 554.) (3-0) Cr. 3. S. Prereq: 549 and 552; BBMB 404, 405. Concurrent registration in B M S 555 is required for graduate students. General principles; drug disposition; drugs acting on the nervous, cardiovascular, renal, gastrointestinal, and endocrine systems.

B M S 555. General Pharmacology Literature Discussion. (1-0) Cr. 1. S. Prereq: 549 and 552; BBMB 404, 405 and concurrent registration in B M S 554. Literature discussion and computer simulations related to B M S 554.

B M S 590. Special Topics. Cr. 1 to 7. Prereq: Permission of instructor.
A. Anatomy
B. Physiology
C. Pharmacology

Courses for Graduate Students

B M S 631. Experimental Techniques in Physiology. (2-6) Cr. 4. Alt. SS., offered 2003. Prereq: Graduate course in physiology or surgery or permission of instructor. Course content: Surgical preparations and basic physiological studies of the cardiovascular, digestive, urogenital and other systems. Limited enrollment.

B M S 688. Research Review. Cr. 1 each time taken. F.S. A forum for B M S students to gain experience in the critical exchange of ideas through oral presentation and discussion of scientific information.

B M S 690. Advanced Topics. Cr. 1 to 5. Prereq: Permission of instructor.
A. Anatomy
B. Physiology
C. Pharmacology

B. C each time taken. F.S.S. Staff. Offered on a satisfactory-fail grading basis only. Attendance and presentation required.

A. Anatomy
B. Physiology
C. Pharmacology

Undergraduate Study

For undergraduate curriculum in liberal arts and sciences, major in botany, see Liberal Arts and Sciences, Curriculum. The Botany department offers broad opportunity for the study of many basic and applied aspects of plant biology. The botany and biology majors and other undergraduate programs in which the department participates prepare students for a wide range of science-related occupations, including biotechnology, biology teaching, medicine and pharmacology, conservation and outdoor recreation activities, and research and development. The botany and biology majors offer excellent preparation for graduate study in biological sciences, or in such applied disciplines as agronomy, forestry, horticulture, and plant pathology. Graduates of the botany major understand the basic principles of plant structure, function, ecology, and evolution, and are able to communicate effectively about plant biology.

Botany is one of the basic biological sciences. Undergraduates majoring in Botany must therefore obtain a general biological foundation by taking courses in the biology program (see Biology, Cross-Disciplinary Program). Botany faculty are involved in both the organization and teaching of Biology courses, thus Biology and Botany are integrated for the benefit of the student.

In addition to the basic Liberal Arts and Sciences requirements, Botany majors must also complete:
1. Biol 201, 201L, 202, 202L, 301, 301L, 302, 302L, 303, and 312 (22 credits);
2. 18 credits at the 300 level or above in botany from an approved list, including Plant Anatomy (Bot 404) and at least one course from each of the other three major disciplines within Botany;
3. Phys 111 and 112 (8 credits);
4. Two courses in Mathematics (calculus and/or statistics) from an approved list (7-8 credits);
5. Two semesters of general chemistry with labs and at least one semester of organic chemistry with lab (13 credits);
6. A grade of C or better in Engl 104 and 105, and a C or better in an approved writing
Botany

Course (or satisfactory performance on a departmental writing exam). A list of approved courses is available in 353 Bessey Hall.

Additional courses in other areas of the biological sciences are recommended depending upon the student’s interests. Qualified students are encouraged to enrich their program through an independent study or research project (Bot 490) under the guidance of a faculty member. Courses at the Iowa Lakeside Laboratory, the Gulf Coast Research Laboratory, or other field laboratories are also recommended.

In addition to the courses listed above, students in consultation with their advisors choose electives that address their individual interests and needs.

A second major or minor in Biology with a major in Botany is not permitted.

Teacher Licensure: Botany majors seeking licensure to teach biology in secondary schools must meet requirements of the College of Liberal Arts and Sciences and the College of Education as well as those of the Botany major. In addition they must apply formally for admission to the Teacher Education Program. See Index, Teacher Education Program, and Teacher Licensure.

Botany Minor: The department offers a minor in Botany, which may be earned by completion of 15 or more credits in Botany courses with at least 6 credits in courses numbered 300 or above and earned at ISU with a grade of C or higher. The minor must include 9 credits that are not used to meet any other department, college or university requirement.

Graduate Study

The department offers work for the degrees master of science and doctor of philosophy with a major in Botany, and minor work for students majoring in other departments.

Within the Botany major one of the following areas of specialization may be designated: aquatic and wetland ecology, cytology, ecology, morphology, mycology, physiology and molecular biology, or systematics and evolution.

The department also participates in the interdepartmental majors in Ecology and Evolutionary Biology; Genetics; Molecular, Cellular, and Developmental Biology; Plant Physiology; Toxicology; and Water Resources. (See Index.)

Prospective graduate students need a sound background in the physical, biological, and mathematical sciences and English. The department requires submission of Graduate Record Examination aptitude test scores.

Courses open for nonmajor graduate credit: 320, 321, 330, 403, 403I, 404, 406, 422I, 461I, 484, 484I, 487.

Courses Primarily for Undergraduate Students

Bot 102. Biology of Plants. (2-4) Cr. 2. S. SS. 8 weeks. Field and laboratory studies of plants in various local habitats. Includes trees, shrubs, flowering plants and other green plants, lichens and fungi. Not recommended for students with professional interest in plant science.

Bot 301. Iowa Natural History. (Same as la LL 301I.) See Iowa Lakeside Laboratory.

Bot 302. Plant-animal Interactions. (Same as la LL 302I.) See Iowa Lakeside Laboratory.

Bot 303. Biological Evolution. (Same as Biol 303.) See Biology.

Bot 304. Plants and People. (3-0) Cr. 3. S. Prereq: Credit or enrollment in Bot 201. Wallace. Uses of plants and fungi by humans and the importance of plants in the past, present and future. Discussion of fruits, vegetables, grains, herbs, spices, beverages, oils, fibers, wood, medicines, and drugs, in the context of their agricultural, cultural, and economic roles in modern societies. Emphasis on origins and worldwide diversity of culturally important plants, their characteristics, and uses.

Bot 312. Ecology. (Same as Biol 312.) See Biology.

Bot 312I. Ecology. (Same as la LL 312I.) See Iowa Lakeside Laboratory.

Bot 320. Plant Physiology. (3-0) Cr. 3. S. Prereq: Biol 301 or Gen 320, Biol 302 or BBMB 301; Chem 231 or 322; Phys 103 or 111. Spalding. Application of physical and biological principles to the understanding of plant processes involved in assimilation, metabolism, and regulation of growth and development. Nonmajor graduate credit.

Bot 321. Plant Physiology Laboratory. A: (0-0) Cr. 1. S. B: (0-6) Cr. 2. S. Prereq: Bot 202L; credit or enrollment in 320. Spalding. Laboratory to accompany 320. 321B will include independent group research projects. Nonmajor graduate credit.

Bot 330. Environmental Systems. (Same as Env 335, EnSci 330.) (2-4) Cr. 4. F. Prereq: Biol 202 or Micro 201, Chem 164 or 178, Math 165 or 181. Crompton. Dynamics of natural environmental systems. Systems approach to the analysis of material and energy flows, including physical and biological aspects of environmental systems and their functional connections. Laboratory emphasizes environmental modeling and simulation. Nonmajor graduate credit.

Bot 340. Biodiversity. (Same as Env S 340.) (4-0) Cr. 2. S. Second 8 weeks. Prereq: One course in life sciences. Clark. Survey of the major groups of organisms and their biological and ecological relationships. Nonmajor graduate credit.

Bot 364. Biology of Aquatic Plants and Algae. (2-2) Cr. 3. S. Prereq: Bot 202 or Micro 201. Introduction to algae and aquatic plants with emphasis on ecological relationships in lakes and wetlands.

Bot 364I. Biology of Aquatic Plants. (Same as la LL 364I.) See Iowa Lakeside Laboratory.

Bot 367L. Plant Taxonomy. (Same as la LL 367L.) See Iowa Lakeside Laboratory.

Bot 399. Undergraduate Seminar. (1-0) Cr. 1 each time taken. S. Prereq: Junior classification and 8 credits in botany. Meetings of students and faculty to discuss topics of current interest in plant science. Opportunity to develop written and oral communication skills.

Bot 403. Environmental Biogeochemistry. (Same as EnSci 403, Geol 403.) (3-2) Cr. 4. S. Prereq: EnSci 330. Raich. Biological, chemical, and physical phenomena of controlling material, energy, and elemental fluxes in the environment. Nonmajor graduate credit.

Bot 403I. Evolution. (Same as la LL 403I.) See Iowa Lakeside Laboratory. Nonmajor graduate credit.

Bot 406. Principles of Mycology. (Same as Micro 406.) (2-3) Cr. 3. F. Prereq: 10 credits in biological sciences. Tiffany. Morphology, taxonomy and ecology of fungi; their relation to agriculture and industry. Nonmajor graduate credit.

Bot 421I. Prairie Ecology. (Same as la LL 421I.) See Iowa Lakeside Laboratory. Nonmajor graduate credit.

Bot 461I. Introduction to GIS Landscape Modeling. (Same as la LL 461I.) See Iowa Lakeside Laboratory. Nonmajor graduate credit.

Bot 484I. Plant Ecology. (Same as la LL 484I.) See Iowa Lakeside Laboratory. Nonmajor graduate credit.

Bot 487. Aquatic and Wetland Microbial Ecology. (Dual-listed with 587; same as EnSci 487, Micro 487.) (3-0) Cr. 3. S. Prereq: 6 credits in biology and 6 credits in chemistry. Crompton. Introduction to major functional groups of autotrophic and heterotrophic microorganisms and their roles in aquatic and wetland ecosystems. Emphasis on energy flow and nutrient dynamics. Nonmajor graduate credit.

Bot 490. Independent Study. Cr. 1 to 3 each time taken. Prereq: 7 credits in botany, permission of instructor. No more than 9 credits of 490 may be counted toward a degree in botany.

A. Plant Physiology and Molecular Biology

B. Morphology

C. Mycology

D. Systematics and Evolution

E. Plant Ecology

F. Plant Evolution

H. Honors

I. Iowa Lakeside Laboratory (Same as la LL 490I) See Iowa Lakeside Laboratory.

J. Cytology

K. Aquatic and Wetland Ecology

Courses Primarily for Graduate Students, open to qualified undergraduate students

Bot 501I. Freshwater Algae. (Same as la LL 501I.) See Iowa Lakeside Laboratory.

Bot 512. Plant Growth and Development. (Same as Gen 512, MCB 512, P Phy 512.) (2-0) Cr. 2. S. Prereq: 320 or a course in developmental biology; 545 or BBMB 404, 405 or Gen 520 Wurtele and Beaucage. Plant growth and development and its molecular genetic regulation. Hormone biosynthesis, metabolism, and action. Signal transduction in plants.

Bot 513. Plant Metabolism. (Same as P Phy 513.) (2-0) Cr. 2. F. Prereq: Bot 320, Phys 111, Chem 331; one semester of biochemistry recommended. Spalding. Photosynthesis, respiration, and other aspects of plant metabolism.

Bot 529. Plant Cell Biology. (Same as MCB 529.) (2-0) Cr. 2. S. Prereq: Bot 320, Biol 301, 302 or BBMB 405. Rodermeier. Organization, function, and development of plant cells and subcellular structures.

Bot 531I. Conservation Biology. (Same as la LL 531I.) See Iowa Lakeside Laboratory.

Bot 535I. Restoration Ecology. (Same as la LL 535I.) See Iowa Lakeside Laboratory.

Bot 542. Introduction to Molecular Biology. (Same as Zool 542.) See Zoology.

Bot 562. Evolutionary Genetics. (Same as Gen 562.) See Genetics.

Bot 564I. Wetland Ecology. (Same as la LL 564I.) See Iowa Lakeside Laboratory.

Bot 566. Molecular Evolution. (Same as Gen 566, Zool 566.) (3-0) Cr. 3. F. Prereq: Permission of instructor. Seminar/discussion course covering the fundamentals of molecular evolution. Emphasis is placed on origination of scientific literature and current topics, including rates and patterns of genetic divergence; nucleotide and allelic diversity; molecular clocks, gene duplication; genome structure; organelar genomes; polyploidy; transposable elements; and modes and mechanisms of gene and genome evolution.

Bot 568. Advanced Systematics. (Same as Ent 568, Zool 568.) (2-3) Cr. 3. Alt. S. Prereq: Permission of instructor. Principles and practice of systematic biology; taxonomy, nomenclature and classification of plants and animals; sources and interpretation of systematic data; specialization of phylogenetic systematics.

Bot 569. Biogeography. (Same as Zool 569.) (3-0) Cr. 3. Alt. F. Prereq: Biol 303 or equivalent; permission of instructor. Principles underlying the geographic distribution of organisms throughout the world; influences of geology and tectonic movements, climate, migration, dispersal, habitat, and phylogeny on present distribution patterns; biogeographic methods.

Bot 570. Landscape Ecology. (Same as A Ecl 570.) (2-3) Cr. 3. Alt. F., offered 2002. Prereq: Permission of instructor. Bot 588 or A Ecl 588; a course in calculus. The study of evolutionary processes within a spatial context with emphasis on behavior, population and community dynamics.

Bot 575. Field Mycology. (2-6) Cr. 4 each time taken. SS. Prereq: 5 credits in botany. Tiffany. Collection and identification of fungi and relation of their occurrence to environmental factors. Field trips.

Bot 575I. Field Mycology. (Same as la LL 575I.) See Iowa Lakeside Laboratory.

Bot 580I. Ecology and Systematics of Diatoms. (Same as la LL 580I.) See Iowa Lakeside Laboratory.

Bot 587. Aquatic and Wetland Microbial Ecology. (Dual-listed with 487; same as Micro 587) (3-0) Cr. 3. S. Prereq: 6 credits in biology and 6 credits in chemistry. Crompton. Introduction to major functional groups of autotrophic and heterotrophic microorganisms and their roles in aquatic and wetland ecosytems. Emphasis on energy flow and nutrient dynamics.

Bot 588. Population Ecology. (Same as A Ecl 588.) (2-2) Cr. 3. F. Prereq: Biol 312, Stat 401, a course in calculus. Concepts and theories of population dynamics with emphasis on models of growth, predation, competition, and regulation.

Bot 590. Special Topics. Cr. 1 to 3 each time taken. Prereq: 10 credits in botany, permission of instructor. A. Plant Physiology and Molecular Biology B. Morphology E. Systematics and Evolution F. Plant Ecology I. Iowa Lakeside Laboratory (Same as la LL 590I.) See Iowa Lakeside Laboratory. J. Cytology K. Aquatic and Wetland Ecology

Bot 599. Creative Component. Cr. arr. Research toward nonthesis master’s degree.

Courses for Graduate Students

Bot 612. Seminar in Plant Development. Cr. 1 each time taken. S. Prereq: Bio/Gen 512 (can be taken concurrently) Becraft, Wurtele. In-depth discussion and critique of journal articles on current topics of interest to participants.

Bot 641. General Mycology. (Same as Micro 641.) (2-0) Cr. 4. F. Prereq: PP 407, Tiffany. First semester of a full-year course. Taxonomy, morphology, ecology, and phylogeny of slime molds and fungi (oomycetes, chytridiomycetes, zygomycetes, ascomycetes, basidiomycetes, and fungi imperfecti).

Bot 642. General Mycology. (Same as Micro 642.) (2-0) Cr. 4. S. Prereq. 471, Tiffany. Continuation of 641. Taxonomy, morphology, ecology, and phylogeny of slime molds and fungi (oomycetes, chytridiomycetes, zygomycetes, ascomycetes, basidiomycetes, and fungi imperfecti).

Bot 696. Seminar in Plant Physiology and Molecular Biology. (Same as Agron 696, S/M 696, For 696, Gen 696, Hort 696, MCB 696, P Phy 696.) Cr. 1 each time taken. F. S. Presentations and discussions of recent literature and problems under investigation.

Bot 698. Seminar. Cr. 1 each time taken. Meetings of botany faculty and students to discuss recent literature and problems under investigation. A. Vascular Plants B. Non-vascular Plants C. Systematics and Evolution E. Molecular, Cellular, and Developmental Biology (Same as MCB 698.) See Molecular, Cellular, and Developmental Biology. F. Ecology G. Aquatic and Wetland Ecology

Courses Offered at the Gulf Coast Research Laboratory (GCRL), Ocean Springs, Mississippi

The Gulf Coast Research Laboratory is affiliated with the University of Southern Mississippi. Iowa State students may register for the following University of Southern Mississippi/GCRL courses and transfer them to their ISU degree programs. Written permission of the ISU coordinator for the GCRL, 201 Bessey, is required for this arrangement. Inquire at 201 Bessey for further information.

MAR 420. Marine Phycology. Cr. 2. SS. Prereq: 10 credits in biology, including botany. A survey, based upon local examples, of the principal groups of marine algae, treating structure, reproduction, distribution, identification, and ecology.

MAR 420L. Marine Phycology Lab. Cr. 2. SS. Lab to accompany 420.

MAR 421. Coastal Vegetation. Cr. 2. SS. Prereq: 10 credits in biology including botany. A study of general and specific aspects of coastal vegetation with emphasis on local examples.

MAR 421L. Coastal Vegetation Lab. Cr. 1. SS. Lab to accompany 421.

MAR 422. Salt Marsh Plant Ecology. Cr. 2. SS. The botanical aspects of local marshes; includes plant identification, composition, and structure.

MAR 422L. Salt Marsh Plant Ecology Lab. Cr. 2. SS. Lab to accompany 422.

MAR 490. Independent Study.

MAR 491. Special Topics.
Management Information Systems, Management, Marketing, and Statistics. Courses from other departments may also be chosen to meet specific student interests. Students interested in the agribusiness specialization may need to take courses in the College of Agriculture. Double degree programs are offered with architecture (M.Arch./M.B.A.), community and regional planning (M.B.A./M.C.R.P.), and statistics (M.B.A./M.S.-Statistics).

Students may enroll in either the full-time program, the part-time Saturday program, or part-time evening program in Des Moines. The part-time M.B.A. programs are intended for those individuals who desire an M.B.A. while continuing their full-time employment. The M.B.A. program is open to all individuals with a baccalaureate degree. Undergraduates from liberal arts, science, and technical programs are especially encouraged to apply. Academic potential and promise for a productive career in business and for managerial success and leadership in organizations are important criteria for admission. Applicants must submit Graduate Management Admission Test (GMAT) scores, official transcripts of previous academic work, personal essays, resume, and three letters of reference. International students whose native language is not English and who did not graduate from a U.S. college or university are required to submit the Test of English as a Foreign Language (TOEFL) scores.

Courses for the M.B.A. are provided by the departments of Accounting, Economics, Finance, Logistics, Operations and Management Information Systems, Management, Marketing, and Statistics. Courses from other departments may also be chosen to meet specific student interests. Students interested in the agribusiness specialization may need to take courses in the College of Agriculture. Double degree programs are offered with architecture (M.Arch./M.B.A.), community and regional planning (M.B.A./M.C.R.P.), and statistics (M.B.A./M.S.-Statistics).

Students may enroll in either the full-time program, the part-time Saturday program, or part-time evening program in Des Moines. The part-time M.B.A. programs are intended for those individuals who desire an M.B.A. while continuing their full-time employment. The M.B.A. program is open to all individuals with a baccalaureate degree. Undergraduates from liberal arts, science, and technical programs are especially encouraged to apply. Academic potential and promise for a productive career in business and for managerial success and leadership in organizations are important criteria for admission. Applicants must submit Graduate Management Admission Test (GMAT) scores, official transcripts of previous academic work, personal essays, resume, and three letters of reference. International students whose native language is not English and who did not graduate from a U.S. college or university are required to submit the Test of English as a Foreign Language (TOEFL) scores.

Courses for the M.B.A. are provided by the departments of Accounting, Economics, Finance, Logistics, Operations and Management Information Systems, Management, Marketing, and Statistics. Courses from other departments may also be chosen to meet specific student interests. Students interested in the agribusiness specialization may need to take courses in the College of Agriculture. Double degree programs are offered with architecture (M.Arch./M.B.A.), community and regional planning (M.B.A./M.C.R.P.), and statistics (M.B.A./M.S.-Statistics).

Students may enroll in either the full-time program, the part-time Saturday program, or part-time evening program in Des Moines. The part-time M.B.A. programs are intended for those individuals who desire an M.B.A. while continuing their full-time employment. The M.B.A. program is open to all individuals with a baccalaureate degree. Undergraduates from liberal arts, science, and technical programs are especially encouraged to apply. Academic potential and promise for a productive career in business and for managerial success and leadership in organizations are important criteria for admission. Applicants must submit Graduate Management Admission Test (GMAT) scores, official transcripts of previous academic work, personal essays, resume, and three letters of reference. International students whose native language is not English and who did not graduate from a U.S. college or university are required to submit the Test of English as a Foreign Language (TOEFL) scores.

Courses for the M.B.A. are provided by the departments of Accounting, Economics, Finance, Logistics, Operations and Management Information Systems, Management, Marketing, and Statistics. Courses from other departments may also be chosen to meet specific student interests. Students interested in the agribusiness specialization may need to take courses in the College of Agriculture. Double degree programs are offered with architecture (M.Arch./M.B.A.), community and regional planning (M.B.A./M.C.R.P.), and statistics (M.B.A./M.S.-Statistics).

Students may enroll in either the full-time program, the part-time Saturday program, or part-time evening program in Des Moines. The part-time M.B.A. programs are intended for those individuals who desire an M.B.A. while continuing their full-time employment. The M.B.A. program is open to all individuals with a baccalaureate degree. Undergraduates from liberal arts, science, and technical programs are especially encouraged to apply. Academic potential and promise for a productive career in business and for managerial success and leadership in organizations are important criteria for admission. Applicants must submit Graduate Management Admission Test (GMAT) scores, official transcripts of previous academic work, personal essays, resume, and three letters of reference. International students whose native language is not English and who did not graduate from a U.S. college or university are required to submit the Test of English as a Foreign Language (TOEFL) scores.

Courses for the M.B.A. are provided by the departments of Accounting, Economics, Finance, Logistics, Operations and Management Information Systems, Management, Marketing, and Statistics. Courses from other departments may also be chosen to meet specific student interests. Students interested in the agribusiness specialization may need to take courses in the College of Agriculture. Double degree programs are offered with architecture (M.Arch./M.B.A.), community and regional planning (M.B.A./M.C.R.P.), and statistics (M.B.A./M.S.-Statistics).

Students may enroll in either the full-time program, the part-time Saturday program, or part-time evening program in Des Moines. The part-time M.B.A. programs are intended for those individuals who desire an M.B.A. while continuing their full-time employment. The M.B.A. program is open to all individuals with a baccalaureate degree. Undergraduates from liberal arts, science, and technical programs are especially encouraged to apply. Academic potential and promise for a productive career in business and for managerial success and leadership in organizations are important criteria for admission. Applicants must submit Graduate Management Admission Test (GMAT) scores, official transcripts of previous academic work, personal essays, resume, and three letters of reference. International students whose native language is not English and who did not graduate from a U.S. college or university are required to submit the Test of English as a Foreign Language (TOEFL) scores.

Courses for the M.B.A. are provided by the departments of Accounting, Economics, Finance, Logistics, Operations and Management Information Systems, Management, Marketing, and Statistics. Courses from other departments may also be chosen to meet specific student interests. Students interested in the agribusiness specialization may need to take courses in the College of Agriculture. Double degree programs are offered with architecture (M.Arch./M.B.A.), community and regional planning (M.B.A./M.C.R.P.), and statistics (M.B.A./M.S.-Statistics).

Students may enroll in either the full-time program, the part-time Saturday program, or part-time evening program in Des Moines. The part-time M.B.A. programs are intended for those individuals who desire an M.B.A. while continuing their full-time employment. The M.B.A. program is open to all individuals with a baccalaureate degree. Undergraduates from liberal arts, science, and technical programs are especially encouraged to apply. Academic potential and promise for a productive career in business and for managerial success and leadership in organizations are important criteria for admission. Applicants must submit Graduate Management Admission Test (GMAT) scores, official transcripts of previous academic work, personal essays, resume, and three letters of reference. International students whose native language is not English and who did not graduate from a U.S. college or university are required to submit the Test of English as a Foreign Language (TOEFL) scores.

Courses for the M.B.A. are provided by the departments of Accounting, Economics, Finance, Logistics, Operations and Management Information Systems, Management, Marketing, and Statistics. Courses from other departments may also be chosen to meet specific student interests. Students interested in the agribusiness specialization may need to take courses in the College of Agriculture. Double degree programs are offered with architecture (M.Arch./M.B.A.), community and regional planning (M.B.A./M.C.R.P.), and statistics (M.B.A./M.S.-Statistics).

Students may enroll in either the full-time program, the part-time Saturday program, or part-time evening program in Des Moines. The part-time M.B.A. programs are intended for those individuals who desire an M.B.A. while continuing their full-time employment. The M.B.A. program is open to all individuals with a baccalaureate degree. Undergraduates from liberal arts, science, and technical programs are especially encouraged to apply. Academic potential and promise for a productive career in business and for managerial success and leadership in organizations are important criteria for admission. Applicants must submit Graduate Management Admission Test (GMAT) scores, official transcripts of previous academic work, personal essays, resume, and three letters of reference. International students whose native language is not English and who did not graduate from a U.S. college or university are required to submit the Test of English as a Foreign Language (TOEFL) scores.
Undergraduate Study

For undergraduate curriculum in chemical engineering leading to the degree bachelor of science, see College of Engineering, Curricula. This curriculum is accredited by the Engineering Accreditation Commission of the Accreditation Board for Engineering and Technology.

Chemical engineering is a profession which provides a link between scientific knowledge and manufactured products. The chemical engineer relies on science, experience, creativity, and ingenuity to produce these materials economically. Almost everything of a material nature used by society today has at some point felt the influence of the chemical engineer. From raw materials such as minerals, coal, petroleum, and agricultural products, chemical engineers create versatile intermediates and commodity chemicals, high performance fuels, new materials for construction, pharmaceuticals, high performance foodstuffs, synthetic textiles, plastics, solid state electronic components, and dozens of other engineered materials. The chemical engineer’s influence has been important in the development of catalysts, fuel cells, automatic controls, biochemical processes, artificial kidneys, tissue engineering, nuclear energy, medical instruments and devices, as well as in the development of air and water pollution control systems. Many new and equally exciting challenges await the practicing chemical engineer of the future.

The profession of chemical engineering embraces a wide variety of activities including research, process development, product development, design, manufacturing supervision, technical sales, consulting, and teaching. The engineer can be behind a desk, in a laboratory, in a manufacturing plant, or engaged in nationwide and worldwide travel.

Successful chemical engineers find chemistry, mathematics, and physics to be interesting and exciting. Many chemical engineers also have interest in the biological sciences. The curriculum in chemical engineering includes continued study of chemistry, mathematics, and physics as well as intensive study in the engineering sciences such as chemical reaction engineering, thermodynamics, mass transfer, fluid mechanics, heat transfer, system analysis and process synthesis, and design.

The curriculum in chemical engineering is designed to produce graduates that have the ability to apply knowledge of mathematics, science, and engineering; the ability to design, conduct and interpret experiments, and the ability to design a chemical engineering system, component, or process. Graduates should also have the ability to function on multi-disciplinary teams; the ability to identify, formulate, and solve chemical engineering problems; and the ability to use the techniques, skills, and modern engineering tools necessary for engineering practice.

The curriculum should also assure that graduates have the ability to communicate effectively, the broad education necessary to understand the impact of chemical engineer-

Courses and Programs Chemical Engineering 167

Courses Primarily for Graduate Students, open to qualified undergraduates

BusAd 533. Economic and Business Decision Tools. (Same as Econ 533.) (3-0) Cr. 3. Prereq: Econ 501 or Econ 532; not for Ph.D. students in the economics program. Team taught by faculty in the Department of Economics and the College of Business, this course focuses on applied economic and business tools decision making. The topics covered include: Monte Carlo analysis with applications to option pricing and insurance mechanism design, portfolio analysis using existing standard spreadsheet software and add-ons, dynamic programming tools for inventory management and sequential decisions, discrete choice modeling and statistical bootstrapping, and financial performance evaluating using commercially available software.

BusAd 591. Professional Experiential Learning. Cr. 1 to 3 each time taken. Prereq: Graduate standing; written approval of supervising instructor and department chair on required form prior to the learning experience. Academically supervised travel and/or work experiences in a business related discipline. Offered on a satisfactory-fail basis only.

BusAd 599. Creative Component. Cr. 3. Prereq: Graduate classification, permission of supervisory committee chair. Preparation and writing of creative component.

Chemical Engineering

www.public.iastate.edu/~ch_e/

Charles E. Glatz, Chair of Department

Distinguished Professors: Reilly, Seagrave

University Professors: Hill

Professors: Brown, Glatz, Jolls, Schrader, Shanks, Ulrichson, Youngquist

Professors (Collaborators): Nikolov

Distinguished Professors (Emeritus): Bumet, Doraiswamy

University Professors (Emeritus): Wheellock

Professors (Emeritus): Abraham, Boylan

Associate Professors: Fox, Hebert, Otaigbe, Rollins, Shanks

Associate Professors (Adjunct): Hanneman

Associate Professors (Emeritus): Collins

Assistant Professors: Mallapragada, Narasimhan, Vigil

Graduate Study

The department offers work for the degrees master of science, master of engineering, and doctor of philosophy with major in chemical engineering, and minor work to students taking major work in other departments.

Prerequisite to major graduate work is a bachelor’s degree in chemical engineering, chemistry, or other related field. Students with undergraduate background other than chemical engineering should contact the department for further details.

The master of engineering degree requires a creative component. A thesis is required for the master of science degree.

Courses open for nonmajor graduate credit: All 300 and 400 level courses except 302, 391, 392, 397, 398, 490, 492, 495, and 498.

Courses Primarily for Undergraduate Students

Ch E 202. Seminar. (1-0) Cr. R. S. Prereq: Sophomore classification in chemical engineering. Offered on a satisfactory-fail grading basis only.

Ch E 298. Cooperative Education. Cr. R. F.S.SS. Prereq: Permission of department chair. First professional work period in the cooperative education program. Students must register for this course before commencing work.

Ch E 302. Seminar. (1-0) Cr. R. S. Prereq: Junior classification in chemical engineering. Offered on a satisfactory-fail grading basis only.
Courses and Programs Chemical Engineering

Ch E 325. Chemical Engineering Laboratory I. (3-0) Cr. 2. F.S. Prereq: 357, credit or enrollment in 381. Offered on a satisfactory-fail grading basis only. Experiments covering fundamental material and energy balances, momentum and energy transport operations, thermodynamics. Computer applications. Nonmajor graduate credit.

Ch E 356. Transport Phenomena I. (3-0) Cr. 3. F.S. Prereq: 210, Phys 221, credit or enrollment in Math 267. Momentum and mechanical energy balances. Incompressible and compressible fluid flow. Applications to fluid drap, piping system design, filtration, packed beds and settling. Nonmajor graduate credit.

Ch E 357. Transport Phenomena II. (3-0) Cr. 3. F.S. Prereq: 328. Conduction and diffusion, convective heat and mass transfer, boiling and condensation, radiation, design of heat exchange equipment. Introduction to diffusion. Nonmajor graduate credit.

Ch E 358. Separations. (4-0) Cr. 4. F.S. Prereq: 357. Diffusion and mass transfer in fluids. Analysis and design of continuous contacting and multistage separation processes. Binary and multicomponent distillation, absorption, extraction, evaporation, membrane processes, and simultaneous heat and mass transfer. Nonmajor graduate credit.

Ch E 382. Chemical Reaction Engineering. (3-0) Cr. 3. F.S. Prereq: 381, credit or enrollment in 357. Kinetics of chemical reactions, design of homogeneous and heterogeneous chemical reactors. Nonmajor graduate credit.

Ch E 391. Foreign Study. (1-0) Cr. 1. S. Prereq: 356, permission of instructor. Preparation for foreign study program. Offered on a satisfactory-fail basis only. Credit for graduation allowable only upon completion of 392.

Ch E 392. Foreign Study Program. Cr. 2-6. SS. Prereq. 391. Study of chemical engineering including laboratories and lectures at University College London or other collaborating international universities. Comparative study of U.S. and international manufacturing facilities. Expenses required. Offered on a satisfactory-fail grading basis only.

Ch E 397. Engineering Internship. Cr. R. F.S. Prereq: Permission of department. One semester maximum per academic year professional work period.

Ch E 398. Cooperative Education. Cr. R. F.S.SS. Prereq. 298, permission of department chair. Second professional work period in the cooperative education program. Students must register for this course before commencing work.

Ch E 406. Environmental Chemodynamics. (3-0) Cr. 3. F. Prereq. 381, credit or enrollment in 358. Examines the mechanisms and rates of chemical transport across air, water, and soil interfaces. Applications of transport and thermodynamic fundamentals to movement of chemicals in the environment. Nonmajor graduate credit.

Ch E 410. Industrial and Engineering Chemistry. (2-3) Cr. 3. F. Prereq. 382 and Chem 331 or senior or graduate classification in chemistry or material science and engineering. Integration and synthesis of chemical engineering and chemistry as practiced in modern industry. Engineering of chemical reactions and processes. Topics include fuel technology and product engineering for commodity chemicals, petroleum-based fuels, petrochemicals, intermediates, specialty chemicals, pharmaceuticals, and engineered materials. Environmental strategies for waste/byproduct minimization and pollution prevention. Nonmajor graduate credit.

Ch E 415. Biochemical Engineering. (3-0) Cr. 3. S. Prereq. 357, 382 recommended, Chem 331. Application of basic chemical engineering principles in biochemical and biological process industries such as enzyme technology and fermentation. Nonmajor graduate credit.

Ch E 441. Modeling and Simulation for Chemical Processes. (3-0) Cr. 3. S. Prereq. 358, 382. Simulation of behavior of chemical processes, trial and error calculations, numerical integration and other numerical methods. Problems involving fluid flow, distillation, heat transfer, process control, and reactor design. Nonmajor graduate credit.

Ch E 443. Polymers and Polymer Engineering. (3-0) Cr. 3. F. Prereq. 357, Chem 231. Chemistry of polymers, addition and condensation polymerization. Physical and mechanical properties, polymer rheology, production methods of polymers in the chemical industry. Nonmajor graduate credit.

Ch E 490. Independent Study. (0-3 to 0-18) Cr. 1 to 6. Introduction to research methods; investigation of an approved topic. H. Honors

Ch E 492. International Technology and Globalization. (3-0 to 6-18) F.S.SS. Cr. 2-12. Technology and applied science within an international perspective. Investigation of global-oriented companies, research organizations, and international university environments. Independent study in preparation for or during internship program. Taken with attendance at cooperating international university.

Ch E 498. Cooperative Education. Cr. R. F.S.SS. Prereq. 398, permission of department chair. Third and subsequent professional work periods in the cooperative education program. Students must register for this course before commencing work.

Ch E 499. Undergraduate Research. (0-0) Cr. 3. Prereq: Permission of department. Research in chosen area of chemical engineering, with final written report. Students are encouraged to elect this course for two consecutive semesters. For students majoring in chemical engineering. No more than 6 credits may be counted toward graduation. Device development.

Courses Primarily for Graduate Students, open to qualified undergraduates

Ch E 539. Fluidized Bed Processes. (Same as M E 539) J. See Mechanical Engineering.

Ch E 540. Biomedical Applications of Chemical Engineering. (Same as B M E 540) (3-0) Cr. 3. Alt. S. Prereq. 210, Math 266, Phys 222. Applications of material and energy balances, transport phenomena, chemical reaction engineering, and thermodynamics to problems in biomedical and biochemical engineering, applied physiology, and environmental studies.

Ch E 552. Transport Phenomena I. (3-0) Cr. 3. F. Prereq. 357, 381, Math 267, credit or enrollment in 454. Equations of change for mass, energy, and momentum. Introduction to transport in multicomponent systems. Exact and approximate solutions to the equations of motion.

Ch E 553. Transport Phenomena II. (3-0) Cr. 3. S. Prereq. 452. Convective and radiative heat transfer, boiling, condensation, multicomponent diffusion, mass transfer models. High transfer rate effects. Simultaneous heat, mass, and momentum transfer.

Ch E 558. Advanced Mass Transfer Operations. (3-0) Cr. 3. F. Prereq. Advanced analysis of chemical processes based on unit operations. Focus on mass transfer process interaction with momentum and heat transfer.

Ch E 562. Bioseparations. (3-0) Cr. 3. Alt. F., offered 2002. Prereq. 397 or advanced standing in a science major. Principles and techniques for separation and recovery of biologically-produced molecules, especially proteins. Relationship between the chemistry of biological molecules and efficient separation and preservation of biologically active. Includes centrifugation and filtration, membrane processing, extraction, precipitation and crystallization, chromatography, and electrophoresis.

Ch E 572. Turbulence. (Same as Aer E 572) J. See Aerospace Engineering.

Ch E 583. Advanced Thermodynamics. (3-0) Cr. 3. S. Prereq. 381. Application of thermodynamic principles to chemical engineering problems. Thermodynamic properties of non-ideal fluids and solutions; phase and chemical-reaction equilibrium/stability.

Ch E 590. Special Topics. Cr. 2 to 6 each time taken. Investigation of an approved topic on an individual basis.

Ch E 599. Creative Component. Cr. var.

Courses for Graduate Students

Ch E 601. Seminar. (1-0) Cr. 2. F.S. Offered on a satisfactory-fail grading basis only.

Ch E 632. Multiphase Flow. (Same as M E 632.) J. See Mechanical Engineering.

Ch E 683. Non-Equilibrium Thermodynamics. (3-0) Cr. 3. Alt. S. Prereq: 552, 583. Thermodynamics of irreversible processes including diffusion and sedimentation, electrochemical processes, muscle contraction, thermal diffusion, and membrane transport.

Ch E 690. Advanced Topics. Cr. var.

Ch E 699. Research.

Chemistry

www.chem.iastate.edu

Patricia A. Thiel, Chair of Department

Distinguished Professors: Angelici, Barton, Corbett, Espenson, Gordon, Johnson, Ng, Small, Yeung

University Professors: Larock, Verkade

Professors: Armstrong, Greenbouke, Hoffman, Houk, Kostic, Kozak, Kraus, Porter, Rabideau, Struve, Thiel, W. Trahanovsky

Distinguished Professors (Emeritus): Fritz, Ruedenberg, Svec

Professors (Emeritus): Franzén, Gerstein, Hutton, Jacobson, Martin, McCarley, Powell, Voigt

Associate Professors: Jenks, Miller, Petrich, Schmidt-Rohr, Woo

Associate Professors (Adjunct): Russell, K. Trahanovsky

Assistant Professors: Hong, Lin, Pohl, Sheares, Song

Undergraduate Study

For undergraduate curricula in liberal arts and sciences leading to the degrees bachelor of science and bachelor of arts, see Liberal Arts and Sciences, Curriculum.

Graduates holding the B.S. degree in chemistry qualify in many fields: as teachers of chemistry, as supervisors in industry, as technical sales personnel, and as research chemists in federal, state, municipal, academic, or industrial laboratories. Students with high scholastic standing often continue with graduate work, where they can explore more thoroughly the specialized areas of chemistry in which they are interested.

The B.A. degree is useful for students who intend to pursue studies in parallel areas, such as secondary school teaching, or to obtain joint majors or strong minors. The B.A. degree does not prepare students as well for graduate study or professional employment in chemistry.

Graduates have firm foundations in the fundamentals and application of current chemical theories. They are able to design, carry-out, record, and analyze the results of a chemical experiment. They are able to use modern instrumentation and classical techniques to identify and solve chemical problems as well as explore new areas of research. Graduates are able to communicate the results of their work to chemists, as well as non-chemists. They understand the ethical and environmental dimensions of problems and issues facing chemists. They follow the proper procedures and regulations for safe storage, labeling, use of chemicals, and disposal of chemicals.

Graduates are skilled in problem solving, critical thinking, and analytical reasoning. These skills can be applied to careers in education and industry or professions such as law, medicine, environmental sciences, and forensic sciences. The curricula in chemistry are approved by the American Chemical Society (ACS). Students who complete the program obtain an ACS certified baccalaureate degree.

Liberal arts majors who wish to transfer into chemistry at the end of their second year may still complete all degree requirements and graduate within five years.

Undergraduate students seeking the B.S. degree in chemistry usually take courses essential to the degree program according to the following schedule:

First year: Chem 177M, 177N, 178M, 210, 211L; Math 165, 166; Engl 104, 105; Lib 160.

Second year: Chem 331, 332, 333L, 334L; Math 265; Phys 221, 222.

Third year: Chem 321, 322, 322L, 316, 316L, 301; Engl 314; Foreign language requirement.

Fourth year: Chem 402, 401L, 2 advanced chemistry courses (minimum 4 credits). Chem 399 or 499 is strongly recommended, however, credits earned in 399/499 can only be used to meet one of the advanced course requirements.

Chemistry majors seeking certification to teach chemistry in secondary schools must meet requirements of the College of Education as well as those of the chemistry program. In addition, they must apply formally for admission to the teacher education program.

Undergraduate students seeking the B.A. degree in chemistry have the following courses in their degree programs as minimum requirements: 177 (or 167), 177L (or 167L), 178, 211, 211L, 301, 316, 316L, 321, 321L or 322L, 322, 331, 331L, 332, 332L. Math 165, 166 and Phys 221, 222 are required as supporting work.

The Department offers a minor in chemistry which may be earned by credit in Chem 177, 177L (or 167 and 167L), 178, 211, 211L, 321, 331, 331L and one of the following: Chem 301, 316 and 316L or 322 and 321L, or 332 and 332L. The total minimum credits in chemistry thus will be 20 to 23 depending on which advanced courses are selected.

English proficiency requirement: The Department requires a grade of C- or better in each of English 104, 105, and 314.

Courses and Programs Chemistry

Graduate Study

The Department offers work for the degrees master of science and doctor of philosophy with majors in analytical, inorganic, organic, and physical chemistry, as well as the degrees master of science and doctor of philosophy in chemistry. Co-majors may be taken between areas within chemistry or between one of the areas in chemistry and another department. Courses in other areas of chemistry as well as courses in other departments may be used to satisfy the requirement for coursework outside the major field. A Ph.D. student in chemistry may choose an additional specialty in one of the four areas: Materials Chemistry, Industrial Chemistry, Biomolecular Sciences, and Chemical Instrumentation. A minimum of ten credits is required for each additional specialty. A course which counts towards an additional specialty may also count towards the outside course requirement. A minor in chemistry is available to students in other departments. The Department participates in the interdepartmental major in toxicology.

The Department of Chemistry requires all graduate students majoring in chemistry to teach as part of their training for an advanced degree.

Prerequisite to major graduate work is the completion of undergraduate work in chemistry, mathematics, and physics, substantially equivalent to that required of undergraduate chemistry majors at this institution.

Courses open for nonmajor graduate credit: 301, 316, 316L, 321, 321L, 322, 331, 332, 401L, 402.

The course numbers for general chemistry courses include 105 and 160-178.

Index to field of work for 200 level courses and above is given by the second and third digits of course numbers:

(a) Inorganic Chemistry 00-09
(b) Analytical Chemistry 10-19
(c) Physical Chemistry 20-29 and 60-69
(d) Organic Chemistry 30-40
(e) Chemical Education 50-59
(f) Interdisciplinary Chemistry 70-89
(g) Research 99

Courses Primarily for Undergraduate Students

Chem 105. Fundamental of College Chemistry. (2-2) Cr. 3. F. Prereq: 1 year high school algebra. An in-depth active learning experience designed to impart the fundamental concepts and principles of chemistry, with an emphasis on mathematics skills and logical thinking. For students intending to enroll in general chemistry and who have not taken high school chemistry or who have not had a high school college preparatory chemistry course. Credit for Chem 105 does not count toward graduation, but it does count toward the GPA.
Chem 155. Foundations of Chemistry for Engineers. (3-0) Cr. 3. F. Prereq: Math 140 or the high school equivalent. The first semester of a two semester sequence concerned with principles of chemistry and properties of matter explained in terms of modern chemical theory with emphasis on topics of general interest to the engineer. Chem 155 may not be counted toward graduation in any engineering curriculum. Credit may not be applied toward graduation for both 156 and another chemistry course. Only one of 155, 163, 167, and 177 may count toward graduation.

Chem 160. Chemistry in Modern Society. (3-0) Cr. 3. S. Aspects of chemistry visible to a nonscientist in our society. A survey of selected areas of chemistry with an emphasis on the interface between chemistry and other fields of human activity. Credit may not be applied toward graduation for both 160 and another chemistry course.

Chem 163. General Chemistry. (4-0) Cr. 4. F.S.S. Prereq: 1 year of high school algebra and geometry and either Chem 105 or 155 or 1 year of high school chemistry; and credit or enrollment in 163L. The first semester of a two-semester sequence. A general survey of chemistry and properties with an emphasis on conceptual problems. Kinetics, phase and acid-base equilibria, electrochemistry, selected topics in the chemistry of metal and nonmetallic elements, and organic molecules. The 163, 164 sequence does not meet the prerequisite for 331. Credit for examination (test-out exams) for 163 is available only to students who are not currently enrolled in the course. Credit may not be applied toward graduation for both Chem 164 and another chemistry course. Only one of 163, 165, 167 and 177 may count toward graduation. Only one of 163, 167, 175 and 177 may count toward graduation.

Chem 163L. Laboratory in General Chemistry. (2-0) Cr. 2. F.S. Prereq: Credit or enrollment for credit in 163. Laboratory to accompany Chem 163. Must be taken with 163. Only one of 163L, 167L, and 177L may count toward graduation.

Chem 164. General Chemistry. (3-0) Cr. 3. F.S.S. Prereq: 163 and 163L. Continuation of 163. A general survey of chemistry with emphasis on conceptual problems. Kinetics, gas phase and acid base equilibria, electrochemistry, selected topics in the chemistry of metallic and nonmetallic elements, and organic molecules. The 163, 164 sequence does not meet the prerequisite for 331. Credit by examination (test-out exams) for 164 is available only to students who are not currently enrolled in the course. Only one of 164 and 178 may count toward graduation.

Chem 165. Foundations of Chemistry for Engineers. (4-0) Cr. 4. S. Prereq: 155. Continuation of 155. Principles of chemistry and properties of matter explained in terms of modern chemistry with emphasis on topics of general interest to the engineer. Chem 165 or 167 satisfies the chemistry requirement in engineering curricula. Credit may not be applied toward graduation for both Chem 160 and another chemistry course. Only one of 165, 167, and 177 may count toward graduation. Only one of 155, 163, 167, and 177 may count toward graduation.

Chem 167. General Chemistry for Engineers. (4-0) Cr. 4. F.S.S. Prereq: Math 140 or the high school equivalent and one year of traditional college prep chemistry or Chem 105. Principles of chemistry and properties of matter explained in terms of modern chemistry with emphasis on topics of general interest to the engineer. This is an accelerated course designed for students with an excellent preparation in math and science and is a terminal course intended for engineering students who do not plan to take additional courses in chemistry. Credit may not be applied toward graduation for both 160 and another chemistry course. Only one of 163, 167, 175 and 177 may count toward graduation. Only one of 155, 163, 167, and 177 may count toward graduation. Credit by examination (test-out exams) for 167 is available only to students who are not currently enrolled in the course.

Chem 167L. Laboratory in General Chemistry for Engineering. (1-0) Cr. 1. F.S. Prereq: Credit or enrollment for credit in 167. Laboratory to accompany Chem 167. Only one of 163L, 167L, and 177L may count toward graduation.

Chem 177. General Chemistry. (4-0) Cr. 4. F.S.S. Prereq: Math 140 or high school equivalent and 165, 167 or 1 year in chemistry; and credit or enrollment in 177L. For chemistry and biochemistry majors. The first semester of a two-semester sequence which explores chemistry at a greater depth than emphasis on concepts, problems, and calculations than 163-164. Recommended for physical and biological science majors, chemical engineering majors, and all others intending to take science courses. Principles and quantitative relationships, stoichiometry, chemical equilibrium, acid-base chemistry, thermodynamics, rates and mechanism of reactions, changes of state, solution behavior, atomic structure, periodic relationships, chemical bonding. Credit may not be applied toward graduation for both 160 and another chemistry course. Only one of 163, 165, 167 or 177 may count toward graduation. Only one of 165, 167, and 177 may count toward graduation. Credit by examination (test-out exams) for 177 is available only to students who are not currently enrolled. Credit may not be applied toward graduation for both 160 and another chemistry course. Only one of 163, 165, 167 or 177 may count toward graduation. Only one of 165, 167, and 177 may count toward graduation.

Chem 177L. Laboratory in General Chemistry. (1-0) Cr. 1. F.S.S. Prereq: Credit or enrollment for credit in 177. Laboratory to accompany Chem 177. Only one of 163L, 67L, and 177L may count toward graduation.

Chem 178. General Chemistry. (3-0) Cr. 3. F.S. Prereq: 177. Continuation of 177. Recommended for physical or biological science majors, chemical engineering majors, and all others intending to take 300-level chemistry courses. 178M: Thermodynamics; chemical kinetics; polymers; mass spectrometry; nuclear chemistry; and descriptive topics (non-metallic elements). Only one of 163L and 178L may count toward graduation. Credit by examination (test-out exams) for 178 is available only to students who are not currently enrolled in the course.

Chem 178L. Laboratory in General Chemistry. (2-0) Cr. 2. F.S. Prereq: 177L and credit or enrollment in 178. Only one of 163L, 167L, and 177L may count toward graduation.

Chem 179. Quantitative Analysis. (2-0) Cr. 2. S. Prereq: 211 or 211L, 211L, 212 or 212L. Theory and practice of elementary volumetric, chromatographic, electrochemical and spectrometric methods of analysis. Chemical equilibrium, sampling, and data evaluation. For chemistry and biochemistry majors and other students seeking a strong emphasis in chemistry. Only one of 210 or 211 may count toward graduation.

Chem 211. Quantitative and Environmental Analysis Laboratory. (2-0) Cr. 2. F. Prereq: 164 or 164L or credit or enrollment in 178; and concurrent enrollment in 211L. Theory and practice of elementary volumetric, chromatographic, electrochemical and spectrometric methods of analysis. Chemical equilibrium, sampling, and data evaluation. Emphasis on environmental analysis chemistry; the same methods are widely used in biological and materials sciences as well. Chemistry and biochemistry majors and students seeking a strong emphasis in chemistry should elect Chem 211L. Only one of 210 or 211 may count toward graduation.

Chem 299. Undergraduate Research (for Freshmen and Sophomores). Cr. var. Prereq: Permission of staff member with whom student proposes to work.

Chem 301. Inorganic Chemistry. (2-0) Cr. 2. S. Prereq: 321. Atomic and molecular structure and bond theory, ionic and molecular compounds, acids and bases, solid-state structures and properties; inorganic chemistry of H, B, C. Nonmajor graduate credit.

Chem 316. Instrumental Methods of Chemical Analysis. (2-0) Cr. 2. F. Prereq: 210 or 211, 211L or concurrent enrollment in 316L. Classical thermodynamics 1st, 2nd, and 3rd laws with applications to gases; Van der Waals equation; multicomponent, multiphase equilibrium of reacting systems, surface chemistry, and electrochemical cells. Nonmajor graduate credit.

Chem 316L. Instrumental Analysis Laboratory. (0-0) Cr. 2. F. Prereq: Credit or enrollment in Chem 316. Advanced laboratory experience in UV-visible spectrophotometry, atomic absorption and emission spectrometry, electrochemistry, gas and liquid chromatography, electrophoresis, mass spectrometry, and other instrumental methods. Nonmajor graduate credit.

Chem 321. Physical Chemistry I. (3-0) Cr. 3. F.S.S. Prereq: 178, Math 166, Phys 222 recommended. Classical thermodynamics 1st, 2nd, and 3rd laws with applications to gases; Van der Waals equation; multicomponent, multiphase equilibrium of reacting systems, surface chemistry, and electrochemical cells. Nonmajor graduate credit.

Chem 321L. Laboratory in Physical Chemistry for Engineers. (1-3) Cr. 2. S. Prereq: Credit or enrollment in Chem 321. Error analysis; use of computer; thermodynamics of gases; transport properties; thermochrometry; thermodynamics of phase equilibria; chemical kinetics; polymers; molecular spectroscopy; x-ray crystallography; nuclear chemistry; surface chemistry; mass spectrometry. Only one of 321L and 322L may count toward graduation. Nonmajor graduate credit.

Chem 322. Physical Chemistry II. (3-0) Cr. 3. S. Prereq: Chem 321. Kinetic theory of gases; transport properties, chemical kinetics; quantum mechanics, atomic and molecular structure. Thermochemistry; statistical thermodynamics, solids. Nonmajor graduate credit.

Chem 322L. Laboratory in Physical Chemistry. (1-6) Cr. 3. S. Prereq: Credit or enrollment in Chem 322. Error analysis; use of computer; thermodynamics of gases; transport properties; thermochrometry; thermodynamics of phase equilibria; chemical kinetics; polymers; molecular spectroscopy; x-ray crystallography; nuclear chemistry; surface chemistry; mass spectrometry. Only one of 321L and 322L may count toward graduation.
Courses Primarily for Graduate Students, open to qualified undergraduates

Chem 500. Advanced Inorganic Chemistry. (2-0) Cr. 2. F. Prereq: 301. Concepts of structure, bonding, and chemical reactivity applied to inorganic compounds. General and nonmetallic elements. For students not majoring in inorganic chemistry.

Chem 503. Bioinorganic Chemistry. (Same as BMBM 503) (3-0) Cr. 2, Alt. S., offered 2002. Prereq: 402 or BMBM 405. Essential elements: transport and storage of ions and of oxygen; metalloenzymes and metallocoenzymes; electron-transfer processes in respiration and photosynthesis; metabolism of nonmetals and redox processes involved in it; medicinal aspects of inorganic chemistry.

Chem 505. Physical Inorganic Chemistry. (3-0) Cr. 3. F. Prereq: 402 and 322. Elementary group theory and molecular orbital theory applied to inorganic chemistry. Spectroscopic methods of characterization of inorganic compounds and organometallic compounds.

Chem 506. Systematic Inorganic Chemistry. (3-0) Cr. 3. S. Prereq: 402 or 500 and 322. Principles of structure and reaction in inorganic chemistry. Descriptive chemistry of the chemical elements and their compounds.

Chem 510. Advanced Survey of Analytical Chemistry. (2-0) Cr. 2. F. Prereq: 316 and 316L. Selected topics in modern quantitative analysis including analytical separations, titrations, spectrophotometry, and other instrumental methods.

Chem 511. Advanced Quantitative Analysis. (3-0) Cr. 3. S. Prereq: 316 and 316L. General methods of quantitative inorganic and organic analysis. Aqueous and nonaqueous solutions of inorganic and organic compounds; ion-exchange and sample dissolution; modern instrumentation; sensors; atomic and molecular microscopy; bioanalytical methods; data evaluation, chemometrics; and analytical literature.

Chem 513. Analytical Molecular and Atomic Spectroscopy. (3-0) Cr. 3. S. Prereq: 316 and 316L, 322, and 322L. Introduction to physical optics and design of photometric instruments of absorption, emission, fluorescence, and Raman spectroscopy. Error and precision of optical methods. Ultraviolet, visible, and infrared methods of quantitative and qualitative organic and inorganic analysis.

Chem 516. Analytical Separations. (3-0) Cr. 3. F. Prereq: 316 and 316L, 322, and 322L. Principles and examples of inorganic and organic separation methods applied to analytical chemistry. Solvent extraction, volatilization, ion exchange, liquid and gas chromatography, and electrophoresis.

Chem 530. Advanced Organic Chemistry. (2-0) Cr. 2. S. Prereq: 332. Selected topics in modern organic chemistry, including structure, reaction mechanisms, organic synthesis and spectroscopy. For students not majoring in organic chemistry.

Courses and Programs Chemistry

Chem 538. Physical Organic Chemistry II. (3-0) Cr. 3. S. Prereq: 537. Survey of reactive intermediates including cations, anions, carbones, and radicals.

Chem 560. Advanced Physical Chemistry. (2-0) Cr. 2. S. Prereq: 322. Principles of physical chemistry as they apply to analytical, inorganic, and organic chemistry, including thermodynamics, kinetics, quantum mechanics and spectroscopy. For students not majoring in physical chemistry.

Chem 561. Fundamentals of Quantum Mechanics. (4-0) Cr. 4. F. Prereq: 322. Schrödinger equation and exact solutions; square wave potential barriers, harmonic oscillator, the hydrogen atom; atomic orbitals; orbitals including angular momenta; time-independent and time-dependent perturbation theory; Schrödinger and Heisenberg representations of creation and annihilation operators; interaction picture, density matrix.

Chem 562. Fundamentals of Atomic and Molecular Quantum Mechanics. (3-0) Cr. 3. S. Prereq: 561. credit or enrollment in 583. Variational method, many electron atoms; addition of angular momentum, self-consistent field method for open and closed shells, linear combinations of atomic orbitals, origin of chemical bonding, many-electron diatomic and polyatomic molecules, treatments of electron correlation, approximation methods.

Chem 576. Special Topics in Analytical Chemistry. (2-0) Cr. 2 each time taken. F.S. Prereq: Permission of instructor. Raman spectroscopy, sensors, spectro-electrochemistry, capillary electrophoresis, analytical plasmas, chemometrics and bioanalytical chemistry.

Chem 631. Seminar in Organic Chemistry. (1-0) Cr. 1 each time taken. F.S. Prereq: Permission of instructor.

Chem 632. Selected Topics in Organic Chemistry. (1-0) Cr. 1 each time taken. F.S. Prereq: 537. Topics of current interest in organic chemistry such as spectroscopy, physical organic chemistry, photochemistry, organometallic chemistry, mechanisms of oxidations and reductions, modern organic synthesis, reactive intermediates, bioorganic chemistry, and polymers.

Chem 660. Seminar in Physical Chemistry. (1-0) Cr. 1 each time taken. S. Prereq: Permission of instructor.

Chem 667. Special Topics in Physical Chemistry. (1-0) or (2-0) Cr. 1 or 2. F.S. Prereq: Permission of instructor. Advanced and recent developments in physical chemistry are selected for each offering.

Civil Engineering

(Administered by the Department of Civil and Construction Engineering)

Lowell F. Greimann, Chair of Department

Distinguished Professors: Klaber

University Professors: Austin, Lohnes

Professors: Fanous, Greimann, Jayapalan, Kannel, Northup, Porter, Rowings, van Leeuven, Wipf

Professors (Collaborators): Maze, McCoy

Distinguished Professors (Emeritus): Baumann, Cleasby, Handy

Professors (Emeritus): Bergeson, Brewer, Carstens, Ekberg, Hardy, Jelligner, Kao, Lee, Mashaw, Mickie, Morgan, Oulman, Sanders

Associate Professors: Abendroth, Baenziger, Cable, Federle, Gu, Jahren, Jaselskis, Kjartanson, Org, Pitt, Souleyrette

Associate Professors (Emeritus): Chase, Fung, Mercier, Sheeler, Ward

Assistant Professors: Bolluyt, Coree, Ellis, Hallmark, Minchin, Sardo, Sinharan, Sung, Thomas, Walters, Wang

Assistant Professors (Adjunct): Andre, Plazak, Schlorholz, Walton

Assistant Professors (Collaborators): Golchin, Lundquist, Stanley

Instructors (Adjunct): Amenson, Gaunt

Undergraduate Study

For undergraduate curriculum in civil engineering leading to the degree bachelor of science, see College of Engineering, Curricula. This curriculum is accredited by the Engineering Accreditation Commission of the Accreditation Board for Engineering and Technology.

Civil engineering consists of the application of the laws, forces, and materials of nature to the planning, design, construction, maintenance, and operation of public and private facilities, subject to economic, social, and environmental constraints. Commonly includ-
Courses Primarily for Undergraduate Students

C E 101. Technical Lecture. (1-0) Cr. R. F.S.
Discussion of various phases of civil engineering. For transfer students only. Evaluation of transfer credits and discussion of graduation requirements.

C E 104. Civil Engineering Projects. (1-0) Cr. F.
Introduction to civil engineering projects and practices.

C E 111. Fundamentals of Surveying I. (2-3) Cr. 3.

C E 160. Engineering Problems with Computational Laboratory. (2-2) Cr. 3.
F.S. Prereq: Math 141, 142 or satisfactory scores on mathematics placement examinations; credit or enrollment in Math 169. Solving engineering problems and preprocessing computer programs, writing computer programs, graphing and curve-fitting. Use of SI units. Significant figures. Flowcharting. Introduction to engineering economics and statistics. Solution of engineering problems using spreadsheets.

C E 170. Graphics for Civil Engineering. (0-4) Cr. 2.
F.S. Prereq: Math 165, credit or enrollment in PKA 164. Fundamental graphics. Introduction to computer aided drafting and modeling. Civil engineering applications.

C E 203. Civil Engineering Synthesis I. (2-2) Cr. 2.
F.S. Prereq: 104, 160, Chem 167 or 177. Application of mathematics and chemistry concepts for the solution of civil engineering problems. Introduction to critical thinking as related to Bloom's Taxonomy of educational objectives. CE writing style guide and introduction to technical report writing for Civil Engineers. Introduction to self-directed learning. Concepts and applications from engineering economy. Participant major sequence(s) and other professional engineering organizations.

C E 204. Civil Engineering Synthesis II. (2-0) Cr. 2.

C E 298. Cooperative Education. Cr. R. F.S.S.S.
Prereq: Permission of department chair. First professional work period in the cooperative education program. Students must register for this course before commencing work.

C E 303. Professional Issues in Civil Engineering. (2-0) Cr. 2.

C E 314. Fundamentals of Surveying II. (2-3) Cr. 3.

Courses and Programs

Civil Engineering

C E 326. Principles of Environmental Engineering. (2-2) Cr. F. S.
Prereq: Chem 167 or 178, Math 166, credit or enrollment in E M 378. Introduction to environmental problems, water quality parameters and requirements, potable water quality and quantity objectives, water sources and treatment methods; water pollution control objectives and treatment methods; survey of soils and hazardous waste management and air pollution control. Nonmajor graduate credit.

C E 332. Structural Analysis I. (2-2) Cr. 3.

C E 333. Structural Steel Design I. (2-2) Cr. 3.

C E 334. Reinforced Concrete Design I. (2-2) Cr. 3.

C E 350. Introduction to Transportation Planning. (3-0) Cr. 3.
S.
Prereq: 3 credits in statistics, junior classification. Planning of urban and regional transportation systems. Applications of population, land use, economic, social, and travel studies to problems of transportation system configuration and route location. Organization and coordination of the transportation planning function. Not available for graduation credit for students in civil engineering. Nonmajor graduate credit.

C E 353. Introduction to Railroad Planning and Design. (1-2) Cr. F.
Prereq: 111, 203, Phys 221, a course in statistics from the approved departmental list. Team design project. Oral and written report. Nonmajor graduate credit.

C E 354. Introduction to Airport Planning and Design. (1-2) Cr. 2.
S.
Prereq: 111, 203, Phys 223, a course in statistics from the approved departmental list. Team design project. Oral and written report. Nonmajor graduate credit.

C E 355. Introduction to Transportation Engineering. (1-2) Cr. 2.
F.S. Prereq: 111, 203, Phys 221, a course in statistics from the approved departmental list. Airport planning and design. Operations and maintenance. Team design project. Oral and written report. Nonmajor graduate credit.

C E 360. Soil Engineering. (2-3) Cr. 3.
S.
Prereq: Geol 201, E M 324. Introduction to soil engineering and testing. Identification and classification tests, soil water systems, principles of settlement, stresses in soils, and shear strength testing; slope stability, retaining walls, bearing capacity. Nonmajor graduate credit.

C E 372. Engineering Hydrology and Hydraulics. (2-4) Cr. S.
Prereq: E M 378, a course in statistics from the approved departmental list. The hydrologic cycle: precipitation, infiltration, runoff, evapotranspiration, groundwater, and streamflow. Hydrograph analysis, flood routing, frequency analysis and urban hydrology. Applied hydraulics including pipe and channel flow with design applications in culverts, pumping, water distribution, storm sewer and sanitary sewer systems. Design project required. Nonmajor graduate credit.
C E 382. Design of Concretes. (1-6) Cr. 3. F.S. Prereq: 360. Physical and chemical properties of bituminous, portland, and other cements; aggregate properties; mix design and testing of concretes, admixtures, mixing, handling, placing and curving; principles of pavement thickness design. Nonmajor graduate credit.

C E 396. Summer Internship. Cr. R. S. Prereq: Permission of department chair, completion of two terms in residence in civil engineering, employment in civil engineering or related field. Summer professional work period.

C E 398. Cooperative Education. Cr. R. F.S.S. Prereq: 298, permission of department. Second professional work period in the cooperative education program. Students must register for this course before commencement.

C E 404. Professional Development and Outcomes Assessment. (2-0) Cr. 2. F.S. Prereq: Verification of undergraduate application for graduation by the end of the first week of class. Permission of instructor for students who are scheduled for summer graduation. Review of various civil engineering curriculum topics related to the Fundamentals of Engineering Examination (FEE Exam). Knowledge assessment through completion of FEE Exam practice test questions. Course project is required. Nonmajor graduate credit.

C E 417. Land Surveying. (2-3) Cr. 3. S. Prereq: 111. Legal principles affecting the determination of land boundaries, public domain survey systems. Locating sequential and simultaneous conveyances. Record research, plat preparation, and land description. Study of selected court cases. Nonmajor graduate credit.

C E 427. Environmental Engineering Science. (2-2) Cr. 3. F.S. Prereq: Chem 167 or 178. Physical, chemical and biological principles related to environmental engineering management including water chemistry, environmental reactions and kinetics, mass transfer principles, and description of microbial degradation and processes in the environment.

C E 428. Water and Wastewater Treatment Processes. (2-3) Cr. 3. S. Prereq: 326, 427. Physical, chemical and biological processes for the treatment of water and wastewater including air stripping, coagulation and flocculation, sedimentation, filtration, adsorption, chemical oxidation/disinfection, fixed film and suspended growth biological processes and sludge management.

C E 429. Environmental Systems Engineering. (2-3) Cr. 3. F. Prereq: 326, 427. Fate, distribution, interactions, and transport of pollutants on land, air and water resources. Inades in air, water and solid/hazardous waste management; reaction processes in natural systems; and modeling.

C E 451. Urban Transportation Planning and Modeling. (Dual-listed with 551.) (2-2) Cr. 3. F. Prereq: 360 or 353 or 354 or 453. Transportation data sources and cost analysis; transportation system management; travel demand and network modeling; transportation legislation and financing; intelligent transportation systems planning; sustainable transportation concepts. Group projects lab.

C E 486. Engineering Design. (2-2) Cr. 3. F.S. Prereq: 304, 326, 333 or 334, 382, credit enrollment in 428 or 453, Sp Cm 212. The engineering design process, case histories of design inadequacies, environmental and safety health in the workplace, cost estimating, planning and scheduling, and synthesis of previous coursework using a group project. Nonmajor graduate credit.

C E 498. Cooperative Education. Cr. R. F.S.S. Prereq: 398, permission of department. Third and subsequent professional periods in the cooperative education program. Students must register for this course before commencement.

Courses Primarily for Graduate Students, open to qualified undergraduate students

C E 520. Environmental Engineering Chemistry. (2-3) Cr. 3. F. Prereq: 326. Principles of chemistry and physical phenomena applicable to the treatment of water and wastewater and to reactions receiving waters; including reaction kinetics, acid-base equilibria, chemical precipitation, reo reactions and mass transfer principles. Individual and group projects required.

C E 522. Water Pollution Control Processes. (2-3) Cr. 3. S. Prereq: 521. Fundamentals of biochemical processes, aerobic growth in a single CSTR, multiple events in complex systems, and techniques for evaluating kinetic parameters; unit processes of activated sludge system, stabilization and aerated lagoon systems, biosolids digestion and disposal, nutrient removal, and anaerobic treatment systems.

C E 523. Physical-Chemical Treatment Process. (2-3) Cr. 3. S. Prereq: 522. Principles and design of physical-chemical processes; including coagulation, flocculation, chemical precipitation, sedimentation, filtration, adsorption, membrane processes, ion exchange and disinfection; laboratory exercises and demonstrations. Individual and group projects required.

C E 526. Air Pollution Control Technology. (2-0) Cr. 2. Alt. Spring 2002. Prereq: 326. Sources, characteristics, effects, and control of air pollutant emissions from stationary and mobile sources; atmospheric chemistry and global impacts; contaminant dispersion and modeling, including meteorological and climatological aspects; control technologies for particulates, sulfur and nitrogen oxides, unburned hydrocarbons, volatile and toxic substances, and odors.

C E 527. Solid Waste Management. (2-0) Cr. 2. F. Prereq: 526. Planning and design of solid waste management systems; includes characterization and collection of domestic, commercial, and industrial solid wastes, waste minimization and recycling, energy, and materials recovery, composting, incineration, and landfill design.

C E 529. Hazardous Waste Management. (3-3) Cr. 3. S. Prereq: 520, 521. Regulatory requirements for the classification, transport, storage, and treatment of hazardous waste and design of alternatives for treatment and disposal technologies, including physical, chemical, and biological treatment, solidification, incineration, and secure landfill design. Regulatory requirements and procedures for hazardous waste contaminated site investigations and risk analysis. Analysis and design of remedial action alternatives for site restoration.

C E 534. Reinforced Concrete Design II. (2-2) Cr. 3. S. Prereq: 334. Design of reinforced concrete long columns, floor slabs, building frames, isolated footings and combined footings. Design and behavior considerations for shear, flexural and torsional bending, structural joints and shear friction. Introduction to cold-formed composite steel and composite floor slab design.

C E 570. Applied Hydraulic Design. (2-3) Cr. 3. F. Prereq: 372. Flow characteristics in natural and constructed channels; principles of hydraulic design of culverts, bridge waterway openings, spillways, and sluiceways; hydraulic gates and gated structures, pumping stations, and miscellaneous water control structures; pipe networks, mathematical modeling. Design project.

C E 571. Surface Water Hydrology. (3-0) Cr. 3. S. Prereq: 372. Analysis of hydrologic data including precipitation, infiltration, evapotranspiration, direct runoff and streamflow; theory and use of frequency analysis; theory of streamflow and reservoir routing; use of deterministic and statistical hydrologic models. Fundamentals of surface water quality modeling, point and nonpoint sources of contamination. Design project.

C E 574. Environmental Impact Assessment. (3-0) Cr. 3. S. Prereq: ENS 300, biological or engineering sciences and senior or above classification. Review of federal and state requirements for environmental impact assessment, requirements of the National Environmental Policy Act and Council on Environmental Quality, methods of evaluating the environmental impacts on the physical, biological, socioeconomic, cultural/historical, human health and psychological environments, public participation in EIS, review and evaluate project environmental impact statements. An environmental impact assessment of a proposed project will be completed in small teams.

C E 575. Soil and Groundwater Remediation. (3-0) Cr. 3. S. Prereq: 573 or Geol 511. Introduction to technologies used for remediation of contaminated soil and groundwater, including pump and treat, carbon absorption, soil venting, air sparging, air stripping, and in-situ bioremediation.

C E 578. Sustainable Water, Energy Resources, and Environment. (3-0) Cr. 3. F. Prereq: 4 courses in natural, biological or engineering sciences and senior or above classification. Integration of treatment of knowledge and application, renewable energy (with emphasis on hydropower), and the environment; presentation of relevant science and engineering principles in both technical and conceptual terms for students of different fields and background, cross-disciplinary approach to analysis and modeling of sustainable development of water and energy and preservation of environmental integrity.

C E 650. Special Topics. Cr. 1 to 5 each time elected. F.S. Pre-enrollment contract required.

C E 591. Seminar in Environmental Engineering. (1-0) Cr. 1. F.S. Prereq: Graduate classification. Contemporary environmental engineering issues. Outside speaker reviews of ongoing research in environmental engineering. Offered on a satisfactory-failing grading basis only.

C E 594. Special Topics in Construction Engineering and Management. Cr. 1 to 3. F.S. Prereq: Con E 322, Con E 340, and permission of instructor. Emphasis for a particular offering will be selected from the following topics:

- A. Planning and Scheduling
- B. Computer Applications for Planning and Scheduling
- C. Cost Estimating
- D. Computer Applications for Cost Estimating
- E. Project Controls
- F. Computer Applications for Project Controls
- G. Integration of Planning, Scheduling and Project Controls

C E 595. Research Methods in Construction Engineering and Management. (0-1) Cr. 1. F. Prereq: or enrollment in 501, 502, 503, or 505. Assigned readings and reports on research methods to solve construction engineering and management problems such as robotics, project controls, automation, etc. Identification of research methods and priorities, selection and development of research design, and critique of research in construction engineering and management.

An undergraduate student must have an academic standing in upper one-half of his/her class in order to enroll in any 500-level civil engineering course.

Courses for Graduate Students

C E 622. Advanced Topics in Environmental Engineering. (2-0) Cr. 2. F.S. Prereq: Permission of environmental engineering graduate faculty. Advanced concepts in environmental engineering. Emphasis for a particular offering will be selected from the following topics:

- A. Water Pollution Control
- B. Water Treatment
- C. Solid and Hazardous Waste
- D. Water Resources

C E 628. Bioremediation Engineering. (2-0) Cr. 2. Alt. F. Prereq: 520 and 521. Biodegradation and bioremediation of major contaminants, pathways of metabolism for major electron acceptor conditions, cometabolism, factors influencing biodegradation (e.g., sorption, bioavailability), methods to overcome limitations using various bioremediation technologies, and molecular tools.

C E 649. Advanced Topics in Structural Engineering. (3-0) Cr. 3. F.S. Prereq: Permission of structural engineering graduate faculty. Advanced concepts in structural engineering topics. Emphasis for a particular offering will be selected from the following topics:

- A. Behavior of Metal Structures
- B. Design of Concrete Shells
- C. Cable-Supported Structures
- D. Advanced Matrix Analysis of Structures
- E. Dynamic Design of Structures
- F. Reliability Assessment of Structures

C E 690. Advanced Topics. Cr. 1 to 3. Pre-enrollment contract required.

C E 699. Research.

For more information about the program, please visit the website at iastate.edu/~fling_info/Courses/ClStGr_page.html (Interdepartmental Undergraduate Program)

The Classical Studies program is a cross-disciplinary program in the College of Liberal Arts and Sciences which offers an integrated curriculum of courses in the languages, literatures, history, and thought of ancient Greece and Rome from the time of the Homeric poems to the reign of the Emperor Constantine. Complete and current information about the program may be found on-line at: www.public.iastate.edu/~fling_info/Classics/

Courses in Classical Studies provide background for students whose major fields of study or career interests include Anthropology, English, Foreign Languages and Literatures, History, Music, Philosophy, Women’s Studies, and related fields. Students who wish to emphasize Classical Studies should consult the Program Chair for assistance regarding an Interdisciplinary Studies Major in the College of Liberal Arts and Sciences.

A student who wishes to declare a minor must successfully complete the following requirements: (a) Greek 201 or Latin 201; (b) 273; (c) 402 or 403 or 404; (d) six additional credits from the courses listed below (primary or departmental), or as approved by the program committee. (History majors may substitute 310 for 402 or 403 or 404.)

Courses open for nonmajor graduate credit: 310, 402, 403, 404.

Primary Courses

Cl St 273. Greek and Roman Mythology. (3-0) Cr. 3. S. Prereq: credit or enrollment in 273; (c) 402 or 403 or 404; (d) six additional credits from the courses listed below (primary or departmental), or as approved by the program committee. (History majors may substitute 310 for 402 or 403 or 404.)

Cl St 275. The Ancient City. (3-0) Cr. 3. F. Examination of ancient urban life, including physical space and material culture, religion, literature, and art; examination of civic identity (the “polis”). Contrast between the concepts of urban and rural. Examines drawn from specific ancient cities; some attention to modern urban and environmental changes. Students must successfully complete the following courses for a particular offering will be selected from the following topics:

- A. Behavior of Metal Structures
- B. Design of Concrete Shells
- C. Cable-Supported Structures
- D. Advanced Matrix Analysis of Structures
- E. Dynamic Design of Structures
- F. Reliability Assessment of Structures

Cl St 310. Ancient Philosophy. (Same as Phil 310.) See Philosophy. Nonmajor graduate credit.

Cl St 353. World Literature: Western Foundations through Renaissance. (Same as Engl 353.) See English.

Cl St 367. Christianity in the Roman Empire. (Same as Relig 367.) See Religious Studies.
CI St 372. Greek and Roman Drama. (3-0) Cr. 3. S. Origin and development of Athenian drama and its imitation at Rome; selected readings in English from Aeschylus, Sophocles, Euripides, Aristophanes, Menander, Plautus, Terence, or Seneca; ancient thea- ter and dramatic conventions; theories of comedy or tragedy.

CI St 373. The World of Heroes in Greece and Rome. (3-0) Cr. 3. F. Investigation of the concept of the heroic in Greek and Roman epic and other rele- vant texts. Development of the heroic ideal; prob- lems entailed by specific texts or kinds of texts. The heroic code and its implications for Greco-Roman concepts of the nature of humanity; problems posed by the heroic code; transformations of the code. H. Honors (4-0) Cr. 4.

CI St 374. Women in Classical Antiquity. (Same as Hist 374, W S 374.) (3-0) Cr. 3. S. Prereq: Any one course in CI St, W S, Latin, or Greek. Chronological survey of the status of women in classical antiquity; study of constructs of the female and the feminine. Readings from ancient and modern sources. Emphasis on either Greece and Hellenistic Egypt or on Hellenistic Egypt and Rome; may be repeated once.

CI St 376. The Archaeology of Greek and Roman Religion. (Same as Rel S 376.) (3-0) Cr. 3. S. Examination of sacred space, shrine and sanctuary architecture, cult equipment, ritual and sacrifice; social implications of cult and religion. Studied chronologically through archaeological remains of material culture and texts from Bronze Age Greece through Early Imperial Rome.

CI St 394. The Archaeology of Greece: An Introduction. (2-0) Cr. 2. S. Introduction to the topography, history, archaeology, monuments and art of Greece from the Bronze Age through the Ottoman period; attention given to the culture of modern Greece, preparatory to study abroad in Greece (CI St 395).

CI St 395. Study Abroad: The Archaeology of Greece. Cr. 2. SS. Prereq: 394. Supervised on-site instruction in the archaeology, monuments, and art of Greece from the Bronze Age through the Ottoman period; attention given to the culture of modern Greece; readings from ancient and modern sources. Travel to Greece will occur after the spring semester and prior to summer sessions.

CI St 402. Ancient Greece. (Same as Hist 402.) See History. Nonmajor graduate credit.

CI St 403. Ancient Rome. (Same as Hist 403.) See History. Nonmajor graduate credit.

CI St 404. Ancient Rome. (Same as Hist 404.) See History. Nonmajor graduate credit.

CI St 430. Western Political Thought: Plato to Machiavelli. (Same as Pol S 430.) See Political Science.

CI St 480. Seminar in Classical Studies. (3-0) Cr. 3. Prereq: 3 credits in Classical Studies or related courses, permission of Program Chair. Advanced study of a selected topic in Classical Studies. Research paper or project selected by the student.

CI St 490. Independent Study. Cr. 1 to 6 each time taken. Prereq: 7 credits in classical studies at the 200 level or higher; permission of the chair of the pro- gram committee. Designed to meet the needs of students who wish to study specific topics in classi- cal civilization in areas where courses are not offered, or to pursue such study beyond the limits of existing courses.

Courses for Graduate Students, major or minor, open to qualified undergraduates

CI St 512A. Proseminar in Ancient European History. (Same as Hist 512A.) See History.

CI St 594A. Seminar in Ancient European History. (Same as Hist 594A.) See History.

Primary Courses (Offered by Other Departments)

Art H 383. Greek and Roman Art. See Art and Design.

Greek 101. Elementary Classical Greek. See Foreign Languages and Literatures.

Greek 102. Elementary Classical Greek. See Foreign Languages and Literatures.

Greek 201. Intermediate Classical Greek. See Foreign Languages and Literatures.

Greek 306. Classical Greek Prose Composition. See Foreign Languages and Literatures.

Greek 332. Introduction to Classical Greek Literature. See Foreign Languages and Literatures.

Hist 280. Introduction to History of Science. See History.

Latin 101. Elementary Latin. See Foreign Languages and Literatures.

Latin 102. Elementary Latin. See Foreign Languages and Literatures.

Latin 201. Intermediate Latin. See Foreign Languages and Literatures.

Latin 306. Composition and Oral Interpretation. See Foreign Languages and Literatures.

Latin 332. Introduction to Latin Literature. See Foreign Languages and Literatures.

Latin 441. Advanced Readings in Latin. See Foreign Languages and Literatures.

Latin 442. Advanced Readings in Latin. See Foreign Languages and Literatures.

Community and Regional Planning

Riad G. Mahayni, Chair of Department
Professors: Mahayni, Shinn
Associate Professors: Borich, Huntington, Mattson
Associate Professors (Emeritus): Knox, Malone
Assistant Professors: Hamin, Suen
Assistant Professors (Adjunct): Andre, Plazak

Undergraduate Study

For undergraduate curriculum in community and regional planning leading to the degree bachelor of science, see College of Design, Curricula.

Community and regional planning is a profes- sional field of study aimed at assessing the ever-changing socioeconomic and physical environments of our communities and plan- ning for their future. Planners evaluate and seize opportunities to understand and solve problems. Most planners work at the local level, but they are concerned with issues that affect the world: the preservation and enhancement of the quality of life in a commu- nity, the protection of the environment, the promotion of equitable economic opportunity; and the management of growth and change of all kinds.

Planning has its roots in landscape architect- ure, architecture, engineering, law, eco- nomics, and public administration. Most con- temporary planners are trained in the physical and social sciences so they can understand the society and economy in which plans must be implemented. Planning demands technical competence as well as creativity, plus prag- matism and an ability to envision alternatives to the physical and social environments in which we live.

Graduates of the Community and Regional Planning Department will be capable of per- forming in entry level positions in public plan- ning agencies or with planning consulting firms. Graduates are able to integrate planning knowledge and skills in practical applications to current planning issues, and to communi- cate in written and oral form.

Graduates of the Community and Regional Planning Department are expected to have knowledge of the structure and functions of urban settlements, the history of planning, aspects of planning and policy making, and famili- arity with one area of specialized knowledge. Graduates should have skills in problem for- mulation, quantitative analysis, written/oral and graphic communications, collaborative approaches to these, and in synthesizing and applying knowledge to practice.

Graduates are expected to assess the impact of values in terms of equity and social justice, economic welfare and efficiency, environmen- tal sustainability, and cultural heritage in the context of citizen involvement in decision making.

The curriculum is accredited by the Planning Accreditation Board of the American Institute of Certified Planners and the Association of Collegiate Schools of Planning, thus providing the student with an education which, when combined with experience, supports the indi- vidual’s eligibility for membership in the American Institute of Certified Planners.

The department cooperates in the undergradu- ate minors in design studies and environmen- tal studies.

Graduate Study

The department offers work for the master of community and regional planning degree with areas of concentration in housing and social planning, community economic development, land use and transportation, and environmen- tal planning and design. In addition, students can design their area of concentration if it does not fit in any of the four areas, with the assistance of their major professor.

Degree requirements include completion of a 2-year, 48-credit program, including a thesis of 9 credits or a professional planning report of 4 credits. Students with a bachelor degree in community and regional planning can waive up to 9 credits.

The program of graduate study is accredited by the Planning Accreditation Board of the American Institute of Certified Planners and the Association of Collegiate Schools of Planning.
The planning core consists of C R P 501, 511, 521, 523, 532, 561, 570, and 592.

All students are required to take 3 modules in C R P 523.

No foreign language is required for the degree master of community and regional planning.

Satisfactory completion of the core requirements and the acceptance of a thesis (9 credits) or a professional planning report (4 credits) are required for the M.C.R.P. degree. In addition, the student is encouraged to complete three months of acceptable work experience in a planning office between the first and second year of study.

Double degree programs are offered with architecture (M.C.R.P./P.M.Arch.), business (M.C.R.P./P.M.B.A.), public administration (M.C.R.P./P.M.P.A.), and landscape architecture (M.C.R.P./P.M.L.A.). The department participates in the interdepartmental minor in housing, and in the interdepartmental major in transportation.

Courses open for nonmajor graduate credit: 380.

Courses Primarily for Undergraduate Students

C R P 253. Survey of Community and Regional Planning. (3-0) Cr. 3. F. A historical survey of planning, the nature and problems of urban areas, and the goals, procedures, and results of urban planning.

C R P 270. Forces Shaping Our Metropolitan Environment. (Same as Dsn S 270.) (3-0) Cr. 3. S. Must be taken prior to completing 9 credits in C R P. Introduction to the social, political, physical, and economic forces as they shape metropolitan areas and their interrelationships. A comprehensive picture of metropolitan development including major roles other urban disciplines play in the planning process and the interrelationships of the disciplines.

C R P 272. Planning Analysis and Techniques I. (3-0) Cr. 3. S. Prereq: Com S 103. Existing and emerging techniques for preparation of community planning studies. Sources of planning information and data. Survey techniques including survey instruments, sampling methods, sample size for demographic studies. Land use surveys for comprehensive and transportation planning. Student’s oral and graphic presentation of analytical results.

C R P 274. Planning Analysis and Techniques II. (3-0) Cr. 3. F. Prereq: 272. Use of quantitative methods for analysis of population, land use, economic and transportation planning; a community of the city, suburbs, and rural areas in relation to their geographical characteristics. Principles of good planning practice and emphasis on relationships and location, intensity, and timing of land uses and public services. Student’s oral and graphic presentation of analytical results.

C R P 290. World Cities and Globalization. (Same as Dsn S 293) (3-0) Cr. 3. F. Prereq: Sophomore classification. Comprehensive overview of the field of environmental relationships and the efforts being made to organize, control, and coordinate environmental, aesthetic, and cultural characteristics of land, air, and water.

C R P 293. Environmental Planning. (Same as Dsn S 293, Env S 293.) (3-0) Cr. 3. F. Prereq: Sophomore classification. Comprehensive overview of the field of environmental relationships and the efforts being made to organize, control, and coordinate environmental, aesthetic, and cultural characteristics of land, air, and water.

C R P 330. Practicum. Cr. 1 to 3, may be repeated up to a maximum of 3 credits. F.S.S.S. Prereq: Major in community and regional planning. Structured work experience under close supervision of a professional planner. Practical planning experience, relationships between theory and practice, professional responsibilities, and the scope of various planning roles. Practicum may be repeated. Offered on a satisfactorily-fail grading basis only.

C R P 331. Professional Practice Seminar. (Dual-listed with 531.) Cr. 1. S. Prereq: Major in community and regional planning. Professional preparation for working in a planning office; discussion of expectation of employer; presentations from planning professionals, and discussion of differences/similarities between public and private planning. Offered on a satisfactory-fail grading basis only.

C R P 365. Technology and the City. (Same as Dsn S 365.) (3-0) Cr. 3. F. Prereq: Completion of one semester in a design, engineering, social science, or history major. Historical, modern, and future technological developments in urban areas and their change over time. Impact of technological change on development; the role that technical and design professionals (including civil engineers, architects, landscape architects, and city planners, among others) have played.

C R P 380. Regional and State Planning. (3-0) Cr. 3. Alt. S., offered 2002. Prerequisite: 253 or 270. Analysis of theories, policies, and functions at the metropolitan, regional, and state levels with emphasis on area-wide governance structures and strategies for guiding development. Nonmajor graduate credit.

C R P 383. Theory of the Planning Process. (3-0) Cr. 3. S. Prereq: 253 or 270. Junior status. The nature of planning and its relation to social and economic planning: levels of planning, place of planning in decision-making; steps in the planning process, uses and limitation of knowledge in planning, relation of facts and values.

C R P 415. Housing. (Dual-listed with 515; same as Dsn S 415.) (3-0) Cr. 3. F. Prereq: 253 or 270. An in-depth review of the problems and issues related to housing planning and policy dealing primarily with interrelationships. Concepts of housing policies and their interrelations. A comprehensive picture of socio-cultural, economic, and physical aspects of housing. Analysis of housing policy-making processes in the U.S., a comprehensive review of the housing policy and planning systems in selected developed and developing nations.

C R P 416. Urban Design and Planning Practice. (Dual-listed with 516.) (3-1) Cr. 4. F. Prereq: 253 or 270. Principles of urban design and their application to residential and urban development. Review processes and criteria for suburban and site planning.

C R P 417. Urban Revitalization. (Dual-listed with 517; same as Dsn S 417.) (3-0) Cr. 3. Alt. S., offered 2002. Prerequisite: 253 or 270. The nature, extent, causes, and theories of urban decline. Relationship between neighborhood change and the urban development process; public policy implications. Planning methods available to further revitalization and preservation efforts.

C R P 425. Growth Management. (Dual-listed with 525; same as Dsn S 425.) (3-0) Cr. 3. F. Prereq: Junior classification. Review of techniques used to manage growth-related change and to implement plans. Capital investment and growth strategies; public land acquisition and protection; development impact analysis; impact mitigation, including impact fees; phased growth systems; urban/suburban/rural relationships; and land preservation. Planning and public policy implications.

C R P 427. Social Policy Planning. (Dual-listed with 527.) (3-0) Cr. 3. Alt. S., offered 2003. Prerequisite: 253, 270, or junior classification. An overview of the theory and methods of social policy planning with particular attention given to the spatial relationships of policy formation, allocation of scarce resources, and the delivery of public services as an integrated part of comprehensive community planning.

C R P 429. Planning in Developing Countries. (Dual-listed with 529; same as Dsn S 429.) (3-0) Cr. 3. S. Prereq: Major in community and regional planning. A variety of planning-related issues including rural-urban migration, development of national policies and programs, urban decay, rural development strategies, housing problems in a developing country.

C R P 435. Planning in Small Towns. (Dual-listed with 535.) (3-0) Cr. S. Prereq: 253, 270, or junior classification. Contemplation of the problems in small towns and the design of viable strategies to enhance their social and economic position in today’s society.

C R P 442. Site Analysis and Development Design. (Dual-listed with 542.) (4-0) Cr. 3. S. Prereq: Major in community and regional planning. Prerequisite: Completion of 12 credits in LA. Introduction to site analysis using landscape architecture and environmental principles, but drawing also on basic engineering concepts. Work will evolve from analysis to land development design based on that analysis.

C R P 445. Transportation Policy Planning. (Dual-listed with 545.) (3-0) Cr. 3. F. Prereq: CE 350 or equivalent. Comprehensive overview of key policy issues related to transportation planning and investment in the United States and abroad, policy issues explored include safety, environmental impact, sustainable communities, and economic development. Tools like policy analysis and planning are studied in conjunction with each policy issue explored. Issues of concern to state, metropolitan, and local government are.

C R P 451. Introduction to Geographic Information Systems. (Dual-listed with 551.) (2-2) Cr. 3. S. Introduction to geographic information systems, including discussions of GIS hardware, software, data structures, data acquisition, analytical techniques, and implementation procedures. Laboratory emphasizes practical applications and uses of GIS.

C R P 452. Geographic Data Management and Planning Analysis. (Dual-listed with 552.) (2-2) Cr. 3. F. Prereq: 451 or equivalent. Extensive coverage of geo-referencing concepts and design, GIS database creation and maintenance, geographic data manipulation and analysis. GIS output generation and geographic data presentation. Laboratory emphasizes practical applications and uses of GIS.

C R P 475. Urban Planning/Urban Management. (Dual-listed with 575.) (3-0) Cr. 1 for each module, 5 weeks each. F. Prerequisite: 253 or 270 or junior classification. The role planning plays as a part of the management and decision-making process; policy initiation, development, and implementation; management approaches and tools. A. Urban Planning and Management B. Urban Planning/Conflict Management C. Grant Writing

C R P 484. Sustainable Communities. (Dual-listed with 584; same as Dsn S 484, Env S 484.) Cr. 3. S. Prereq: Senior status or permission of instructor. The theory and application of sustainability to the physical and social planning of communities. We will examine environmental ethics as a basis for sustainability, the history of the idea itself and the movement toward indicators as outcome measurements both in the US and internationally. We then explore how these ideas have been or might be applied in communities here and abroad.

C R P 490. Independent Study. Cr. 1 to 3. F.S.S.S. Prereq: Written approval of instructor and department chair. Independent study of approved topic to meet with student’s interest and ability. Offered on a satisfactory-fail grading basis only. H. Honors
C R P 491. Environmental Law. (Dual-listed with 591; same as Dan S 491, Env S 491.) (3-0) Cr. 3. S. Prereq: 6 credits in natural sciences. Legal prece- dents and case law for environmental protec- tion; rights to and regulations for uses of water, air and land. Federal environmental control acts and leading federal court cases.

C R P 492. Planning Law, Administration and Implementation. (Dual-listed with 592.) (3-0) Cr. 3. F. Prereq: Jurisprudence and 252 or 270. The basis in constitutional, common, and statutory law for the powers of plan effectuation. Problems of bal- ancing public and private interests as revealed in the study of leading court cases. Administration of plan- ning agencies and programs.

Courses Primarily for Graduate Students

C R P 501. Quantitative Methods for Planning Data Analysis. (2-2) Cr. 3. F. Prereq: Graduate classification. Applications of quantitative methods in plan- ning with emphasis on the collection, description, analysis, presentation, and interpretation of planning data. Primary data collection using survey tech- niques. Secondary data types and sources of plan- ning information for population projection and demo- graphic analysis. Laboratory emphasized practical uses and applications of spreadsheet and statistical programs for data analysis.

C R P 511. Introduction to Community and Regional Planning. (3-0) Cr. 3. F. Prereq: Graduate classification. Development of planning in the United States; history and evolution of the planning profes- sion and construction of current practice. Theoretical basis of planning.

C R P 515. Housing. (Dual-listed with 415; same as Dan S 515.) (3-0) Cr. 3. F. Prereq: Permission of instructor and graduate classification. An in-depth review of the problems and issues related to housing planning and policy dealing primarily with interrela- tionships and interdependencies among the socio- cultural, economic, and physical aspects of housing. Analysis of housing policy-making processes in the U.S., a comparative review of the housing policy and planning systems in selected developed and devel- oping nations.

C R P 516. Urban Design and Planning Practice. (Dual-listed with 416; (3-1) Cr. 4. F. Prereq: Graduate classification. Transportation urban design and their application to residential and commercial develop- ment. Review processes and criteria for subdivision design and site planning.

C R P 517. Urban Revitalization. (Dual-listed with 417; same as Dan S 517.) (3-0) Cr. 3. Alt., offered 2002. Prereq: Graduate classification. The nature, extent, causes, and theories of urban decline. The relationship between neighborhood change and the urban development process and its public policy implications; the planning methods used to further revitalization and preservation efforts.

C R P 525. Growth Management. (Dual-listed with 425; same as Dan S 525.) (3-0) Cr. 3. F. Prereq: Graduate classification. Review of techniques used to manage growth-related change and to implement plans. Capital investment strategies; public land acquisition and protection; development impact anal- ysis; impact mitigation, including impact fees; phased growth systems/urban/suburban/rural rela- tionships; and land preservation.

C R P 527. Social Policy Planning. (Dual-listed with 427.) (3-0) Cr. 3. Alt., offered 2002. Prereq: Graduate classification. The theory and methods of social policy planning with particular attention to the spatial relationships of policy formation, allocation of scarce resources, and the delivery of public services as an integrated part of comprehensive community planning.

C R P 529. Planning in Developing Countries. (Dual-listed with 429; same as Dan S 529.) (3-0) Cr. 3. S. Prereq: Graduate classification. A variety of planning and planning-related issues including rural-urban migration, development of national policies and programs, urban decay, rural development strategies, housing problems in a developing coun- try.

C R P 530. Practicum. Cr. 3. F.S.S.S. Prereq: Graduate classification in community and regional planning. Practical planning experience. Structured work in range of tasks under close supervision of a professional planner. Relationships between theory and practice, exposure to variety of roles in function- ing specialties. Offered on a satisfactory-fail grading basis only.

C R P 531. Professional Practice Seminar. (Dual-listed with 331.) Cr. 1. S. Prereq: Major in community and regional planning and planning-related experience for working in a planning office; discussion of expectations of employer; presentations from planning professionals, and discussion of differences/similarities between public and private planning offices. Offered on a sat- isfactory-fail grading basis only.

C R P 535. Planning in Small Towns. (Dual-listed with 435.) (3-0) Cr. 3. F. Prereq: Graduate classification. Contemporary problems in small towns and the design of viable strategies to enhance their social and economic position in today’s society.

C R P 542. Site Analysis and Development Design. (Dual-listed with 442; same as Dan S 542.) (3-0) Cr. 3. S. Prereq: Graduate classification. Must be taken prior to completing 12 credits in LA. Introduction to site analysis using landscape architecture and envi- ronmental principles, but drawing also on basic engi- neering concepts from analysis to land development design based on that analysis.

C R P 546. Transportation Policy Planning. (Dual-listed with 446.) (3-0) Cr. 3. F. Prereq: Graduate classi- fication. Comprehensive overview of key policy issues related to transportation planning and invest- ment in the United States and abroad, policy issues explored include safety, environmental impact, sus- tainable communities, and economic development. Tools like policy analysis and planning are studied in connection with each policy issue explored. Issues of concern to state, metropolitan, and local govern- ments.

C R P 551. Introduction to Geographic Information Systems. (Dual-listed with 451 I-(2) Cr. 3. S. Introduction to the application of GIS, including discussions of GIS hardware, software, data structures, data acquisition, analytical tech- niques, and implementation procedures. Laboratory emphasized practical applications and uses of GIS.

C R P 552. Geographic Data Management and Planning Analysis. (Dual-listed with 452 I-(2) Cr. 3. F. Prereq: 551 or instructor permission. Extensive coverage of geo-relational database concept and design, GIS data management, geographical data generation and geographic data presentation. Laboratory emphasis practical applications and uses of GIS.

C R P 555. Community Economic Development. (Dual-listed with 455 I-(0) Cr. 3. S. Prereq: Graduate classification. The nature and process of economic development in the context of community develop- ment. Recent changes and trends and their implica- tions for local and regional development. Selected case studies and applications. Contemporary com- munity economic development issues.

C R P 556. Economic Development in Small Communities. Cr. 1. F. Offered off campus through Continuing Education on two consecutive Fridays and Saturdays. Prereq: Permission of instructor. Community development perspectives, entrepreneurial approaches, leadership theories, total quality management, concepts and strategic planning skills.

C R P 561. Seminar in Planning Theory. (3-0) Cr. 3. S. Prereq: Permission of instructor and graduate clas- sification. Current planning theories: comprehensive land use, advocacy, participatory, radical, and trans- active planning models. Decision making and organi- zation models as they affect planning practice. Value conflicts and conflict resolution.

C R P 575. Urban Planning/Urban Management. (Dual-listed with 475.) (3-0) Cr. 1 per module, 5 weeks each. F. Prereq: Graduate classification. The role planning plays as a part of the management and decision-making process; policy initiation, develop- ment, and implementation; management approaches and tools.

C R P 584. Sustainable Communities. (Dual-listed with 484; same as Dan S 884.) Cr. 3. S. Prereq: Graduate classification. The theory and application of sustainability to the physical and social planning of communities. We will examine environmental ethics as a basis for sustainability, the history of the idea itself, and the movement toward indicators as out- come measurements both in the US and internation- ally. We then explore how these ideas have been or might be applied in communities here and abroad.

C R P 590. Special Topics. Cr. 1 to 3. F.S.S.S. Prereq: Graduate classification and written approval of instructor and department chair on required form.

A. Planning Administration
B. Local Economic Development
C. Urban Design
D. Housing
E. Neighborhood Renewal
F. Social Planning
G. Regional Economic Development
H. Environmental Planning
I. Transportation Planning
J. Policy Analysis
K. State Planning
L. Planning in Developing Countries

C R P 591. Environmental Law. (Dual-listed with 491; same as Dan S 591.) (3-0) Cr. 3. S. Prereq: Graduate classification. Legal precedents and alternative policies for environmental protection; rights to and regulations for uses of water, air, and land. Federal environmental control acts and leading federal court cases.

C R P 592. Planning Law, Administration and Implementation. (Dual-listed with 492.) (3-0) Cr. 3. F. Prereq: Graduate classification. The basis in consti- tutional, common, and statutory law for the powers of planning agencies. Preparation of balanced public and private interests as revealed in the study of leading- court cases. Administration of planning agencies and programs.

Courses for Graduate Students

C R P 598. Professional Planning Report. (Arr.) Cr. F.S.S.S. Independent student research on planning topics. The course valve as a capstone expe- rience for the student, demonstrating ability to in- tegrate planning knowledge and skills in the practical application of the student’s abilities on a current planning issue. The completed report must be submitted to and approved by the POS committee as evidence of the mastery of the principles of community and regional planning.

C R P 699. Research. Cr. F.S. S.S.
Complex Adaptive Systems

(Interdepartmental Graduate Minor)
Advisory Committee: G. Sheble, Chair; D. Ashlock, J. Decker, L. Tesfatsion, V. Honavar

The Complex Adaptive Systems (CAS) minor provides graduate students with an understanding of the interrelationships among the various methodologies associated with Artificial Life methodologies. Of special importance in the program is the interplay of techniques between biological systems and computer simulations of such systems for applications in various fields as Economics, Engineering, and Mathematics.

Graduates understand the ways in which artificial life techniques may be applied to their major field of study. They have an appreciation and understanding of the cross-disciplinary aspects of artificial life techniques. Students who complete a minor in this graduate program are able to describe and report on various artificial life techniques as applied to many fields, even outside their own field of application.

Work in the CAS minor is offered for students pursuing any graduate degree. The primary cooperating departments are Economics, Computer Science, Electrical and Computer Engineering, Mechanical Engineering, Mathematics, Psychology, and Biology.

Each student’s Masters Program of Study (POS) must include at least 9 CAS relevant course credits chosen in consultation with the student’s POS committee and the CAS program, plus two credits (one credit each time taken) of the CAS seminar and three credits of CAS 503 (see below). Each student’s Ph.D. Program of Study must include at least 12 CAS relevant course credits chosen in consultation with the student’s POS committee and the CAS program, plus two credits (one credit each time taken) of the CAS seminar and three credits of CAS 503. Ph.D. students who also minor in CAS at the master’s level must take one additional CAS relevant course (3 cr.) and two additional credits of CAS seminar. Courses that satisfy CAS requirements may also be used to satisfy major requirements if such “double counting” is acceptable to the major program.

Interested students may contact the chairperson of the advisory committee for complete lists of courses and of CAS faculty members.

Courses Primarily for Graduate Students, Open to Qualified Undergraduate Students

CAS 502. Complex Adaptive Systems Seminar. (Same as E E 503, Com S 502) (1-0) Cr. 1. F.S.
Prereq: Admission to CAS minor. Understanding core techniques in artificial life are based on basic reading in complex adaptive systems. Understand techniques of complex systems analysis methods including: evolutionary computation, neural nets, agent based simulations (agent based Computational Economics). Large-scale simulations are to be emphasized, e.g. power grids, whole ecosystems.

Computer Engineering

(Administered by the Department of Electrical and Computer Engineering)
Subrahmanyan Venkata, Chair of Department

Distinguished Professors: Lord
University Professors: Jones

Professors (Adjunct): Hillesland, Sastry
Professors (Collaborators): Ouyang

Distinguished Professors (Emeritus): Brown, Fouad, Nilsson, Pohm

Professors (Emeritus): Anderson, Basart, Brearley, Brockman, Comstock, Fanslow, Hale, Hsieh, Koerber, Kopplin, Potter, Read, Smay, Swift, Townsend, Triska

Associate Professors: Ajarapu, Bartlett, Berleant, Chen, Davidson, Davis, Jacobson, Khammassi, Kleitsch, Kruepnel, Lee, McCalley, Russell, Stephenson, Tuttle, Tyagi

Associate Professors (Collaborators): Christie, Hassoun

Associate Professors (Emeritus): Bond, Carlson, Coady, McMechan, Mericle, Pavlat, Scott

Assistant Professors: Aluru, Balasubramaniam, Chu, Cruz-Neira, Dickerson, Elia, Govindarasu, Lavalle, Patterson, Salapaka

Assistant Professors (Adjunct): Lee, McCalmont, Mina

Assistant Professors (Collaborators): Barton, Chandramouli, Nath

Instructors (Adjunct): Freeman

Undergraduate Study

For undergraduate curriculum in computer engineering leading to the degree bachelor of science, see College of Engineering, Curricula. This curriculum is accredited by the Engineering Accreditation Commission of the Accreditation Board for Engineering and Technology.

The Electrical and Computer Engineering (ECPE) Department at Iowa State University provides undergraduate students with the opportunity to learn electrical and computer engineering fundamentals, to study applications of the most recent advances in state-of-the-art technologies, and to prepare for the practice of engineering. The student-faculty interaction necessary to realize this opportunity occurs within an environment that is motivated by the principle that excellence in undergraduate education is enhanced by an integrated commitment to successful, long-term research and outreach programs.

The computer engineering curriculum offers specializations in computer architecture and digital design, software systems, information security and networking, and VLSI. Students may also take elective courses in control systems, electromagnetics, microelectronics, VLSI, power systems, and communications and signal processing.

The mission of the ECPE Programs at Iowa State University is to enable the graduated student to make significant and substantive contributions to solving engineering problems throughout the student’s professional career. The following objectives are identified as critical to the accomplishment of this mission.

A. Objective I. Impart and enhance knowledge in the domain of electrical and computer engineering: The graduated student should understand
1. engineering and basic science fundamental including mathematics, probability, statistics, physical sciences, and information technology,
2. the design and manufacturing processes,
3. the fundamentals of business, including entrepreneurship, engineering economy, and cost/revenue streams.

B. Objective II. Expand and hone engineering abilities: The graduated student should be able to
1. identify and solve engineering problems,
2. analyze and design electrical, computer, and multidisciplinary systems,
3. design and conduct experiments and analyze resulting data,
4. use modern engineering hardware and software tools such as computers and instrumentation.

C. Objective III. Instill and nurture social awareness, abilities, and understanding: The graduated student should
1. desire to engage in lifelong learning, and should expect and embrace change,
2. be able to function effectively as a member of a multidisciplinary team, to communicate effectively, and to think critically and creatively, both independently and with others,
3. apply standards of professional conduct in a global/societal context.

As a complement to the instructional activity, the ECPE Department provides opportunities for each student to have experience with broadening activities. Through the Cooperative Education and Internship Program, students have the opportunity to gain practical industry experience. See College of Engineering, Cooperative Programs. Through the Undergraduate Research Program, students have the opportunity to participate in advanced research activities; and through international exchange programs, students learn about engineering practices in other
part of the world. Well qualified juniors and seniors in Computer Engineering who are interested in graduate study may apply for concurrent enrollment in the Graduate College to simultaneously pursue both B.S. and M.S. degrees. See Graduate Study for more information.

Students are required to prepare and to maintain a portfolio of their technical and non-technical skills. This portfolio is evaluated for student preparation during the student’s curriculum planning process. Results of the evaluation are used to advise students of core strengths and weaknesses. Prerequisite material exams are given at key points in the curriculum. These exams are to assist student evaluation of progress made during the academic experience as the material covered in several courses are the foundation of more advanced courses. These outcome assessments are also used to assess and to improve the quality of the curriculum.

Graduate Study

The department offers work for the degrees of master of science and doctor of philosophy with major in computer engineering and minor work to students with other majors. Minor work for computer engineering majors is usually selected from a wide range of courses outside computer engineering.

The degree master of science with thesis is recommended for students who intend to continue toward the doctor of philosophy degree or to undertake a career in research and development. The nonthesis master of science degree requires a creative component.

The normal prerequisite to major work in computer engineering is the completion of undergraduate work substantially equivalent to that required of computer engineering students at this university. It is possible for a student to qualify for graduate study in computer engineering even though the student's undergraduate or prior graduate training has been in a discipline other than computer engineering. Supporting work, if required, will depend on the student's background and area of research interest. Prospective students from a discipline other than computer engineering are required to submit, with the application for admission, a statement of the proposed area of graduate study.

The department requires submission of GRE aptitude test scores by applicants from other countries. All students whose first language is not English and who have no U.S. degree must submit TOEFL examination scores. Ph.D. students must pass a department qualifying examination.

The Department of Electrical and Computer Engineering is a participating department in the interdepartmental Master of Science in Information Assurance program. Students interested in studying Information Assurance topics may earn a degree in Computer Engineering or in Information Assurance. (See bulletin section on Information Assurance.)

Well qualified juniors and seniors in Computer Engineering who are interested in graduate study may apply for concurrent enrollment in the Graduate College to simultaneously pursue both B.S. and M.S. degrees. Undergraduate enrollments are eligible for assistantships and simultaneously take undergraduate and graduate courses. Details are available in the Student Services Office and on the department's web site.

Courses open for nonmajor graduate credit: all 300 and 400 level courses except 310, 370, 396, 397, 398, 466, 490, 491, 492, and 498.

Courses Primarily for Undergraduate Students

Cpr E 211. Introduction to Microcontrollers. (3-2) Cr. 4. F. S. Prereq: 210, Com S 207 or 227. Introduction to microprocessor instruction sets. Assembly language programming and interfaces to higher-level languages. Input/output programming. Interrupt handling. Hardware/software design trade-offs and issues. Design projects.

Cpr E 298. Cooperative Education. Cr. F. S. S.S. Prereq: Permission. First professional work period in the cooperative education program. Students must register for this course before commencing work.

Cpr E 305. Computer Organization and Design. (3-2) Cr. 4. F. S. Prereq: 211 or Com S 321. Introduction to computer organization. Evaluating performance of computer systems, instruction set design, computer arithmetic, and processor design. Datapath and control, pipelining and pipelined control design. Memory organization. Interfacing process and peripherals. Laboratory component using HDLs. Nonmajor graduate credit.

Courses and Programs

Computer Engineering

Cpr E 308. Software Systems Integration. (3-3) Cr. 4. F. S. Prereq: 305, 310, Engl 314. Introduction to software systems and solutions. Integration of software and hardware for a computer system. Interrupts, reentrant code, critical regions, real-time problems, I/O, device drivers, tasking, memory management, debugging techniques, software testing, documentation. Laboratory oriented design projects focusing on the design and implementation of a large software system. Nonmajor graduate credit.

Cpr E 310. Theoretical Foundations of Computer Engineering. (3-0) Cr. 3. F. S. Prereq: Credit or enrollment in Cpr E 211. Com S 228. Propositional logic and methods of proof; set theory and its applications; mathematical induction and recurrence relations; functions and relations; counting and discrete probability; trees and graphs; applications in computer engineering.

Cpr E 370. Tying with Technology. (Same as Mat E 370.) See Materials Engineering.

Cpr E 396. Summer Internship. Cr. R. S. S. Prereq: Permission of department. Summer professional work period.

Cpr E 397. Engineering Internship. Cr. R. F. S. S.S. Prereq: Permission of department. One semester maximum per academic year professional work period.

Cpr E 398. Cooperative Education. Cr. R. F. S. S.S. Prereq: 298, permission of department. Second professional work period in the cooperative education program. Students must register for this course before commencing work.

Cpr E 426. Introduction to Parallel Algorithms and Programming. (Dual-listed with 526, same as Com S 426.) Cr. 1-2. F. Cr. 4. F. Prereq: 308 or Com S 321, Com S 311. Models of parallel computation, performance measures, basic parallel constructs and communication primitives, parallel programming using MPI, parallel algorithms for selection problems including sorting, matrix, and graph problems, fast Fourier transforms. Nonmajor graduate credit.

Cpr E 454. Distributed and Network Operating Systems. (Dual-listed with 554; same as Com S 454.) See Computer Science.

Cpr E 458. Real Time Systems. (Dual-listed with 558.) (3-2) Cr. 3. Fundamental concepts in real-time systems. Real-time task scheduling paradigms. Resource management in uniprocessor real-time systems (including RMS and EDF scheduling, priority inheritance and ceiling protocols, and overload handling techniques), multiprocessor real-time systems (including scheduling, fault-tolerance, run-time anarchy, and resource reclaiming), distributed real-time systems, and real-time networks (including QoS routing, service disciplines, dependable communication, and real-time MAC protocols). Feedback control real-time scheduling, case study of a real-time system. Architectures, operating systems, and programming languages. Nonmajor graduate credit.

Cpr E 465. Digital Integrated Circuit Design. (Same as E E 465.) (3-3) Cr. 4. S. Prereq: 434. Digital design of integrated circuits employing very large scale integration (VLSI) methodologies. High level hardware description languages, logic synthesis and silicon compilers, datapath, architectures and systems on a chip (SOC) considerations. VLSI chip hardware design project. Nonmajor graduate credit.

Cpr E 466. Multidisciplinary Engineering Design. (Same as E E 466, E Sci 468, I E 466, Mat E 466.) (1-4) Cr. 3. F. S. Prereq: Student must be within two semesters of graduation and receive permission of instructor. Application of team design concepts to projects of a multidisciplinary nature. Concurrent treatment of design, manufacturing and life cycle considerations. Application of design tools such as

Cpr E 484. Advanced Digital Systems Design. (Same as Com S 484.) Cr. 3. Preq: 305. Architectures of advanced digital systems emphasizing structural principles. Multilevel implementation strategies. New design primitives. Instruction set design issues including architectural support for contemporary software structures. Laboratory based with an emphasis on the use of hardware description languages and programmable logic devices. Nonmajor graduate credit.

Cpr E 489. Computer Networking and Data Communications. (3-0) Cr. 3. F.S. Preq: 305 or E E 324. Survey of modern computer networking and data communications. Contemporary concepts, facilities, practices, implementations, and issues. TCP/IP, OSI protocols, client-server programming. Nonmajor graduate credit.

Cpr E 491. Senior Design Project I. (Same as E E 491.) (1-3) Cr. 2. F. Preq: E E 322 or Cpr E 308, completion of 29 credits in the E E or Cpr E core professional program, Eng 314, first semester of a team design project. Emphasis on defining and planning to achieve project objectives that meet a client’s need. Technical writing of project plan and design review; project poster.

Cpr E 492. Senior Design Project II. (Same as E E 492.) (1-3) Cr. 2. F. Preq: Cpr E 491 or E E 491. Second semester of team design project. Emphasis on achieving project objectives as defined in Cpr E 491 or E E 491. Implementation of project design. Technical writing of final project report; oral presentation at departmental achievements.

Cpr E 498. Cooperative Education. Cr. R. F.S.S. Preq: 398, permission of department. Third and subsequent professional work periods in the cooperative education program. Students must register for this course before commencing work.

Courses Primarily for Graduate Students, open to qualified undergraduate students

Cpr E 505. CMOS and BiCMOS Data Conversion Circuits. (Same as E E 505.) (3-0) Cr. 3. Alt. S., offered 2002. Preq: 434 or 501. Theory, design, and application of CMOS and BiCMOS data conversion circuits (A/D and D/A converters) including: quantization effects, conversion algorithms, sample and hold, element matching, comparators, voltage references and detailed implementation issues.

Cpr E 507. VLSI Communication Circuits. (Same as E E 507.) (3-0) Cr. 3. Alt. S., offered 2003. Preq: 434 or 501. Phase-locked loops, frequency synthesizers, clock and data recovery circuits, theory and implementation of adaptive filters, low-noise amplifiers, mixers, power amplifiers, transmitter and receiver architectures.

Cpr E 525. Numerical Analysis of High-Performance Computing. (Same as Com S 525, Math 525) (3-0) Cr. 3. S. Preq: 201 or one of Math 273, 471, 471; experience in scientific programming knowledge of FORTRAN or C. Development, analysis, and testing of efficient numerical methods for use on state-of-the-art high performance computers. Applications of the methods to the student’s area of research.

Cpr E 526. Introduction to Parallel Algorithms and Programming. (Dual Listed with 426; same as Com S 526) (3-0) Cr. 4. F. Preq: 308 or Com S 311. Models of parallelism, parallel problem measures, basic parallel constructs and communication primitives, parallel programming using MPI, parallel algorithms for selected problems including sorting, matrix, tree and graph problems, fast Fourier transforms.

Cpr E 531. Information System Security. (3-0) Cr. 3. Preq: 489 or 530 or Com S 586 or MIS 335. Computer and network security: basic cryptography, security policies, multilevel security models, attack and protection mechanisms, legal and ethical issues.

Cpr E 533. Cryptography. (Same as Math 533.) See Mathematics.

Cpr E 534. Legal and Ethical Issues in Information Assurance. (3-0) Cr. 3. S. Preq: 531. Legal and ethical issues in computer science, contractual and local codes and regulations. Privacy issues.

Cpr E 537. Wireless Network Security. (3-0) Cr. 3. S. Preq: Credit or enrollment in 489 or 530. Introduction to the physical layer and special issues associated with security of the wireless interface. Wireless networking, base stations, mobile stations, aerial access, jamming, spoofing, signal intercept, wireless LANs, wireless modems, cellular radiotelephone, optical links, signal modeling, propagation modeling.

Cpr E 541. High-Performance Communication Networks. (3-0) Cr. 3. Preq: 530 or Com S 586. Selected topics from recent advances in local area networks, metropolitan area networks, asynchronous transfer mode, high-speed optical networks, high-speed switch architectures, multicasting for teleconferencing applications, wireless and mobile computing.

Cpr E 549. Advanced Algorithms in Computational Biology. (Same as Com S 549, BCB 549.) (3-0) Cr. 3. S. Preq: Com S 311. Design and analysis of algorithms for applications in computational biology, pairwise and multiple sequence alignment, approximation algorithms, string algorithms including in-depth coverage of suffix trees, semi-numerical and string algorithms, algorithms for selected problems in fragment assembly, phylogenetic trees, and protein folding.

Cpr E 554. Distributed and Network Operating Systems. (Dual-listed with 454; same as Com S 554) See Computer Science.

Cpr E 556. Software Systems Engineering. (3-0) Cr. 3. Preq: 526 or 454/554. Design and development of software systems for parallel and distributed environments, cluster-based computing, component-based system development, user interfaces, and software testing. Projects for parallel and distributed computing, software agents, and web-based systems.

Cpr E 558. Real-Time Systems. (Dual-listed with 458.) (3-0) Cr. 3. Preq: 308 or Com S 352. Fundamental concepts of real-time and real-time task scheduling paradigms. Resource management issues in uniprocessor real-time systems (including RIMS and EDF scheduling, priority inheritance, and ceiling clock) and multiprocessor real-time systems (including scheduling, fault-tolerance, run-time anomaly and resource reclaiming, distributed real-time systems, and real-time security). Nonmajor graduate credit. Projects for parallel and distributed computing, software agents, and web-based systems.

Cpr E 560. Algorithmic Methodologies in Computer-Aided Design. (3-0) Cr. 3. Preq: Experience with any high-level computer language. Theoretical methods and practical case studies in the area of computer-aided design for VLSI on the following topics: essentials of data structures, NP-completeness, graph algorithms, dynamic programming, linear and nonlinear programming, branch-and-bound methods, greedy algorithms, backtracking techniques, divide-and-conquer algorithms, Markov chains.

Cpr E 564. Synthesis and Optimization of Digital Circuits. (3-0) Cr. 3. S. Preq: 305. Algorithms and techniques to generate application-specific VLSI circuits from high-level behavioral modeling in hardware description languages. Hardware models, architectural-level synthesis and optimization, scheduling algorithms, resource sharing and binding, logic-level synthesis and optimization, sequential logic optimization, synthesis of arrayed systems, hardware-software co-design.

Courses and Programs Computer Engineering
Cpr E 575. Introduction to Virtual Reality. (3-0) Cr. 3. Prereq: Com S 311 or M E 420. Introduction to virtual reality concepts and applications. Physiology of the human perception system, immersive displays, 3-D devices, 3-D sound, real-time software development, sample applications in science and engineering. Practical issues in creating effective virtual environments will be emphasized.

Cpr E 582. Computer Systems Performance. (3-0) Cr. 3. Prereq: 305, 310. Review of probability and stochastic processes concepts; Markovian processes; Markovian queues; renewal theory; semi-Markovian queues; multiprocessor architectures; computer network switching systems.

Cpr E 583. Reconfigurable Computing Systems. (3-0) Cr. 3. Prereq: Background in computer architecture, design, and organization. Introduction to adaptive/reconfigurable computing, FPGA technology and architectures, spatial computing architectures, systolic and bit serial architectures, adaptive network architectures, bus-based and static dynamic re-routable interconnection structure architectures, reconfigurable computing architectures for processors, pipeline, and caches.

Cpr E 585. Advanced Computer Architecture. (3-0) Cr. 3. F. Prereq: 305. Quantitative principles of computer architecture design, instruction set design, processor architecture: pipelining and superscalar design, instruction-level parallelism, memory organization: cache and virtual memory systems, multiprocessor architecture, cache coherency, interconnection networks and message routing, I/O devices and peripherals.

Cpr E 588. Embedded Computer Systems. (3-0) Cr. 3. Prereq: 305. Design, implementation, and testing of embedded computer systems. Co-design of hardware and software. Concurrency, real-time control, hardware/software interfaces, and error handling.

Cpr E 589. Multimedia Systems. (3-0) Cr. 3. S. Prereq: 308 or Com S 352. Fundamentals concepts in multimedia systems. Resource management issues in distributed/networked multimedia systems, QoS routing and traffic shaping, task and message scheduling, Internet QoS. Adaptive multimedia applications over the Internet. Operating system support for multimedia. Storage architecture and scalable media servers. Compression techniques, synchronization techniques, processor architectures for multimedia.

Cpr E 590. Special Topics. Cr. 1 to 6 each time elected. Formulation and solution of theoretical or practical problems in computer engineering.

Cpr E 592. Seminar in Computer Engineering. Cr. 1 to 4 each time elected. Prereq: Permission of instructor. Projects or seminar in Computer Engineering.

Cpr E 594. Selected Topics in Computer Engineering. (3-0) Cr. 3 each time selected.

Cpr E 599. Creative Component. Cr. var.

Courses for Graduate Students

Cpr E 697. Engineering Internship. (Same as E E 697.) Cr. R. Prereq: Permission of department chair, graduate classification. One semester and one summer maximum per academic year professional work period. Offered on a satisfactory-fail basis only.

Cpr E 699. Research. Cr. var.

Computer Science

www.cs.iastate.edu

Leslie L. Miller, Chair of Department

Professors: Fernandez-Baca, Kotthari, Leavens, J. Lutz, Miller, Slutzki, Wong

Professors (Emeritus): Brearley, Oldehoeft, Thomas

Associate Professors: Baker, Chaudhuri, Gadla, Honavar, K. Lutz, Prabhu, Strawn, Tyagi

Associate Professors (Adjunct): Kendall

Assistant Professors: Aluru, Chou, Cruz-Neira, Eunellenius, Jia, Lalavle, Lumpe, Miner, Tavapanong

Assistant Professors (Adjunct): Boyesen, Mitra

Instructors (Adjunct): Rose

Undergraduate Study

The curriculum in Liberal Arts and Sciences leading to a bachelor of science degree with a major in computer science is designed to prepare students for positions as computer scientists, software engineers, and for graduate study in computer science. This program has been accredited by the Computing Sciences Accreditation Board, Inc.

To complete an undergraduate degree in Computer Science, a student must satisfy the requirements of the College of Liberal Arts and Sciences (see Liberal Arts and Sciences, Curriculum) and include the following courses within the group requirements: 424; Cpr E 210, 215, 221, 222, 226, 227, 232, 318, 321, 324, 325, 352, 362 or 363. In addition, two advanced-level courses must be selected from the following groups:

Group W: 411, 440, 454, 476, Math 421

Group B: 401, 410, 425, 430, 461, 472, 474

Group N: 418, Math 471, Math 481, Cpr E 484, Cpr E 489, M E 519

Courses in Group W require written reports and those in Group B require both oral and written reports. Students must take one course from Group B and one course from any group.

Students must earn a C- or better in each course in the department which is a prerequisite to a course listed in the student’s degree program.

Graduate Study

The department offers work for the degrees of master of science and doctor of philosophy with a major in Computer Science. The doctor of philosophy may also be earned with computer science as a co-major with some other discipline. Additionally, the department offers minor work to students majoring in other departments.

Facilities exist for research in such areas as algorithms, artificial intelligence, computational complexity, computer architecture, bioinformatics, computer networks, database systems, security, operating systems, methods, machine learning and neural networks, multimedia, parallel and distributed computing, programming languages, robotics and, software engineering. There are also numerous opportunities for interdisciplinary research.

Typically, students beginning graduate work in Computer Science have completed a bachelor’s degree or equivalent in Computer Science. However, some students with undergraduate majors in other areas, such as mathematical, physical, or biological science or engineering, become successful graduate students in Computer Science.

For the degree of master of science, a minimum of 31 semester credits are required. A thesis demonstrating research and the ability to organize and express significant ideas in computer science is required.

The purpose of the doctoral program is to train students to do original research in Computer Science. Each student is also required to attend knowledge and proficiency commensurate with a leadership role in the field. The Ph.D. requirements, governed by the student’s program of study committee within established guidelines of the department and

Courses and Programs Computer Science 183

Students majoring in computer science must successfully complete this premajor program prior to taking any other courses in the Department. Thus, for computer science majors, this premajor serves as a necessary prerequisite to all other courses offered by the Department.

A minimum of 44 credits is required for the B.S. degree in computer science. The required courses are: Com S 101, 104, 203, Cpr E 210, Com S 227, 228, 309, 311, 321, 330, 331, 342, 352, 362 or 363. In addition, two advanced-level courses must be selected from the following groups:

Group W: 411, 440, 454, 476, Math 421

Group B: 401, 410, 425, 430, 461, 472, 474

Group N: 418, Math 471, Math 481, Cpr E 484, Cpr E 489, M E 519

Courses in Group W require written reports and those in Group B require both oral and written reports. Students must take one course from Group B and one course from any group.

Students must earn a C- or better in each course in the department which is a prerequisite to a course listed in the student’s degree program.

For the degree of master of science, a minimum of 31 semester credits are required. A thesis demonstrating research and the ability to organize and express significant ideas in computer science is required.

The purpose of the doctoral program is to train students to do original research in Computer Science. Each student is also required to attend knowledge and proficiency commensurate with a leadership role in the field. The Ph.D. requirements, governed by the student’s program of study committee within established guidelines of the department and
Courses and Programs

Computer Science

the graduate college, include coursework, demonstrated proficiency in three areas of Computer Science, a research skills require-
ment, a preliminary examination, and a doctoral dissertation and final oral examination.

The department recommends that all graduate students majoring in Computer Science teach as part of their training for an advanced degree.

Courses Primarily for Undergraduate Students

Com S 101. Orientation. (1-0) Cr. R. F.S.
Introduction to the procedures and policies of Iowa State University and the Department of Computer Science, test-outs, honorary societies, etc. Issues relevant to student adjustment to college life will also be discussed. Offered on a satisfactory-fail grading basis only.

Com S 103. Computer Applications. (3-2) Cr. 4.
F.S. Introduction to computer literacy and applica-
tions. Applications include word processing, database management and presentation software.

Com S 104. Introduction to Computers. (3-2) Cr. 4.
F. Use of personal computer and workstation operat-
ing systems and software. Overview of machine architecture and telecommunications. Project-orient-
ed approach to word processing, spreadsheet, pre-
sentation, database management, e-mail, Internet usage, HTML and other software. Beginning pro-
gramming in Visual Basic, and animation scripting.

Com S 107. Applied Computer Programming. (3-0) Cr. 3.
F.S. Prereq: 103, Math 104 or 140 or 150.
Introduction to computer programming for non-
majors using a language such as the Visual Basic lan-

Com S 201. Computer Programming in COBOL. (3-0) Cr. 3.
F.S. Prereq: 107 or 207 or 227.
Computer programming in COBOL. Emphasis on the design, writing, debugging, and testing of business applica-
tions programs in a transaction-oriented environ-
ment.

Com S 203. Careers in Computer Science. (1-0) Cr. R.
Half semester. F.S. Computer science as a profession. Introduction to career fields open to com-
puter science majors. Relationship of coursework to careers. Presentations by computer science profes-
sionals. Offered on a satisfactory-fail grading basis only.

Com S 207. Programming I. (3-3) Cr. 3.
F.S. Prereq: Math 150 or placement into Math 140/141/142 or higher. An introduction to computer programming using an object-oriented programming language. Emphasis on basics of good programming tech-
niques and style through extensive practice in top-
down design, writing, running, and debugging small programs. Procedural abstraction. Use of abstract data types. This course is designed for nonmajors. Credit may not be applied toward graduation for both 207 and 227.

Com S 208. Programming II. (3-3) Cr. 3.
F.S. Prereq: 207, credit or enrollment in Math 151, 160, or 165. An introduction to data structures and algo-
rithm analysis. Review of shell, list and file processing. Dynamic data structures. Data abstraction and imple-
mentation. Emphasis on design, writing, document-
ning and testing medium-sized programs. This course is designed for nonmajors. Credit may not be applied toward the major.

Com S 227. Introduction to Object-oriented Programming. (3-1) Cr. 3.
F.S. Prereq: 104 or 107 or prior programming experience, credit or enrollment in Math 165. An introduction to object-oriented design and programming techniques. Symbolic and numerical computation. Recursion and iteration. Modularity procedural and data abstraction, specifi-
ca tions and subtyping. Object-oriented programming techniques. Imperative programming techniques. Emphasis on principles of programming and object-oriented design through extensive practice in design, writing, running, debug-
ging, and reasoning about programs. This course is designed for majors. Credit may not be applied toward graduation for both 207 and 227.

Com S 228. Introduction to Data Structures. (3-1) Cr. 3.
F.S. Prereq: 227, Math 165, credit or enrol-
ment in Math 104 and Math 166. An object-oriented approach to data structures and algorithms. Object-
oriented analysis, design, and programming, with emphasis on data abstraction, inheritance and sub-
type polymorphism. Abstract data type specification and correctness. Case studies using associated algo-
rithms, including stacks, queues, trees, searching, sorting, graphs and file processing. Analysis of algo-
rithms. Emphasis on object-oriented design, writing and documenting medium-sized programs. This course is designed for majors.

Com S 290. Independent Study. Cr. arr.
F.S. Prereq: Permission of instructor. Offered on a satisfac-
tory-fail grading basis only.

H. Honors

Com S 309. Software Development Practices. (3-1) Cr. 3.
F.S. Prereq: 228, Engl 104. A practical introduc-
tion to methods for managing software develop-
ment. Process models, requirements analysis, struc-
tured and object-oriented design, coding, testing, maintenance, cost and schedule estimation, metrics. Programming projects. Nonmajor graduate credit.

Com S 311. Design and Analysis of Algorithms. (3-1) Cr.
F.S. Prereq: 228, Math 166, Engl 104, and either 330 or CPR E 310.
Basic techniques for design and analysis of data structures and algorithms. Sorting, searching, graph algorithms, computational geometry, string processing and NP-completeness. Design techniques such as dynamic programming and the greedy method. Case studies, average-case and amortized analyses. Data structures includ-
ing heaps, hash tables, binary search trees and red-
black trees. Programming projects. Nonmajor gradu-
ate credit.

Com S 321. Introduction to Computer Architecture and Machine-Level Programming. (3-1) Cr.
F.S. Prereq: 228, CPR E 210 and Engl 104.
Introduction to computer architecture and organiza-
tion with emphasis on instruction set, memory hier-
archy design, and performance. Machine level pro-
gramming including assembly language. Input/output and interrupts. Nonmajor graduate credit.

Com S 330. Discrete Computational Structures. (3-1) Cr.
F.S. Prereq: 228, Math 186 and Engl 104.
Concepts in discrete mathematics as applied to com-
puter science. Logic, proof techniques, set theory, relations, graphs, combinatorics, discrete probability and number theory. Nonmajor graduate credit.

Com S 331. Theory of Computing. (Same as Ling 331.) (3-1) Cr.
F.S. Prereq: Math 166, Engl 104, and either 330 or CPR E 310.
Introduction to computation: finite state automata, pushdown automata and Turing machines. Study of grammars and their rela-
tion to automata. Limits of digital computation, unsolvability and Church-Turing thesis. Chomsky hierarchy and relations between classes of lan-
guages. Nonmajor graduate credit.

Com S 342. Principles of Programming Languages. (3-3) Cr.
F.S. Prereq: 321, Engl 104, 330 or CPR E 310, and either 309, 362 or 363.
Organization of programming languages emphasizing language design concepts and semantics. Study of language features and major programming paradigms, especially functional programming. Programming projects. Nonmajor graduate credit.

Com S 352. Introduction to Operating Systems. (3-1) Cr.
F.S. Prereq: 321, Engl 104, and either 362 or 363.
Survey of operating system issues.

Introduction to hardware and software components including: processors, peripheral, interrupts, man-
agement of processes, threads and memory, dead-
locks, file systems, protection, virtual machines and system organization, and introduction to distributed operating systems. Programming projects. Nonmajor graduate credit.

Com S 362. Object-Oriented Analysis and Design. (3-0) Cr.
F.S. Prereq: 228. Object-oriented require-
ments analysis and systems design. Design nota-
tions such as the UML, and Design Patterns. Group design and programming with large programming projects. Nonmajor graduate credit.

Com S 363. Introduction to Database Management Systems. (3-0) Cr.
F.S. Prereq: 228 and Engl 104. Relational, object-oriented, and semistruc-
tured data models and query languages. SQL, ODMG, and XML standards. Database design using entity-relationship model, data dependencies and object definition language. Application development in SQL as the language with a purpose-ful database management system using application interfaces.

Information integration using data warehouses, mediators and wrappers. Programming Projects.

Nonmajor graduate credit.

Com S 398. Cooperative Education. Cr. R.
Required of all cooperative students. Prereq:
F.S. Permission of department chair. Students must reg-
ister for this course prior to commencing each work period.

F.S. Prereq: Engl 105, Sp Cm 212, an additional 9 credits in Com S at the 200 level or above and either 362 or 363. Systems concepts and implementation for supporting production-orien-
ted information systems; data and terminal access meth-
ods; operating systems implementations; data base management systems implementations; data dictionary considerations; data communication con-
siderations; lab experiments and implementations.

Oral and written reports. Nonmajor graduate credit.

Com S 410. Research Projects. (3-0) Cr.
F.S. Prereq: 106, Sp Cm 212, 21 credits in Com S, and per-
mission of instructor. Students enrolling in this course must participate individually or in a small group with a faculty member on mutually agreed-upon projects and research. Oral and written reports. Intended pri-
marily for students interested in graduate school or with a strong interest in computer research.

Com S 411. Specification and Design in Software Engineering. (3-1) Cr.
Prereq: 311 or CPR E 305, Engl 105, Sp Cm 212.
Principles and techniques for methodical construc-
tion of quality software. Software requirements specification; programming paradigms; module spec-
ification techniques; testing and validation proce-
dures; proof of program correctness. Emphasis on team projects. Written reports. Nonmajor graduate credit.

Com S 418. Introduction to Computational Geometry. (Dual-listed with 518.) (3-0) Cr.
Prereq: 311. Introduction to data struc-
tures, algorithms and analysis techniques for compu-
tational problems that involve geometry. Line seg-
ment intersection. Polygon triangulation and visibility problems. Range queries. Point location.

Com S 421. Logic for Mathematics and Computer Science. (Same as Math 421.) See Mathematics
Courses and Programs
Computer Science

Com S 426. Practical Introduction to Parallel Programming. (Dual-listed with 526, same as Cpr E 426.) See Computer Engineering. Nonmajor graduate credit.

Com S 430. Advanced Programming Tools. (3-1) Cr. 3. Alt. F. Offered 2002. Prereq: 311, 330, 105, Sp cm 212. Topics in advanced programming techniques and tools widely used by industry (e.g., event-driven programming and graphical user interfaces, standard libraries, client/server architecture, and techniques for distributed applications). Emphasis on programming projects in a modern integrated development environment. Oral and written reports. Nonmajor graduate credit.

Com S 440. Principles and Practice of Compiling. (Dual-listed with 540.) (3-1) Cr. 3. 5. Prereq: 331, 342, 105, Sp cm 212. Theory of compiling and implementation issues of programming languages. Programming projects leading to the construction of a compiler targeting the Java Virtual Machine. Projects with different difficulty levels will be given for 440 and 540. Topics: lexical, syntactic and semantic analyses, syntax-director translation, runtime environment and library support. Written reports. Nonmajor graduate credit.

Com S 454. Distributed and Network Operating Systems. (Dual-listed with 554; same as Cpr E 454.) (3-1) Cr. 3. Alt. S., offered 2003. Prereq: 311, 352, 105, Sp cm 212. Laboratory course dealing with practical issues of design and implementation of distributed and network operating systems and distributed computing environments (DCE). The client-server paradigm, inter-process communications, layered communication protocols, synchronization and concurrency control, and distributed file systems. Graduate credit requires additional in-depth study of advanced operating systems. Written reports. Nonmajor graduate credit.

Com S 471. Computational Linear Algebra and Fixed Point Iteration. (Same as Math 451.) See Mathematics. Nonmajor graduate credit.

Com S 472. Principles of Artificial Intelligence. (Dual-listed with 572.) (3-1) Cr. 3. F. Prereq: 311, 105, Sp cm 212. Com S 330 or Cpr E 310, Com S 342, or comparable programming experience. Specification, design, implementation, and selected applications of intelligent software agents and multiagent systems. Algorithmic models of problem solving, knowledge representation, reasoning, planning, decision making, learning, perception, action, communication and interaction. Reactive, deliberative, rational, adaptive, learning and communication and interaction. Artificial intelligence programming. Graduate credit requires additional in-depth study of artificial intelligence. Written reports. Oral and written reports. Nonmajor graduate credit.

Com S 474. Elements of Neural Computation. (3-1) Cr. 3. S. Prereq: 105, Sp cm 212, Math 165, 330 or Cpr E 310. Introduction to the theory and applications of neural computation with emphasis on machine learning, data mining and knowledge discovery. Computational models of neurons and networks of neurons. Neural associative memories, pattern classifiers, function approximation, evolutionary algorithms. Bayesian learning, probability and statistical learning, and related techniques. Reinforcement learning, stochastic search, and genetic algorithms. Applications in Artificial Intelligence, cognitive science, robotics, and neural modeling, computational biology, data mining and knowledge discovery. Hands-on experience is emphasized through the use of simulation tools and laboratory projects and written reports. Nonmajor graduate credit.

Com S 476. Motion Strategy: Algorithms and Applications. (Dual-listed with 576.) (3-1) Cr. 3. S. Prereq: Eng 105, Sp cm 212, Com S 311 or M E 518, or consent of instructor. Recent techniques for developing algorithms that automatically generate continuous motions while satisfying geometric constraints. Applications in areas such as robotics and graphical animation. Basic path planning, Kinematics, configuration space, and topological issues. Collision detection. Randomized planning. Nonholonomic systems. Optimal decisions and motion strategies. Coordination of Multiple Bodies. Representing and overcoming singularities. Visibility-based motion strategies. Implementation of software that computes motion strategies. Written reports. Nonmajor graduate credit.

Com S 484. Advanced Digital Systems Design. (Same as Cpr E 484.) See Computer Engineering. Nonmajor graduate credit.

Com S 490. Independent Study. Cr. arr. F.S. Prereq: 6 credits in computer science, permission of instructor. No more than 9 credits may be counted toward graduation. Offered on a satisfactory-fail grading basis only. H. Honors

Com S 495. Seminar. Cr. arr. F.S. Prereq: Permission of instructor. Offered on a satisfactory-fail grading basis only.

Courses Primarily for Graduate Students, Open to Qualified Undergraduate Students

Com S 502. Complex Adaptive Systems Seminar. (Same as CAS 502, E E 502.) (1-0) Cr. 1. F. S. Prereq: Admissions to CAS minor. Understanding core technologies in artificial life are based on readable in complex adaptive system and techniques of complex system analysis methods including: Evolutionary computation, Neural nets, Agent based simulations (Agent based Computational Economics). Large-scale simulations, power grids, whole ecosystems.

Com S 511. Design and Analysis of Algorithms. (3-0) Cr. 3. S. Prereq: 311, 330. A study of basic algorithmic paradigms and the design and analysis of algorithms. Advanced data structures, amortized analysis and randomized algorithms. Applications to sorting, graphs, and geometry. NP-completeness and approximation algorithms.

Com S 512. Formal Methods in Software Engineering. (3-0) Cr. 3. S. Prereq: 311, 330. A survey of formal methods for software life cycle process including requirements, specifications, design, implementation, testing, and maintenance. Implications of formal results for software prototyping and automated testing.

Com S 523. Computer System Architecture. (3-0) Cr. 3. F. Prereq: 352, or Cpr E 305. Fundamentals of computer design, performance and cost, instruction set design, basic processor implementation techniques, pipelining, memory design, caches, I/O systems, multiprocessor systems, interconnection networks.

Com S 526. Introduction to Parallel Algorithm and Programming. (Dual-listed with 426, same as Cpr E 526.) See Computer Engineering.

Com S 540. Principles and Practice of Compiling. (Dual-listed with 440.) (3-1) Cr. 3. S. Prereq: 331, 342, 105. Sp cm 212. Theory of compiling and implementation issues of programming languages. Programming projects leading to the construction of a compiler targeting the Java Virtual Machine. Projects with different difficulty levels will be given for 440 and 540. Topics: lexical, syntactic and semantic analyses, syntax-director translation, runtime environment and library support. Written reports.

Com S 541. Programming Languages I. (3-1) Cr. 3. F. Prereq: 342 or 440. Survey of the goals and problems of language design. Formal and informal studies of a wide array of programming language features including type systems, naming, state, and control. Creative use of functional, object-oriented and declarative, concurrent, and other programming paradigms.

Com S 542. Programming Languages II. (3-0) Cr. 3. Alt. F. Offered 2002. Prereq: 342 or 440. Study of advanced language design. roadside and nontraditional languages and architectures.

Com S 549. Advanced Algorithms in Computational Biology. (Same as CCB 549, Cpr E 549.) (3-0) Cr. 3. S. Prereq: 311 and either 228 or 352. Design and analysis of algorithms for applications in computational biology and multiple sequence alignments, approximation algorithms, string algorithms including in-depth coverage of suffix trees, semi-numerical string algorithms, algorithms for selected problems in fragment assembly, phylogenetic trees and protein folding. No background in biology is assumed. Also useful as an advanced algorithms course in string processing.

Com S 554. Distributed and Network Operating Systems. (Dual-listed with 454, same as Cpr E 554.) (3-1) Cr. 3. S. Prereq: 311, 352, 105, Sp cm 212. Laboratory course dealing with practical issues of design and implementation of dis-
tributed and network operating systems and distrib-
uted computing environments (DCE). The client serv-
er paradigm, inter-processes communications, lay-
ered communication, synchronization and concor-
dency control, and distributed file systems. Graduate
credit requires additional in-depth study of advanced
operating systems. Written reports.

system concepts and design. Data models, Algebraic
first order calculus based, and user orient-
ed query languages. Data storage and access meth-
ods. Query processing and optimization. Transaction
management, concurrency control, and crash recov-
er. Database security. Parallel and distributed data-
bases. Special purpose databases. Data warehousing
and data mining.

Com S 572. Principles of Artificial Intelligence. (Dual-listed with ENGR 511.) Prereq: 311, 330
or CPR E 310. Com S 342 or 362 or comparable pro-
gramming experience. Specification, design, implement-
ation, and selected applications of intelligent
software agents and intelligent systems. Algorithmic
models of problem solving, knowledge representa-
tion, reasoning, planning, decision making,
learning, perception, action, communication and
interaction. Reactive, deliberative, rational, adaptive,
learning and communicative agents. Artificial intelli-
gence programming. Graduate credit requires a
research project and a written report. Oral and writ-
ten report necessary.

models of learning. Design, analysis, implementation
and applications of learning algorithms. Learning of
concepts, classification rules, functions, relations,
grammers, value functions, models, skills, behaviors
and programs. Agents that learn from observation,
examples, instruction, induction, deduction, rein-
forcement and interaction. Computational learning
theory. Data mining and knowledge discovery using
artificial neural networks, decision trees, Bayesian
learning, association rules, genetic algorithms,
dimensionality reduction, optimization and visual-
ization. Learning from heterogeneous, distributed,
dynamic data and knowledge sources. Learning in
multi-agent systems. Selected applications in auto-
ated knowledge discovery and pattern recognition,
program sentences, bioinformatics and Internet-
based information systems.

Com S 576. Motion Strategy: Algorithms and
Applications. (Dual-listed with 476.) (3-1) Cr. 3. Alt.
S., offered 2002. Prereq: ENGL 105, SP CM 212, Com S
311 or M E 519, or consent of instructor. Recent
techniques for developing algorithms that automati-
cally generate continuous motions while satisfying
geometric constraints. Applications in areas such as
robotics and graphical animation. Basic path plan-
ing. Kinematics, configuration space, and topologi-
cal issues. Collision detection. Randomized planning.
Nonholonomic systems. Optimal decisions and
motion strategies. Coordination of multiple bodies.
Representing and overcoming uncertainties.
Visibility-based motion strategies. Implementation of
software that computes motion strategies. Written
reports.

(3-0) Cr. 3. F. Prereq: 511, 552 or CPR E 489. Design
and development of advanced computer communica-
tion networks; distributed and failsafe routing in large
and dynamic networks, gateways and interconnec-
tion of heterogeneous networks, flow control and con-
gestion avoidance techniques, network architec-
tures, communication protocol standards, formal
specification and verification, protocols, implement-
tation and conformance testing of protocol stan-
dards, network security and web computing.

Com S 590. Special Topics. Cr. attn. Prereq: Permission of instructor. Offered on a satisfac-
tory-fail grading basis only.

Com S 591. Graduate Orientation Seminar. (1-0) Cr. 1. F. Prereq: Graduate classification. Topics
include an introduction to ISU computing facilities,
M.S. and Ph.D. degree requirements, career choices,
education, ethics, literature searching, technical presentations,
technical writing, ethics in writing, and discussion of
research interests and projects by members of the
graduate faculty. Required by the M.S. degree and is
taken during the first semester of a normal M.S. pro-
gram. Offered on a satisfactory-fail grading basis only.

Com S 594. Computational Molecular Biology. (Same as Gen 594.) See Genetics.

Com S 596. Genomic Data Processing. (Same as Gen 596.) See Zoology and Genetics.

Courses for Graduate Students

Com S 610. Seminar. Cr. attn. Offered on a satisfac-
tory-fail grading basis only.

Com S 611. Advanced Topics in Analysis of
Algorithms. (3-0) Cr. 3. Alt. S., offered 2003. Prereq: 571, 531. Advanced algorithm analysis and design
techniques. Graph algorithms, algebraic algorithms,
NP-completeness, probabilistic and parallel algo-
rithms, intractable problems. Randomized tech-
niques. An advanced course in the theory of parallel
distributed computation. Models of computation,
Algorithm paradigms and analysis, Lower bounds
and impossibility results. Parallel sorting, graph, geo-
metric, algebraic and number-theoretic algorithms.
The parallel computation Thesis: P-complete prob-
lem and the class NC. Synchronous, asynchronous,
partially timed distributed systems. Consensus,
multiprocess exclusion, and resource allocation. Wait-free
register implementations. Shared memory and net-
work models. Fault-tolerance. Randomized computa-
tion.

Com S 624. Advanced Topics in Computer
Architecture. (3-0) Cr. 3. Alt. S., offered 2002. Prereq: 511 or 531. Current topics in computer architecture
design and implementation. Advanced pipelining,
cache and memory design techniques. Interaction of
algorithms with architecture models and implemen-
tations. Tradeoffs in architecture models and imple-
mentations.

Com S 625. Issues in Parallel Programming
and Performance. (3-0) Cr. 3. Alt. S., offered 2003. Prereq: 511, 524. Parallel solutions of numerical and
non-numerical problems, implementation of parallel
programs on parallel machines, performance and other
computational issues in parallel programming.

Com S 631. Computational Complexity. (3-0) Cr.
Alt. S., offered 2002. Prereq: 531. Advanced study in the
quantitative theory of computation. Time and
space complexity of algorithmic problems. The struc-
ture of P, NP, PH, PSPACE, and other complexity
classes, especially with respect to resource-bounded
reducibilities and complete problems. Complexity rel-
tive to auxiliary information, including oracle compu-
tations and relativized classes, randomized algo-
risms, advice machines and Boolean circuits.
Kolmogorov complexity and randomness.

Com S 632. Circuit Complexity and Parallel
Complexity. (3-0) Cr. 3. Alt. S., offered 2003. Prereq: 531. An advanced course in the complexity of
Boolean functions and parallel computation. General
circuits, bounded-depth circuits, threshold circuits
and monotone circuits. Parallel complexity, including
uniform circuits, alternating Turing machines and par-
allel RAMs. Additional topics chosen from communi-
cation and sorting networks, communication com-
plexity, VLSI complexity, cellular automata, neural
networks and general purpose parallel architectures.

Com S 633. Randomness in Computation. (3-
0) Cr. 3. Alt. S., offered 2002. Prereq: 531. Advanced
study of the role of randomness in computation.
Randomized algorithms, random oracles, and proba-
bilistic complexity classes. One-way functions and
pseudorandom generators. Kolmogorov complexity,
algorithmic information theory and algorithmic ran-
domness. Applications chosen from cryptography,

Interactive proof systems, computational learning,
lower bound arguments, mathematical logic and the
organization of complex systems.

Com S 641. Semantic Models for Programming
Languages. (3-0) Cr. 3. Alt. S., offered 2002. Prereq:
521, 541. Operational and other mathematical mod-
els of programming language semantics. Type sys-
tems and their soundness. Application of semantics
to program correctness, language design and transla-
tion.
distributed and network operating systems and distributed computing environments (IDCE). The client server paradigm, inter-process communications, layered communication, synchronization and concurrency control, and distributed file systems. Graduate credit requires additional in-depth study of advanced operating systems. Written reports.

Com S 572. Principles of Artificial Intelligence. (Dual-listed with 476.) (3-0) Cr. 3. F. Prereq: 311, 330 or CPR E 310. Com S 342 or 362 or comparable programming experience. Specification, design, implementation, and selected applications of intelligent software and robust systems. Algorithmic models of problem solving, knowledge representation, reasoning, planning, decision making, learning, perception, action, communication and interaction. Reactive, deliberative, rational, adaptive, learning and communicative agents. Artificial intelligence programming. Graduate credit requires a research project and a written report. Oral and written report.

Com S 586. Computer Network Architectures. (3-0) Cr. 3. F. Prereq: 511, 552 or CPR E 489. Design and development of advanced computer communication networks: distributed and failsafe routing in large and dynamic networks, gateways and interconnection of heterogeneous networks, flow control and congestion avoidance techniques, network architectures, communication protocol standards, formal specification and verification, simulation, implementation and conformance testing of protocol standards, network security and web computing.

Com S 590. Special Topics. Cr. arr. Prereq: Permission of instructor. Offered on a satisfactory-fail grading basis only.

Com S 591. Graduate Orientation Seminar. (1-0) Cr. 1. F. Prereq: Graduate classification. Topics include an introduction to ISU computing facilities, M.S. and Ph.D. program requirements, career choices, ethics, literature searching, technical presentations, technical writing, ethics in writing, and discussion of research interests and projects by members of the graduate faculty. Required by the M.S. degree and is taken during the first semester of a normal M.S. program. Offered on a satisfactory-fail grading basis only.

Com S 594. Computational Molecular Biology. (Same as Gen 594.) See Genetics.

Com S 596. Genomic Data Processing. (Same as Gen 596.) See Zoology and Genetics.

Courses for Graduate Students

Com S 610. Seminar. Cr. arr. Offered on a satisfactory-fail grading basis only.

Com S 673. Advanced Topics in Artificial Intelligence and Cognitive Modeling. (3-0) Cr. 3. Alt. S., offered 2003. Prereq: 572 or 472 or 474. Advanced study of selected topics chosen from the following: distributed intelligent information networks, intelligent systems in computational biology and bioinformatics, intelligent multi-agent systems, neural and evolutionary computation.

Com S 699. Research. Offered on a satisfactory-fail grading basis only.

Construction Engineering

(Administered by the Department of Civil and Construction Engineering)

Jim Rowings, Professor in Charge

Undergraduate Study

For undergraduate curriculum in construction engineering leading to the degree bachelor of science, see College of Engineering, Curricula. This curriculum is accredited by the Engineering Accreditation Commission of the Accreditation Board for Engineering and Technology.

Construction engineering is a curriculum administered by the Department of Civil and Construction Engineering. For details of the curriculum in construction engineering leading to the degree bachelor of science, see the College of Engineering, Curricula. General objectives, which are common to all departments in engineering, are stated in the College of Engineering, Objectives of Curricula in Engineering. The curriculum in construction
engineering is designed with the objective to prepare students for life-long careers in the constantly changing technical and managerial environment of the construction industry. Students who successfully complete the curriculum will be prepared for entry into the field or for further study at the graduate level in construction engineering or related fields of study, such as law, business and other engineering disciplines.

Construction engineers need to possess strong fundamental knowledge of engineering design and management principles, including knowledge of business procedures, economics, and human behavior. Graduates of this curriculum may expect to engage in design of temporary structures, coordination of project design, systems design, cost estimating, planning and scheduling, company and project management, materials procurement, equipment selection, and cost control. With the emergence of design-build construction, the role of the construction engineer is expanding the need for trained professionals that understand both aspects of the project delivery environment. The curriculum offers opportunities to study emphases concerned with building, heavy, mechanical or electrical construction.

The process of construction involves the organization, administration, and coordination of labor resource requirements, temporary and permanent materials, equipment, supplies and utilities, money, technology and methods. These must be integrated in the most efficient manner possible to complete construction projects on schedule, within the budget, and according to the standards of quality and performance specified by the project owner or designer. The curriculum blends engineering, management and business sciences into a study of the processes of construction where-by designer’s plans and specifications are converted into physical structures and facilities. To achieve this, a construction engineering graduate should have:

- confidence.
- initiative.
- demonstrated leadership ability.
- proficiency in engineering design which includes an ability to:
 - apply knowledge of mathematics, science, and engineering.
 - design and conduct experiments, as well as to analyze and interpret data.
 - to identify, formulate, and solve engineering problems.
 - design a system, component, or process to meet desired needs.
- an understanding of:
 - the overall construction process.
 - the estimating process.
 - the planning and scheduling process.
 - contracts and laws.
 - business and management.
 - ethical reasoning.
 - contemporary issues in the industry.
 - construction engineering and the industry’s impact on society.
- business and construction engineering terminology.
- an ability to:
 - function in multi-disciplinary teams.

- communicate orally, graphically and in writing.
- desire for life-long learning and intellectual and professional growth.
- an awareness of modern techniques, skills and technologies for construction.

The curriculum develops the ability of students to be team workers, creative thinkers, and effective communicators. This is achieved by providing students with opportunities to:

- interact with practicing professionals.
- gain work experience during summer jobs, internship, and cooperative education assignments that emphasize the knowledge required of construction engineers.
- develop leadership skills by participating in student organizations.
- develop, analyze, and interpret alternative solutions to open-ended problems.
- Study abroad.

The construction industry is becoming increasingly global. Courses in humanities, social sciences, U.S. diversity, and international perspectives are included in the curriculum to broaden the student’s perspective of the work environment. In addition, the department has several exchange program opportunities for students to participate in study-abroad programs. Interested and qualified students have the opportunity to participate in the cooperative education program or internship program to supplement academic work with work experience. See Cooperative Education Programs, College of Engineering.

Construction engineering students are encouraged to participate in life-long learning, continuous professional development, and to achieve either professional engineering registration or certified professional constructor. Qualified construction engineering students within 30 credits of completing their undergraduate degree may apply for concurrent enrollment in the Graduate College. See Civil Engineering Graduate Study for more information.

Graduate Study

An area of specialization in construction engineering is offered within the graduate program of the Department of Civil and Construction Engineering. See Civil Engineering, Courses and Programs.

Courses are offered for minor work to students taking major work in other curricula or in interdepartmental programs.

Courses open for nonmajor graduate credit: 322, 340, 351, 380, 421, 441.

Courses Primarily for Undergraduate Students

Con E 110. Introduction to Construction Engineering. (3-4) Cr. R. S. 2 weeks. The nature and scope of the construction industry. Overview of the profession and education for the constructor. Saturday field trip.

Con E 220. Construction Management. (3-0) Cr. 3. Prereqs: Engr 180 or 161. To develop working knowledge of the construction industry for the design professional. The topics covered represent the major topics that define the roles and responsibilities of the design professional working in the industry. The topics covered include: the construction industry, project delivery system, costs, construction insurance and bonds, safety, labor relations, project administration.

Con E 221. Contractor Organization and Management of Construction. (4-0) Cr. 4. F. S. Prereq: Completion of basic program and Engr 170. Entry level course for construction engineering. Integration of significant statistical, engineering, economics, and management issues related to efficient construction company operations. Probability and statistics; value of money; methods of evaluating alternative projects; organization; operations; construction company administration; marketing; insurance and bonding; project safety; labor law; productivity; total quality management, and motivation and leadership.

Con E 298. Cooperative Education. Cr. R. F.S.S. Prereq: Permission of department. First professional work period in the cooperative education program. Students must register for this course before commencing work.

Con E 351. Mechanical and Electrical Systems for Buildings. (3-2) Cr. 4. F. S. Prereq: 241, Phys 222. Comprehensive coverage of the major building systems including mechanical systems, electrical systems, plumbing, fire protection, security, vertical transportation, lighting, acoustics and communications. The course will include analysis techniques and design principles for each system. A comprehensive design project is required for a major building project. Nonmajor graduate credit.

Con E 380. Engineering Law. (3-0) Cr. 3. F. S. Prereq: Junior classification. Introduction to law and judicial procedure as they relate to the practicing engineer. Contracts, professional liability, professional ethics, licensing, bidding procedures, intellectual property, products liability. Emphasis on development of critical thinking process, abstract problem analysis and evaluation. Nonmajor graduate credit.

Con E 396. Summer Internship. Cr. R. S. S. Prereq: Permission of department. Summer professional work period.

Con E 397. Engineering Internship. Cr. R. F. S. Prereq: Permission of department. Professional work period, one semester maximum per academic year.

Con E 398. Cooperative Education. Cr. R. F. S. S. Prereq: Prereq: permission of department. Second professional work period in the cooperative education program. Students must register for this course before commencing work.
Courses open for nonmajor graduate credit: contact the program coordinator for information, curriculum, and a practicum. Students should take this course before commencing work.

Prerequisite: 398, permission of department.

Con E 498. Cooperative Education.

Con E 490. Independent Study.

Con E 498. Cooperative Education.

Primary Courses

CJ St 320. American Judicial Process. (Same as Pol S 320.) See Political Science.

CJ St 332. Philosophy of Law. (Same as Phil 332.) See Philosophy. Nonmajor graduate credit.

CJ St 341. Criminology. (Same as Soc 341.) See Sociology.

CJ St 460. Criminal and Juvenile Justice Practicum. (Same as Soc 460.) See Sociology.

Undergraduate Study

The Department of Curriculum and Instruction provides the professional education coursework that leads to licensure of pre-service teachers. Students major in elementary education for K-6 teaching licensure or early childhood education for a birth through third grade license. Secondary licensure students major in their respective content areas. Early childhood education and elementary majors must complete a professional course sequence: C 1201, 204, 333, and 406.

The department offers a minor in educational computing that may be earned by completing the following courses: C 1201; Com S 107 or Com S 207 or Pr E/Mat E 370; C 1280A; 280B; 302; 403; and 405 or 407.

Graduates of the elementary education program will be able to demonstrate through professional practice their understanding of academic disciplines, teaching and learning, the nature of the student, and how to adapt instruction for diversity. More specifically, graduates will be able to demonstrate their understanding of concepts and structures of disciplines, tools of inquiry, how students learn and develop, and the effects of individual differences on learning. Graduates will be able to demonstrate a broad range of instructional strategies, including knowledge of technology applicable to instruction. In their teaching, graduates will demonstrate the ability to stimulate active inquiry with collaboration and supportive interaction among their students. In appropriate settings graduates will demonstrate their ability to develop professional relationships with colleagues, parents, and agencies that support students and their learning.

Early Childhood Education

The curriculum in early childhood education is planned for students preparing to teach young children and work with their families. This program leads to careers in working with young children who are typically developing and those with special needs from birth through age eight. Graduates in this curriculum may teach in early childhood (preschool and primary) classrooms or home-based programs, with emphasis on inclusive services; graduates may be employed by either public or private agencies including schools. The program is administered jointly by the Department of Curriculum and Instruction in the College of Education and the Department of Human Development and Family Studies in the College of Family and Consumer Sciences.

Elementary Education

For the undergraduate curriculum in elementary education, leading to the degree Bachelor of science, see College of Education Curriculum.

The curriculum in elementary education is planned for persons who want to teach at the elementary school level. Endorsements in English/language arts, basic science, social studies, mathematics and multicategorical resource teaching are available for elementary education students. An endorsement for teaching foreign language in elementary schools is available through the Department of Foreign Languages and Literatures. Students
who enroll in elementary education must make application to and be accepted by the departmental teacher education committee and the University Teacher Education Committee, prior to enrolling in advanced elementary education courses. For admission and licensure requirements, see College of Education.

Secondary Education

Students seeking recommendations for a license to teach in the secondary schools must be admitted to the teacher education program and pursue a program that includes the following: C 201, 204, 333, 406, 415, 426; special methods; and student teaching in the area of specialization.

All students who are recommended by Iowa State University for teacher licensure must meet the requirements of the teacher education program and be recommended by the College of Education. Each student will be enrolled in the department in which he or she plans to major, and must meet the graduation requirements of that department and the college in which it is located. For specific requirements for each area of specialization, see Teacher Education and curriculum for the college in which the chosen degree major is sought.

Graduate Study

The Departments of Curriculum and Instruction and Educational Leadership and Policy Studies offer work for the degrees master of science, master of education, and doctor of philosophy with a major in education and minor work to students taking major work in other departments. Within the education major in the Department of Curriculum and Instruction a student may earn an education degree with no area of specialization (master’s and doctorate) or specialize in elementary education (master’s only), historical, philosophical, and comparative studies in education (master’s only), special education (master’s only), or curriculum and instructional technology (master’s and doctorate). A professional certificate program in special education is available to graduate students who seek a teaching endorsement in special education, but do not wish to pursue a master’s degree. See Educational Leadership and Policy Studies for further discussion of the education major with specialization in adult and extension education; counselor education; educational administration; higher education; and research and evaluation.

Students may choose an area of specialization for study. Available areas include curriculum and instructional technology, elementary education, and special education. The specialization in curriculum and instructional technology is designed to prepare candidates as researchers and practitioners in the fields of curriculum and instructional technology. The specialization in elementary education is designed to prepare candidates for teaching and curricular leadership positions in elementary settings. The special education specialization is designed to prepare candidates as practitioners and researchers in the field of mild disabilities. Graduate endorsement programs in learning disabilities, behavioral disorders, multicultural education, special education consultant, K-12 school media specialist, reading, and talented and gifted are administered through the Department of Curriculum and Instruction. Students may also opt not to select an area of specialization.

Prerequisite to major graduate work in education is preparation substantially equivalent to the completion of one of the undergraduate curricula in education offered at Iowa State University, or graduate preparation in a discipline to be used as a teaching field in community college or university, and adequate proof that the student ranks above average in scholastic ability and promise of professional competence.

The foreign language requirement, if any, for the Ph.D. degree will be determined by the student’s program of study committee. If no foreign language is required, the total program must consist of a minimum of 78 semester credits, at least 12 of which must be earned outside the education major, and at least 16 of which must be earned outside the area of specialization. Statistics and research methods may not be included in the 16 credits. Should foreign language be included, the program of study committee may adjust the minimum program requirement downward, but in no instance may the program of study be less than 72 semester credits. Students whose native language is not English may substitute competence in English. All applicants for the Ph.D. must submit Graduate Record Examination (GRE) scores.

Other graduate programs related to education (including General Graduate Studies) may be planned for students on the basis of previous education and experiences as well as future plans and needs. Students should refer to Agricultural Education and Studies, Family and Consumer Sciences Education, Health and Human Performance, Industrial Technology, Educational Leadership and Policy Studies, and General Graduate Studies or to graduate level course offerings within other departments.

Courses open for nonmajor graduate credit: C 457, 486; Sp Ed 457.

Curriculum and Instruction (C, I)

Courses Primarily for Undergraduate Students

C 115. First Year Orientation. Cr. R. F. Overview of elementary and early childhood education; curricular opportunities, transitions to college and community life, and university procedures. Required of all first-semester freshmen majoring in elementary or early childhood education and advised in the College of Education. Offered on a satisfactory-fail grading basis only.

C 201. Introduction to Instructional Technology. (2-2) Cr. 3. Overview of instructional technology, with an emphasis on uses in education. Instructional applications of computers and other tools, including tool software, interactive multimedia, Web page development, and use of digital video and sound. Pedagogical considerations in the use of technology. Laboratory software and software that facilitate teaching and learning.

C 204. Social Foundations of American Education. (3-0) Cr. 3. F.S.S. Goals of schooling, including the roles of teachers today; historical development of schools; educational reforms and alternative forms; and current philosophical issues. Human relations aspects of teaching and discussions about teaching as a career.

C 126. Learning of Science. (1-0) Cr. 1. S. Prereq: Concurrent enrollment in Mteor 206. Critical analysis of personal and K-12 student learning of science concepts. Use of computer simulations to ground student learning experiences; constructivist approach to learning science with emphasis on metacognition; design of science lessons.

C 245. Strategies in Teaching. (2-0) Cr. 2. F.S.S. Prereq: 204; HD FS 220 or 221 or 226 (or concurrent enrollment in one of these courses); concurrent enrollment in C 268; eligibility for admission to teacher education program. Introduction to elementary education teaching strategies, classroom management, and curriculum organization. Open to students in the elementary education curriculum or the early childhood education curriculum.

C 250. Education of the Exceptional Learner in a Diverse Society. (Same as Sp Ed 250.) See Special Education.

C 268. Strategies Practicum. (0-2) Cr. 1. F.S.S. Prereq: 204. Clinical experience, to be taken concurrently with 245. Offered on a satisfactory-fail grading basis only.

C 280. Pre-Student Teaching Experience, Cr. 0.5 to 2 each time taken, maximum of 8 credits. F.S.S. C 280A must be either a prerequisite or taken concurrently. Field experience in area educational settings. 2-1/2-hour blocks of time needed for field experience. Offered on a satisfactory-fail grading basis only.

A. Teacher Aide. Cr. 1 or 2.
B. Educational Computing. Cr. 1 or 2 (2 credits by permission only).
C. Native American Tutoring. Cr. 1.
D. Museum Education. Cr. 1.
E. Multicultural Youth Experience. Cr. 1 or 2.
F. International Student. Cr. 1 or 2 (Permission of instructor required).
G. Gifted and Talented Students. Cr. 1.
H. Multicategorical. F. Cr. 1 (concurrence with Sp Ed 330).
J. Mathematics. Cr. 1.
L. Early Field Experience. Cr. 0.5.

C 281. The Special Needs Student Experience. (0-4) Cr. 2 each time taken, maximum of 6 credits. F.S.S. Seminars and visits to public schools serving special students. One week practicum at the Iowa School for the Deaf, and the Iowa Braille and Sight Saving School. Offered on a satisfactory-fail grading basis only.

C 282. The Urban Student Experience. (0-2) Cr. 1 or 2 each time taken, maximum of 4 credits. F.S.S. Seminars and visits to urban schools and to organizations serving urban students. Offered on a satisfactory-fail grading basis only.

C 290. Independent Study. Cr. 1 to 3. Prereq: 6 credits in education, permission of department head.

C 302. Using Computers in the Classroom. (2-2) Cr. 3. F.S. Prereq: 201 or Comp S 107. Integrating computer applications into the curriculum; designing classroom applications for tool software; selecting and evaluating software for the classroom; issues and trends in computer based instruction.

C 1333. Educational Psychology. (Same as Psych 333.) (3-0) Cr. 3. F. S.S.S. Prereq: 201, Psych 230 or HD FS 102, application to the teacher education program or major in educational studies. Classroom learning with emphasis on cognitive development, cognitive learning theory, and instructional techniques. Major emphasis on measurement theory and the classroom assessment of student learning. Dated.

C 347. Nature of Science. (Dual listed with 547.) (3-0) Cr. 3. Prereq: 280M. The intersection of issues in the history, philosophy and psychology of science and their application to and impact on science teaching and learning, science teacher education, and science education (3-0) Cr. 3.

C 377. The Teaching of Reading and Language Arts in the Primary Grades. (K-3) (4-0) Cr. 4. Prereq: 245, 250, HD FS 226, 240, admission to teacher education program, concurrent enrollment in 448, 468A, 468C. Theories, teaching strategies, and instructional materials pertinent to teaching reading, writing, listening, and speaking to children in kindergarten through third grade.

C 378. The Teaching of Reading and Language Arts in the Intermediate Grades (4-6). (4-0) Cr. 4. Prereq. 377; concurrent enrollment in 449, 468B, 468D. Theories and processes of literacy. Application through reading and writing across the curriculum, integration of language arts, literature-based instruction, and metacognitive strategies.

C 392. Secondary Science Methods I. (2-0) Cr. 2. Prereq: 260M, concurrent enrollment in 347, concurrent enrollment in 468U. Development of a research-based framework for teaching science that includes student goals, content, critical thinking, the changing role of science inquiry, teaching behaviors and strategies, contemporary learning theories, and self-evaluation.

C 395. Teaching Reading in Middle and Secondary Schools. (3-0) Cr. 3. F. S. Prereq: 204. Analysis and application of strategies to enhance students’ literacy development in middle and secondary school settings.

C 398. Middle School Curriculum Design and Instruction. (3-0) Cr. 3. Prereq: Admission to teacher education. Employs the components of interdisciplinary teaching, curriculum frameworks, instructional strategies, teacher-based guidance, and assessment.

C 399. Middle School Student Growth and Development. (3-0) Cr. 3. Prereq: Psych 230. Study of the physical, emotional, intellectual, and social development of 10 to 15 year old middle school students, with emphasis on implications for schools and teachers. Includes strategies for classroom management, and working with special issues. Issues of risk, resiliency, substance abuse, suicide, and sexuality will also be examined.

C 405. Applications of the Internet in Education. (3-0) Cr. 3. Prereq: 201. Integrating communication and information technologies into educational settings. Designing and constructing Web-based instructional materials that support various educational theories and approaches. Effective Web-based design, advanced HTML, and search strategies with critical examination of interactive Web-based instructional projects in classrooms.

C 406. Multicultural Gender Fair Education. (3-0) Cr. 3. F. S.S.S. Prereq: 201, 333, junior classification, admission to teacher education program. Awareness and applications of multicultural learning environments and classroom learning environments with emphasis on cognitive development, cognitive learning theory, and instructional techniques. Major emphasis on measurement theory and the classroom assessment of student learning. Dated.

C 407. Principles and Practices of Flexible and Distance Education. (Dual listed with 567.) (3-0) Cr. 2. F. S.S.S. Prereq. 201; convenient access to the Web. This course will be offered in flexible and distance learning (FDL) modes, mainly utilizing telecommunication technologies including video of FDL cases in a variety of contexts and pedagogic styles, research into relevant topics. Identification of underlying principles and frameworks for best practice in this field.

C 415. Senior Seminar. Cr. R. F. S.S.S. Prereq: Senior classification, admitted to teacher education program, concurrent enrollment in 426. Overview of requirements for teacher certification in Iowa and other states; functions of Education Student Services examined; interviewing procedures.

C 416. Supervised Student Teaching. Cr. var. F. S. Prereq: GPA 2.5; full admission to teacher education; senior classification, 201, 378, 442, 448, 449, reservation required. Supervised teaching experience in the elementary grades.

A. Primary grades.
B. Intermediate grades.
C. Foreign Language.
D. International Student Teaching - Primary grades.
E. International Student Teaching - Intermediate grades.

C 417. Student Teaching. (Same as LAS 417.) See Liberal Arts and Sciences Cross-Disciplinary Studies.

C 426. Principles of Secondary Education. (Dual-listed with 526.) (3-0) Cr. 3. F. S. S.S.S. Prereq: 201, senior classification, admitted to teacher education program, concurrent enrollment in 415. The curriculum, how to accommodate students with special needs, human relations, student evaluation, support services, classroom management, organization of schools, legal aspects of schools, professionalism, and career planning. A planned field experience is a professional growth activity included in the course. Students often enroll in 480 concurrently with this course.

C 427. Project Opportunity Capstone. (2-0) Cr. 2. S. Issues in education as related to beginning teachers: assessment, classroom management, law, special education, effective teaching, reflectivity, technology. Offered on a satisfactory-fail grading basis only.

C 443. The Teaching of Social Studies. (3-0) Cr. 3. F. S.S.S. Prereq: 377. Study, development, and application of current methods, curriculum materials, and assessment strategies for providing appropriate social studies learning experiences for primary and intermediate grade children.

C 450. Ethnicity and Learning. (3-0) Cr. 3. F. S. Prereq. 245. Examination of cultural relevance in education. Development and application of strategies and techniques for implementing multicultural goals and multietnic perspectives in the elementary school classroom setting.

C 451. Ethnicity and Learning Practicum. (1-4) Cr. 3. Prereq. 450. Field experience in a multicultural or ESL班级 as a Secondary Language classroom setting. Students must have one full day or two half days open each week in order to participate.

C 456. Integrating Technology into the Reading and Language Arts Curriculum. (Dual-listed with 556.) (3-0) Cr. 3. S. S.S. Prereq: 201, 377. Methods and strategies used to integrate technology into the reading and language arts curriculum. Use and evaluation of reading and language arts software for elementary classrooms.

C 457. Teaching Exceptional Learners in the Regular Classroom. (Same as LAS 417.) (3-0) Cr. 2. Sp Ed 457. See Special Education. Nonmajor graduate credit.

C 468. Supervised Practicum in Teaching. Cr. 1 or 2. F. S.S.S. Prereq: 245, 250, 268, admission to teacher education program. Observation, application of current methods, and instructional experiences with children in a supervised elementary classroom while engaged in other elementary methods courses. Offered on a satisfactory-fail grading basis only.

A. Primary Grades, Reading & Language Arts. Cr. 1
B. Primary Grades, Reading & Language Arts. Cr. 1
C. Mathematics. Cr. 1
D. Science. Cr. 1
E. Foreign Language. Cr. 1
F. Primary Grades, Literacy, Inclusive. Cr. 1
G. Primary Grades, Mathematics, Inclusive. Cr. 1
H. Primary Grades, Science, Inclusive. Cr. 1
J. Secondary Science I. Cr. 2
K. Secondary Science II. Cr. 2.

C 478. Diagnosis and Correction of Reading Problems. (3-0) Cr. 1. F. Prereq: 378. Diagnosis of students with reading difficulties using formal, informal, and on-going assessment. Instructional strategies for mildly, moderately, and severely disabled readers.

C 480. Field Experience for Secondary Teaching Preparation. (Same as LAS 480.) See Liberal Arts and Sciences Cross-Disciplinary Studies.

C 486. Methods in Elementary School Foreign Language Instruction. (Same as F Lng 486.) See Foreign Languages and Literatures. Nonmajor graduate credit.

C 487. Methods in Secondary School Foreign Language Instruction. (Same as F Lng 487.) See Foreign Languages and Literatures.

C 488. Supervised Tutoring in Reading. (Dual-listed with 588.) (2-2) Cr. 3. Prereq. 416 or LAS 417. Using formal and informal diagnostic procedures to plan and implement individualized reading instruction. Field experience.
C I 490. Independent Study. Cr. 1 to 3. Prereq: GPA of 2.5 or more for preceding semester. A. Music Education. (Same as Music 490A.) See Music.

C I 491. Educational Inquiry. (2-0) Cr. 2. F. Prereq: Participation in Project Opportunity. Introduction to research terminology, qualitative and quantitative methodology, data collection techniques, and research resources to more closely link research and practice for prospective teachers. Includes a field-based research component to synthesize course work, field experiences, and related research.

C I 492. Methods for Teaching Science. (Same as LAS 492.) (2-0) Cr. 2. Prereq: 280M, 247, 392; concurrent enrollment in 486K. Advancing a research-based framework for teaching science in a variety of school settings; emphasizing the development and revision of science curriculum, management strategies, technology and student assessment.

C I 493. Methods of Teaching History/Social Sciences. (Same as LAS 483.) See Liberal Arts and Sciences Cross-disciplinary.

C I 494. Practice and Theory of Teaching Literature in the Secondary Schools. (Same as Engl 494). See English

C I 495B. Teaching Speech. (Same as Sp Cm 495B.) See Speech Communication.

Courses Primarily for Graduate Students, Open to Qualified Undergraduate Students

C I 503. Theories of Designing Effective Learning and Teaching Environments. (3-3) Cr. 3. F. Prereq: 501. Introduction to models and theories of instructional design. Examination of models based on behavioral, information processing, and cognitive science theories. Emphasis on constructivist theories and interpretivist epistemologies.

C I 504. Managing and Evaluating Instructional Technology Programs. (3-0) Cr. 3. F. Prereq: Graduate classification, 501. Principles and procedures for program review, assessment, and analysis of media/technology programs in education and corporate settings. Management theories and methods for planning, organizing, influencing, and operating the services in technology organizations. Includes facilities planning, promotion, and public relations. Principles of staff training, proposal development, and legal issues related to media/technology support services.

C I 506. Multicultural Gender Fair Education in Curriculum Development and Instruction. (3-0) Cr. 3. F. S.S.S. Prereq: 6 graduate credits in education. Theories, legal bases, and principles of multicultural gender fair education. Pluralism and contributing cultures in the United States; presence and contributions of cultural group diversity with implications for educational programs, curriculum development, classroom instruction, materials utilization and development; problems and issues, strategies and techniques; inquiry and research on multicultural gender fair education issues.

C I 507. Principles and Practices of Flexible and Distance Learning. (Dual-listed with 407) (2-0) Cr. 2. F. S.S. Prereq: 505, convenient access to the Web. This course will be offered in flexible and distance learning (FDL) modes, mainly utilizing telecommunications including the Internet. Review of FDL cases in a variety of contexts and pedagogic styles, plus research into identification of underlying principles and frameworks for best practice in this field.

C I 508. Applications of Algebra in the K-8 Classroom. (3-0) Cr. 3. Prereq: Teaching license. Algebraic concepts with a focus on applying foundational ideas of generalizations of patterns, coordinate graphing, and relationships among variables into elementary and middle school classroom settings. Additional topics chosen from number theory and mathematics history will also be used to facilitate critical examination of elementary curriculum, teaching pedagogy, and assessment.

C I 509. Applications of Geometry in the K-8 Classroom. (3-0) Cr. 3. Prereq: Teaching license. Euclidean and non-Euclidean explorations with a focus on applying the foundation ideas of axiomatic structure and relationships with simple geometric ideas into elementary and middle school classroom settings. Additional topics chosen from discrete mathematics, mathematics history, and fractal geometry will be used to facilitate critical examination of elementary curriculum, pedagogy, and assessment.

C I 510. Advanced Integration of Technology in Education. (3-0) Cr. 3. S. Prereq: 505. Exploration of applications of technology in educational settings. Development of advanced computer applications in relationship to the technology and instruction.

C I 521. Surveying Gifted Education. (3-0) Cr. 3. Prereq: 9 credits in education. Survey of major areas of concern in the field of education for the gifted. Includes definitions, program objectives, program types, teaching strategies, and tools.

C I 523. Corrective Mathematics. (3-0) Cr. 3. S.S.S. Prereq: 448. Identification, analysis, and correction of mathematics problems within the elementary program with an emphasis on alternative teaching strategies and curriculum development.

C I 526. Principles of Secondary Education. (Dual-listed with 426) (3-0) Cr. 3. Prereq: 6 credits in education. The curriculum, how to make accommodations for students with learning, emotional, or physical handicaps, human relation student evaluation, support services, classroom management, organization of schools, legal aspects of schools, professionalism and career planning. A planned field experience is a professional growth activity included in the course.

C I 532. Methods, Models, and Materials for Teaching Gifted Children. (3-0) Cr. 3. Prereq: 9 credits in education including one course in gifted education. Teaching models and the methods and materials used with TAG students.

C I 533. Educational Psychology of Learning, Cognition, and Motivation. (Same as Psych 533.) (3-0) Cr. 3. F. S.S. Prereq: Psychological license. Learning, cognition, and motivation in educational/training settings, instructional theory and models, individual differences and instructional processes.

C I 535. Educational Psychology of Computer Applications. (3-0) Cr. 3. S. Prereq: 501, 533. Implications of cognitive and motivational processes for the design and development of computer applications in educational and training settings. Current research and theory across various topics, including adaptive instruction, problem solving, simulations, virtual environments, exploratory software, artificially intelligent instructional computing, computers as cognitive tools, and other contemporary topics.

C I 541. Conceptual Change, Constructivism and Science Teaching. (3-0) Cr. 3. Prereq: Bachelor’s degree. Current learning theories within science education and their application to science classrooms. Examination of models which assist the implementation of these theories of learning. National science standards.

C I 542. The Secondary School Curriculum. (2-0) Cr. 2. F. S.S. Prereq: Teacher license. Curricular and co-curricular programs of secondary schools; recent trends in goals, content organization, and organization for instruction; local community resources as curriculum content.

C I 543. Teaching Science to Elementary School Students. (3-0) Cr. 3. Prereq: Teaching license. Critical examination of the discipline of science within the elementary school curriculum. Emphasis on content, assessment, and revision of science programs using current curriculum procedures.

C I 544. Science Literacy. (3-0) Cr. 3. Prereq: Bachelor’s degree. In-depth study of science literacy. Opportunities to experience and develop broadened understandings of science literacy. Focal areas include the nature of science, epistemology and reasoning as part of science literacy within science classrooms. Pedagogical strategies to improve science literacy within classroom settings.

C I 545. The Elementary School Curriculum. (2-0) Cr. 2. F. S.S. Prereq: Teacher license. Curricular and co-curricular programs of elementary schools; recent trends in goals, content organization, and organization for instruction; local community resources as curriculum content.

C I 547. Nature of Science. (Dual listed with 347.) (3-0) Cr. 3. Prereq: Bachelor’s degree. The intersection of issues in the history, philosophy, sociology, and psychology of science and their application to and impact on science teaching and learning, science teacher education, and science education research.

C I 551. Foundations of Reading and Language Arts. (3-3) Cr. 3. S.S.S. Prereq: Teaching license. Analyzing, discussing, and researching the theory and practice of current literacy issues.

C I 552. Corrective Reading. (3-0) Cr. 3. F. S.S. Prereq: One course in reading, identification, analysis, and correction of reading problems within the elementary program in five areas: print knowledge, integration of print knowledge, oral reading fluency, vocabulary, and comprehension.

C I 553. Reading for Adolescents with Mild Disabilities. (Same as Sp Ed 553.) See Special Education.
C I 554. Reading and Responding to Children’s Literature. (3-0) Cr. 3. Prereq: Teaching license. Research and discussion of issues surrounding the use of current children’s literature in the classroom, including censorship, diversity, and literature selection.

C I 556. Integrating Technology into the Reading and Language Arts Curriculum. (Dual-listed with 456.) (3-0) Cr. 3. S.S.S. Prereq: Teaching license. Methods and strategies used to integrate technology into the reading and language arts curriculum. Use and evaluation of reading and language arts software for elementary classrooms.

C I 588. Supervised Tutoring in Reading. (Dual-listed with 488.) (2-2) Cr. 3. Prereq: S.S.S. Using formal and informal diagnostic procedures to plan and implement individualized reading instruction. Field experience.

C I 590. Special Topics. Cr. 1 to 3. Prereq: 9 graduate credits in education.
A. Curriculum
B. Instructional Technology
C. Science Education
D. Secondary Education
E. Environmental Education
F. Multicultural Education
G. Mathematics Education
H. Gifted and Talented
I. Elementary Education
J. Foreign Language
K. Educational Psychology
L. Social Studies
M. Literacy Education

C I 591. Supervised Field Experience. (0-2 to 12) Cr. 1 to 8. F.S.S.S. Prereq: 15 graduate credits in special area. Supervised on-the-job field experience in special area.
A. Gifted and Talented - Elementary
B. Foreign Language
C. Elementary Education
D. Secondary Education
E. Environmental Education
F. Multicultural Education
G. Media Center - Elementary
H. Media Center - Secondary

C I 593. Workshops. Cr. 1 to 3. Prereq: 9 graduate credits in education.
A. Curriculum
B. Instructional Technology
C. Science Education
D. Secondary Education
E. Environmental Education
F. Multicultural Education
G. Mathematics Education
H. Gifted
I. Elementary Education
J. Foreign Language
K. Educational Psychology
L. Social Studies
M. Literacy Education

C I 594. Contemporary Curriculum Theory and Principles. (3-0) Cr. 3. Prereq: Graduate standing. Theoretical and historical perspectives of contemporary curriculum; social, cultural, and epistemological aspects of curriculum theory; political, racial, feminist, reconceptualist and postmodernist critiques of curriculum and schooling in the U.S.

C I 596. Curriculum Problems and Inquiry. (3-0) Cr. 3. Prereq: 594. Analysis of contemporary problems of schooling and curriculum; use of qualitative inquiry to study diverse school sites and social problems influencing public education.

C I 599. Creative Component. Cr. 1 to 3. Prereq: 9 graduate credits in education.
A. Curriculum
B. Instructional Technology
C. Science Education
D. Secondary Education
E. Environmental Education
F. Multicultural Education
G. Mathematics Education
H. Gifted and Talented
I. Elementary Education
J. Foreign Language
K. Educational Psychology
L. Social Studies
M. Literacy Education

Courses for Graduate Students

C I 603. Advanced Instructional Systems Design. (3-0) Cr. 3. S.S.S. Prereq: 503. Exploration of aspects of the instructional design process, including reflective practice, recursion and iteration, participatory design, and both qualitative and quantitative formative evaluation. Study in this field also complements work in other areas of specialization in education.

C I 610. Technology in Teacher Education. (2-0) Cr. 2 or 3. F. Prereq: 505. Research on using technology in teacher education programs. Application examples studied. Field component involving relating material from class to a teacher education situation.

C I 611. Philosophical Foundations of Instructional Technology. (3-0) Cr. 3. Prereq: 12 graduate credits in curriculum and instruction. Exploration of philosophies of science that serve as foundations for research and practice in instructional technology, including positivism, post-positivism, interpretivism/constructivism, and critical theory. The roles of language, nature of truth and reality, and acceptable ways of knowing are explored in terms of their implications for instructional technology design, delivery, research, and scholarship.

C I 612. Socio-psychological Foundations of Educational Technology. (3-0) Cr. 3. Prereq. 12 graduate credits in curriculum and instruction. Exploration of theories of learning and associated instructional models that are the foundation for research and practice in education and educational technology, including behavioralism, information processing theory, and cognitive science. Emphasis on cognitive and social constructivist paradigms and the creation and use of constructivist learning environments supported by technology.

C I 615. Seminar. (1-0) Cr. 1. F.S.S.S. Selected topics in curriculum and instruction; analysis of research potential; evaluation of impact upon the profession; implications for additional research.
A. Curriculum
B. Instructional Technology
C. Science Education
D. Secondary Education
E. Environmental Education
F. Multicultural Education
G. Mathematics Education
H. Gifted and Talented
I. Elementary Education
J. Foreign Language
K. Educational Psychology
L. Social Studies
M. Literacy Education

C I 690. Advanced Special Topics Cr. arr. Prereq: 9 graduate credits in education.
A. Curriculum
B. Instructional Technology
C. Science Education
D. Secondary Education
E. Environmental Education
F. Multicultural Education
G. Mathematics Education
H. Gifted and Talented
I. Elementary Education
J. Foreign Language
K. Educational Psychology
L. Social Studies
M. Literacy Education

A. Curriculum
B. Instructional Technology
C. Science Education
D. Secondary Education
E. Environmental Education
F. Multicultural Education
G. Mathematics Education
H. Gifted and Talented
I. Elementary Education
J. Foreign Language
K. Educational Psychology
L. Social Studies
M. Literacy Education

Historical, Philosophical, and Comparative Studies in Education (HPC)

David Owen, Program Coordinator

This program provides graduate experiences in historical, philosophical, and comparative studies in education. Students develop facility in analyzing educational problems and issues, critiquing policies that affect education in society, and making connections between educational practice and learning. Work is offered toward the master of science with thesis or nonthesis option, and the master of education. These degree programs and classes are of benefit to classroom teachers, educational theorists, administrators, university personnel, youth workers, religious educators, and others who seek to understand and better the numerous bases of contemporary systems of education. Study in this field also complements work in other areas of specialization in education.

Courses Primarily for Graduate Students, Open to Qualified Undergraduate Students

H P C 581. Philosophy of Education. (3-0) Cr. 3. Prereq: Graduate classification. The bases of American educational theory and practice. Philosophical analysis of the viewpoints on education of selected individuals and groups.

H P C 584. Classics of Educational Philosophy. (3-0) Cr. 3. Prereq: Graduate classification. Intensive study of influential statements of educational purpose, organization, curriculum, practice, and problems in the development of Western education.

H P C 585. Comparative Education: Traditions. (3-0) Cr. 3. Prereq: Graduate classification. Analysis of the cultural traditions of education outside the United States. Emphasis is given to an examination of the principles upon which selected national educational systems have been built. Special attention often given to noneuropean traditions.

H P C 586. Comparative Education: Global and National Systems. (3-0) Cr. 3. Prereq: Graduate classification. Examination of global patterns, ideologies, and reform movements in education; contrasting policies and practices in different cultural and geographic contexts; the role of multilateral aid and credit agencies in influencing the development and provision of schooling; consideration of principles and methods of comparative analysis of education.

H P C 588. History of American Education. (3-0) Cr. 3. Prereq: Graduate classification. Historical analysis of selected educational policies, such as equal educational opportunity, governance, discipline, and teacher education. Biographies, school records, and government reports are examined. Antecedents to current issues are stressed.

H P C 590. Special Topics. Cr. 1 to 5. Prereq: 9 credits in education.
A. History of Education
B. Philosophy of Education
C. Comparative Education
Courses and Programs

Curriculum and Instruction 193

Courses Primarily for Graduate Students

Sp Ed 503. Introduction to Behavior Disorders. (1-0) Cr. 1. Prereq: Teaching license; taken concurrently with 504 and 505. Characteristics, identification, procedures and service delivery, and exemplary education programs, and concerns about management of students with behavior disorders. Cr. 1 to 3.

Sp Ed 504. Introduction to Learning Disabilities. (1-0) Cr. 1. Prereq: Teaching license; taken concurrently with 503 and 505. Conceptualizations of characteristics of learning disabilities, as well as etiologies of learning problems. Cr. 1 to 5.

Sp Ed 505. Introduction to Multicategorical Instruction. (1-0) Cr. 1. Prereq: Teaching license; taken concurrently with 503 and 505. Historical development of instructional settings and strategies for students with learning disabilities, physical disabilities, emotional disabilities, and speech/language disorders. Cr. 1 to 5.

Sp Ed 512. Educational Interventions for Children and Youth with Behavioral Disorders. (2-0) Cr. 2. Prereq: Teaching license, concurrent enrollment in 513 or 514. Interventions to address the needs and emotional needs of children and youth with behavior disorders in the school setting. Cr. 1 to 3.

Sp Ed 514. Educational Interventions for Youth with Behavior Disorders in the Secondary School. (1-0) Cr. 1. Prereq: Teaching license, concurrent enrollment in 512. Application of the basic principles of educational intervention approaches to elementary school children who are identified as behaviorally disordered. Cr. 1 to 5.

Sp Ed 515. Curriculum Based Assessment of Children and Youth with Learning and Behavioral Disorders. (3-0) Cr. 3. Prereq: Teaching license. Individual educational diagnostic procedures and techniques. Cr. 1 to 5.

Sp Ed 517. Seminar: Research in Educational Interventions and Management of Children and Youth with Disabilities. (2-0) Cr. 2. Prereq: 512 or 513 or 514. Critical review of recent literature in education and psychosocial sciences as applied to education of students with mild to severe disabilities. Cr. 1 to 5.

Sp Ed 531. Methods for Teaching Multicategorical Classrooms. (2-0) Cr. 2. Prereq: 505; concurrent enrollment in 532 or 533. Remedial instructional models and materials for individualized instruction and behavior management for students with mild disabilities. Cr. 1 to 3.

Sp Ed 541. Teaching Strategies for Learning Disabilities. (2-0) Cr. 2. Prereq: Teaching license. Examination of the academic, personal, social, employability, and daily living skills needed for a satisfactory adult life. Cr. 1 to 3.

Sp Ed 553. Reading for Adolescents with Mild Disabilities. (1-0) Cr. 1. Prereq: Teaching license. Instructional strategies and models for enhancing the comprehension and retention of students with mild disabilities in conjunction with content-area reading material. Cr. 1 to 3.

Sp Ed 555. Career Education and Transition for Youth with Learning and Behavior Disabilities. (2-0) Cr. 2. Prereq: Teaching license. Examination of the academic, personal, social, employability, and daily living skills needed for a satisfactory adult life. Cr. 1 to 3.

Sp Ed 564. Consultation/Collaboration Methods in Special Education. (2-2) Cr. 2. Prereq: Teaching license. Techniques for collaboratively solving classroom problems by professionals with diverse expertise and responsibilities. Cr. 1 to 3.

Sp Ed 565. Role of the Consultant. (1-0) Cr. 1. Prereq: 564. Explore role of the educational consultant in different settings (state department, area education agency, school district, private). Examine roles in relationship to models (mental health, collaborative, other). Cr. 1 to 3.

Sp Ed 590. Special Topics. Cr. 1 to 5. Prereq: 15 credits in education, permission of department head. Cr. 1 to 5.

Sp Ed 591. Supervised Field Experience. (1-0 to 12) Cr. 1 to 6. F.S.S. Prereq: 15 graduate credits in special area, admission to the graduate program in special education. Supervised on-the-job field experience in special areas. Cr. 1 to 3.

A. Learning Disabilities, Elementary.
B. Learning Disabilities, Secondary.
C. Behavioral Disorders—Mild, Elementary.
D. Behavioral Disorders—Mild, Secondary.
E. Behavioral Disorders—Moderate to Severe, Elementary.
F. Behavioral Disorders—Moderate to Severe, Secondary.
G. Multicategorical, Elementary.
H. Multicategorical, Secondary.
I. Multicategorical SCI-Elementary.
J. Multicategorical SCI-Secondary.

Courses and Programs Curriculum and Instruction

Design Studies

(Interdepartmental Undergraduate Program)

Mark Chidister, Program Coordinator

The Design Studies program brings together courses that deal with the integrated study of the conceptualization, production, visible form, uses, and history of artifacts, buildings, and environments as well as the common qualities and connections among the design fields. Students in any college may elect to take a minor in Design Studies.

Minor

The undergraduate minor in Design Studies is constructed to facilitate design awareness among interested students and to provide a vehicle for interdisciplinary study within the College of Design.

Students seeking a Design Studies minor complete fifteen credits including three credits of history selected from College of Design course offerings and twelve additional credits selected from College of Design course offerings. Courses from Architecture, Art and Design, Community and Regional Planning, Landscape Architecture, and Design Studies may be taken to meet the requirements of the minor.

At least six of the fifteen credits must be taken at Iowa State University in courses numbered 300 or above. At least nine of the fifteen credits must not be used to meet any other college or university requirements except the credit requirement for graduation.

Students enrolled in the College of Design may not use courses in their major to satisfy this minor.

Additional information is available in the Student Programs and Services Office, 297 College of Design.

Graduate Study

Courses open for nonmajor graduate credit:

Courses Primarily for Graduate Students

Dan S 111. Design Exchange Seminar II. (0-2) Cr. 1. F. Prereq: Member of the Design Exchange Learning Community. Development and clarification of career and academic plans.

Dan S 129. Introduction to Creativity. (Same as L A 129.) (3-0) Cr. 3. F. Creativity and humor in the problem solving process. The use of lateral thinking for developing new ideas.

Dan S 181. History of Design. (Same as Art H 181.) (3-0) Cr. 3. F.S. Study of issues and artifacts, their relation to the traditional and changing role of the creators, and to western culture.

Dan S 221. History of Western Architecture I. (Same as Arch 221.) See Architecture.

Dan S 222. History of Western Architecture II. (Same as Arch 222.) See Architecture.

Dan S 270. Forces Shaping Our Metropolitan Environment. (Same as C R P 270.) See Community and Regional Planning.

Dan S 273. Landscape Architectural History: prehistory to 1900. (Same as L A 273.) See Landscape Architecture.

Dan S 274. The Social and Behavioral Landscape. (Same as L A 274.) See Landscape Architecture.

Dan S 280. History of Art I. (Same as Art H 280.) See Art History.

Dan S 281. History of Art II. (Same as Art H 281.) See Art History.

Dan S 290. World Cities and Globalization. (Same as C R P 290.) See Community and Regional Planning.

Dan S 292. Dimensions of Art and Design. (Same as Art 292.) See Art and Design.

Dan S 293. Environmental Planning. (Same as C R P 293.) See Community and Regional Planning.

Dan S 320. Urban Form. (Same as C R P 320.) See Community and Regional Planning.

Dan S 351. Solar Home Design. (Same as Arch 351.) See Architecture.

Dan S 365. Technology and the City. (Same as C R P 365.) See Community and Regional Planning.

Dan S 371. Landscape Architectural History: 1900 to Present. (Same as L A 371.) See Landscape Architecture.

Dan S 376. Environmental Art. (Dual-listed with 576; same as L A 376.) See Landscape Architecture.

Dan S 380. North American Indian Art. (Dual-listed with 580; same as Art H 380.) See Art History. Nonmajor graduate credit.

Dan S 382. Art and Architecture of Asia. (Dual-listed with 582; same as Art H 382.) See Art History. Nonmajor graduate credit.

Dan S 383. Greek and Roman Art. (Dual-listed with 583; same as Art H 383.) See Art History. Nonmajor graduate credit.

Dan S 385. Renaissance Art. (Dual-listed with 585; same as Art H 385.) See Art History. Nonmajor graduate credit.

Dan S 386. Baroque and Rococo Art. (Dual-listed with 586; same as Art H 386.) See Art History. Nonmajor graduate credit.

Dan S 394. Women in Art. (Dual-listed with 594; same as Art H 394.) See Art History. Nonmajor graduate credit.

Dan S 415. Housing. (Dual-listed with 515; same as C R P 415.) See Community and Regional Planning.

Dan S 417. Urban Revitalization. (Dual-listed with 517; same as C R P 417.) See Community and Regional Planning.

Dan S 425. Growth Management. (Dual-listed with 515; same as C R P 415.) See Community and Regional Planning.

Dan S 429. Planning in Developing Countries. (Dual-listed with 519; same as C R P 429.) See Community and Regional Planning.

Dan S 442. Site Analysis and Development Design. (Dual-listed with 542; same as C R P 442.) See Community and Regional Planning.

Dan S 446. Interdisciplinary Design Studio. (Dual-listed with 546.) (0-12 to 0-18) Cr. 4 to 6. F.S. Prereq: Junior classification in a curriculum in the College of Design and permission of instructor. Advanced interdisciplinary design projects.

Dan S 463. Housing Environments for Elderly and Disabled Persons. (Same as HD FS 463.) See Human Development and Family Studies.

Dan S 467. Preservation, Restoration, and Rehabilitation. (Same as Arch 467.) See Architecture. Nonmajor graduate credit.

Dan S 471. Design for All People. (Same as Arch 471.) See Architecture. Nonmajor graduate credit.

Dan S 478. Topical Studies in Landscape Architecture. (Dual-listed with 578; same as LA 478.) See Landscape Architecture.

Dan S 481. Art and Architecture of India. (Dual-listed with 581; same as Art H 481.) See Art History. Nonmajor graduate credit.

Dan S 484. Sustainable Communities. (Dual-listed with 584; same as C R P 484.) See Community and Regional Planning.

Dan S 487. Nineteenth Century Art. (Dual-listed with 587; same as Art H 487.) See Art History. Nonmajor graduate credit.

Dan S 488. Modernism and Modern Art: 1880-1945. (Dual-listed with 588; same as Art H 488.) See Art History. Nonmajor graduate credit.

Dan S 491. Environmental Law. (Dual-listed with 591; same as C R P 491.) See Community and Regional Planning.

Dan S 495. Contemporary Art and Theory Since 1970. (Dual-listed with 595; same as Art H 495.) See Art History. Nonmajor graduate credit.

Dan S 496. History of Photography. (Dual-listed with 596; same as Art H 496.) See Art History. Nonmajor graduate credit.

Dan S 498. Selected Topics in Art History. (Dual-listed with 598; same as Art H 498.) See Art History. Nonmajor graduate credit.

Courses Primarily for Graduate Students, Open to Qualified Undergraduate Students

Dan S 515. Housing. (Dual-listed with 415; same as C R P 515.) See Community and Regional Planning.

Dan S 517. Urban Revitalization. (Dual-listed with 417; same as C R P 517.) See Community and Regional Planning.

Dan S 525. Growth Management. (Dual-listed with 425; same as C R P 525.) See Community and Regional Planning.

Dan S 528. Topical Studies in History, Theory, and Criticism of Architecture. (Same as Arch 528.) See Architecture.

Dan S 529. Planning in Developing Countries. (Dual-listed with 429; same as C R P 529.) See Community and Regional Planning.

Dan S 542. Site Analysis and Development Design. (Dual-listed with 442; same as C R P 542.) See Community and Regional Planning.

Dan S 546. Interdisciplinary Design Studio. (Dual-listed with 446.) (0-15) Cr. 4 to 6 each time taken, maximum of 12. F.S.S. Prereq: Admission to a graduate program in the College of Design and permission of instructor. Advanced interdisciplinary design projects.

Dan S 558. Appropriate Technologies for Architecture. (Same as Arch 558.) See Architecture.

Dan S 562. Housing Design Issues. (Same as Arch 562.) See Architecture.

Dan S 566. Housing for Specific Groups. (Same as Arch 566.) See Architecture.

Dan S 573. Post-Occupancy Evaluation. (Same as Arch 573.) See Architecture.

Dan S 575. Contemporary Urban Design Theory. (Same as Arch 575.) See Architecture.

Dan S 576. Environmental Art. (Dual-listed with 578; same as LA 576.) See Landscape Architecture.
The ecology and evolutionary biology major is designed for students interested in the study of mechanisms controlling the composition, structure, and functional processes of ecological systems and the mechanisms that regulate the pattern and rate of evolutionary change within and among species. Cooperating departments offer courses in physiological, population, community, ecosystem, restoration, and landscape ecology; aquatic and wetland ecology; forest ecology; agroecology; wildlife and resource management; systematic; phylogenetics and genetics; and population evolution. In addition, interdisciplinary courses in ecology and evolution are offered, including a special topics course, a seminar, and an extended field trip.

Information on application procedures, research interests of the faculty, and specific requirements of the major can be obtained from the chair of the supervisory committee.

Courses for Graduate Students

EEB 585. Extended Field Trip (0-6 Cr.) Cr. 2 each time taken. F.S. Prereq: Graduate classification. Annual field trip to a region of North America to study the major terrestrial and aquatic ecosystem types of the region. Report required.

EEB 590. Special Topics. Cr. 1 to 3 each time taken. Prereq: Graduate classification and permission of instructor.

EEB 698. Seminar. (1-0) Cr. 1 each time taken. F.S. Reports and discussion of recent research and literature.

EEB 699. Research.

Undergraduate Study

The department offers work for the degree bachelor of science with a major in agricultural business, and for the degree bachelor of science with a major in economics. For further discussion of programs in agricultural business, see the statement below under College of Agriculture. For programs in economics, see the statement below under College of Liberal Arts and Sciences. Visit our web site at www.econ.iastate.edu.

Graduates of the Department of Economics have unique skills that distinguish them from other graduates. They have the ability to think and reason clearly, and can address complex issues using tools and decision making models of economics, mathematics, statistics, as well as concepts from the biological, physical, and social sciences. Graduates develop human relations skills that are essential in the workplace and the community. They are able to communicate economic and business concepts to other professionals, collective organizations, governments, and the general public using a variety of means. Graduates understand the interaction of technology, human activity, and the environment. They are able to apply concepts associated with making "optimal" choices among economic alternatives. Graduates are prepared for graduate work in law, economics, and business, as well as the world of work, having learned tools of critical analysis and skills essential to getting and keeping meaningful employment.

College of Agriculture

For the undergraduate curriculum in agricultural business, see College of Agriculture, Curricula.

The agricultural business curriculum prepares students for advanced studies and for careers in agricultural finance, management in agricultural supply and marketing industries, commodity merchandising and research, business research and management, farm and ranch operations, commercial farm management and appraisal, agricultural sales and marketing, agricultural reporting and public relations, agricultural extension, international activities, and government service. A major in agricultural business with a minor in economics is not per-
Courses and Programs Economics

mitted; however, a double major in economics is permitted.

College of Liberal Arts and Sciences

Candidates for the bachelor of science degree with a major in economics must fulfill requirements established by the College of Liberal Arts and Sciences. (For details of undergraduate curricula in liberal arts and sciences, see College of Liberal Arts and Sciences, Curriculum.)

The economics curriculum prepares students for advanced studies, professional degrees such as law and business administration, and for careers in finance, business and economic research, management, sales and marketing, insurance, brokerage, real estate, labor relations, international development, and government service.

Students majoring in economics are required to take Math 150 and 151 within the mathematical and natural sciences group. Students who plan to postgraduate work in economics, or who want a more quantitative program should substitute Math 165 and 166, at a minimum for the above sequence. Additional requirements are Statistics 227 and Computer Science 103. Twenty-eight credits in economics are required for the bachelor of science degree. These 28 must include Econ 101, 102, 301, 302, 472, and 492. In addition, one course is required from advanced undergraduate courses in the department. Advanced courses are defined as having either 301 or 302 (or both) as a prerequisite. Economics majors must maintain a C average in 101, 102, 301, and 302, with no grade lower than a C.

An optional Business Economics track is available for majors who intend to enter the business world after graduation. Requirements are the same as for the regular track except that students take Econ 431 (Managerial Economics) as their advanced course, they may substitute Econ 353 (Money & Banking) or a financial economics course for Econ 302, substitute Stat 328 (Applied Business Statistics) for Econ 472, substitute Engi 302 (Business Communications) for Engi 314, and must take six credits of business courses from an approved list.

Optimal progress for an economics major would be to complete the principles sequence, Econ 101 and 102, in the freshman year. Math 150 and 151 (or the Math 165, 166 sequence) should also be completed in the freshman year, followed by the intermediate theory sequence, Econ 301 and 302, in the sophomore year. Computer Science 103 and Statistics 227 are recommended in the sophomore year. Required advanced courses and electives should be taken in the junior and senior years.

A minor in economics is offered. Courses to be included in the minimum of 15 hours are Econ 101, 102, 301, and 302.

English Proficiency Requirement: The major in economics requires a grade of C or better in each of the following English courses: 104, 105 (or 105H), and 314.

The department participates in the interdepartmental programs in international studies and women’s studies.

Graduate Study

The department offers the degrees master of science in economics and agricultural economics. The department also offers minors to students with majors in other departments.

Students do not need to have an undergraduate major in economics or agricultural economics in order to qualify for graduate work in the department. However, students must have completed undergraduate coursework in macroeconomics, microeconomics, statistics, and calculus. Background in matrix algebra is preferred, particularly for the Ph.D.

Candidates for the degree master of science (thesis option) are required to complete satisfactorily 30 credits of acceptable graduate work, including preparation of a thesis.

Candidates for the degree master of science (non-thesis option) may fulfill requirements by satisfactorily completing 32 credits of coursework, including preparation of a creative component.

Programs of study for the doctorate are organized by each student in consultation with the major professor and the individual’s committee. Students may select fields of concentration from the following: agricultural economics, econometrics, economic growth and development, financial economics, industrial organization, international economics, labor economics, macroeconomics, natural resource and environmental economics, and public economics.

Each student must complete advanced courses in microeconomic and macroeconomic theory, quantitative methods and econometrics, and two fields from the list above. Students must demonstrate competence in theory by passing qualifying examinations. Examinations may be required in the two field areas. Students must also participate in workshops.

With the cooperation of the College of Law at Drake University, a joint degree consisting of doctor of jurisprudence and master of science in agricultural economics or economics may be pursued concurrently. Other cooperative programs of study may be arranged with the University of Iowa College of Law or other recognized institutions.

The department cooperates in the interdepartmental programs in business administrative sciences and industrial relations, the interdepartmental major in transportation, and interdepartmental minors in gerontology and housing.

Courses Primarily for Undergraduate Students

Econ 101. Principles of Microeconomics. (3-0)

Econ 101H. Principles of Microeconomics. (3-0)

Econ 102. Principles of Macroeconomics. (3-0)
Cr. 3. F.S.SS. Prereq. 101 recommended.

Econ 102H. Principles of Macroeconomics. (3-0)

Econ 110. Orientation in Economics/Agricultural Business. (1-0) Cr. R. F. Orientation course for freshman and new transfer students in agricultural business and economics.

Econ 135. Agricultural Firms, Markets and Prices. (3-0) Cr. 3. F.S. Prereq: 101. Basic concepts and economic principles related to markets for agricultural inputs and products. Overview of current marketing problems faced by farmers and agribusinesses, farm and retail price formation, fungibility of markets, and the role of agriculture in the general economy and international trade. The implications of consumer preferences at the farm level. Introduction to hedging, futures, and other risk management tools.

Econ 292. Career Seminar. (1-0) Cr. 1. F. Prereq: Classification in economics or agricultural business. Career opportunities in the various industries and government institutions with an emphasis on agribusiness. Required training and skills needed to perform successfully in different types of careers. Factors important in finding and obtaining employment either before or after graduation including personal resumes, interviewing, and letter writing. Offered on a satisfactory-fail grading basis only.

Econ 298. Cooperative Education. Cr. R. F.S.SS. Prereq: Permission of the department cooperative education coordinator; sophomore classification. Required of all cooperative education students. Students must register for this course prior to commencing each work period.

Econ 301. Intermediate Microeconomics. (3-0) Cr. 3 or (3-1) Cr. 4. F.S.SS. Prereq. 101; Math 151 or 165. Theory of consumer and business behavior, optimal consumption choices and demand; theory of firm behavior; costs, production, and supply; competitive and imperfectly competitive markets; theory of demand for and supply of factors of production; general equilibrium analysis. Nonmajor graduate credit.
Econ 321. Economics of Discrimination. (Same as W S 321.) (3-0) Cr. 3. F. Prereq: 101. Economic theories of discrimination, including the problems of women and minorities in such areas as earnings, occupations, and unemployment. Public policy concerning discrimination. Nonmajor graduate credit.

Econ 322. Collective Bargaining. (3-0) Cr. 3. S. Prereq: 101, 135 recommended for sections B, C, and D. A survey of collective bargaining and public policy toward labor. Economic analysis of topics such as labor supply transfer programs, education and training, mobility, labor demand, minimum wages, benefits, unemployment insurance, income distribution and relative wages, discrimination, unemployment, and international competitiveness. Nonmajor graduate credit.

Econ 323. Economics of Discrimination. (Same as W S 321.) (3-0) Cr. 3. F. Prereq: 101. Economic theories of discrimination, including the problems of women and minorities in such areas as earnings, occupations, and unemployment. Public policy concerning discrimination. Nonmajor graduate credit.

Econ 332. Cooperatives. (2-0) Cr. 2. S. Prereq: 101. Survey of cooperative activities with emphasis on agricultural cooperatives, types of cooperatives, methods of operation, principles, legal and tax aspects, cooperative finance, economic possibilities, and limitations of cooperation. Nonmajor graduate credit.

Econ 335. Agricultural Markets. (2-2) Cr. 3. F. S. Prereq: 101 or permission of the department. Principles and practice of analysis of agricultural markets, price determination, and market strategies in the food and agricultural sector. Structure and organization, competition, economies of size and scale, product differentiation, price, strategic pricing, monopoly, cooperative and non-cooperative oligopoly, contracts, and other forms of coordination. Equilibrium of markets over space and time. Nonmajor graduate credit.

Econ 338. Introduction to Agricultural Marketing. Cr. 1 to 3 each term. Prereq: 101. Designed for off-campus programs in agriculture. Offered as demand warrants. The legal framework impinging upon decision-making by farm families, individuals, real and personal property, contracts, secured transactions, negotiable instruments, debtor-creditor relations, bankruptcy, organization of farm businesses, intergenerational transfer of property, insurance, liabilities, environmental law, federal and state regulatory powers. Nonmajor graduate credit.

Econ 401. Topics in Microeconomics. (3-0) Cr. 3. F. Prereq: 301, Stat 227. Advanced treatment of selected topics from one or more of the following areas: household production/consumption theory and imperfect competition, general equilibrium, intertemporal choice, asset markets, income distribution, externalities and public goods, etc. Nonmajor graduate credit.

Econ 402. Topics in Macroeconomics. (3-0) Cr. 3. S. Prereq: 301, Stat 227. Advanced treatment of selected topics from one or more of the following areas: business cycle theory, growth theory, fiscal and monetary policy, coordination issues, open economy macroeconomics, international finance. Nonmajor graduate credit.

Econ 415. Economics of Imperfect Competition, Antitrust and Regulated Industries. (3-0) Cr. 3. S. Prereq: 301; Math 151 or 160 or 165. The economic and strategic analysis of monopoly and oligopoly, predatory pricing, cartels and price-fixing, entry barriers and entry deterrence, vertical integration, technological change, and bid-rigging and other anticompetitive devices. Credit for either 341 or 432 may be applied to graduation. Nonmajor graduate credit.

Econ 431. Managerial Economics. (3-0) Cr. 3. S. Prereq: 301. Topics including application of microeconomic theory to the firm and organizations; incentives and efficiency; pricing; public policy; international trade and the impact of trade on welfare and employment patterns; income distribution and governmental policies towards trade, such as tariffs, quotas, and free trade areas. Theory of balance of payments and international finance. Nonmajor graduate credit.

Econ 432. Applied Commodity Marketing and Price Analysis. (3-0) Cr. 3. S. Prereq: 431. Applied commodity price analysis and forecasting; futures markets; price determination, and market strategies in the food and agricultural sector. Structure and organization, competition, economies of size and scale, product differentiation, price, strategic pricing, monopoly, cooperative and non-cooperative oligopoly, contracts, and other forms of coordination. Equilibrium of markets over space and time. Nonmajor graduate credit.

Econ 461. Agricultural Law. (3-2) Cr. 4. F. Prereq: Senior classification. The legal framework impinging upon decision-making by farm families, individuals, real and personal property, contracts, secured transactions, negotiable instruments, debtor-creditor relations, bankruptcy, organization of farm businesses, intergenerational transfer of property, insurance, liabilities, environmental law, federal and state regulatory powers. Nonmajor graduate credit.

Econ 462. Legal Issues in Agriculture. (2-0) Cr. 2. Prereq: 101. Designed for off-campus programs in agriculture. Offered as demand warrants. The legal framework impinging upon decision-making by individuals, families, and firms in agriculture; ownership and transfer of real property; commercial law including secured transactions, sales, and negotiable instruments; bankruptcy; insurance; estate and business planning; lease and management; estate and business planning for the family; civil liabilities; water law; environmental law; government regulation of agriculture. Nonmajor graduate credit.
Econ 455, International Trade and Finance. (4-0) Cr. 4. S. Prereq: 301. Rigorous treatment of theories of international trade and its impact on domestic and world welfare and the distribution of income.

Theoretical analysis of government policies towards trade, such as quotas, tariffs and free trade areas. Theory of exchange rate and balance of payments determinations; models of monetary and fiscal policies; study of efficiency of the foreign exchange market.

Examination of alternative international monetary arrangements. Credit for either 355 or 455, but not both, may be applied toward graduation. Nonmajor graduate credit.

Econ 460. Agricultural, Food, and Trade Policy. (3-0) Cr. 3. F.S. Prereq: 301. Description and analysis of economic problems of U.S. agriculture. Explanation and economic analysis of government policies and programs to develop agriculture, conserve agricultural resources, address consumer food concerns, stabilize farm prices, and raise farm incomes. The interaction of policy, world economy, and international trade on U.S. agriculture. Nonmajor graduate credit.

Econ 466. Agricultural Finance. (3-0) Cr. 3. S. Prereq: 301, Stat 227; Fin 301 and Econ 353 recommended. Financial analysis of agricultural businesses; liquidity, profitability, solvency, and growth of agricultural firms; risk and return; capital budgeting methods; analysis of land investments, leasing, and costs of credit; financial intermediation and major financial institutions; bankruptcy and bankruptcy code; loan pricing, and asset-liability management techniques by financial intermediaries; public policies affecting agricultural credit markets. Nonmajor graduate credit.

Econ 472. Introductory Econometrics. (4-0) Cr. 4. F. Prereq: 301, 302, Stat 227. Introduction to the models and methods used to estimate relationships and test hypotheses pertaining to economic variables. Simple and multiple regression analysis; stochastic regressors; heteroskedasticity; autocorrelation; measurement error; simultaneous equations. Nonmajor graduate credit.

Econ 490. Independent Study. Cr. 1 to 5 each time taken. Prereq: Junior or senior classification, 14 credits its in economics. Students in the College of Agriculture may use no more than 6 credits of Econ 490 toward the total of 12 credits required for graduation, and no more than 15 credits in courses numbered 301 and above may be used. Offered on a satisfactory-fail grading basis only.

H. Honors.

Econ 492. Graduating Senior Survey. (1-0) Cr. F.S. Prereq: Graduating senior. Final preparation for graduation. The final stages of job searching, interviewing, letter writing, and resume preparation. Outcomes assessment information from graduating seniors including opinion surveys, instructor/advisor/course evaluations, exit interviews, student accomplishment surveys, job placement surveys, and comprehensive skills examinations. Departmental requirements will apply. Life as an alumnus - expectations and obligations. Convocation and commencement information. Offered on a satisfactory-fail grading basis only.

Econ 493. Workshops. Cr. 1 to 3 each time taken. No more than 6 credits allowed applied toward graduation. Prereq: Permission of instructor. Offered on a satisfactory-fail grading basis only.

Econ 496. Economics Travel Course. Cr. 1 to 3 each time taken, maximum of 6. Prereq: Sophomore status; permission of instructor. Tour and study of international, national, regional, and comparative economic systems; markets, and institutions. Locations and duration of tours will vary. Limited enrollment.

Econ 498. Cooperative Education. Cr. R. F.S.S.S. Prereq: Permission of the department cooperative education coordinator; senior classification. Required of all cooperatives. Students must register for this course prior to commencing each work period.

Courses Primarily for Graduate Students, Open to Qualified Undergraduate Students

Econ 500. Quantitative Methods in Economic Analysis I. (4-0) Cr. 4. F. Prereq: 301, 1 year of calculus, Stat 401 or equivalent, and permission of Director of Graduate Studies. Economic applications of selected mathematical and statistical concepts: linear models and matrix algebra; differential calculus and optimization; integral calculus and economic dynamics; probability distributions, estimation, and hypothesis testing in the analysis of economic data.

Econ 501. Microeconomics. (4-0) Cr. 4. F. Prereq: 301, credit or enrollment in 500 or equivalent background in calculus and statistics. The theory of the consumer, theory of the firm; perfect and imperfect competition, welfare economics, and selected topics in general equilibrium and uncertainty. This is a Master’s level course.

Econ 502. Macroeconomics. (4-0) Cr. 4. F. Prereq: 302 or enrollment in 502 or equivalent background in calculus and statistics. Models of aggregate supply and demand, theory of consumption and investment, money supply and demand, inflation, rational expectations model, policy, financial markets, and international finance. This is a Master’s level course.

Econ 509. Mathematical Programming in Agricultural and Applied Economics. (3-0) Cr. 3. Prereq: 301 and 400 level or above. Linear programming and the Simplex method; sensitivity analysis and parametric programming; goal programming, stochastic programming, and other extensions of linear programming; input-output and interregional models; nonlinear and quadratic programming to reflect production, marketing, and financial risk; comparison with other criteria for making risky decisions in agricultural and investment analysis; use of recursive and dynamic programming in long-term planning and farm firm growth models.

Econ 520. Labor Supply and Human Capital Formation. (3-0) Cr. 3. Alt. S. Offered 2003. Prereq: 501 or 601. Labor supply decisions and empirical analysis of labor market: programs and other self-employed and wage-earning households; multiple job holding; resource allocation in productive households; human capital formation by households, firms, and public institutions, which includes schooling on-the-job training, migration, health, research, raising of children, and implications for household income and welfare; applications to problems in rural areas of development and other countries.

Econ 521. Labor Markets. (3-0) Cr. 3. Alt. S. Offered 2003. Prereq: 501 or 601. Topics such as labor demand; market determination of wages and employment; compensation, contracts and incentives in the workplace; public policy; role of technology on employment and wages by skill level; analysis of government intervention in the labor market; discrimination; analysis of unemployment.

Econ 530. Advanced Farm Management. (2-0) Cr. 2. Prereq: 6 credits in economics. Offered off campus as demand warrants. Management techniques of planning, implementation, control as applied to farm businesses. Quantitative tools as applied to agricultural decision-making. Accounting and financial concepts and decision theory as used to manage agricultural enterprises. Designed for master of agriculture program only.

Econ 532. Business Economics. (3-0) Cr. 3. Prereq: 101 and enrollment in MBA or BAS program; not for economics majors. Applications of microeconomic theory and decision analysis. Demand analysis, production and cost analysis, pricing, profit, market structure and strategy, capital investment analysis, decision-making under uncertainty, government and business.

Econ 533. Economics and Business Decision Tools. (Same as Bud B 533.) (3-0) Cr. 3. Prereq: 501 or 532; not for Ph.D. students in the economics program. Team taught by faculty in the Department of Economics and the College of Business, this course focuses on applied economic and business tools decision making. The topics include: Monte Carlo analysis with applications to option pricing and insurance mechanisms, portfolio analysis using existing standard spreadsheet software and add-ons, dynamic programming tools for inventory management and sequential decisions, discrete choice modeling and statistical bootstrapping, and financial performance evaluation using commercially available software.

Econ 535. Agricultural Marketing. (3-0) Cr. 3. F. Prereq: 501 or 532 or 601. Analysis of agricultural marketing systems focusing on their structure, pricing and coordination mechanisms (including futures markets), and performance. Government market intervention and regulation methods.

Econ 539. Game Theory. (Same as Stat 539.) See Statistics.

Econ 544. Public Economics I. (3-0) Cr. 3. F. Prereq: 501 or 601. Pure public goods and impure public goods, externality, open access and common property resources; market and club provision of excludable public goods; Lindahl and Nash equilibria, collective action.

Econ 545. Public Economics II. (3-0) Cr. 3. S. Prereq: 501 or 601. Preference revelation mechanisms; consumption and production in public economics; nonprofit sector; optimal taxation; partial and general equilibrium analysis of tax shifting and tax incidence, excess burden of tax; tax competition.

Econ 553. Applied Research in Monetary and Macroeconomics. (3-0) Cr. 3. F. Prereq: 502, 571. Application of economic principles and the analysis of contemporary issues in macroeconomics, monetary economics, and financial economics. This is a Master’s level course.

Econ 555. Issues in International Economics. (3-0) Cr. 3. S. Prereq: 502. Theories of international trade and finance. Emphasis on current policy issues in international economics. This is a Master’s level course.

Econ 563. Issues in Government Policy Affecting Agriculture. (2-0) Cr. 2. Prereq: 101. Off campus. Offered as demand warrants. Government policy and the policies of the developing world; farm marketing, trade, and agriculture. Description and analysis of government policies and programs designed to address production agriculture problems and consumer food concerns. Evaluation of the interaction of agriculture and world trade as affected by U.S. and foreign government policies. Designed for master of agriculture program only.

Econ 586. Advanced Agricultural Finance. (3-0) Cr. 3. Prereq: 501 or 601; Fin 505 recommended. Modern financial theories of the firm applied to agriculture; models of capital structure of farm firms; investment under uncertainty; capital asset pricing in agriculture; market imperfections in rural financial markets, and government intervention.

Econ 571. Intermediate Econometrics. (3-0) Cr. 3. S. Prereq: 500. Single and multiple equation regression model; dummy variable and serial correlation; heteroskedasticity; distributed lags; qualitative dependent variables; simultaneity. Use of econometric models for tests of economic theories and forecasting.

Econ 573. Econometrics I. (4-0) Cr. 4. F. Prereq: 501 and Stat 517 or 519. Introduction to econometrics, estimation, and testing of single and multiple equation models of economic processes; qualitative choice and limited dependent variables; examination and evaluation of empirical models. Literature review.

Econ 574. Econometrics II. (3-0) Cr. 3. S. Prereq: 573. Large sample properties of estimators and large sample inference; dynamic models and instrumental variables; identification, estimation, and evaluation of systems of simultaneous equations; introduction to time series methods and applications, including alternative variance specifications.

Econ 576. Spatial Economics. (3-0) Cr. 3. S. Prereq: 501. Analysis of location choice by firms, employees, and households emphasizing the role of spatial variations in agglomeration economies, economies of scale, distance, transport, endowments, amenities, and local government. Models of land use, urban form, spatial competition, central place theory, and migration. Techniques of discrete choice analysis; statistical analysis of categorical data, urban system modeling, and interregional computable general equilibrium.

Econ 583. Water Resources. (Same as ViRes 583.) (3-0) Cr. Alt. F., offered 2001. Prereq: Graduate classification; not for economics majors. Analysis of water resource management issues from economic, legal, political, and sociological perspectives. Topics include rational water allocation systems, market failure, investment, pollution control strategies, and resource management. Administered by Economics in cooperation with the Department of Civil Engineering and Sociology.

Econ 585. Economic Growth and Development. (3-0) Cr. Alt. S., offered 2002. Prereq: 501 and 502 or 601 and 602. Performance and problems of developing countries in relation to growth, employment, structural change, development; theories and paradigms of development; theories and sources of long-run economic growth; fertility and population growth; income distribution and poverty; land reforms and agricultural development; rural-urban migration; labor markets; corruption and development; information problems; banking and financial intermediation; role of monetary and fiscal policies in development.

Econ 590. Special Topics. Cr. 1 to 5 each time taken. Offered on a satisfactory-fail grading basis only.

Econ 599. Creative Component. Cr. 1 to 5. Offered on a satisfactory-fail grading basis only.

Courses for Graduate Students, major or minor.

Econ 600. Quantitative Methods in Economic Analysis II. (3-0) Cr. 3. F. Prereq: 500 or equivalent background in calculus. Introduction to elements of nonlinear programming, comparative static analysis, difference and differential equations, dynamic optimization, and game theory useful for micro- and macroeconomic modeling.

Econ 601. Microeconomic Analysis I. (4-1) Cr. 4. F. Prereq: 301, previous or concurrent enrollment in 600 and permission of Director of Graduate Studies. Economic theory and methodology; theory of consumer behavior, theory of the competitive firm, supply and factor demand; duality relations in consumer and producer theory, partial equilibrium analysis, stability and comparative statics; introduction to game theory; theory of imperfect competition.

Econ 602. Macroeconomic Analysis. (4-1) Cr. 4. S. Prereq: 301, 302, previous or concurrent enrollment in 600 and permission of Director of Graduate Studies. Analysis of static and dynamic models of aggregate economic activity with an emphasis on the role of fiscal and monetary policies on the determination of GDP and its distribution, the price level, and labor employment.

Econ 603. Microeconomic Analysis II. (4-1) Cr. 4. S. Prereq: 601, 602 and permission of Director of Graduate Studies. Economic analysis, financial theory, supply and demand, market failures, externalities, and the theory of the second best; uncertainty and economic theory; producer supply and factor demand decisiocity; portfolio and savings decisions under uncertainty; value of information; applications of game theory to economic analysis.

Econ 604. Advanced Macroeconomic Analysis. (4-1) Cr. 4. F. Prereq: 601, 602 and permission of Director of Graduate Studies. Introduction to microtheoretic-based dynamic and stochastic macroeconomic models applied to the study of economic growth, business cycles, and governmental policies.

Econ 605. Advanced Topics in Microeconomics. (3-0) Cr. Each time taken. Prereq: 602, 604. Selected topics in microeconomic theory of current significance to the profession.

Econ 606. Advanced Topics in Macroeconomics. (3-0) Cr. Each time taken. Prereq: 603, 604. Selected topics in macroeconomic theory of current significance to the profession.

Econ 639. Consumption and Demand Analysis. (3-0) Cr. 3. Prereq: 601. Analysis of demand with emphasis on the theory of consumption decisions, the development and estimation of models, and the assessment and interpretation of empirical results. Demand systems, flexible functional forms, separability and aggregation, dynamic models. Household consumption models, demographics, equivalence scale, and size of household, income distribution of goods. Empirical applications with emphasis on food demand. Extensions and policy issues related to marketing regulations, food assistance programs, poverty, nutrition, food aid, and food policy.

Econ 640. Advanced Topics in Agricultural Economics. (3-0) Cr. Each time taken. Prereq: 603. Selected topics in agricultural economics of current significance to the profession.

Econ 641. Production Economics with Agricultural Applications. (3-0) Cr. 3. Prereq: 601. Advanced treatment of agricultural production and resource allocation, estimation of production functions, functional forms, and duality, alternative representations of technology, including distance, cost, revenue, and profit functions. Technological change, productivity, parametric and nonparametric estimation of technology and supply relationships; dynamic models; decisions under uncertainty; stochastic production relationships, strategic uncertainty, the role of information and insurance.

Econ 653. Financial Economics. (3-0) Cr. 3. Prereq: 603, 574. Recommended: 674, Stat 551. Review of decision-making under uncertainty. Portfolio theory, the efficient frontier, capital asset pricing model (CAPM), arbitrage pricing theory (APT), representative agent models, pricing of derivative securities. Complete and incomplete asset markets, risk-sharing interme- diaries, the role of government in the financial sector. Market frictions, crashes, bubbles. Applications of asset valuation models, with emphasis on markets with limited, impermeable asset prices.

Econ 654. Advanced Topics in Financial Economics. (3-0) Cr. Each time taken. Prereq: 653. Selected topics in financial economics of current significance to the profession.

Econ 655. International Trade. (3-0) Cr. 3. F. Prereq: 603. Modern theory of international trade; welfare and distributional aspects of trade and tariffs. The interdependence of international trade and economic growth. Optimal trade policies in the presence of such distortions as unemployment, monopolies and cartels, balance of payments problems, infant indus- tries, and common market areas.

Econ 657. International Finance. (3-0) Cr. 3. S. Prereq: 604. The theory of exchange rate and balance of payments determination; open-economy macroeconomic issues; and current account adjust- ment. Emphasis on the current empirical literature concerning the efficient market theory of the foreign exchange market.

Econ 660. Welfare Theory. (3-0) Cr. 3. Prereq: Credit or enrollment in 603. Notions of economic effi- ciency, equivalent, and inequality; index of variation mea- sures, consumer and producer surplus, market fail- ures, social choice, path independence, compensat- ed demand curves, cost-benefit evaluation, and pub- lic choice.
Educational Leadership and Policy Studies

John H. Schuh, Chair of Department

University Professors: Manatt, Robinson

Professors: Blake, Ebbers, English, Gmelch, Huba, Littrell, Moore, Schuh, Shelley, Steffy, Van Ast

Professors (Collaborators): Barak, Gardner

Distinguished Professors (Emeritus): Ahmann, Fanslow, Warner

Professors (Emeritus): Beavers, Boyles, Bryan, Engel, Hopper, Jones, Kizer, Lagoncarino, Lawrence, McCandless, Netusil, Pellegrino

Associate Professors: Evans, Gilley, Licklider, Poston

Associate Professors (Adjunct): Stow, Tesfaiogris

Associate Professors (Emeritus): Thielen

Assistant Professors: Hackmann, Hamrick, Kilgore, Mullen

Assistant Professors (Adjunct): Andersen, Arthur, Hill, Jackson, Norton, Payne, Udin

Graduate Study

The Departments of Educational Leadership and Policy Studies and Curriculum and Instruction offer work for the degrees master of science, master of education, and doctor of philosophy with a major in education. They also offer minor work to students majoring in other fields of study. In the Department of Educational Leadership and Policy Studies, students may complete the Ph.D. with a major in education and a specialization in educational leadership. At the master’s level, students may specialize in counselor education; educational administration; higher education; organizational learning and human resource development; and research and evaluation. See the Department of Curriculum and Instruction for further discussion of the education major without specialization and with specialization in elementary education, special education, curriculum instructional technology, and historical, philosophical, and comparative studies in education.

Prerequisite to major graduate work in educational leadership is completion of an undergraduate degree with coursework appropriate to the planned specialization and adequate proof that the student ranks above average in scholastic ability and promise of professional competence.

Doctoral students in Educational Leadership and Policy Studies will complete seminars, laboratory experiences, field experiences, and independent research that will enable them to serve as leaders in various educational settings including school administration, community colleges, public and private colleges and universities, business and industry, and public and private agencies. In addition to the common experiences noted above, students will each select an intellectual content area that will prepare them to work in the setting of their choice. Specific information about the requirements of the Ph.D. degree is available from the departmental office.

Graduates of this program possess skills and knowledge related to six core domains: stewardship, educational research, communication, educational evaluation, educational foundations, and educational technology. They are able to work effectively with individuals and groups, engage in ethical decision-making and management of resources to accomplish goals. They comprehend the basic elements of research and inquiry and engage in scholarly inquiry. Graduates express ideas clearly both orally and in writing, understand themselves well and relate sensitively to individuals from diverse backgrounds. They understand and can use intelligently the principles of program evaluation and assessment. Graduates have a clear understanding of the foundations of education; their work is well grounded in theory and philosophy. They also understand the role and applications of technology in learning and organizational processes.

Graduates are knowledgeable about the concepts, theories, and practices related to the educational content area emphasized in their studies.

Other graduate programs related to education (including General Graduate Studies) may be planned for students on the basis of previous education and experiences as well as future plans and needs. Students should refer to programs in the Departments of Agricultural Education and Studies, Curriculum and Instruction, Family and Consumer Sciences Education and Studies, Health and Human Performance, Industrial Technology, and General Graduate Studies or to graduate level course offerings within other departments. The department participates in the interdepartmental program of gerontology.

Courses for Graduate Students

Counselor Education (Co Ed)

John M. Littrell, Program Coordinator

The counselor education program places a dual emphasis on the development of professional school counselors and on the academic/scholarly aspects of the counseling profession. Students are provided an opportunity for practical experience in a variety of settings.

Counselor education graduates are prepared for entry level positions as counselors in elementary and secondary schools. Graduates are educational leaders who are able to promote and enhance student learning through the three broad and interrelated areas of student development - academic, career, and personal/social. Graduates with a Ph.D. in counselor education are skilled in the primary delivery methods for effective school counseling programs; counseling, consultation, collaboration, coordination, case management, guidance curriculum, and program evaluation.

Students desiring graduate work in counselor education leading to the master of science degree or master of education degree may elect one of two programs: elementary school counseling or secondary school counseling.

Courses Primarily for Graduate Students, Open to Qualified Undergraduate Students

Co Ed 529. Foundations of Counseling. (3-0) Cr. 3. F. Prereq: 8 credits in undergraduate education, sociology, or psychology. Research theory and conditions that facilitate behavioral change in individuals. Professional roles and functions, professional organizations and associations, professional history and trends, ethical standards and legal issues, professional preparation standards, and professional credentials.

Co Ed 531. Microcounseling. (1-2) Cr. 3. F. Prereq: Credit or enrollment in 529. Building skills in listening, responding, and developing counseling relationships.

Co Ed 540. Developmental Counseling. (3-0) Cr. 3. S. Prereq: Credit or concurrent enrollment in 529. Understanding and counseling clients on the basis of developmental theory and critical incidents. An opportunity to integrate related concepts, e.g., transitions, crises, career development, and choice theories as part of a client’s life cycle.

Co Ed 551. Occupational Choice and Development. (3-0) Cr. 3. S. Prereq: 529. Developmental and social factors influencing career choice. Theories, assessment instruments, classification systems, and informational sources used in career counseling.

Co Ed 560. Counseling Theories and Models. (3-0) Cr. 3. S. Prereq: 529. Understanding of counseling process with focus on counseling theories including both individual and systems perspective as well as coverage of relevant research and factors considered in application. How counseling theory aids counselors in conceptualizing client concerns and facilitating client choice and/or behavioral change.
Courses for Graduate Students

Co Ed 561. Counseling Techniques. (2-2) Cr. 3. S. Prereq: 529, 531, and 560, or concurrent enrollment in 560. Utilizing counseling theory to provide focus, organize client’s related experiences into sequence, steps and patterns; utilizing the interpersonal process variables in counseling; choosing and implementing interventions that are client and problem specific. The laboratory provides students an opportunity to apply that which is learned through reading, lecture, and class discussions.

Co Ed 569. Group Process. (2-2) Cr. 3. F. Prereq: 531, 561.Ethics for group leaders; planning, implementing, and facilitating groups. Dynamics and leader intervention, issues in group stage. Participation in group laboratory activities.

Co Ed 572. Management of School Counseling Programs. (3-0) Cr. 3. F. Prereq: 531. Design, implementation, and evaluation of a comprehensive developmental school program. Coordination with resource persons, specialists, businesses, and agencies outside the school to promote program objectives; promotion of the program within the total school community; integration of guidance curriculum in the total school curriculum; data gathering methods for program planning and evaluation, time management, and referral procedures.

Co Ed 573. Implementing Community Counseling Programs. (3-0) Cr. 3. F. and S. Prereq: 531, 537. Historical, philosophical, societal, cultural, economic, and political dimensions of the mental health movement; roles of mental health counselors in a variety of practice settings; relationships between mental health counselors and other professionals in these settings; organization, fiscal, and legal dimensions of the institutions and settings in which mental health counselors practice; general principles of community intervention, consultation and outreach; evaluation of programs and systems.

Co Ed 576. Social and Cultural Issues in Counseling. (3-0) Cr. 3. S. Alt. S., offered 2003. Prereq: 560, and 561. Issues and trends in a multicultural and pluralistic society. Focus on multicultural and pluralistic trends including characteristics and concerns of diverse groups, attitudes and behavior based on such factors as ethnicity and culture, individual, family, and group strategies with diverse populations; and ethical considerations.

Co Ed 580. Practicum in Community Counseling. Cr. 3. F. Prereq: 581 or 585. Designed for students who desire counseling experience in a community agency setting. Placement can be arranged at urban centers, detention facilities, MDTA centers, vocational rehabilitation centers, etc.

Co Ed 582. Practicum in Elementary School Counseling. Cr. 3. F.S. Prereq: 560, 581. Placement in an elementary school. Counseling students, consulting with teachers and parents and coordinating activities that enhance student development and growth both in the cognitive and affective domains.

Co Ed 590. Special Topics. Cr. 1 to 2. Prereq: 9 credits in counselor education.

Co Ed 593. Workshop in Counseling and Guidance. Cr. 1 to 3. S. Prereq: 9 hours in counselor education. Workshops are designed to give practicing counselors an in-depth exposure to a counseling issue or a counseling model with concurrent opportunity for feedback. Prerequisite: experience in counseling. Offered when demand warrants.

B. Counseling with Exceptional Children

D. Substance Abuse Counseling

F. Working with Parents and Families

G. Advanced Brief Counseling

H. Crisis Intervention

M. Play Therapy

N. Counseling Children and Adolescents at Risk

Courses for Advanced Studies

Co Ed 610. Group Counseling Practicum. Cr. 1. F.S.S. Prereq: 580, or 581, or 582 and permission of instructor. Supervised experience facilitating and processing groups.

A. Skill Training Lab

B. Counseling Group

Co Ed 611. Internship. Cr. 3 to 6. F. Prereq: 580, or 581, or 582. A student intern performs all activities that regularly employed staff members in a counseling setting perform.

Co Ed 615. Seminar. Cr. 1 to 2. Prereq: 9 hours in counselor education. Seminars are designed to meet various needs of advanced master’s students and practicing counselors. Offered when demand warrants.

C. Current Issues and Trends in Counseling

D. Consultation

F. Group Intervention Strategies

Co Ed 620. Supervision of Counseling. Cr. 2. F.S. Prereq: Minimum of 3 practicum credits and permission of instructor. Advanced counseling students provide clinical supervision for students enrolled in 580, 581, and/or 582.

Educational Administration (EdAdm)

Fenwick English, Program Coordinator

The educational administration program places dual emphasis on preparation of professional educational administrators and on the academic/scholarly aspects of educational leadership and management. Courses taken do not apply toward a degree without official admission to the educational administration program.

Graduates of Master’s degree programs in educational administration are prepared for leadership roles in K-12 school districts and education agencies, typically as building-level principals and assistant principals.

Specifically, graduates are knowledgeable about promoting the success of all students by a stewardship of a vision of learning; nurturing and sustaining a positive school culture; ensuring effective management of the organization, operations and resources for a safe, efficient and effective learning environment; collaborating with families and community members, responding to diverse community interests and needs; and mobilizing community resources; understand acting with integrity, fairness and in an ethical manner; influence the larger political, social, economic, legal and cultural context.

Graduates of the Certificate of Advanced Studies program possess administrative and leadership skills necessary for the superintendent. These include knowledge of child and adolescent development, the educational environment, curriculum and instructional practice, law and ethics; management of systems, personnel, and finances; interpersonal communication and community relationships.

Several programs are offered: (1) The Master of Science degree, both thesis and nonthesis, in elementary or secondary school administration; (2) Master of Education practitioner; (3) advanced study leading to principal’s license; (4) Certificate of Advanced Studies providing post master’s training for superintendent licensure. Courses are scheduled with consideration for cohort-collegial teams or groups.

Courses Primarily for Graduate Students, Open to Qualified Undergraduate Students

EdAdm 541. Principles of Educational Administration. (3-0) Cr. 3. F.S. Prereq: Teacher licensure and permission of instructor. Purposes of education in a democratic society. Basic principles of school administration and educational organization planning. Analysis of the nature and function of units of education at local, intermediate, and state levels; exploration of substantive elements such as leadership, change process, strategic and operational planning, and current issues in education.

EdAdm 551. Supervision of Instruction. (3-0) Cr. 3. F.S. Prereq: 541. Evaluating and improving the performance of teachers and administrators of K-12 public schools. The building-level leader in contemporary school setting are explored including strategic goal setting, mission and vision development, curriculum and organizational structure, theory and practice of staff development, effective staff development programs, school climate and culture, effective student support programs such as counseling, attendance and discipline, and home/patient involvement and relationships.

EdAdm 553. Administrative Theory in Education. (3-0) Cr. 3. S.S. Prereq: 541. Current thinking in administration and organization, theoretical approaches to administration; analysis of functions and processes of administration as they apply to education.

EdAdm 554. Community and Interagency Partnerships. (3-0) Cr. 3. F.S. Prereq: 541. Concept and development of community/school partnerships with family and juvenile service agencies to enhance pupil learning and resilience via increasing family stability and mental physical health. Practices which promote interagency collaboration with the school, legal and administrative issues, will be explored.

EdAdm 556. Cultural Analysis of Administrative Problems. (3-0) Cr. 3. F.S. Prereq: 541. Practical and theoretical perspectives on school administration, critical pedagogical studies and research. Deals with school related issues such as cultural literacy, forms of authority and control, and other historical problems in dealing with minorities and culturally different groups and persons.

EdAdm 558. Developmental Needs of Diverse Learners. (3-0) Cr. 3. S. S. Prereq: 541. Learner needs are examined from dominant psycho/social perspectives with stress upon developmental phases of normal growth along with common problems encountered in schools. Other issues examined are racism, gender bias, and socio-economic problems which impact learner responsiveness to school curricula, routines, regulations and legal requirements.

EdAdm 559. Design and Delivery of School Curricula. (3-0) Cr. 3. F.S. Prereq: 541. Generic administrative approaches to the design and delivery of school curricula, elementary and secondary, including quality control, validation, concepts of balance, planning, and alignment, development of curricular guides, mapping and student assessment strategies, employing national standards and benchmarks.
Higher Education (Hg Ed)
Nancy J. Evans, Program Coordinator

The higher education program provides graduate instruction and leadership development in community college education, student affairs practice, institutional research, post-secondary curriculum, and higher education administration. The master of science with thesis or non-thesis option and master of education degrees are offered as well as postgraduate professional development and community college licensure courses. Students desiring community college arts and science licensure must have a master’s degree in a subject matter area, complete a human relations requirement (Hg Ed 570H; fulfills this requirement), and complete the following courses: Hg Ed 561, 562, and 582. Contact the program coordinator for additional information. Students desiring community college applied science and technology, health professions, or business and information technologies licensure must complete the human relations requirement (HgEd 570H; and Hg Ed 420, 421/521, 422/522, and 425/525). An M.Ed. in higher education for community college instructors is provided with an emphasis on learning and teaching leadership. A community college leadership certificate program is also offered.

Subjects for Graduate Students

Courses for Graduate Students

EdAdm 601. Planning Systems, Operations and School Environments. (3-0) Cr. 3. S.SS. Prereq: 541. Planning and management theories, assumptions, strategies and tactics within belief systems; development of vision and mission positions; strategic goals; objectives, and operational tactics to attain them with emphasis on facility renovation and school construction projects.

EdAdm 602. Human Resource Development and Negotiations. (3-0) Cr. 3. S.SS. Prereq: 541. Development and practice of collective negotiations within human resource development concepts and strategies with emphasis on creating and implementing “win-win” approaches that enhance system productivity and performance. Specific contract language and concepts which enhance system effectiveness will be highlighted.

EdAdm 603. Personnel Evaluation and System Assessment Practices. (3-0) Cr. 3. Prereq: 541. Theory, strategies, and systems for supervising programs and personnel in school districts and independent schools. Focuses on the principal, cabinet level administrator, e.g., director, headmaster, or assistant superintendent for instruction. This course meets the requirement for advanced evaluator training for licensure in Iowa.

EdAdm 604. Theories of Leadership. (3-0) Cr. 3. F.SS. Prereq: 542. Special leadership theories and models will be studied with an emphasis on organization building, constructivist strategies for teachers; developing and assessing and developing internal and external support groups for schools; and organizational capacity building.

EdAdm 605. Current Practices of the Superintendent. (3-0) Cr. 3. S.SS. Prereq: 541. Reviews the historical development of the American superintendent profession, problems and pitfalls, politics and tensions separating executive actions from board policy formulation; executive challenges among contemporary educational problems of resource acquisition and allocation; collaborative relationships; union/system issues; system changes and capacity building models.

EdAdm 606. The Administration of Technology Systems. (3-0) Cr. 3. F.SS. Prereq: 541. The design, acquisition and operations of technology in educational administration, accounting, personnel record keeping and health system interfaces; compensation practices, staff development, and instruction record keeping, maintenance and groups.

EdAdm 607. Advanced School Law. (3-0) Cr. 3. S.SS. Prereq: 547. Emerging issues of school case law and litigation. It pertains to school/student safety; student/teacher relationships; administrative authority/oversight; taxation and abatement; home schooling issues; censorship of books and curricula; student clubs and religious practices.

EdAdm 608. Administrative Problems. (3-0) Cr. 3. F.SS. Prereq: 541. A case study approach to the resolution of problems in educational administration. Emphasis on decision-making, conflict resolution, and communications.

EdAdm 609. Instructional Management. (3-0) Cr. 3. F.SS. Prereq: 541. Theories and practices of instructional management including curriculum audits, classroom observations and analytical models assessing teacher interactions with students. Strategies of improving assessing teacher interactions with students. Strategies of improving pupil resiliency and achievement will be highlighted. Mapping of curriculum configurations in classrooms will be applied to the use of national/international standards.

EdAdm 611. Superintendent/Board Relations. (3-0) Cr. 3. F.SS. Prereq: 541. An historical analysis of the development of governance systems in American public education, and contemporary issues and problems confronting effective school district governance.

EdAdm 612. School Finance and Business Management. (3-0) Cr. 3. S.SS. Prereq: 541. Contemporary business and risk management practices including financial management and banking; investment of funds; cash flow projections; accounting practices and school budget development concepts and usage. The functions and duties of school business personnel will be related to specific business and fiduciary tasks.

EdAdm 615. Seminar. Cr. 1 to 3. In-depth study of administrative topics of contemporary interest and importance. A. Client Focus B. Research C. Quality Improvement D. Special Services E. Assessment F. Leadership

EdAdm 690. Advanced Special Topics. Cr. 1 to 3. Prereq: 9 credits in educational administration.

EdAdm 691. Internship. (3-0) Cr. 3. Prereq: 541 and admission to program and instructor’s approval. Supervised on-the-job field experience in special areas.

Education Leadership and Policy Studies (EL/PS)

Betty Steffy, Program Coordinator

Courses for Graduate Students

EL PS 615. Thematic Seminars. Cr. 1. F.S.SS. Prereq: Admission to educational leadership doctoral program.

A. Communication and Team Building B. Governance, Politics and Policies C. Law, Equity, Equality D. Ethics, Justice, and Caring E. Problem Solving and Planning F. Critical and Creative Thinking

EL PS 616. Capstone Experience. Cr. 3. F.S. Prereq: 6 credits of 615. This experience is designed to explore a topic addressed in one of the thematic seminars. The product of the capstone experience is a written paper of sufficient quality to be submitted to a scholarly journal for review.
Hg Ed 504. Higher Education in the United States. (3-0) Cr. 3. S. Prereq: Graduate classification. Historical development of higher education; diversity, functions, and challenges; colleges and universities; federal and state roles; review of general liberal, technical, graduate, and professional education.

Hg Ed 521. Vocational Technical Teaching Methods at Community Colleges. (Dual-listed with 421.) (3-0) Cr. 3. S. Prereq: 420. Develops competencies necessary to develop, implement, and evaluate collaborative learning, learning to learn, and other classroom and lab/class teaching techniques.

Hg Ed 522. Vocational Technical Curriculum at Community Colleges. (Dual-listed with 422.) (3-0) Cr. 3. F. Prereq: 521. Develops competencies necessary to identify, develop, implement, and evaluate outcome-based vocational technical courses and programs in community colleges with a focus on alignment and accountability.

Hg Ed 523. Vocational Technical Assessment at Community College. (Dual-listed with 423.) (3-0) Cr. 3. S. Prereq: 522. Develops competencies necessary to identify, develop, implement, and evaluate teaching and learning success with a focus on classroom assessment.

Hg Ed 550. Teaching, Learning and Leadership. (3-0) Cr. 3. F. Prereq: Teacher licensure. Current issues and practices in community college teaching, and learning and the role and responsibilities of teachers as leaders.

Hg Ed 561. College Teaching. (3-0) Cr. 3. S. Prereq: 6 graduate credits. This course will review educational theories, methods and strategies for the improvement of college instruction. It seeks to assist potential college instructors in developing knowledge of protocol, assessment, and the scholarship and art of teaching. This course will emphasize the unique challenge of college teaching in an environment of a changing student population.

Hg Ed 562. Curriculum Development in Colleges. (3-0) Cr. 3. S. Prereq: Graduate classification. Modes of curriculum design, development, and change in colleges. Development of curricular leadership and evaluation strategies.

Hg Ed 574. Student Services. A. Community Colleges. Cr. 1. A study of the modern practice of institutional research. The master's degree is designed to integrate the learning experiences of students completing the master's degree program in higher education. Such issues as ethics, continuing professional development, career planning and leadership will be explored.

Hg Ed 591. Supervised Field Experience. Cr. 1 to 4. S. Prereq: 9 credits graduate work. Supervised on-the-job field experience.

Hg Ed 593. Workshops. Cr. 1 to 5. Prereq: 15 credits in education.

Hg Ed 598. Capstone Seminar. (3-0) Cr. 3. S. Prereq: Completion of 30 credits in ELP. This course is designed to integrate the learning experiences of students completing the master's degree program in higher education. Such issues as ethics, continuing professional development, career planning, and leadership will be explored.

Hg Ed 599. Creative Component. Cr. arr. Prereq: 9 credits in education.

Courses for Graduate Students

Hg Ed 615. Seminars in Higher Education. Cr. 1 to 4.

Hg Ed 616. College Organization and Administration. (3-0) Cr. 3. S. Prereq: 504. Administrative organization and behavior: communications, leadership, finance, strategic planning, and institutional governance.

Hg Ed 665. Financing Higher Education. (3-0) Cr. 3. Prereq: 504. Lectures, discussions, and individual investigation relating to financial administration in colleges and universities. Budgeting, auxiliary enterprises, administration of financial planning, fund raising, examination of theories on expenditures. Designed for persons aspiring to serving as college administrators.

Hg Ed 666. Academic Issues and Courses. (3-0) Cr. 3. Prereq: 504. This course will examine institutional culture and issues in higher education focusing on the roles and responsibilities of faculty and academic administrators.

Hg Ed 676. Student Development Theory II. (3-0) Cr. 3. S. Prereq: 576. This course will examine life span approaches to student development; racial, ethnic, and sexual identity development; spiritual development and career development. The emphasis is on application of these theories in student affairs practice.

Hg Ed 690. Advanced Special Topics. Cr. 1 to 4. Prereq: 9 credits in education.

Organizational Learning and Human Resource Development (OLHRD)

Jerry W. Gilley, Program Coordinator

The Organizational Learning and Human Resources Development (OLHRD) program prepares graduates for leadership roles in public and private organizations. The OLHRD program focuses primarily on the role and function of learning, change, and performance management in effective organizations. Graduates are expected to develop an understanding of the relationship among organizational learning, performance, and effectiveness and to develop skills and knowledge used to design, manage, and evaluate Organizational Learning and Human Resources Development efforts. The master of education (M.Ed.) is offered.

Courses Primarily for Graduate Students, Open to Qualified Undergraduate Students

OLHRD 540. Foundations of Organizational Learning and Human Resource Development. (3-0) Cr. 3. S. F.S. A study of the modern practice of organizational learning and human resource development from a perspective of its history, philosophy, application, and literature.

OLHRD 541. Adult and Organizational Learning. (3-0) Cr. 3. S. Prereq: 540. Examining how adults acquire and use knowledge, skills, attitudes within organizational settings; understanding individual differences in learning as well as the principles and elements of the learning process.

OLHRD 643. Strategically Integrated Human Resource Development. (3-0) Cr. 3. S. Prereq: 540, 541. Examining the evolution and philosophy of human resource development, organizational transformation techniques, performance partnerships, changes in human resource development practice; and applying tools and techniques to improve organizational performance.

OLHRD 544. Performance Improvement and Change Through Learning Interventions. (3-0) Cr. 3. S. Prereq: 541, 542. Examining the characteristics and elements of the performance improvement and change process, with special attention to the roles and responsibilities of employees, managers, and organizations in improving individual and organizational learning.

OLHRD 545. Learning Acquisition, Transfer, and Evaluation. (3-0) Cr. 3. F. Prereq: 541, 542, 544. Critical examination of learning acquisition, transfer, and evaluation bariers, partnerships, strategies, and activities; and the roles and responsibilities of human resource development professionals, managers, employees, and organizations in the application and evaluation of learning-on-the-job.

OLHRD 546. Human Resource Development Consulting. (3-0) Cr. 3. F. Prereq: 543, 544. Understanding the roles, responsibilities, characteristics, objectives, competencies, and skills of human resource development consultants, and applying the consulting process to solve performance and organizational problems in real and hypothetical settings.

OLHRD 547. Practicum/Internship. Cr. 3. F.S. Practicum or internship designed to provide work exposure in organizational learning and human resource development.

OLHRD 598. Capstone Seminar. Cr. 4. F.S.SS. Prereq: 21 credits in organizational learning and human resource development. Integrating the learning experiences of students completing the master’s degree program in Organizational Learning and HRD.

Courses for Graduate Students

OLHRD 661. Principles of Consultation. Cr. 3. S. Prereq: Admission to doctoral program in Educational Leadership. Examination of the roles of change agents in organizational learning, performance, and change and their ability to build change capacity within organizations as well as a critical examination of the role of performance and organizational consultants with respect to competencies and knowledge required in applying the consulting process in real and hypothetical settings.

OLHRD 662. HRD Leadership. Cr. 3. F. Prereq: Admission to doctoral program in Educational Leadership. Examination of the characteristics and elements of HRD Leadership, with special attention to the roles and responsibilities used in managing and facilitating organizational learning and performance improvement.

OLHRD 663. Advanced Seminar in Organizational Learning and HRD. Cr. 3. S. Prereq: Admission to doctoral program in Educational Leadership. Critical examination of the principles and elements of the adult and organizational learning with respect to current trends in HRD.

OLHRD 664. Organizational Change and Improvement. Cr. 3. SS. Prereq: Admission to doctoral program in Educational Leadership. Critical examination of the characteristics and elements of effective organizations, with special attention to critical problems and issues in managing organizational change and improvement initiatives.

Research and Evaluation (ResEv)

John Schuh, Program Coordinator
The research and evaluation program prepares professionals to work in the areas of assessment and program evaluation, and educational research with emphasis on statistics and computer applications. Work is offered toward the master of science degree with thesis. Graduates of the program can articulate current issues and principles in research, program evaluation and assessment. They can implement various research and assessment approaches and evaluation models. They understand and effectively use principles and skills of research data analysis, and they prepare and interpret accurate and useful reports.

Courses Primarily for Graduate Students, Open to Qualified Undergraduate Students

ResEv 550. Educational Research. (3-0) Cr. 3. F.S.SS. Prereq: Graduate classification. Understanding the nature of quantitative and qualitative research; reviewing the literature; developing research problems and questions; research designs; data collection and analysis issue; evaluating research studies.

ResEv 552. Basic Educational Statistics. (3-0) Cr. 3. F. Prereq: 550. Statistical concepts and procedures for analyzing educational data. Descriptive statistics, correlation, 1 tests, and chi square with computer applications.

ResEv 553. Intermediate Educational Statistics. (2-1) Cr. 2. F.S.SS. Prereq: 552. A continuation of statistical concepts and procedures for analyzing educational data. Inferential techniques including simple and multiple regression, multiple ANOVA, etc., with educational computer applications.

ResEv 557. Computer Data Analysis Procedures. (2-0) Cr. 2. Alt. F., offered 2001. Prereq: 552 or equivalent. Processing educational research data including coding, conversion and analysis strategies. Using interactive statistical software such as SPSS to examine, chart, and report findings.

ResEv 560. Assessing Student Learning. (3-0) Cr. 3. Prereq: 550 or basic statistical skills. The principles and techniques of formal and informal classroom assessment. Rubrics, performance assessment, portfolios, paper and pencil tests, communicating assessment findings. Emphasis on both theory and practical applications.

ResEv 580. Qualitative Research Methodology. (3-0) Cr. 3. Prereq: 550. Qualitative research procedures in education, particularly historical, philosophic, biographical, ethnographic, and case study. Use of sources, principles of qualitative research, methods of data collection and analysis, field techniques, and writing of research results.

ResEv 590. Special Topics. Cr. 1 to 3 each time taken. F.S.SS. Prereq: Graduate standing. Guided reading and in research and evaluation study on special topic.

ResEv 593. Workshop. Cr. 1 to 3 each time taken. F.S.SS. Prereq: Graduate standing. Intensive, concentrated exposure in organizational learning and human resource development professionals, managers, employees, and organizations in the application and evaluation of learning-on-the-job.

Electrical Engineering

Courses for Graduate Students

ResEv 615. Current Topics in Research and Evaluation. (1-0) Cr. 1; may be taken 3 times. F.S.

ResEv 680. Critical Issues in Interpretive Methodology. (3-0) Cr. 3. S. Prereq: 580. An intensive reading and discussion course focusing on contemporary methodological theory for interpretive inquiry. Examines how interpretive field work is conducted, how narrative and ethnographic data are theorized and analyzed, and how interpretive texts are written.

ResEv 690. Advanced Special Topics. Cr. 1 to 3 each time taken. F.S.SS. Prereq: Graduate standing. Guided reading and/or study on special topics of an advanced nature.

Courses for Graduate Students

(Administered by the Department of Electrical and Computer Engineering)

Subrahmanyan Venkata, Chair of Department

Distinguished Professors: Lord

University Professors: Jones

Professors (Adjunct): Hillesland, Sastry

Professors (Collaborators): Ouyang

Distinguished Professors (Emeritus): Brown, Fouad, Nilsson, Pohm

Professors (Emeritus): Anderson, Basart, Brearley, Brockman, Comstock, Fanslow, Hale, Hsieh, Koerber, Koplin, Potter, Read, Smay, Swift, Townsend, Triska

Associate Professors: Ajarapu, Bartlett, Berleant, Chen, Davidson, Davis, Jacobson, Khammass, Kletsch, Kruempel, Lee, McCalley, Russell, Stephenson, Tyagi

Associate Professors (Collaborators): Hassoun, Konrad

Associate Professors (Emeritus): Bond, Carlson, Coady, McMechan, Mericle, Pavlat, Scott

Assistant Professors: Aluru, Balasubramanian, Chu, Cruz-Neira, Dickerson, Elia, Govindarasu, Lavalle, Patterson, Salapaka

Assistant Professors (Adjunct): Lee, McCalmont, Mina

Assistant Professors (Collaborators): Barton, Chandramouli, Mathew

Instructors (Adjunct): Freeman

Undergraduate Study

For undergraduate curriculum in electrical engineering leading to the degree bachelor of science, see College of Engineering, Curricula. This curriculum is accredited by the Engineering Accreditation Commission of the Accreditation Board for Engineering and Technology.
The Electrical and Computer Engineering (ECPE) Department at Iowa State University provides undergraduate students with the opportunity to learn electrical and computer engineering fundamentals, to study applications of the most recent advances in state-of-the-art technologies, and to prepare for the practice of engineering. The student-faculty interaction necessary to realize this opportunity occurs within an environment that is motivated by the principle that excellence in undergraduate education is enhanced by an integrated commitment to successful, long-term research and outreach programs.

The electrical engineering curriculum offers a number of specialization areas at the undergraduate level, including computer networking and security, computer architecture and digital systems, control systems, electromagnetics, microelectronics, VLSI, power systems, and communications and signal processing. An attractive feature of the curriculum is that seniors may choose among course sequences each of which focuses on one of these areas; therefore graduated students have substantial depth in specific areas to complement the breadth obtained in the required curriculum.

The mission of the ECPE Programs at Iowa State University is to enable the graduated student to make significant and substantive contributions to solving engineering problems throughout the student’s professional career. The following objectives are identified as critical to the accomplishment of this mission:

A. Objective I. Impart and enhance knowledge in the domain of electrical and computer engineering: The graduated student should understand
1. engineering and basic science fundamentals including mathematics, probability, statistics, physical sciences, and information technology,
2. the design and manufacturing processes,
3. the fundamentals of business, including entrepreneurship, engineering economy, and cost/revenue streams.

B. Objective II. Expand and hone engineering abilities: The graduated student should be able to
1. identify and solve engineering problems,
2. analyze and design electrical, computer, and multidisciplinary systems,
3. design and conduct experiments and analyze resulting data,
4. use modern engineering hardware and software tools such as computer and instrumentation.

C. Objective III. Instill and nurture social awareness, abilities, and understanding: The graduated student should
1. desire to engage in lifelong learning, and should expect and embrace change,
2. be able to function effectively as a member of a multidisciplinary team, to communicate effectively, and to think critically and creatively, both independently and with others,
3. apply standards of professional conduct in view of the value of science and technology in a global/societal context.

As a complement to the instruction activity, the ECPE Department provides opportunities for each student to have experience with broadening activities. Through the Cooperative Education and Internship Program, students have the opportunity to gain practical industry experience. See College of Engineering, Cooperative Programs. Through the Undergraduate Research Program, students have the opportunity to participate in advanced research activities; and through international exchange programs, students learn about engineering practices in other parts of the world. Well-qualified juniors and seniors in Electrical Engineering who are interested in graduate study may apply for concurrent enrollment in the Graduate College to simultaneously pursue both B.S. and M.S. degrees. See Graduate Study for more information.

Students are required to prepare and to maintain a portfolio of their technical and non-technical skills. This portfolio is evaluated for student preparation during the student’s curriculum planning process. Results of the evaluation are used to advise students of core strengths and weaknesses. Prerequisite material exams are given at key points in the curriculum. These exams are to assist student evaluation of progress made during the academic experience as the materials covered in several courses are the foundation of more advanced courses. These outcome assessments are also used to assess and to improve the quality of the curriculum.

Courses for students who are not in the electrical engineering program: 441, 442, 448. Credit in these courses may not be counted toward a degree in either electrical engineering or computer engineering.

Credit for only one of the following courses may be counted towards graduation: E.E. 201, 441, and 442.

Graduate Study

The department offers work for the degrees of master of science and doctor of philosophy in the area of electrical and computer engineering and minor work to students with other majors. Minor work for electrical engineering majors is usually selected from a wide range of courses outside electrical engineering.

The degree master of science with thesis is recommended for students who intend to continue toward the doctor of philosophy degree or to undertake a career in research and development. The nonthesis master of science degree requires a creative component. Students pursuing a doctor of philosophy degree must select one of the following areas of specialization: communications and signal processing, control systems, electric power, electromagnetics, microelectronics.

The normal prerequisite to major graduate work in electrical engineering is the completion of undergraduate work substantially equivalent to that required of electrical engineering students at this university. Because of the diversification in the electrical engineering graduate program, however, it is possible for a student to qualify for graduate study in certain areas of electrical engineering even though the student’s undergraduate or prior graduate training has been in a discipline other than electrical engineering. Supporting work, if required, will depend on the student’s background and area of research interest.

Prospective students from a discipline other than electrical engineering are required to submit, with the application for admission, a statement of the proposed area of graduate study.

The department requires submission of GRE aptitude test scores by applicants from other countries. All students whose first language is not English and who have no U.S. degree must submit TOEFL examination scores. Ph.D. students must pass a department qualifying examination.

In cooperation with the College of Liberal Arts and Science, the College of Engineering offers a graduate minor in Complex Adaptive Systems. It is open only to students who have met the basic program requirements and are not on temporary enrollment. The CAS minor consists of one common core course, at least two CAS specific techniques courses and at least two supporting courses. Both technique and supporting courses must be selected from lists approved by the advisory committee. A student’s minor program in CAS must include at least nine credits that are beyond the total used to meet curriculum requirements. An interdisciplinary faculty committee supervises the minor. Interested students may contact the Electrical and Computer Engineering Department to obtain more specific guidelines and requirements.

The Department of Electrical and Computer Engineering is a participating department in the interdepartmental M.S. and Ph.D. degree programs in Bioinformatics and Computational Biology. Students interested in these programs may earn their degrees while working under an adviser in Electrical and Computer Engineering.

Well qualified juniors or seniors in Electrical Engineering who are interested in graduate study may apply for concurrent enrollment in the Graduate College to simultaneously pursue both B.S. and M.S. degrees. Under concurrent enrollment, students are eligible for assistantships and simultaneously take undergraduate and graduate courses. Details are available in the Student Services Office and on the department’s web site.

Courses open for nonmajor graduate credit: all 300- and 400-level courses except 322, 391, 396, 397, 398, 463, 466, 468, 490, 491, 492, 494, 498.
Courses Primarily for Undergraduate Students

E E 166. Professional Programs Orientation. (1-0) Cr. R. F.S. Orientation course for students selected to the professional programs in electrical engineering and computer engineering. Prerequisite: Systematic thinking process for engineering problem solving. Group skills needed to work effectively in teams. Group problem solving. Individual interactive skills for small and large groups. Team building. Group projects. Solving engineering problems and presenting solutions through technical reports and oral presentations. Solutions of engineering problems using MATLAB and basic programming in C.

E E 201. Electric Circuits. (3-2) Cr. 4. F.S. Prereq: Enrollment or credit in Math 267 and Physics 222. Basic circuit elements including power and energy relationships. Network theorems. Loop and nodal methods. DC, sinusoidal steady-state, and transient analysis. Operational amplifiers. Introduction to state space. PSPICE. Laboratory experiment and instrumentation. Engineering Education.

E E 264. Introduction to Space Systems and Science. (Same as Aer E 264.) (3-0) Cr. 3. F.S. Prereq: Physics 221. Launch vehicles. Orbital mechanics. Spacecraft systems including communications, power, guidance, commands and data processing. Science from space including astronomy, geology, earth observing, and planetary exploration.

E E 298. Cooperative Education. Cr. R. F.S.S.S. Prereq: Permission of department. First professional work period in the cooperative education program. Students must register for this course before commencing work.

E E 312. Introduction to Electromagnetic Fields. (3-0) Cr. 3. F.S. Prereq: Physics 222. Fundamentals and applications of electric and magnetic fields. Maxwell’s equations, wave solutions, interaction of fields and materials, electrodynamics and magnetostatics, potentials, capacitance and inductance, energy, force, torque. Introduction to numerical techniques for problems having complex geometry. Nonmajor graduate credit.

E E 321. Continuous Signals and Systems. (3-0) Cr. 3. F.S. Prereq: 201, credit or registration in Math 237. Classification of signals and systems; basic signal manipulation and system properties; time domain analysis of continuous-time LTI systems; Laplace Transform and its use in LTI system analysis; transfer functions and feedback; frequency response and analog filters; Fourier Series representation and properties; continuous-time Fourier Transform; spectral analysis and AM modulation; state space analysis. Nonmajor graduate credit.

E E 324. Discrete Signals and Systems. (3-0) Cr. 3. F.S. Prereq: 321. Examples of discrete time signals and systems; time domain analysis of discrete time LTI systems; Z-Transform analysis of LTI systems; transfer functions and stability; discrete time system frequency response and digital filters; discrete time Fourier Series, discrete time Fourier Transform and DFT; sampling and sampling theorem; communication systems; amplitude and frequency modulation and demodulation; time and frequency division multiplexing. Nonmajor graduate credit.

E E 332. Semiconductor Materials and Devices. (Same as Mat E 332) (3-0) Cr. 3. S. S. Prereq: Mat E 231 or E E 333 and credit or enrollment in E E 312 or Physics 222. Introduction to semiconductor device and device physics. Semiconductor band theory of semiconductors. Charge carrier distributions, generation/recombination, transport properties. Physical and electrical properties and fabrication of semiconductor devices, MOSFETs, bipolar transistors, laser diodes and LED’s. Nonmajor graduate credit.

E E 333. Electronic Devices and Circuits. (3-0) Cr. 4. F.S. Prereq: 201, Cpr E 210. Operational amplifier models and applications. DC, large-signal, and small-signal frequency-independent and frequency-dependent models and characteristics for diodes, bipolar-junction transistors, and field-effect transistors. SPICE simulation and control electronic circuit analysis and design. IC technology for MOS and bipolar circuit design. Characteristics of IC logic families. Laboratory design projects. Nonmajor graduate credit.

E E 381. The Engineering Professional. (1-0) Cr. 1. F.S. Prereq: Juniors and seniors preparing for entry to the workplace, communicating effectively, professional organizations. Selected topics of interest to the engineering professional such as: Entrepreneurship, Intellectual Property and Licensing, Product and Professional Liability, Technology and Risk, Total Quality Management, Ethical Principles and Practices, Globalization, the Environment and Sustainable Development. Portfolios.

E E 396. Summer Internship. Cr. R. S.S. Prereq: Permission of department. Summer professional work period.

E E 398. Cooperative Education. Cr. R. F. S.S. Prereq: 298, permission of department. Second professional work period in the cooperative education program. Students must register for this course before commencing work.

E E 408. Interdisciplinary Problem Solving. (Same as I E 408, I Tec 408) (3-0) Cr. 3. F.S. Prereq: Junior or senior standing. Use the Theory of Constraints as a way of approaching problem solving, win-win negotiation, project planning and effective delegation in the context of engineering/business systems. Team projects are aimed at improving design outcomes. Nonmajor graduate credit.

E E 409. Interdisciplinary Systems Effectiveness. (Same as I E 409, I Tec 409) (3-0) Cr. 3. F.S. Prereq: Junior or senior standing. Focus on functions that determine the effectiveness of an entire organization. Generic Theory of Constraints solutions to production, distribution, project management are compared to traditional strategies. Strategy for improve discoveries using simulations and group projects. Nonmajor graduate credit.

E E 414. Microwave Engineering. (Dual-listed with 514.) (3-3) Cr. 4. F. Prereq: 332, 312. Principles, applications, and instrumentation used in the microwave portion of the electromagnetic spectrum. Wave theory in relation to circuit parameters. S parameters, couplers, discontinuities, and microwave device equivalent circuits. RF and microwave sources, optimum noise figure and maximum power designs. Microwave filters and oscillators. Nonmajor graduate credit.

methods to build electronic devices. Use of computer simulation tools for predicting processing outcomes. Recent advances in processing CMOS ICs and microelectronic systems (MEMS). Nonmajor graduate credit.

E 434. Introduction to Integrated Circuit Design. (Same as Cpr E 434) (3-3) Cr. F. Prereq: 333. Basic concepts of electromagnetic energy conversion. DC motors and three-phase induction motors. Basic introduction to power electronics. Adjustable speed drives used for control of DC, induction, and AC motors. Experiments with DC motors, AC motors, and adjustable speed drives. Nonmajor graduate credit.

E 455. Introduction to Energy Distribution Systems. (3-3) Cr. Prereq: 303. Overhead and underground distribution system descriptions and characteristics, load descriptions and characteristics, overhead line and underground cable models, distribution transformers, power flow and fault analysis, overcurrent protection, load factor correction, system planning and automation, and economics in a deregulated environment. Nonmajor graduate credit.

E 465. Digital Integrated Circuit Design. (Same as Cpr E 465). (3-3) Cr. 4. S. Prereq: 434. Digital design of integrated circuits employing very large scale integration, microelectronic systems (MEMS). Nonmajor graduate credit.

E 466. Multidisciplinary Engineering Design. (Same as Cpr E 466; E 466c; E 468; M 466, Mat 466) (1-4) Cr. 3. F. Prereq: Student must be within two semesters of graduation and receive permission of instructor. Application of design concepts to projects of a multidisciplinary nature. Concurrent treatment of design, manufacturing, and life cycle considerations. Application of design tools such as CAD, CAM, and FEA. Design methodologies, project scheduling, cost estimating, quality control, manufacturing processes. Development of a prototype and appropriate documentation in the form of written reports, oral presentations and computer models and engineering drawings.

E 491. Senior Design Project I. (Same as Cpr E 491) (1-3) Cr. F. Prereq: 322 or Cpr E 308. Completion of 29 credits in the EE or Cpr E core professional program, ENGL 314. Emphasis on achieving project objectives to meet a client's needs. Nonmajor graduate credit.

E 492. Senior Design Project II. (Same as Cpr E 492) (1-3) Cr. F. Prereq: 491 or Cpr E 491. Second semester of a team design project experience. Emphasis on defining and planning to achieve project objectives that meet a client’s needs. Technical writing of project plan and design review; project poster.

Courses Primarily for Graduate Students, Open to Qualified Undergraduate Students

E 502. Complex Adaptive Systems Seminar. (Same as CAS 502; Cpr S 502) (1-0) Cr. 1. Core techniques in artificial life. Complex analysis methods such as evolutionary computation, neural nets, agent-based simulations, and large-scale simulations.

E 503. Complex Adaptive Systems Concepts and Techniques. (Same as CAS 503; Com S 503) (3-0) Cr. 3. Complex adaptive systems approach to the study of the evolution of computation, neural computation, cellular computation, computational models of immune systems, complexity theory, computational economics.

E 505. CMOS and BiCMOS Data Conversion Circuits. (Same as Cpr E 505) (3-3) Cr. Alt. S., offered 2002. Prereq: 434. Design and applications of CMOS and BiCMOS data conversion circuits (AD and DA converters) including: quantization effects, conversion algorithms, sample and hold elements, matching, comparators, voltage reference and detailed implementation issues.

E 507. VLSI Communication Circuits. (Same as Cpr E 507) (3-0) Cr. 3. Alt. S., offered 2003. Prereq: 434 or 501. Phase-locked loops, frequency synthesizers, digital and analog digital-to-analog conversion, and implementation of adaptive filters, low-noise amplifiers, mixers, power amplifiers, transmitter and receiver architectures.

E 509. Interdisciplinary Systems Thinking. (Same as I Tec 509) (3-0) Cr. Prereq: Junior or senior standing. Student does extensive individual project using the systematic thought processes of Theory of Constraints to solve and implement the solution to a problem in their current reality. Groups scrutinize and improve each other’s work.

E 510. Topics in Electromagnetics. Cr. 1 to 3 each elected.

E 514. Microwave Engineering. (Dual-listed with 414.) (3-3) Cr. F. Prereq: 333, 312. Principles, analyses, and instrumentation used in the microwave portion of the electromagnetics spectrum. Wave theory in relation to circuit parameters. S parameters, couplers, discontinuities, and microwave device equivalent circuits. RF amplifier design, microwave sources, optimum noise figure and maximum power designs. Microwave filters and oscillators.

E E 532. Microelectronics Fabrication Techniques. (Dual-listed with 432) (2-4) Cr. 3. Prereq: 322 or 323. Techniques used in integrated circuit fabrication, including diffusion, oxidation, ion implantation, lithography, evaporator, sputtering, chemical-vapor deposition, and etching. Process integration. Process evaluation and final device testing. Extensive laboratory exercises utilizing fabrication methods to build electronic devices. Use of computer simulation tools for predicting processing outcomes. Recent advances in photolithography, ion implantation, ICs and microelectromechanical systems (MEMS).

E E 535. Physics of Semiconductors. (Same as Phys 535.) (3-0) Cr. 3. Prereq: 312 and 332. Basic elements of quantum theory, Fermi statistics, motion of electrons in periodic structures, crystal structure, energy bands, energy gaps, defects, impurities, Fermi level, excess carriers and recombination, carrier transport at low and high fields, phonons, optical properties, amorphous semiconductors, heterostructures, and surface effects.

E E 539. Electronic Properties of Materials. (Same as Phys 539.) (3-0) or Math E 231 or Math E 321 or Phys 322. Review of quantum mechanics, band theory of solids, LCAO model, metallic conduction, lattice vibrations, semiconductor, dielectrics, polar and ionic crystals, and blackbody radiation. Crystal relaxation, crystal anisotropy, ferroelectricity, piezoelectricity, conducting oxides, magnetism.

E E 545. Artificial Neural Networks. (3-0) Cr. F. Prereq: 324. Introduction to the fundamentals of artificial neural networks and their application as well as practical implementation of networks. Topics include uses of ANNs for pattern recognition and function approximation, relation of ANNs to biological neurons, activation functions, supervised and unsupervised learning. Networks investigated typically include single and multilayer perceptrons, backpropagation, conjugate-gradient, and stochastic-based learning algorithms; radial basis networks, genetic algorithms; self-organizing networks, Kohonen’s networks, Hopfield and Hamming networks and other associative networks; morphological neural networks.

E E 564. NDE Signal Processing. (3-0) Cr. S. Prereq: 524. Introduction to NDE methods-electromagnetic, ultrasonic and radiographic, forward and inverse problems, continuous and discrete time signals, sampling, systems approach to solving forward and inverse problems, deconvolution procedures and wavelet deconvolution. Wavelet transforms, applications of wavelet transforms in NDE.

E E 578. Modern Control Systems II. (Same as Aer E 578, Math 578, M E 578.) (3-0) Cr. S. Prereq: 577. Well-posedness of nonlinear control systems. Approximate analysis methods.
Courses and Programs Engineering Applications 209

Engineering

Loren W. Zachary, Assistant Dean for Undergraduate Programs

Professors (Emeritus): Sanders
Associate Professors: Dowling

Most of the courses with the designer of Engr are broad-based engineering courses applicable to all engineering disciplines. Several of these courses are part of the basic program which is required for engineering students. Course-related questions should be directed to the department or unit with responsibility for that course. The following is a list of those responsibilities:

Engr 101 Engineering Undergraduate Programs
Engr 110 Engineering Computing Support Services
Engr 160 Materials Science and Engineering
Engr 161 Industrial and Manufacturing Systems Engineering
Engr 170 Agricultural and Biosystems Engineering

Courses for Graduate Students

Engr 591. Seminar in Electronics, Microelectronics, and Photonics. (1-0) Cr. 1 to 3 each time elected. Offered on a satisfactory-fail grading basis only.

Engr 592. Seminar in Nondestructive Evaluation. (1-0) Cr. 1 each time taken. Prereq: Graduate student status. Offered on a satisfactory-fail grading basis only.

Engr 594. Seminar in Electric Power. (1-0) Cr. 1 to 3 each time elected.

Engr 596. Seminar in Control Systems. (1-0) Cr. 1 to 3 each time elected.

Engr 597. Seminar in Communications and Signal Processing. (1-0) Cr. 1 to 3 each time elected.

Engr 599. Creative Component. Cr. var.

Courses for Graduate Students

Engr 628. Computer Vision. (3-0) Cr. 3. F. Prereq: E 579. Image understanding/computer vision techniques. Image-to-image and high-level image-to-representation transformations are used to provide explicit, meaningful descriptions of objects in images at various levels of abstraction. Image algebra. Segmentation techniques: boundary, region, texture. Geometrical descriptions: Euler numbers, connectivity. Relational descriptors: scene labeling, string grammars, similarity measures. Color image processing.

Engr 632. Semiconductor Physics. (Same as Phys 632) See Physics Engr 683. Advanced Topics in Electric Power Systems Engineering. (3-0) Cr. 3 each time elected. Prereq: Permission of instructor. Advanced topics of current interest in electric power system engineering.

Engr 674. Advanced Topics in Systems Engineering. (3-0) Cr. 3 each time elected. Prereq: Permission of instructor. Advanced topics of current interest in the areas of control theory, circuit theory, stochastic processes, digital signal processing, and image processing.

Engr 697. Engineering Internship. (Same as Cpr E 697 and 698) Cr. R. Prereq: Permission of department chair, graduate classification. One semester and one summer maximum per academic year professional work period. Offered on a satisfactory-fail grading basis only.

Engr 699. Research. Cr. var.

Engr 170. Engineering Graphics and Introductory Design. (2-4) Cr. 3. F.S.SS. Prereq: Satisfactory scores on mathematics placement examinations; credit or enrollment in Math 142. Integration of fundamental graphics, computer modeling, and engineering design. Applications of multiview drawings and dimensioning. Techniques for visualizing, analyzing, and communicating 3-D geometries. Application of the design process including written and oral reports. Freehand and computer methods. H. Honors. S.

A. Chemistry 155 (Fall only)
B. Chemistry 165 (Spring only)
C. Chemistry 167
D. Mathematics 165
E. Mathematics 166
F. Physics 221
G. Physics 222

Undergraduate Study

For undergraduate curriculum in engineering applications leading to the degree bachelor of science, see College of Engineering, Curricula. In this era of rapid technological change, there is an expanding need for persons with an engineering background. Engineering applications is specifically designed to develop this background by merging several engineering disciplines or by combining engineering with other disciplines. Students are able to design their program of study to specialize in non-traditional engineering fields or to combine non-technical specializations with a solid foundation in core engineering subjects. Students will be prepared for entry into their chosen field of interest or for further study at the graduate level in any of the fields in engineering or related areas of study, such as law or business.

To achieve engineering application’s program goals, the student must have:

• A strong foundation in engineering courses.
• A broad foundation in mathematics and physical sciences.
• Oral and written communication abilities to effectively communicate with technical and non-technical professionals.
• Basic skills in the use of computers for communication, engineering design and problem solving.

The program develops the ability of students to be effective communicators and develops the unique and creative talents of the students. This is achieved by:

• Allowing students to design their own program of study to align closely with their own talents and interests.
Courses and Programs Engineering Applications

Courses Primarily for Undergraduate Students

A program may be planned by the individual student subject to approval by the supervisory committee. Distance learning program proposals will be considered.

Engineering Mechanics

(Administered by the Department of Aerospace Engineering and Engineering Mechanics)

Thomas J. Rudolphi, Chair of Department

Distinguished Professors: R. B. Thompson

Professors: Chimenti, Greer, Holger, Inger, McDaniel, Munson, Pierson, Rogge, Rohach, Rothmayer, Rudolph, Schmerr, Tannehill, Tsai, Zachary

Professors (Adjunct): Hsu

Distinguished Professors (Emeritus): D. Thompson, Young

Professors (Emeritus): Akers, Iverson, Jenison, McConnell, Rizzo, Weiss, Wilson

Associate Professors: Dayal, Flatau, Hilliard, Hindman, Lu, Mann, Mitra, Rajagopalan, Sarkar, Sherman, Sturges, Trulin, Vogel

Associate Professors (Adjunct): Roberts

Associate Professors (Emeritus): Hermann, Severiske

Assistant Professors: Bastawros, Chavez, Jacobson

Assistant Professors (Adjunct): Gray, Legg

Undergraduate Study

The courses in mechanics are intermediate between those in physics and mathematics and the professional and design courses of the several engineering curricula. In the work of this department the student is expected to acquire an understanding of the principles underlying the technique of analysis and a knowledge of those properties of materials which influence the manner and extent of their use for engineering purposes. Physical properties of engineering materials are studied in the classroom and are evaluated in the laboratory. General laws, such as those of Newton, are given mathematical expression and are made suitable for use in the solution of specific problems in machine and structural design, and in the flow and measurement of fluids.

Graduate Study

The department offers work for the degrees master of science, master of engineering, and doctor of philosophy with major in engineering mechanics, and minor work to students taking major work in other departments.

The master of science degree requires a thesis and a minimum of 8 research credits. It has strong research emphasis and is recommended for students who anticipate entering a doctoral program later. At least 30 credits of acceptable graduate work are required for the degree.

The master of engineering degree does not require either research credits or a thesis. However, at least two credits of acceptable creative component and at least 26 credits of acceptable graduate coursework are required. A minimum of 30 credits of acceptable graduate work is required for the degree. The program is intended to give students additional instruction at the graduate level to better qualify them for advanced professional engineering work. By careful selection of electives and perhaps additional courses during the senior undergraduate year, students should be able to qualify for the master of engineering degree with an additional year of full-time study after receiving their baccalaureate degree in one of the several engineering curricula.

Credits for creative component will be obtained by registering for E M 599. A written report and an oral presentation will be given to the student’s graduate committee.

The normal prerequisite to major graduate work is the completion of a curriculum substantially equivalent to that required of undergraduate students in engineering at this university. However, because of the diversity of interests in graduate work in engineering mechanics, it is possible for a student to qualify for graduate study even though undergraduate or prior graduate training has been in a discipline other than engineering—e.g., physics or mathematics.

Cooperative programs between Engineering Mechanics and Biomedical Engineering are provided jointly under the sponsorship of the Colleges of Engineering and Veterinary Medicine. Laboratory facilities are available both in the veterinary medicine complex and on the main campus. See Biomedical Engineering for requirements.

Courses open for nonmajor graduate credit: All 300- and 400-level courses except 301, 307 and 490.
Courses Primarily for Undergraduate Students

E M 274. Statics of Engineering. (3-0) Cr. 3. F.S.SS. Prereq: Credit or enrollment in Math 166; credit or enrollment in Phys 111 or 221. Vector and scalar treatment of coplanar and noncoplanar force systems. Resultants, equilibrium, friction, centroids, second moments of areas, principal second moments of area, radius of gyration, internal forces, shear and bending moments. Credit for only one of 274, 301, 306, 307 may be allowed for graduation.

E M 306. Statics and Mechanics of Materials. (5-0) Cr. 5. F.S.SS. Prereq: Credit or enrollment in Math 166; credit or enrollment in Phys 111 or 221. Resultants, equilibrium of rigid and deformable bodies, centroids, second moments of area. Stress-strain relationships and deformation, Castigliano’s Theorems. Analysis of axial, torsion, beam bending, buckling, and combined loading. Theories of failure and stress concentrations. Credit for only one of 274, 301, 306, 307 may be allowed for graduation. No more than six credits from 306, 324 may be used for graduation. Nonmajor graduate credit.

E M 425. Introduction to the Finite Element Method. (3-0) Cr. 3. F. Prereq: 306 or 324, Math 268 or Math 267. Introduction to finite element analysis through applications to one-dimensional, steady-state problems such as elastic deformations, heat and fluid flow, consolidation, beam bending, and membrane transport. Transient heat conduction and wave propagation. Two-dimensional triangular and quadrilateral elements. Plane problems of torsion, thermal and potential flow, stress analysis. Simple computer programs for one- and two-dimensional problems. Nonmajor graduate credit.

E M 451. Engineering Acoustics. (Same as M E 491) (2-2) Cr. 3. F or S. Prereq: 221 and Math 266 or Math 267. Sound sources and propagation. Noise standards and effects of noise on people. Principles of vibration and noise control used in architectural and engineering design. Testing of basic noise measurement equipment. Experience in use of noise metering equipment, sound power measurements, techniques for performing noise surveys, evaluation of various noise abatement techniques applied to common noise sources. Selected laboratory experiments. Nonmajor graduate credit.

Courses Primarily for Graduate Students, Open to Qualified Undergraduate Students

E M 510. Continuum Mechanics. (3-0) Cr. 3. Alternating. Offered 2002. Prereq: Math 385. Presentation of the basic equations of engineering mechanics: conservation of mass, conservation of momentum, conservation of energy; principles of selection of constitutive equations; constitutive relations for classical elastic materials and classical fluids; simple rheological models for viscoelastic materials; introduction to continuum tension.

E M 518. Wave Propagation in Elastic Solids. (3-0) Cr. 3. Alt. F., offered 2001. Prereq: Math 385. Elastic waves are treated from both an analytical and phenomenological standpoint, with an introduction to continuum mechanics. Reflection, transmission at planar interfaces lead to two-dimensional waves, primarily Rayleigh, Lamb, SH, and Sliney waves, also with fluid loading. Waves in anisotropic elastic media are covered. Acoustic source radiation, reciprocity, and diffraction and material damping are covered.

E M 519. Experimental Methods of Motion Measurement. (2-2) Cr. 3. Alternating. Offered 2002. Prereq: 417, 444. Description, specifications, limitations, and applications of mechanical, electrical, and optical transducers used for the measurement of displacements applied to steady state, transient, and shock motions. Calibration, signal conditioning, and transducer systems used to obtain reliable and reproducible experimental data. A number of practical examples for motion measurement.

E M 521. Biomechanics. (Same as B M E 521, I E 521) (3-0) Cr. 3. Alternating. Offered 2001. Prereq: Phys 111 or 221, Math 265. For students with interests in the life sciences ergonomics, or rehabilitation engineering. Topics include motion, energy, equilibrium, stress and deformation, material properties, flow of fluids, dimensional analysis and modeling of biological systems. Illustrative examples taken from biology and medicine.

microscopy and energy dispersive X-ray microanaly-
sis. Laboratory microstructural-microchemical analy-
ses of materials.

1.4. Fracture and Fatigue. (Same as M S E 564and E M 564.) (3-0) Cr. 3. F. Prereq: 306 or 324 and any one of 336, E Sc 352, Mat E 211 or 272. Materials and mechanics approach to fracture and fatigue. Fracture mechanics, brittle and ductile frac-
ture, fracture and fatigue, and plastic yielding, and life of fluid dynamics. Fracture and fatigue tests, thermal fracture, mechanics and materials designed to avoid fracture or fatigue.

ing, thermal load, torsion. Introduction to creep, deformation, stress relaxation, and recovery prob-
lems.

E M 571. Advanced Fluid Mechanics. (3-0) Cr. 3. F. Prereq: 378 or M E 335. Mass, momentum, and energy conservativeness; control volume and differential forms of governing equa-
tions; real and ideal fluids; concepts of stress, strain-
rate, and vorticity; exact solutions of Navier-Stokes equations for steady and unsteady flows; low-
Reynolds number flows, boundary layer approxima-
tion; laminar and turbulent boundary layers; two-
dimensional and axisymmetric potential flow prob-
lems; elements of compressible flow; engineering applications.

E M 574. Ultrasonic Nondestructive Measurement Principles. (Same as M S E 574.) (3-0) Cr. 3. F. Prereq: 370, 516, Math 385. Ultrasonic inspection techniques, ultrasonic wave propaga-
tion and scattering. Transducer modeling and the development of a complete ultrasonic measurement model. Fundamental aspects of linear system theory. Application to flaw detection and sizing.

E M 580. Biomaterials. (Same as B M E 580 and M S E 580.) (3-0) Cr. 3. S. Prereq: Mat E 211 or 272. Presentation of the basic chemical and physical prop-
erties of biomaterials as they are related to their manipulation by the engineer for incorporation into living systems. Role of infrastructure properties in the choice of biomaterials and design of artificial organs, implants, and prostheses.

E M 590. Special Topics. Cr. 1 to 4 each time taken. Prereq: Permission of instructor.

A. Advanced Engineering Acoustics
C. Thermal Stresses in Design
D. Linear Viscoelasticity
E. Biomaterials
F. Other Topics

E M 599. Creative Component. Cr. arr.

Courses for Graduate Students

E M 648. Advanced Topics in Dynamics. (3-0) Cr. 3. Alt. S., offered 2002. Prereq: 548, Math 385. Topics of current interest in dynamics such as vehi-
cle stability, modeling multicomponent dynamical systems, and nonlinear body dynamics.

E M 651. Advanced Topics in Fluid Mechanics. (Same as M S E 651.) (3-0) Cr. 3. Alt. S., offered 2002. Prereq: 571. Topics of current interest in fluid mechanics such as separation phenomena, three-
dimensional boundary layers, unsteady flow phenom-
ena, asymptotic methods in viscous flows, stability,
tory of homogeneous isotropic turbulence, and tur-
bulence models.

E M 690. Special Topics. Credit 1 to 6 each time taken. Prereq: Permission of instructor.

A. Advanced Experimental Mechanics
B. Nonlinear Wave Propagation
C. Nonlinear Material Behavior
D. Composite Materials
E. Holography in Mechanics
F. Finite Elements of Nonlinear Continua
G. Fracture Mechanics
H. Atmospheric Fluid Mechanics
I. Viscous Flow Theory
J. Advanced Similitude Analysis
K. Advanced Analytic Methods in Mechanics
L. Rheology
M. Other Topics

E M 699. Research.
Program Educational Objectives:
1. Coordinate the Engineering Science Program’s mission, educational objectives, and learning outcomes with the Iowa State University, College of Engineering, and AEEM department mission, objectives, and student outcomes.
2. Educate students to be proficient in the application of the engineering sciences of solid mechanics, fluid mechanics, dynamics, material sciences, thermal sciences, and electrical sciences.
3. Prepare students to be successful in the workplace utilizing the non-technical skills including: communication skills, teamwork, leadership, ethical and societal responsibility considerations.
4. Provide students with practical engineering experiences through hands-on laboratory courses, internships and cooperative education experiences.
5. Maintain an ongoing consultation with students, faculty, industry, and engineering professionals for the continuous process of academic improvement.

Program Learning Outcomes:
Students pursuing a degree in engineering science will:
1. Apply a basic knowledge of mathematics, science and engineering in the identification, formulations, and solution of engineering problems.
2. Become proficient in the use of laboratory equipment necessary for engineering practice in solid mechanics, fluid mechanics, dynamics, material sciences, and electrical sciences.
3. Function as a multidisciplinary team in their area of specialization, which may include the areas of acoustics, astronautics, avionics, biomedical engineering, control systems, computational and experimental mechanics, dynamics and vibrations, and nondestructive evaluation.
4. Design and conduct experiments.
5. Design and conduct computer simulations.
6. Analyze and interpret data.
7. Become proficient in the use of computer equipment and software necessary for engineering practice.
8. Develop and demonstrate communication skills.
9. Discuss and explore professional and ethical responsibility.
10. Discuss and explore the impact of engineering solutions in global, societal, environmental, economic, safety, and political contexts.
11. Develop and demonstrate teamwork skills.
12. Have opportunities to develop leadership skills.
13. Develop the ability to engage in life-long learning through independent study, research, and engineering development.

Graduate Study
Minor work is available to students taking major work in other departments.
Courses open for non-major graduate credit: all 300- and 400-level courses except 396, 397, 398, 466, 490 and 498.

Courses Primarily for Undergraduate Students

E Sci 298. Cooperative Education. Cr. R. F.S.SS. Prereq: Permission of department. First professional work period in the cooperative education program. Students must register for this course before commencing work.
E Sci 466. Multidisciplinary Design Engineering. (Same as Cpr E 466, E E 466, E 1466, M E 466, Mat E 466) (1-4) Cr. 3. F.S. Prereq: Student must be within two semesters of graduation and receive permission of the instructor. Application of team design concepts to projects of a multi-disciplinary nature. Concurrent treatment of design, manufacturing and life cycle considerations. Application of design tools such as CAD, CAM, and FEM. Design methodologies, project scheduling, cost estimating, quality control, manufacturing processes. Development of a prototype and appropriate documentation in the form of written reports, oral presentations, computer models and engineering drawings.

Courses and Programs

E Sci 490. Independent Study. Cr. 2 to 5. Prereq: Permission of department chair. Investigation of an approved program commensurate with the training, interest, and ability of the student.
E Sci 498. Cooperative Education. Cr. R. F.S.SS. Prereq: 398, permission of department chair. Third and subsequent professional work periods in the cooperative education program. Students must register for this course before commencing work.

English

www.engr.iastate.edu/
Charles J. Kostelnick, Chair of Department

Distinguished Professors: Bowers
Professors: Burnett, Carlson, Chapelle, Daly, Dearin, Douglass, Dow, Duin, Ewald, Freed, Gaha, Graham, Kostelnick, Mendelson, Nakadate, Owen, Paogne, Russell, Silet, Svander, Vano, Zimmerman

Distinguished Professors (Emeritus): Feinberg

Assistant Professors (Emeritus): Galyon, Matthies, Ross, Speer

Assistant Professors: Amaya, Berg, Conrad, Davis, D. Dunlop, Fresonke, Galang, Hegelheimer, Honeycutt, La Ware, Levis, Marquart, Niday, Slaggel, Winkelk

Assistant Professors (Adjunct): Albrighton, Berry, Betcher, Li, Valler

Assistant Professors (Emeritus): Kaufmann, McCull

Instructors (Adjunct): Anderson, Barratt, Bertelsen, Bjurstrom, Douglas, Duffelmeyer, Furbeck, Hagge, Langenberg, Mahoney, Morgan, Myers, Noland, Schmidt, Shivvers

Undergraduate Study

The department offers a wide variety of courses for students seeking a degree in English, as well as for students wishing to broaden their general education. Offerings include classes in introductory college writing, literature, film, creative writing, rhetoric and professional communication, English education, linguistics, and teaching English as a second language.

The discipline of English helps to develop students’ understanding of how language functions in literature, mass media, and both personal and professional writing. Students not pursuing an English major may select English courses to fill electives, to pursue a minor, or to complement their training in other majors.
Graduates will possess a broad-based knowledge and understanding of the discipline. They will also understand their particular disciplinary specialization, whether it be literary studies, rhetoric and professional communication, teacher education, creative writing, or teaching English as a second language/applied linguistics. Graduates will be able to write well-organized, well-reasoned essays that demonstrate their ability to read and think critically.

Introductory writing courses in the department are designed to improve the skills in communication and reading comprehension necessary for successful university work. The English Department maintains a Writing Center to assist students registered for writing courses. (See Colleges and Curricula, Bachelor’s Degree Requirements, and English Proficiency Policy for information about communication proficiency requirements for each Iowa State major. Note that the major requirements in many departments call for coursework beyond first-year composition.)

Through the Intensive English and Orientation Program, the department offers special courses in English for both undergraduate and graduate students who are native speakers of other languages. (See bulletin entries under English Courses for Native Speakers of Other Languages and English Requirement for International Students.)

Careers for English Majors

Students graduating with a major in English find that their career opportunities are improved in fields that require special communication skills, such as publishing, public service, research, business and technical writing, personnel management, international relations, advertising and marketing, finance, and public relations. An undergraduate major in English is an excellent basis for the professional study of law, medicine, theology, or business management. Students in English Education can qualify to teach English in middle or high school. (See Index, Teacher Licensure.) English majors may also pursue graduate studies in a number of communication-related fields.

English Major Requirements

The English major will choose from among several programs of study: Literature, Rhetoric and Professional Communication, and English Education. Students wishing to focus on creative writing should choose Literature as a program of study. English majors are required to have, in addition to first-year composition, at least 39 credits in English; those in English Education must have 48 credits in English in addition to required teaching-related courses taken in other departments. English majors transferring from other institutions must take at least 18 of their credits in English while in residence at Iowa State.

To graduate in English, a student must earn at least a C (not a C-) in English 104 and 105 as well as in each of the courses taken to fulfill the program of study. Earning at least a C in first-year composition and in one advanced writing class also meets the departmental English proficiency requirement.

Finally, all English majors must take some classes in early literature. Those in the Literature option must take at least two pre-1800 literature classes. Those in other options must take at least one pre-1800 literature class and one pre-1900 literature class.

Distributed Requirements

All English majors, no matter what their program of study, must take nine courses for a total of 27 credits from a list of distributed requirements:

- Engl 199 Introduction to the Study of English (R)
- Engl 220 Descriptive English Grammar
- Engl 260 Introduction to Literary Study
- Engl 310 Rhetorical Analysis
- Engl 302-309, 313-316 Advanced Writing
- Engl 340-349 Women’s or Multicultural Literature
- Engl 360-364 American Literature
- Engl 373-378 British Literature

These distributed requirements may not overlap with any other English requirements.

Advanced Study Requirements

Each program of study has its own requirements for advanced work:

Literature

- Engl 339 Literary Theory
- Engl 340-463 Literature Seminars

Rhetoric

- Engl 350 Rhetoric and the History of Ideas
- Engl 300+ Rhetoric and Professional Communication
- Engl 418 Argumentative Writing
- Engl 400+ Rhetoric and Professional Communication

English Education

- Engl 219 Intro to Linguistics
- Engl 300+ English Literature Elective
- Engl 339 Literary Theory
- Engl 392 Practice & Theory of Teaching Writing
- Engl 394 Young Adult Literature
- Engl 420 History of the English Language
- Engl 494 Prac & Theory of Teaching Literature

There are a number of other course requirements outside of English for English Education majors. These requirements may overlap with General Education requirements for the college:

- C I 201 Instructional Media
- C I 204 Social Foundations of American Education
- C I 280A Pre-Student-Teaching Experience
- C I 406 Multicultural Gender Fair Education
- C I 426 Principles of Secondary Education
- LAS 417E Student Teaching
- CS St 353 World Literature
- Psych 230 Human Growth and Development
- Psych 333 Educational Psychology
- Hist or Pol S American History or Government
- ComSt 102, Sp Cm 212, Sp Cm 313, or Thtr 358 Health, Dance, Safety or Exercise & Sport Science

Minors and Second Majors

English majors are encouraged to seek a minor or a second major to complement their English studies. To find out the requirements for particular majors or minors, consult the section in this bulletin relating to the department offering the major or minor. Students in English Education are particularly encouraged to acquire secondary certification in another teaching area. Ask in the English Undergraduate Advising Office (Ross Hall 306) for a list of Iowa Secondary Certification requirements in various subject areas, or consult ISU’s certification officer in the College of Education.

Degree Choices

English majors may earn a bachelor of arts or a bachelor of science degree. The B.S. degree requires an extra 12 credits beyond the general education requirements; these credits must be taken in linguistics, natural science, mathematics, social science, or selected courses in Exercise and Sport Science.

English Minor Requirements

The department offers a minor in English, which students may earn by completing at least 18 credits in English courses beyond the 100 level. A student earning an English minor must take 9 of the 18 credits at the 300-level or above and must earn a grade of C (not C-) or higher in each course taken in the minor. No specific course needs be taken; students may design their minor programs around their own interests.

Departmental Awards and Scholarships

Each spring the English department offers many scholarships and awards. Some awards are for returning English majors only; others are for returning students of any major demonstrating excellence in some aspect of English study. A list of current awards and application forms are available in the English Advising Office, 306 Ross Hall, during late February. Award winners are announced each year on May 1 or shortly before.

Other Programs Associated with English

The English Department participates in interdepartmental programs in African American Studies, American Indian Studies, Classical Studies, Latina/o Studies, Linguistics, Theatre and Women’s Studies. (See the Index for requirements for these interdepartmental programs.)

Graduate Study

The master of arts degree program in English offers varied possibilities for the advanced study of writing, language, and literature. Students are admitted to one of four areas of specialization: creative writing; teaching English as a second language/applied linguistics; literature; and rhetoric, composition, and professional communication. These areas of specialization are designed to prepare students for teaching at the secondary, two-year college, or beginning college and university levels; for further graduate study in language and literature; for teaching English as a second language; for creative writing; or for technical writing, business communication, editing, and associated professional writing.

The master’s degree requires 30 semester credits, including a thesis or project (2-3 credits). All areas of specialization except creative writing have a language requirement that may be met through a number of options, including previous foreign language study, graduate linguistics courses, satisfactory performance on
a test-out exam, and knowledge of statistical and/or data processing methods. A student whose native language is other than English is considered to have met the departmental language requirement after satisfying the Graduate College English requirement.

The Ph.D. in rhetoric and professional communication (RPC) focuses on the theory of rhetoric and the practice of written communication in professional communities such as business, industry, and government. The degree qualifies graduates for academic positions in rhetoric and in business and technical communication, as well as for work in the private sector as professional writing specialists, editors, and communications production managers. Prospective students must first secure admission to the graduate studies program through the Department of English. Candidates are required to complete 72 hours of graduate credit and a dissertation, and to pass a portfolio assessment, a preliminary examination consisting of a comprehensive examination and a special field examination, and an oral defense of the dissertation.

The department offers graduate students an opportunity to gain professional experience through professional writing internships, selected departmental research activities, the Intensive English and Orientation Program, the First-Year Composition Program, the Interpersonal and Rhetorical Communication Program, and the Writing Center. Teaching and research assistantships are available for qualified students. Teaching assistants are responsible for teaching, with faculty supervision, classes in first-year composition, in public speaking, in English as a second language, and in business and technical communication. Research assistants are assigned to individual faculty members engaged in projects in writing, language, or literature. One or more Pearl Hogrefe Fellowships covering stipend and tuition are awarded each year to outstanding graduate students. Several Freda Huncke Graduate Teaching Fellowships are available to first-year Ph.D. students. Miller Fellowships are also available to highly qualified Ph.D. students.

With prior written approval from the College of Education, students may take English courses to meet part of the requirements for certification to teach English in two-year and community colleges. Selected courses may also be used to meet requirements for ESL endorsement (K-12) for teachers.

A graduate minor in English at the M.A. level requires 9 credits of English, 6 of which must be in 500 or 600 level courses. A graduate minor in English at the Ph.D. level requires 12 credits of English, 9 of which must be in 500 or 600 level courses.

Courses open for nonmajor graduate credit:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Engl 205</td>
<td>Popular Culture Analysis</td>
<td>3-0</td>
<td>Cr. 3. F.S. Prereq: 105. Analysis of how popular information and entertainment forms persuade and manipulate audiences. Study of several forms that may include newspapers, television, film, advertising, fiction, and magazines. Special attention to verbal and visual devices.</td>
</tr>
<tr>
<td>Engl 207</td>
<td>Introduction to Creative Writing</td>
<td>(3-0)</td>
<td>Cr. 3. F.S. Prereq: 105. Course introduces students to the fundamentals of writing fiction, poetry, and creative nonfiction. Extensive readings in all three genres. Students learn writing processes through writing exercises, workshops, and conferences.</td>
</tr>
<tr>
<td>Engl 219</td>
<td>Introduction to Linguistics</td>
<td>(Same as Ling 219)</td>
<td>(3-0)</td>
</tr>
<tr>
<td>Engl 220</td>
<td>Descriptive English Grammar</td>
<td>(Same as Ling 220)</td>
<td>(3-0)</td>
</tr>
<tr>
<td>Engl 230</td>
<td>Literature in British Culture</td>
<td>(3-0)</td>
<td>Cr. 3. F.S. Prereq: Credit in or exemption from 104. Selected literary texts chosen for their attention to important trends, values, attitudes, ideals, and beliefs of our own and past times.</td>
</tr>
<tr>
<td>Engl 231</td>
<td>Literature in American Culture</td>
<td>(3-0)</td>
<td>Cr. 3. F.S. Prereq: Credit in or exemption from 104. Selected literary, critical, and visual texts chosen for their attention to important trends, values, attitudes, ideals, and beliefs of contemporary and past times.</td>
</tr>
<tr>
<td>Engl 237</td>
<td>Survey of Film History</td>
<td>(3-0)</td>
<td>Cr. 3. F.S. Prereq: 105. A survey of the history of film, both U.S. and international, from the beginnings in the late nineteenth century to the present.</td>
</tr>
<tr>
<td>Engl 260</td>
<td>Introduction to Literary Study</td>
<td>(3-0)</td>
<td>Cr. 3. F.S. Prereq: Program admission. An introduction to the basic principles of literary study. Emphasis on writing of interpretive and critical essays. Particular attention to poetry. Designed for English majors.</td>
</tr>
<tr>
<td>Engl 301</td>
<td>Cultural Studies</td>
<td>(3-0)</td>
<td>Cr. 3 each time taken, maximum of 6. F.S. Prereq: 105. Literature and related arts and cultural phenomena, with focus on a specific group, subgroup, identity cluster, or phenomenon. Selected texts, artifacts, and cultural experiences.</td>
</tr>
<tr>
<td>Engl 303</td>
<td>Free Lance Writing for Popular Magazines</td>
<td>(3-0)</td>
<td>Cr. 3. S. S. S. Prereq: 105. Practical workshop in writing nonfiction articles for popular magazines. Emphasis on writing, market research, preparation of manuscripts, methods of submission. Major goal of the course is production of marketable material.</td>
</tr>
<tr>
<td>Engl 304</td>
<td>Creative Writing—Fiction</td>
<td>(3-0)</td>
<td>Cr. 3. F.S. Prereq: 105, not open to freshmen. Progresses from practice in basic techniques of fiction writing to fully developed short stories. Emphasis on writing, analytical reading, workshop criticism, and individual conferences.</td>
</tr>
<tr>
<td>Engl 305</td>
<td>Creative Writing—Nonfiction</td>
<td>(3-0)</td>
<td>Cr. 3. F.S. Prereq: 105, not open to freshmen. Workshop in writing imaginative essays—both critical and personal. Analytical reading, development of literary techniques. Individual and small group conferences.</td>
</tr>
</tbody>
</table>
Engl 306. Creative Writing—Poetry, (3-0) Cr. 3. F.S.
Prereq: 105, not open to freshmen. Progresses from traditional to contemporary forms. Emphasis on writing, reading, workshop criticism, and individual conferences.

Engl 307. Writing Young Adult Fiction, (3-0) Cr. 3.
S. Prereq: 105, not open to freshmen. Workshop in writing and reading short stories that explore coming-of-age themes. Emphasis on coming-of-age literature as well as the techniques of short fiction. Individual and group story conferences.

Engl 309. Report and Proposal Writing, (3-0) Cr.

Engl 310. Rhetorical Analysis, (3-0) Cr. 3. F.S.
Prereq: 105. Functional principles of rhetorical study. Emphasis on basic rhetorical theory. Particular attention to analysis of non-literary texts.

Engl 313. Writing for the World Wide Web, (3-0) Cr.

Engl 314. Technical Communication, (3-0) Cr.
F.S. Prereq: 105, junior classification. Theories, principles, and processes of effective written communication in the technical disciplines. Attention to the major strategies and technical discourse; techniques of analyzing audiences and writing situations, and for organizing data and information. Honors. Nonmajor graduate credit.

Engl 315. Creative Writing—Screenplays, (3-0) Cr.
F.S. Prereq: 105, not open to freshmen. Stress on the master scene technique of writing fully developed screenplays. Emphasis on TV and movie techniques, writing, workshop criticism, analytical reading and viewing, and individual conferences. Nonmajor graduate credit.

Engl 316. Creative Writing—Playwriting, (Same as
Thtr 316). (3-0) Cr. 3. S. Prereq: 105, not open to freshmen. Progresses from production of scenes to fully developed one-act plays. Emphasis on action, staging, dramatic writing, workshop criticism, and individual conferences. Nonmajor graduate credit.

Engl 330. Science Fiction, (3-0) Cr. 3.

Engl 335. Film, (3-0) Cr. 3 each time taken, maximum of 6. F.S. Prereq: 105. Principles of film art and the traditional vocabulary of literature as applied to film. Influence of film on modes of thought and behavior. Nonmajor graduate credit.

Engl 339. Literary Theory and Criticism, (3-0) Cr.
F.S. Prereq: 260 and 3 additional credits in literature. Representative works from the nineteenth century. Special emphasis on nature, language arts. Current theories and practices in the teaching of writing to secondary school students. Theories of rhetoric, approaches to teaching, lesson design and planning. Evaluating writing. Professional portfolio preparation. (Taken concurrently with C U 280. Cr. 2.)

Engl 350. Rhetoric and the History of Ideas, (3-0) Cr.

Engl 353. World Literature: Western Foundations through Renaissance, (Same as CL 353.) (3-0) Cr.
F. Prereq: 105. Representative works from the Middle Ages through the late sixteenth century. May include Homeric, Aeschylus, Sappho, Catullus, Dante, Marie de France, Boccaccio, Christine de Pizan, Cervantes, and others.

Engl 354. World Literature: Seventeenth through Twentieth-Century, (3-0) Cr. 3. S. Prereq: 105. Representative works primarily from European traditions of drama, fiction, poetry, and nonfiction.

Engl 356. Literary Study of the Bible, (3-0) Cr.
F.S. Prereq: 105. Selected readings from Judaeo and Christian sacred literature, including narrative, poetry, wisdom literature, and apocalyptic literature.

Engl 357. Folklore, (3-0) Cr. 3. F.S. Prereq: 105. Types, functions, contexts, and purposes of folklore. Emphasis on traditional narratives and verbal folkloric. Nonmajor graduate credit.

Engl 358. Myth, Fairy tale and Legend, (3-0) Cr.
S. Prereq: 105. Study of traditional fairytales, myths, and legends from diverse cultures. Nonmajor graduate credit.

Engl 360. American Literature: Beginnings to 1820, (3-0) Cr. 3. F.S. Prereq: 105. American literature from its beginnings through the colonial period to early romanticism; literary works in their social and cultural contexts.

Engl 362. American Literature: 1830 to 1914, (3-0) Cr.
F.S. Prereq: 105. American literature from its beginnings through the colonial period to early romanticism; literary works in their social and cultural contexts.

Engl 364. American Literature: 1914- present, (3-0) Cr.
F.S. Prereq: 105. American literature written in English; literary works in their social and cultural contexts.

Engl 370. Shakespeare, (3-0) Cr. SS. Prereq: 105. Reading and analysis of plays. Development of Shakespeare’s dramatic art in its social and intellectual context.

Engl 372. English Literature: The Middle Ages, (3-0) Cr.
F.S. Prereq: 105. An approach to the Middle Ages as a literarily fertile period, considered in social and intellectual contexts.

Engl 373. English Literature: The Renaissance, (3-0) Cr.
F.S. Prereq: 105. An approach to the Middle Ages as a literarily fertile period, considered in social and intellectual contexts.

Engl 376. English Literature: Romantic and Victorian, (3-0) Cr.
Prereq: 105. The literature of the nineteenth century, from about 1800 into the 1900s. Nonmajor graduate credit.

Engl 378. English Literature: Modern and Contemporary, (3-0) Cr.
Prereq: 105. The literature of the twentieth century, considered in social and intellectual contexts.

Engl 384. Twentieth-Century Fiction, (3-0) Cr.
F.S. Prereq: 105. Works by writers from various countries, including the United States or Great Britain.

Engl 389. Postcolonial Literatures, (3-0) Cr.
Prereq: 105. History, theory, and practice of post-colonial literature written in English. Selected reading from one or more postcolonial literatures.

Engl 392. Practice and Theory of Teaching Writing in the Secondary Schools, (3-0) Cr.
Prereq: 219 or 220. Introduction to teaching secondary language arts. Current theories and practices in the teaching of writing to secondary school students. Theories of rhetoric, approaches to teaching, lesson design and planning. Evaluating writing. Professional portfolio preparation. (Taken concurrently with C I 280. Cr. 2.)

Engl 393. The History of Children’s Literature, (3-0) Cr.
S. Prereq: 105. Origin and development of English and American children’s literature through the nineteenth century. Special emphasis on nature, structure, and enduring themes of fantasy literature.

Engl 394. Young Adult Literature, (3-0) Cr.
F. Prereq: 105. Critical study and evaluation of the genre; examination of modes and themes found in the literature; study of the relationship of the genre to children’s literature and adult literature. Examination of literature for use in school programs. Restricted to students seeking teacher certification. Nonmajor graduate credit.

Engl 395. Study Abroad, Cr. var. SS. Prereq: Permission of instructor. Supervised study of an appropriate area of the discipline in a foreign country. Special fees apply.

A. Literature.
B. Creative Writing.
C. Linguistics.
D. Rhetoric and Professional Communication.
E. Teacher Education.

Engl 398. Cooperative Education, Cr. 3. F.S.
Prereq: Permission of the department cooperative education coordinator, junior or senior classification. Required of all cooperative education students. Students must register for these courses prior to commencing each work period.

Engl 404. Creative Writing Workshop—Fiction, (3-0) Cr.
Each time taken, maximum of 8. F.S. Prereq: 304. Individual projects in short fiction on a workshop and conference basis. Readings in short fiction. Discussion of elements of narrative such as plot, character, point of view, characterization, theme, setting.

Engl 405. Creative Writing Workshop—Nonfiction, (3-0) Cr.
Each time taken, maximum of 6. F.S. Prereq: 305. Individual projects in memoir, immersion journalism, character studies, and/or the personal essay on a workshop and conference basis. Readings in creative nonfiction.

Engl 406. Creative Writing Workshop—Poetry, (3-0) Cr.
Each time taken, maximum of 6. F.S. Prereq: 306. Individual projects in poetry on a workshop and conference basis. Readings in poetry. Discussion of poetic elements such as sound, internal structure, rhythm, tone, figurative language.
Engl 415. Business and Technical Editing. (3-0) Cr. 3. F. S. Prereq: 302, 309, or 314; junior classification. Editing journal articles, research reports, technical manuals, newsletters, proposals. Attention to editorial levels and styles, project management, editor-author relationships, and electronic editing. Nonmajor graduate credit.

Engl 416. Graphic Communication in Business and Technical Writing. (3-0) Cr. 3. F. S. Prereq: 302, 309, or 314; junior classification. Rhetorical acts of visual communication in business and technical writing. Issues in the design of text, charts, graphs, diagrams, schematics, illustrations, and other visual displays. Nonmajor graduate credit.

Engl 418. Argumentative Writing. (3-0) Cr. 3. S. Prereq: 310; junior classification. Advanced seminar in principles, theory, and analysis of argumentation. Extensive practice in argumentative writing. Nonmajor graduate credit.

Engl 419. Grammatical Analysis. (Dual-listed with 516, same as Ling 419.) (3-0) Cr. 3. F. S. Prereq: 219 or an introductory course in linguistics, junior classification. Theories and methods for analysis of English syntax with emphasis on recent syntactic theory.

Engl 420. History of the English Language. (Same as Ling 420.) (3-0) Cr. 3. S. Prereq: 219 or an equivalent introduction to linguistics; 220 or equivalent course in descriptive English grammar; 3 credits in British literature before 1700 recommended. Historical study of the English language. Comparison of English to other languages by family background and by type. Analysis of representative Old, Middle, Early Modern and present-day English texts, including both literary works and non-literary documents. Some attention paid to the uses of historical linguistics in the teaching of English. Nonmajor graduate credit.

Engl 422. Women, Men, and the English Language. (Same as Ling 422, W S 422.) (3-0) Cr. 3. S. Prereq: 219 or an introductory course in linguistics. The ways men and women differ in using language in varied settings and the ways in which language both creates and reflects gender divisions. Nonmajor graduate credit.

Engl 423. Introduction to Old English Language and Literature. (Dual-listed with 523.) (3-0) Cr. 3. F. S. Prereq: 417 or an introductory course in English Lang and literature. (Dual-listed with 417.) The process of second language learning and principles and techniques of teaching second languages. Learning and teaching in specific situations and for particular purposes. Current applications of technology in teaching and assessment. Nonmajor graduate credit.

Engl 440. Seminar in British Literature. (3-0) Cr. 3. Each time taken. F. Prereq: Completion of or concurrent enrollment in 339. Selected authors, movements, eras, or genres in British literature. Readings in criticism. Nonmajor graduate credit.

Engl 441. Seminar in American Literature. (3-0) Cr. 3. Each time taken. S. Prereq: Completion of or concurrent enrollment in 339. Selected authors, movements, eras, or genres in American literature. Readings in criticism. Nonmajor graduate credit.

Engl 445. Seminar in Drama. (3-0) Cr. 3. Each time taken. F. Prereq: Completion of or concurrent enrollment in 339. Selected authors, movements, eras, or national literatures. Readings in criticism. Nonmajor graduate credit.

Engl 454. Seminar in Poetry. (3-0) Cr. 3. Each time taken. S. Prereq: Completion of or concurrent enrollment in 339. Selected authors, movements, eras, or national literatures. Readings in criticism. Nonmajor graduate credit.

Engl 456. Seminar in Prose. (3-0) Cr. 3. Each time taken. S. Prereq: Completion of or concurrent enrollment in 339. Selected authors, movements, eras, or national literatures. May include the novel, the short story, the essay, or autobiographies. Readings in criticism. Nonmajor graduate credit.

Engl 460. Seminar in Women’s and/or Multicultural Literature. (3-0) Cr. 3. Each time taken. F. Prereq: Completion of or concurrent enrollment in 339. Selected readings of various authors, movements, eras, or genres. Readings in criticism. Nonmajor graduate credit.

Engl 461. Seminar in Single Figure Study: Canon and Context. (3-0) Cr. 3. Each time taken. Alt. F., offered 2001. Prereq: Completion of or concurrent enrollment in 339. Study of an author, writer, critic, or subject (e.g. Austen, Chaucer, Milton, Morrison, Twain, or Woolf) studied through literary, social, critical, and historical contexts. Nonmajor graduate credit.

Engl 463. Seminar in Literature and Culture. (3-0) Cr. 3. Each time taken. F. Prereq: Completion of or concurrent enrollment in 339. Interrelationships among literary works, social and historical contexts, and reception. Texts by several authors. Readings in criticism. Nonmajor graduate credit.

Engl 467. Internship in Business, Technical, and Professional Writing. Cr. 1 to 3 S. Prereq: 6 credits in 302, 309, 313, 314, 415 (preferred), or 416, and permission of coordinator. An opportunity to write, edit, and design professional documents in a professional setting. Projects include reports, proposals, manuals, brochures, newsletters. Nonmajor graduate credit.

Engl 468. Undergraduate Seminar. (Same as Ling 468.) (3-0) Cr. 3. Each time taken. S. Prereq: 9 credits in English beyond 105. Intensive study of a selected topic in literature, criticism, rhetoric, writing, or language. Cross-listing with linguistics acceptable only when offered as a course in linguistics. Nonmajor graduate credit.

Engl 494. Practice and Theory of Teaching Literature in the Secondary Schools. (Same as C I 494.) (3-0) Cr. 3. S. Prereq: 310, 392, 18 credits in English Beyond 105, Pass 333, admission to teacher education program. Portfolio review. Current theories and practices in the teaching of literature to secondary school students. Integrating literary study and writing. Preparation for collection of materials in classroom presentation. Unit planning. (Taken concurrently with C1 280. Cr. 2.)

Courses Primarily for Graduate Students, Open to Qualified Undergraduate Students

(Open on a priority basis to graduate students admitted to one of the degree programs in English, open by permission of instructor to other qualified graduate students and to qualified undergraduates.)

Engl 500. Proseminar: Teaching English Composition. (3-0) Cr. 3. S. Prereq: Required of all new English teaching assistants. Introduction to the teaching of English 101 and 104/105. Current theories and practices related to 101 and 104/105 objectives, lesson planning and teaching methods, development of writing assignments, evaluation of student writing.

Engl 506. Theory and Research in Professional Communication. (3-0) Cr. 3. S. Prereq: 6 credits in English. Introduction to contemporary theories of written discourse; emphasis on the implications of these theories for research in professional communication.

Engl 507. Writing and Analyzing Professional Documents. (3-0) Cr. 3. F. Prereq: 6 credits in English. Introduction to the theory and practice of writing and analyzing professional documents prepared in business, science, industry, and government. Guided readings; individual projects.

Engl 508. Advanced Workshop in Academic Writing. (3-0) Cr. 3. S. Alt. S., offered 2003. Prereq: 6 graduate credits. Hands-on practice in writing academic discourse in critical and technical analysis of student-selected academic journals; discussion of current trends in academic writing; professional perspectives on the referee process and on journal editorial decision making. Focus on the writing of select short pieces (conversation essays, standard reviews, conference-length papers) and of article-length manuscripts.

Engl 509. Writing Proposals and Grant Applications. (3-0) Cr. 3. F. Prereq: 6 credits in English composition. Theories of written communication as applied to persuasive discourse. Writing and analysis of proposals or grant applications to businesses, government agencies, and private and corporate foundations.

Engl 511. Introduction to Linguistic Analysis. (Same as Ling 511.) (3-0) Cr. 3. F. Prereq: Graduate classification. Principles and methods of linguistic analysis with emphasis on phonology, morphology, and syntax. Description of linguistic variation and current theoretical approaches to linguistics.

Engl 512. Linguistic Change in English: Historical Analysis of Literary and Non-Literary Texts. (Same as Ling 512.) (3-0) Cr. 3. F. Prereq: Graduate classification. Linguistic change in English, connections to literary and rhetorical history. Development of formal written English and its conventions. Historical survey of ideas about the English language.

Engl 514. Sociolinguistics. (Same as Ling 514.) (3-0) Cr. 3. S. Prereq: 611 or an introductory course in linguistics. Theories and methods of examining language in its social setting. Analysis of individual characteristics (e.g., age, gender, ethnicity, social class, region, interactional factors (e.g., situation, topic) and national policies affecting language use.

Engl 516. Grammatical Analysis. (Dual-listed with 419. Same as Ling 516.) (3-0) Cr. 3. F. Prereq: 511 or an introductory course in linguistics. Theories and methods for analysis of English syntax with emphasis on the functions of language.
Engl 517. Secondary Language Acquisition. (Same as Ling 517) (3-0) Cr. 3. F. Prereq: 511 or an introductory course in linguistics. Theory, methods, and results of second language acquisition research with emphasis on approaches relevant to second language teaching.

Engl 518. Teaching English as a Second Language Methods and Materials. (Same as Ling 518) (3-0) Cr. 3. F. Prereq: 511 or an introductory course in linguistics. Issues, techniques, materials, curriculum design, and evaluation for all levels of ESL instruction. Practical application including group and individual projects.

Engl 519. Secondary Language Assessment. (3-0) Cr. 3. S. Prereq: 517 Principles of second language assessment including reliability, validity, authenticity, and practicality. Constructing, scoring, interpreting, and evaluating second language tests for a variety of situations.

Engl 521. Teaching of Literature and the Literature Curriculum. (3-0) Cr. 3. Alt. F., offered 2002. Prereq: 6 credits in literature. Examination of the roles of the literary work, reader, and teacher in literary study. Responses to literature. Place of literature in language arts. Study and development of curriculum materials for middle school, high school, and college levels of instruction.

Engl 523. Introduction to Old English Language and Literature. (Dual-listed with 423.) (3-0) Cr. 3. Alt. F., offered 2001. Prereq: Graduate classification, course in medieval literature or history or history of the English language recommended. Introductory study of Old English language and literature in prose and poetry, including extracts from Beowulf. Some attention to Anglo-Saxon culture.

Engl 524. Literary Issues and Methods for Nonnative Speakers of English. (Same as Ling 524.) (3-0) Cr. 3. Alt. S., offered 2002. Prereq: 511 or an introductory course in linguistics. Issues related to education in a variety of situations, including children and adults at basic skills levels as well as teens and adults in academic, professional, and vocational programs.

Engl 525. Methods in Teaching Listening and Speaking Skills to Nonnative Speakers of English. (Same as Ling 525) (3-0) Cr. 3. Alt. S., offered 2003. Prereq: 511 or an introductory course in linguistics. Theoretical and practical issues and techniques in the teaching of second language pronunciation, listening, and speaking to student audiences. Topics will be relevant to those intending to teach in various situations, including K-12 and adult learners in academic, professional, and vocational programs.

Engl 526. Computer-Assisted Language Learning. (Same as Ling 526) (3-0) Cr. 3. S. Prereq: 511 and 513 or equivalent. Theory, research, and practice in computer use for teaching non-native speakers of English. Methods for planning and evaluating computer-based learning activities.

Engl 527. Discourse Analysis. (Same as Ling 527.) (3-0) Cr. 3. F. Prereq: 511 or an introductory course in linguistics. Methods and theoretical foundations for linguistic approaches to discourse analysis. Applications of discourse analysis to the study of texts in a variety of settings, including academic and research contexts.

Engl 528. English for Specific Purposes. (3-0) Cr. 3. F. Prereq: 511 or an introductory course in linguistics. Issues and techniques in analyzing, teaching, and assessing English for specific purposes. Topics include theories of specific purpose language use, analysis of learner needs in target language contexts, and syllabus and materials development for teaching and assessment.

Engl 530. Research Tools and Tactics. (3-0) Cr. 3. Alt. F., offered 2001. Prereq: Graduate classification. Contemporary research methods, in the library and online, adjusted to the student’s choice of subjects. Reference tools and search methods for primary and secondary sources; hands-on experience with soft-
principles of visual communication. Methods of designing texts, data displays, illustrations, and other visual elements in business and technical communication.

Engl 587. Internship in Business, Technical, and Professional Writing. (3-0) Cr. 1 to 3 each time taken, maximum of 6. S. Prereq: 507 plus 3 additional graduate credits in business and technical writing or composition and rhetoric, permission of instructor. Limited to masters and doctoral degree candidates in English. An opportunity to write, edit, and design business and technical documents in a professional setting. Projects include reports, proposals, manuals, brochures, newsletters.

Engl 588. Supervised Practicum in Teaching English as a Second Language. (1-5) Cr. 3. F.S. Prereq: 15 credits toward the TESL/Applied Linguistics master's degree. Intensive observation of ESL instruction and supervised practice in teaching learners of English in a context appropriate to the practicum student's goals. Seminar discussion of observed practices in relation to language teaching theories and methods.

Engl 590. Special Topics. Cr. var. Prereq: Permission of the Graduate Studies Committee according to guidelines available in the department office.

A. Literature B. Teaching English as a Second Language (TESL/Linguistics, same as Ling 590B) C. Composition and Rhetoric D. Literature in the Service of English (3-0) Cr. 3 each time taken, maximum of 6. Prereq: 6 credits in TESL/Linguistics. Intensive study of applied linguistic theory as it relates to specific issues in language acquisition, teaching, or use.

Engl 592. Studies in Rhetoric and Professional Communication. (3-0) Cr. 3 each time taken, maximum of 9. Prereq: 12 hours in rhetoric, linguistics, or literature, excluding 104/105. Seminar on selected topics in rhetoric and professional communication or composition.

Engl 593. Workshop. Cr. art.

Engl 599. Creative Component. Cr. 3. F.S.S. Prereq: Graduate classification, permission of major professor.

Courses for Graduate Students

Engl 601. Research Methods in Rhetoric and Professional Communication. (3-0) Cr. 3. Prereq: 6 graduate credits in English. Survey of the major qualitative and quantitative methods used in research on writing and language in academic and nonacademic settings.

Engl 611. Topics in the History of Rhetorical Theory. (3-0) Cr. 3 each time taken, maximum of 9. Alt. F., offered 2001. Prereq: 547 or 548. Rhetorical theory, criticism, and/or practice in relation to a historical period; the historical development of a rhetorical concept.

Engl 621. Seminar: Topics in Current Rhetorical Theory. (3-0) Cr. 3 each time taken. S. Prereq: 503 or 506. Aspects of modern rhetorical theory, criticism, and practice.

Interpersonal and Rhetorical Communication (Sp Cm)

(Administered by the Department of English)

The following courses are part of the Speech Communication program. For more information, refer to that section. Sp Cm 110, 171, 212, 223, 290, 298, 305, 312, 313, 321, 322, 323, 324, 325, 327, 398, 404, 410, 412, 416, 417, 490, 493, 453A, 495B, 497, 498, 504, 513, 590.

Entomology

www.ent.iastate.edu

Joel Coats, Chair of Department
University Professors: Pedigo
Professors: Baker, Coats, DelWitt, Hart, Krafsur, D. Lewis, Obrycki, Rice, Rowley, Tollefson, Wintersteen

Professors (Collaborators): L. Lewis, Wilson

Professors (Emeritus): Guthrie, R. Lewis, Mutchmor, Stockdale

Associate Professors: Bonning, Holscher, Jurenka

Associate Professors (Collaborators): Perich

Assistant Professors: Beetham, Courtney

Assistant Professors (Collaborators): Binder, Cosse, Hellmich

Undergraduate Study

The undergraduate curriculum in entomology, see College of Agriculture, Curricula.

The undergraduate curriculum in entomology is designed for persons interested in studying insects, their adaptations, and the practicalities of dealing with them. Students electing entomology as a major will prepare themselves for positions in industry, business, government, education, and public health. Graduates may acquire positions in research, development, and technical sales for agricultural chemical and seed companies. State and federal agencies employ entomologists as consultants, extension directors, mosquito abatement agents, inspectors, and research aides. Entomologists may also find employment with urban or agricultural pest-management or consulting firms, large private farms and ranches, and horticultural nurseries.

Graduates understand the principles of insect structure and function. They understand the evolutionary and ecological relationships of insects with other life forms, and the impact of insects relative to human and animal health, as well as the relationships between insects and humanity's food, fiber, structural, and aesthetic needs and expectations. Graduates understand the principles and methods available to manage beneficial and pest insect populations. They are skilled in identifying insects and related groups and understand the biology, ecology, behavior, diversity, and evolutionary relationships of the major groups of insects. They understand the application of the scientific method in problem solving and the principles of experimental design and analysis. Graduates are able to communicate research and educational materials properly and competently - orally, visually, and in writing - and are able to work effectively with others.

Graduates of the agricultural and horticultural insect management option are skilled in determining pest levels and impact on plant and animal hosts, and the management of these pests. They understand the environmental, legal, and ethical issues involved in insect population management.

Graduates of the community and structural insect management option are able to combine biological, social, legal, and economic expertise to manage insects in close association with humans. They are skilled in the applications of pesticides and other management tactics for protecting human possessions from insect pest destruction. Moreover, they have an understanding of and have entrepreneurial abilities in urban and structural pest control enterprises.

Graduates of the insect biology option have achieved an understanding of the biochemical and physiological processes governing insect metabolism, growth, and form. They understand the evolutionary and ecological significance of insects. They also have a broad background in the biological sciences. Assuming good academic performance, graduates of this option are prepared to enter graduate or professional schools.

Entomology participates in the interdepartmental undergraduate majors in plant health and protection and in integrated pest management.

The department offers a minor in entomology that may be earned by completing 370, 374, 376, and 6 credits in courses selected from an approved list supplied by the department. A preveterinary program is available in entomology.

Graduate Study

The department offers work for the degrees master of science and doctor of philosophy with a major in entomology or toxicology. Within the entomology major, the student may concentrate in aquatic entomology, biological control, chemical ecology, genetics, forest entomology, host plant resistance, medical/parasitological entomology, morphology, pathology, pest management, physiology, population ecology, genetics, systematicatics, or insecticide toxicology.

Graduates have a broad understanding of entomology and related disciplines, and an in-depth command of their area of concentration. They are able to communicate effectively with scientific colleagues and the general public in both formal and informal settings. Graduates are able to address complex problems facing entomology or toxicology professionals, taking into account related ethical, social, legal, economic, and environmental issues. They are skilled in research methods, data analyses, and interpretation of results. They also are skilled in working effectively with their colleagues, and writing concise and persuasive grant proposals. They have an understanding
Entomology and can critically evaluate current entomological literature.

Prerequisite to the entomology major and to minor graduate work in the department is completion of at least two years of zoological courses, for part of which credit in other closely allied biological sciences may be substituted. Specific course requirements for advanced degrees depend partly upon previous training and experience in the major field of specialization.

Any student receiving the M.S. in entomology shall have at least one course in insect physiology, one course in insect systematics, two courses of Ent 590 (selected from topics A through D and F through I, M and N inclusive), and at least 1 credit of Ent 600. Any student receiving the Ph.D. in entomology shall have at least one course in insect physiology, one course in insect systematics, four courses of Ent 590 (selected from topics A through D and F through I, M and N inclusive), and at least 1 credit of Ent 600. In addition, Ph.D. students majoring either in Entomology or Toxicology shall have two semesters of teaching experience, taken as Ent 590K both semesters or Ent 590K one semester and Ent 590L the other semester.

Entomology participates in the interdepartmental majors in ecology and evolutionary biology, and genetics, and in the interdepartmental major and minor in toxicology (see Index).

The Federal Corn Insects and Crop Genetics Research Unit and the North Central Plant Introduction Station are available for advanced study in certain phases of entomological research.

More information about the department, such as current research, faculty resumes, physical facilities, and graduate student can be viewed on the department's world-wide web page.

Courses open for nonmajor graduate credit:
Ent 370, 372, 373, 374, 376, 386, 416, 483, 493.

Courses Primarily for Undergraduate Students
Ent 213. Management of Structural Insect Pests. (3-0) Cr. 1. F. 5 weeks. Prereq: 201. Lewis. Recognition, biology, economic importance and management of insects and other arthropods that infest homes and commercial structures with an emphasis on structural, household, and stored product pests.
Ent 283. Pesticide Applicator Certification. (Same as Agron 283, For 283, Hort 283, PH 283, P M 283.) (2-0) Cr. 2. S. Pedigo. Core background and specialty topics in agricultural, forestry, and horticultural pesticide applicator certification. Students select certification categories and are eligible for pesticide applicator certification upon completion of course. Commercial certification emphasized.
Ent 360. Insect Behavior. (Dual-listed with 560.) (3-0) Cr. 3. S. Prereq: Biol 202. Baker. The mechanisms underlying the behavior of insects; emphasis on neuroethological and evolutionary bases of insect orientation, reproduction, foraging, oviposition, defense, learning, and sociality.
Ent 371. Introduction to Insect Ecology. (Same as la LL 3711.) See Iowa Lakeside Laboratory.
Ent 373. Household and Structural Pest Management. (3-0) Cr. 3. S. Prereq: Biol 109 or 201; Ent 201. Lewis. Principles of pest management for household, structural, and stored product pests. Recognition, biology, and significance of insects, other arthropods, and major pest vertebrates that infest homes and commercial structures. Tactics of pest prevention, suppression, and elimination. Nonmajor graduate credit.
Ent 374. Insects and Our Health. (Same as Biol 374, Micro 374.) (3-0) Cr. 3. S. Prereq: 3 credits in biological sciences. Rowley. Identification, biology, and significance of insects and arthropods that attack people and animals, particularly those that are vectors of disease. Nonmajor graduate credit.
Ent 376. Fundamentals of Entomology and Pest Management. (Same as P M 376 and PI HP 376.) (2-3) Cr. 3. F. S. Prereq: Biol 109 or 201. Pedigo. Introduction to entomology and insect-pest management, including life processes, ecology, economics, tactics of population suppression, and ecological backslash. Nonmajor graduate credit.
Ent 386. Management of Insect Pests. (2-0) Cr. 2. Alt. S., offered 2002. Prereq: Biol 109 or 201; Tollefson. Introduction to insects and their lifestyles. Theory and application of pest-management practices. Examples drawn primarily from field crops. Nonmajor graduate credit. Credit for only 376 or 386 may be applied for graduation, not both.
Ent 416. Forest Pest Management. (Same as P M 416, For 416, PI HP 416, P M 416.) (3-1) Cr. 4. S. Prereq: 8 credits in biological sciences, including Biol 201. Harrington, Hart. Nature of forest, shade tree, and woody pests; physical agents of tree damage; concepts of forest pest management; integrated case studies in the evaluation and economic analysis of protection and pest management problems; weekend field trip. Nonmajor graduate credit.
Ent 425. Aquatic Insects. (Dual-listed with 525, same as Ecol 425.) (3-0) Cr. 3. Alt. S., offered 2003. Prereq: Biol 312 or equivalent. Courtenay. Morphology, ecology, diversity and significance of aquatic insects, with emphasis on the collection, curation and identification of taxa in local streams and lakes.

Courses Primarily for Graduate Students, Open to Qualified Undergraduate Students
Ent 511. Integrated Management of Tropical Crops. (Same as PI P 511.) See Plant Pathology.
Ent 525. Aquatic Insects. (Dual-listed with 425; same as Ecol 525.) (2-3) Cr. 3. Alt. S., offered 2003. Prereq: Biol 312 or equivalent. Courtenay. Morphology, ecology, diversity and significance of aquatic insects, with emphasis on the collection, curation and identification of taxa in local streams and lakes.
Ent 530. Ecologically Based Pest Management Strategies. (Same as SuesAg 530.) See Sustainable Agriculture.
Ent 550. Pesticides in the Environment. (Same as Tox 550.) (2-0) Cr. 2. S. Prereq: Graduate classification or permission of instructor. Coats. Fate and significance of pesticides in soil, water, plants, animals, and the atmosphere.
Ent 555. Insect Physiology. (3-0) Cr. 4. S. Prereq: 370. Jurek. Life processes of the insects, including reviews of current problems in insect physiology.
Ent 640. Insect Behavior. (Dual-listed with 360.) (3-0) Cr. 3. S. Prereq: Biol 201. Baker. The mechanisms underlying the behavior of insects; emphasis on neuroethological and evolutionary bases of insect orientation, reproduction, feeding, oviposition, defense, learning, and sociality.
Ent 568. Advanced Systematics. (Same as Bot 568.) See Botany.
Ent 574. Medical Entomology. (3-3) Cr. 4. Alt. S., offered 2002. Prereq: 9 credits in biological sciences. Rowley. Identification, biology, and signifi-
cance of insects and other arthropods that attack people and animals, particularly those that are vectors of disease.

Ent 578. Global Protozoology - Molecular Biology of Protozoa. (Dual-listed with 478, same as V Ph 578.) See Veterinary Pathology.

Ent 580. Sustainable Agriculture Seminar. (Same as An S 580.) See Animal Science.

Courses for Graduate Students

Ent 600. Seminar. Cr. 1. F.S.S.S. Prereq: Permission of instructor. Presentation of research results.

Ent 675. Insecticide Toxicology. (Same as Tox 675.) (2-3) Cr. 3. Alt. F., offered 2002. Prereq: 555 or Tox 562. Prereq: 501 or permission of instructor. Coats. Principles of insecticide toxicology; classification, mode of action, metabolism, and environmental effects of insecticides.

Ent 699. Research. Cr. var.

Entrepreneurial Studies

(Interdepartmental Undergraduate Minor)

Supervisory Committee: Howard E. Van Auken (Business), Chair; D. Draper (Vet Med); Eric O. Hoiberg (Ag); Loren W. Zachary (Engineering); Mary A. Littrell (Family & Cons. Science); Nancy Polster (Design); Peter Orazem (LAS); Roger A. Smith (Education).

Entrepreneurial Studies is an interdisciplinary program that provides opportunities to students to learn about entrepreneurship—the starting of new business ventures. It serves to complement the student’s major area of study, whether it be electrical engineering, horticulture, textiles and clothing, or veterinary medicine, by offering a means of putting theory and science into practice. The goal of the Entrepreneurial Studies program is to provide the knowledge and skills needed to start and manage new ventures. In addition to feasibility analysis and business planning, the program deals with the topics of innovation, technology transfer, industry analysis, and competitive strategy. Although the program introduces some fundamental concepts from accounting, finance, marketing, and management, it does not attempt to substitute for any business courses in these areas.

A minor in entrepreneurial studies is currently available to undergraduate students who are not enrolled in the College of Business. (Students majoring in the College of Business may major or minor in Management with an option in Entrepreneurship and Strategy and are thus not eligible for the entrepreneurial studies minor.) Students must first complete college specific rules in selecting courses and must consult with the representative of that college to the Entrepreneurial Studies Supervisory Committee. The college representatives to the supervisory committee will be responsible for advising students in their college, and will inform students about the details of the college rules.

Minor

A student seeking a minor in entrepreneurial studies must successfully complete a minimum of 15 credits in courses approved for use in the entrepreneurial studies program, including the two required courses. Management 310 and 313. Management 310, Entrepreneurship and Innovation, is the introductory course and provides an overview of the entire field. Management 313, Feasibility Analysis and Business Planning, serves as the capstone course through its emphasis on developing an idea for a new venture, conducting a feasibility study, researching the potential market, analyzing the competition, and preparing a formal business plan. Up to six of the 15 credits required for the minor may also be used in the student’s required program of study. Interested students should see a representative of the Entrepreneurial Studies Supervisory Committee in the college of their primary major for the list of approved courses.

Environmental Science

(Interdepartmental Undergraduate Program)

William G. Crompton: Coordinator

Environmental Science provides an integrated, quantitative, and interdisciplinary approach to the study of environmental systems. The magnitude and complexity of environmental problems are creating a growing need for scientists with rigorous, interdisciplinary training in environmental science. The Environmental Science curriculum is designed to prepare students for positions of leadership in this rapidly changing discipline. Environmental Science graduates have a solid foundation in biological and physical natural sciences and the specialized training necessary for integrated analysis of environmental systems. Scientific rigor is stressed throughout the program, beginning with the foundation courses in the first two years of the curriculum. The upper level core courses emphasize a dynamic systems approach that provides a framework for integrating physical, chemical, and biological aspects of environmental systems.

The Environmental Science major is offered through both the College of Agriculture and the College of Liberal Arts and Sciences. Environmental Science majors complete foundation courses in biology, chemistry, earth science, geology, physics and mathematics, plus a major consisting of an integrated core of Environmental Science courses and additional advanced course work in Environmental Science. General requirements for the major are outlined below, and additional information is available in the Environmental Programs Office, 131 Bessey Hall.

Students seeking an Environmental Science major complete the following: (1) A foundation of approved supporting courses in science and mathematics including biology, chemistry, earth science, physics, calculus, and statistics, (2) Twenty-nine credits of course work in the major, including the Environmental Science core (EnSci 295, 330, 402, 403, 404 and 495) and 12 additional credits of approved course work in Environmental Science. A combined average grade of C or higher is required in courses applied to the major. (3) Practical experience consisting of EnSci 290, 390, or equivalent experience.

English proficiency requirement: Beyond first-year composition (Eng 104 and 105). Environmental Science majors must demonstrate proficiency in written communication by completing an approved advanced course and maintaining a portfolio of term papers and other major writing assignments for departmental evaluation.

A minor in Environmental Science may be earned by completing 15 credits in Environmental Science including EnSci 330 and at least 7 credits from EnSci 402, 403, and 404.

Courses Primarily for Undergraduate Students

EnSci 290. Apprenticeship. Cr. Var. Staff. Prereq: Approval of the Environmental Science Coordinator. Practical experience in an approved setting such as a research laboratory, government office, or private office. This should be completed prior to being classified as a senior or completing EnSci 390. Offered on a satisfactory-fail grading basis only.

EnSci 301. Forest Ecology and Soils. (Same as For 301.) See Forestry Nonmajor graduate credit.
EnSci 304I. Physical Geology. (Same as la LL 304I.) See Iowa Lakeside Laboratory.
EnSci 312. Ecology. (Same as Biol 312.) See Biology.
EnSci 312I. Ecology. (Same as la LL 312I.) See Iowa Lakeside Laboratory.
Crumpton. Dynamics of natural environmental systems. Systems approach to the analysis of material and energy flows, including physical and biological aspects of environmental systems and their functional connections. Laboratory emphasizes environmental modeling and simulation. Nonmajor graduate credit.
EnSci 360. Environmental Soil Science. (Same as Agron 360.) [3-2] Cr. 3. S. Prereq: Agron 260 or Geol 100 or 201. Burras, Killorn. Application of soil science to contemporary environmental problems; comparison of the impacts that different management strategies have on short-and long-term environmental quality and land development. Emphasis on participatory learning activities.
EnSci 390. Internship in Environmental Science. Cr. var. Prereq. Approval of the Environmental Science coordinator. Supervised off-campus work experience in the field of environmental science. Offered on a satisfactory-fail grading basis only.
EnSci 402. Watershed Hydrology and Surficial Processes. (Same as Agron 402, For 402, Geol 402.) [3-3] Cr. 4. F. Prereq. Credit or enrollment in EnSci 330 or Geol 100 or 201. 3 credits in biology and 6 credits in chemistry. Burras, Simpkins. Examination of watersheds as systems wherein biological and physical factors control hydrology, soil formation, and nutrient transport. Laboratory emphasizes field investigation of watershed-scale processes. Nonmajor graduate credit.
EnSci 402I. Watershed Hydrology and Surficial Processes. (Same as la LL 402I.) See Iowa Lakeside Laboratory. Nonmajor graduate credit.
EnSci 404. Global Change. (Same as Agron 404, Env S 404, Mseo 404.) [3-3] Cr. 3. S. Prereq. Four courses in physical or biological sciences or engineering. Takle. Biogeochemical cycles, ozone chemistry, global change, structure and circulation of the atmosphere and oceans, climate modeling, climate variability, and implications for agriculture, water resources, energy use, sustainable development, and public policy. Human dimensions and ethical issues of global environmental change. Nonmajor graduate credit.
EnSci 405. GIS and Natural Resources Management. (Same as A E 405.) [2-2] Cr. 3. F. Prereq. Using knowledge of computers and the Windows environment. Introduction to fundamental concepts and applications of GIS in natural resources management with specific focus on watersheds. Topics include: basic GIS technology, data structures, database management, spatial analysis, and modeling; visualization and display of natural resource data. Case studies in watershed and natural resource management using ArcView GIS. Nonmajor graduate credit.
EnSci 410L. Aquaculture Ecology Laboratory. (Same as A Ecl 410L.) See Animal Ecology. Nonmajor graduate credit.
EnSci 411. Hydrogeology. (Same as Geol 411.) [3-2] Cr. 4. F. Prereq. Geol 100 or 201, Math 185 or 181, Phys 111 or 221. Simpkins. Physical principles of groundwater flow, nature and origin of aquifers and confining units, well hydraulics, and groundwater geochemistry. Introduction to groundwater flow modeling. Lab emphasizes applied field and laboratory methods for hydrogeological investigations. Nonmajor graduate credit.
EnSci 422. Environmental Geochemistry. (Same as Geol 422.) [2-2] Cr. 3. F. Prereq. 402 or 411 or equivalent. Chem 162 or equivalent background in chemistry. Staff. Geochemistry of natural waters, including inorganic and organic constituents and water-rock interactions. Interpretation of water quality data. Geochemical equilibrium modeling and introduction to environmental laboratory exercises chemical analysis of waters and computer modeling. Nonmajor graduate credit.
EnSci 422I. Prairie Ecology. (Same as la LL 422I.) See Iowa Lakeside Laboratory. Nonmajor graduate credit.
EnSci 461I. Introduction to GIS Landscape Modeling. (Same as la LL 461I.) See Iowa Lakeside Laboratory. Nonmajor graduate credit.
EnSci 473I. Soil Genesis and Landscape Relationships. (Same as Agron 473I.) [3-2] Cr. 4. S. Prereq. 402 or Agron 154 or 402. Sandor. Relationships between soil formation, geomorphology, and environment. Soil description, classification, geography, mapping, and interpretation for land use. Two weekend field trips. Credit for 473 or 473I may be applied for graduation, not both. Nonmajor graduate credit.
EnSci 473I. Soil Genesis and Landscape Relationships. (Same as la LL 473I.) See Iowa Lakeside Laboratory. Nonmajor graduate credit.
EnSci 475. Surficial Processes. (Same as Geol 475I.) [2-2] Cr. 2. F. Prereq. Geol 100 or equivalency. Ivanov. Study of surficial processes in modern and ancient geological environments. Topics include weathering, sediment transport, and landform genesis with emphasis on fluvial, glacial, hilslope, oolian, and coastal processes. Applications to engineering and environmental problems. Laboratory emphasizes aerial photo and topographic map interpretation. Nonmajor graduate credit.
EnSci 487. Aquatic and Wetland Microbial Ecology. (Same as Bot 487, Micro 487.) [3-0] Cr. 3. S. Prereq. 6 credits in biology and 6 credits in chemistry. Crompton. Introduction to major functional groups of autotrophic and heterotrophic microorganisms and their roles in aquatic and wetland ecosystems. Emphasis on energy flow and nutrient dynamics. Nonmajor graduate credit.
EnSci 495. Integrated Case Studies. (1-3) Cr. 2. S. Prereq. Senior classification in Environmental Science. Schultz. Integrated approach to the analysis and management of environmental systems. The course will focus on cooperative group activities to identify and assess environmental problems in heavily impacted landscapes and to develop and evaluate alternative management plans Field trips.

Courses Primarily for Graduate Students, Open to Qualified Undergraduate Students
EnSci 505I. Watershed Modeling and GIS. (Same as la LL 505I.) See Iowa Lakeside Laboratory.
EnSci 508I. Aquatic Ecology. (Same as la LL 508I.) See Iowa Lakeside Laboratory.
EnSci 513. Ecological Toxicology. (Same as A Ecl 513I.) See Animal Ecology.
EnSci 535I. Restoration Ecology. (Same as la LL 535I.) See Iowa Lakeside Laboratory.
EnSci 554. Aquatic Toxicology. (Same as A Ecl 554I.) See Animal Ecology.
EnSci 564. Wetland Ecology. (Same as Bot 564I.) See Botany.
EnSci 564I. Wetland Ecology. (Same as la LL 564I.) See Iowa Lakeside Laboratory.
EnSci 584. Ecosystem Ecology. (Same as Bot 584I.) See Botany.

Environmental Studies
(Interdepartmental Undergraduate Program)
William G. Crompton: Coordinator
The Environmental Studies Program deals with the relationship between humans and nature, or between humans and natural systems. The curriculum is designed to give students an understanding of regional and global environmental issues and an appreciation of different perspectives regarding these issues. Courses are provided for students pursuing careers related to the environment and for others who simply want to know more about environmental issues. In addition, students in any college may elect to take a secondary major or minor in Environmental Studies. Additional information is available in the Environmental Programs Office, 131 Bessey Hall.

Secondary Major
The Environmental Studies secondary major is taken in addition to one’s first major and provides the breadth of preparation and integrated perspective necessary to understand environmental issues. Regardless of their home college, students seeking a secondary major in Environmental Studies complete 24 credits of approved course work including (1) Env S 120 or 201, and 303, (2) at least two integrative courses chosen from Env S 324, 340, 345, 404, 424, and 450, and (3) at least three human/societal perspectives courses chosen from Env S 334, 380, 382, 425, 472, 482, and 491. Beyond these three requirements, any Environmental Studies course or approved departmental course may be applied toward the 24 credit total for the major. A list of approved departmental courses is available in the Environmental Programs Office. Environmental Studies majors must take 12-
Courses and Programs Environmental Studies 223

18 credits of approved course work in natural science which may include some courses used in the 24 credits for the major. Some courses used in the major may also be used to satisfy general education and other requirements of departments and colleges, but at least 15 credits of course work must be unique to the major (i.e. not used to meet any other department or university requirement). A combined average grade of C or higher is required in courses applied to the major.

Minor
Students seeking a minor in Environmental Studies complete 15 credits in Environmental Studies courses including (1) Env S 120 or 201, and 303, (2) at least one integrative/ issues course chosen from Env S 324, 340, 345, 404, 424, and 450, and (3) at least one human/societal perspectives course chosen from Env S 334, 380, 382, 425, 472, 482, and 491. Beyond these three requirements, any Environmental Studies course may be applied toward the 15 credit total for the minor. A combined average grade of C or higher is required in courses applied to the minor, and the minor must include at least 9 credits that are not used to meet any other department, college, or university requirement.

Courses open for nonmajor graduate credit: 303, 330, 334, 404, 407, 415, 421, 425, 461, 472, 480I, 482.

Courses Primarily for Undergraduate Students

Env S 101. Environmental Geology: Earth in Crisis. (Same as Geol 101.) (3-0) Cr. 3 or (3-1) Cr. 4. F.

Env S 120. Introduction to Renewable Resources. (Same as A Ec 120, Agron 120, For 120.) (3-0) Cr. F.

Env S 123. Environmental Biology. (Same as Biol 123.) (3-0) Cr. 3. F. An introduction to the structure and function of natural systems at scales from the individual to the biosphere and the complex interactions between humans and their environment. Discussion of control, and coordinate environmental, aesthetic, and cultural characteristics of land, air, and water.

Env S 293. Environmental Planning. (Same as C R P 293.) (3-0) Cr. 3. F. Prereq: Sophomore classification. Comprehensive overview of the field of environmental relationships and the efforts being made to organize, control, and coordinate environmental, aesthetic, and cultural characteristics of land, air, and water.

Env S 303. Great Environmental Writings. (4-0) Cr. 2. F. Second 8 weeks. Tanner. Students will read works by such authors as Thoreau, Muir, Leopold, and Abbey. Nonmajor graduate credit.

Env S 334. Environmental Ethics. (Same as Phil 334.) (3-0) Cr. 3. F. Prereq: Three credits in phi- losophy or junior classification. Thorough study of some of the central moral issues arising in connec- tion with human impact on the environment, e.g., human overpopulation, species extinction, forest and wilderness management, pollution. Several world views of the proper relationship between human beings and nature will be explored. Nonmajor graduate credit.

Env S 345. Population Problems and Society. (Same as Soc 345.) (3-0) Cr. 3. F. Prereq: Soc 130 or 134. Human overpopulation, impact on food, resources, and services; population growth and develop- ment; trends of births, deaths, and geographic movement; population projection; family planning, pollution and laws; comparison of the United States with other societies throughout the world.

Env S 380. Environmental and Resource Economics. (Same as Econ 380.) (3-0) Cr. 3. F. Prereq: Soc 130 or Econ 121. Economic resource availability, e.g., land, water, minerals, and services provided by the environment; market and nonmarket values; and public policy, including energy issues. Environmental quality and pollution control policies.

Env S 382. Environmental Sociology. (Same as Soc 382.) (3-0) Cr. 3. F. Prereq: Soc 130 or 134, 184, or Env S 201. Environment-society relations; social con- struction of nature and the environment; social and environmental impacts of resource extraction, pro- duction, consumption; environmental inequity; environmental mobilization and movements; U.S. and international examples.

Env S 390. Internship in Environmental Studies. Cr. var. Prereq: Approval of the Environmental Studies Coordinator. Practical experience with nature centers, environmental groups, biologists, conservation groups, and other organizations. Offered on a satisfactory-fail grading basis only.

Env S 404. Global Change. (Same as Agron 404, EnSci 404, Mteor 404.) (3-0) Cr. 3. S. Prereq: Four courses in physical or biological sciences, including one course in environmental science. Biogeochemical cycles, ozone chem- istry, global energy balance, structure and circulation of the atmosphere and oceans, climate modeling, cli- mate variability, land cover; for agriculture, water resources, energy use, sustainable develop- ment and public policy. Human dimensions and ethi- cal issues of global environmental change. Nonmajor graduate credit.

Env S 407. Watershed Management. (Same as For 407.) (3-0) Cr. 4. S. Prereq: A course in general biology. Managing human impacts on the hydrologic cycle. Field and watershed landscape best manage- ment practices for modifying the impacts on water quality, quantity and timing are discussed. Field proj- ects include developing a management plan using landscape buffers. Nonmajor graduate credit.

Env S 415. Environmental Studies Seminar. (1-0) Cr. 1 each time taken. Offered on an irregular basis. Prereq: Junior classification. Current or historic topics in Environmental Studies. Nonmajor graduate credit.

Env S 421. Field Seminar. (0-0) Cr. 1 to 2. Offered on an irregular basis. Field trips during semester or break to varied sites of environmental interest in or outside of Iowa, preceded by readings, lectures, and examinations about the areas to be visited. Focus on development vs. preservation. Nonmajor graduate credit.

Env S 424. Sustainable and Environmental Horticulture Systems. (Same as Hort 424.) (2-0) Cr. 2. S. Inquiry into ethical issues and environmental consequences of horticultural cropping systems and production practices. Emphasis on production sys- tems that are resource efficient, environmentally sound, socially acceptable, and profitable.

Env S 425. Sociopolitical Analysis of Environmental Issues. (3-0) Cr. 3. F. Prereq: 201 and one other Environmental Studies course. Institutional behaviors which underlie environmental problems and controversies here and overseas. The roles of government, business, citizen activists, the press, international development banks, and others. Nonmajor graduate credit.

Env S 450. Issues in Sustainable Agriculture. (Same as Agron 450.) (3-0) Cr. 3. S. Prereq: Agriculture science as a human activity; contempo- rary agricultural issues from agroecological perspec- tive. Comparative analysis of intended and actual consequences of development of industrial agricul- tural practices.

Env S 461I. Introduction to GIS Landscape Modeling. (Same as La LL 461I.) See Iowa Lakeside Laboratory. Nonmajor graduate credit.

Env S 472. American Environmental History. (Same as Hist 472.) (3-0) Cr. 3. F. Prereq: Sophomore classification. Taylor. Conceptual approach to human history in North America by examining the impact of nature from precontact through the 20th century. Explores material interactions; intellectual modes; aesthetic relationships; and management strategies from aboriginal society through the environmental age. Nonmajor graduate credit.

Env S 480I. Introduction to Environmental Planning. (Same as La LL 480I.) See Iowa Lakeside Laboratory. Nonmajor graduate credit.

Env S 482. Environmental Politics and Policies. (Same as Pol S 482.) (3-0) Cr. 3. F. Prereq: Sophomore classification. Taylor. Conceptual approach to human history in North America by examining the impact of nature from precontact through the 20th century. Explores material interactions; intellectual modes; aesthetic relationships; and management strategies from aboriginal society through the environmental age. Nonmajor graduate credit.

Env S 484. Sustainable Communities. (Same as C R P 484.) (3-0) Cr. 3. S. Prereq: Senior status or permission of instructor. The theory and practice of sustainability as a basis for sustainability, the history of the idea itself, and the movement toward indicators as out- come measurements both in the U.S. and interna- tionally. We then explore how these ideas have been applied in communities here and abroad.

Env S 490. Independent Study. Cr. var. Prereq: Permission of instructor and approval of Environmental Studies coordinator.

Env S 491. Environmental Law. (Same as C R P 491.) (3-0) Cr. 3. S. Prereq: 6 credits in natural sciences. Legal precedents and alternative policies for environmental protection; rights to and regula- tions for uses of water, air, and land. Federal environ- mental control acts and leading federal court cases.
Family and Consumer Sciences

Master of Family and Consumer Sciences (M.F.C.S.).

The College of Family and Consumer Sciences offers a nonthesis degree program designed to enhance the skills of post-baccalaureate individuals whose work or family obligations preclude study on the Ames campus. Completion of the MFCS degree has permitted many individuals to obtain the credential needed for advancement while continuing their current employment. The program is considered to be a professional master's degree and not preparation for further graduate study.

Students select either a comprehensive option or a specialization option. The comprehensive option can be followed on or off-campus and requires 36 credits covering a variety of family and consumer sciences subject matter. Off-campus courses are offered at several locations via the Iowa Communications Network (ICN) or the World Wide Web (WWW). Specializations are available in Nutrition; Dietetics; Human Development and Family Studies; Hotel, Restaurant, and Institution Management; and Textiles and Clothing.

In addition, students may select a 42-credit specialization in Family Financial Planning (FFP). The FFP specialization, offered in collaboration with five other universities in the Great Plains, is offered exclusively through courses on the Web. The program has been approved by the Board of Examiners of the Certified Financial Planner Board of Standards as a program with the competencies required to permit those completing the degree to sit for the CFP® Certification Examination. CFP® is a certification mark owned by the Certified Financial Planner Board of Standards.

The Program of Study committee, in consultation with the student, establishes the courses to be taken and the acceptability of transfer credits. The major professor is selected from the discipline in which the concentration of coursework will be taken. Written and oral final integrative examinations are required in lieu of a thesis or creative component. A thesis or creative component could be included on mutual agreement of the student and major professor, with approval of the Graduate College.

Admission requirements for the MFCS include a bachelor's degree in a family and consumer sciences/home economics subject area or related disciplines, Graduate Record Examination (GRE) scores, official transcripts, three letters of recommendation, a goal statement, and graduation in the upper one-half of class with a bachelor's degree from a regionally accredited U.S. institution or graduation in the upper one-half of class from a recognized foreign institution. Non-English speaking international students are required to have a TOEFL score of at least 550 at time of admission.

Graduate Certificates

To meet the requirements of the American Dietetics Association for the professional development of registered dietitians, graduate certificates are available in Dietetics Communication and Counseling, Dietetics Management, and Advanced Medical Nutrition Therapy. For detailed information about the certificates, contact the Department of Food Science and Human Nutrition or the Hotel, Restaurant, and Institution Management program.

For additional information, students should contact the CFCS Research and Graduate Education Office, 126 MacKay Hall, Ames, Iowa 50011, mfcsinfo@iastate.edu

Family and Consumer Sciences Education and Studies

Mary B. Gregoire, Chair of Department
Professors: Cowan, Gregoire
Professors (Adjunct): Kurf
Distinguished Professors (Emeritus): Fanslow, Moyer
Professors (Emeritus): Anderson, Beavers, Crabtree, Elliott, Smith
Associate Professors: Gentzler, Hausafus
Associate Professors (Emeritus): Amos, Ebert
Assistant Professors: Murphy
Assistant Professors (Adjunct): Knuepelm
Instructors (Adjunct): Butterbaugh, Davis

Undergraduate Study

For undergraduate curricula in family and consumer sciences education and studies leading to the degree bachelor of science, see Family and Consumer Sciences Education and Studies.

The department offers one curriculum for the bachelor of science degree in Family and Consumer Sciences Education and Studies. Students in the curriculum choose one of three options, Teacher Licensure, Educational Services, or General Studies. Graduates of the teacher licensure option teach in general, vocational, and occupational programs of family and consumer sciences in middle, junior, and senior high schools. Graduates of the Educational Services option develop, implement, and evaluate family and consumer sciences programs for intended audiences in a variety of educational settings such as Cooperative Extension, business, community agencies, community colleges, and public school adult education. Graduates of the General Studies option may pursue individualized career goals in family and consumer sciences that apply integrative knowledge of family and consumer sciences in diverse careers for domestic and international settings.

Admission to all three options is initiated in the course FCEdS 206. In addition, students in Teacher Licensure follow department and university procedures for admission to the university teacher education program. This program option is approved by the Iowa Department of Education for the preparation of vocational family and consumer sciences teachers. For additional teacher education requirements, see College of Education.

Graduates in Family and Consumer Sciences Education and Studies have a broad understanding of individual and family well-being. Graduates apply knowledge of family and consumer sciences content in domestic and/or international professional settings. They use research findings to improve the well-being of individuals, families, and communities. Due to the integrative and synergistic nature of family and consumer sciences, graduates address and act on complex problems confronting individuals, families, and communities.

Opportunities are available for obtaining a minor from other departments through careful selection of elective credits and consultation with an advisor. For example, students pursuing the Educational Services and General options are encouraged to consider obtaining a minor in journalism and mass communications or in one of the subject matter areas of family and consumer sciences such as resource management and consumer sciences or housing and the near environment. They also are encouraged to enhance their program by electing additional courses in an area of business. Students in the Teacher Licensure option may choose to add a second teaching area specialization such as middle school, health education, or coaching.

The department offers a minor in educational services in family and consumer sciences. The minor is earned by successfully completing 15 credits in FCEdS 206, 206L, 306, 415, and 418. The department cooperates in the journalism and mass communications concentration in family and consumer studies. See department for details.

English Proficiency Requirement: C or better in Engl 104 and 105.

Graduate Study

The department offers work for the degrees master of science, master of education, and doctor of philosophy, each with the major, family and consumer sciences education. The M.S. degree requires a thesis; the M.Ed. degree requires a creative component; the Ph.D. requires a dissertation. Minors are available.

Programs for advanced degrees with a major in family and consumer sciences education are tailored to fit the educational background, experience, and professional goals of the student. Areas of study provided by the department include program planning, curriculum, evaluation, research methods, supervision and administration, international education and development, and teacher education.
Courses and Programs

Family and Consumer Sciences Education and Studies 225

Opportunities are available for strengthening one’s background in subject matter in other departments in the College of Family and Consumer Sciences.

Students who complete a graduate program are professional family and consumer sciences educators and teacher educators who foster program planning, implementation, and evaluation at state, national, and international levels. They are producers and disseminators of research and scholarship in family and consumer sciences education and are leaders in programs and services for clientele in diverse settings.

The department cooperates in the gerontology interdepartmental minor.

Courses open for nonmajor graduate credit: 413, 415.

Courses Primarily for Undergraduate Students

FCEdS 160. Foundations of Family and Consumer Sciences. (1-0) Cr. 1. F. S. Historical development and philosophical base of family and consumer sciences. Integrative focus for disciplines and areas of specialization.

FCEdS 206. Professional Roles in Family and Consumer Sciences. (2-0) Cr. 2. F. Prereq: 160, enrollment in 206L. Introduction to various roles in professional settings, e.g., community agencies, secondary schools, business and industry, Cooperative Extension.

FCEdS 206L. Laboratory for Educational Roles in Family and Consumer Sciences. (0-0) Cr. 1. F. Prereq: 160. Observation, participation, and teaching experiences in educational settings.

FCEdS 310. Career Opportunities. (1-0) Cr. R. F. S. Half-term. Prereq: Credit or enrollment in 160 or FS HN 203. Survey of current professional opportunities and preparation for the job search process. Transition from student to professional role. Offered on a satisfactory-fail grading basis only.

FCEdS 314. Computer Applications for Training and Development. (Dual-listed with 514.) (2-0) Cr. 2. S. Application of computer resources for development and presentation of instructional sequences in family and consumer sciences.

FCEdS 318. Occupational Programs. (Dual-listed with 518.) (2-0) Cr. 2. S. Prereq: 206 and 400 hours work experience in a family and consumer sciences related job. Planning and implementing programs in occupational family and consumer sciences including FCCLA. Impact of selected legislation on family and consumer sciences programs. Techniques for cooperative education, school-to-work, and work-based education programs. May be used toward Multi-Occupancy Cooperative endorsement.

FCEdS 379. Educational Aspects of Family Social Issues. (3-0) Cr. 3. S. Examination of family and social issues from diverse perspectives. Application of critical thinking and reflection to family and social issues within formal and nonformal educational settings.

FCEdS 403. Student Assessment for Vocational Family and Consumer Sciences. (2-0) Cr. 2. S. Prereq: Enrollment in 413 and 50 hours of early experience in public school student assessment. Development and critique of tests and authentic assessment tools to measure cognitive, affective, psychomotor, and perceptual learning. Procedures for planning, interpreting, and reporting assessment data.

FCEdS 415. Program Planning and Evaluation in Family and Consumer Sciences. (3-0) Cr. 3. S. First half-term. Prereq: 18 credits in Family and Consumer Sciences subject matter. Program development principles including needs analysis, planning, instruction, promotion, evaluation, grant writing and reporting. Approaches appropriate for diverse groups. Environmental and cultural conditions affecting programs. Nonmajor graduate credit.

FCEdS 417. Supervised Teaching in Family and Consumer Sciences. F. Prereq: 413, 24 credits in family and consumer sciences subject matter, cumulative grade point average of 2.5 for upper division education. Supervised teaching experience in secondary schools. Examination of ways to implement actions that reflect a professional philosophy of family and consumer sciences for teaching middle and high school level students. May be taken more than once for credit. Reservation required.

A. Vocational family and consumer sciences. Cr. 9. B. Family and consumer sciences. Cr. 3 to 8.

FCEdS 418. Supervised Experiences in a Professional Setting. Cr. 3 to 8. F. S.S. Supervised professional experience in an approved setting such as Cooperative Extension, business, community, human service, or government agency. May be taken more than once for credit. Reservation required.

B. General Studies. Prereq: 379 or 421, 24 credits in family and consumer sciences.

FCEdS 421. International Perspectives of Family and Consumer Sciences. (Dual-listed with 521.) (3-0) Cr. 3. S. Prereq: 6 credits in family and consumer sciences from an international perspective. Focus on the roles and responsibilities of women in development. Application and adaptation of content to working with families in other countries and cultures. Student participation in cultural activities.

FCEdS 424. International Study Abroad Seminar. (Dual-listed with 524.) Cr. 1 to 3. F. S.S. Orientation to study abroad program considering topics related to country and location; travel arrangements and preparation for study abroad; on-site fieldwork and academic experiences in an international setting.

FCEdS 460. Integrative Approaches in Family and Consumer Sciences. (1-0) Cr. 1. F. S. Half-term. Prereq: 180. Seminar on ways professionals work across disciplines. Examination of family and consumer sciences from an interdisciplinary perspective; contemporary social issues that affect individuals and families. Methods to initiate public policy at the local, national, and international levels. Intended primarily for seniors.

A. Adult Education

B. Curriculum

C. Evaluation

D. Cooperative Extension

E. General

F. Honors

G. International

H. Occupational Education

I. Consumer Sciences

J. Human Relations

K. Special Needs/Mainstreaming

L. Vocational Education

M. Distance Education

Courses Primarily for Graduate Students, Open to Qualified Undergraduate Students

FCEdS 500. Short Course: Current Family and Consumer Sciences Offerings. Cr. 1 to 3. F.S.S. Prereq: 6 credits in family and consumer sciences or education.

A. Adult Education

B. Supervision and Administration

C. Curriculum

D. Evaluation

E. Teacher Education

F. Occupational/Vocational Education

G. General

H. Research Methodology

I. International Education

J. Middle Level Education

FCEdS 507. Program Development in Family and Consumer Sciences. (3-0) Cr. 3. F. Prereq: Professional experience in family and consumer sciences or related area. Application of principles of program development to formal and nonformal educational settings, e.g., secondary school family and consumer sciences programs, training positions in business, Cooperative Extension, human services agencies.

FCEdS 511. Research Methods. (3-0) Cr. 3. F. Prereq: Graduate classification. An overview of diverse research approaches focusing on methods for collecting and analyzing quantitative and qualitative data. Critique of research reports and development of research proposals.

FCEdS 514. Computer Applications for Training and Development. (Dual-listed with 314) (2-0) Cr. 2. S. Prereq: Graduation classification. Application of computer resources and methods for the development and presentation of instructional sequences in family and consumer sciences. Critique of professional information sources available through network systems.

FCEdS 515. Assessment in Family and Consumer Sciences. (3-0) Cr. 3. S. Prereq: Introductory statistical and program development skills. Role of assessment in family and consumer sciences education programs. Planning and constructing test items and other assessments of student learning.

FCEdS 518. Occupational Programs. (Dual-listed with 318) (2-0) Cr. 2. S. Prereq: 400 hours work experience in a family and consumer sciences related job. Planning and implementing programs in occupational family and consumer sciences including FCCLA. Impact of selected legislation on family and consumer sciences programs. Techniques for cooperative education, school-to-work, and work-based education programs. Critique of national occupational competency standards. May be used toward Multi-Occupancy Cooperative endorsement.

FCEdS 520. Supervision in Family and Consumer Sciences Programs. (3-0) Cr. 3. Alt. S., offered 2002. Prereq: Professional experience or 6 credits in family and consumer sciences. Examination of change, communication and leadership theories as related to supervision. Application of conferencing techniques, observation skills, and performance evaluation to professional leadership positions in educational settings.

FCEdS 521. International Perspectives of Family and Consumer Sciences. (Dual-listed with 421.) (3-0) Cr. 3. S. Prereq: 6 credits in family and consumer sciences. Examination of family and consumer sciences from an international perspective; focus on the roles and responsibilities of women in development. Application and adaptation of content to working with families in other countries and cultures. Student participation in cultural activities and critique of international research articles.
Finance

David B. Smith, Chair of Department
Professors: Carter, Hayes, Ralston, Stover
Associate Professors: Campbell, Covian, Dark, Koppenhaver, Power
Assistant Professors: Howell, Pwowar, Wei

Undergraduate Study

For undergraduate curriculum in business, major in finance, see College of Business, Curricula.

In addition to the basic business requirements, finance majors must also complete: (1) Fin 310, 320, 371; (2) select four from Fin 330, 361, 380, 415, 424, 425, 445, 462, 472, 499 of which two must be at the 400 level; and (3) select one from Acct 383, 384, 386, 387, any 400-level accounting course and Finance courses listed in (2) above.

The courses in finance constitute a broad program of study designed to provide a descriptive, behavioral, and analytical background of financial management to enable students to qualify for opportunities in financial services, insurance, brokerage, government, real estate, and financial management of business enterprises. Finance is also an excellent area for those who wish to become more knowledgeable as consumers, particularly in the fields of investments, insurance, and real estate.

Areas of study in the field of finance include financial management, investments, insurance, real estate, and financial services. Upper-level courses include a review of contemporary literature in the field, case studies, and financial problem analysis integrating finance courses previously taken.

The instructional objective of the Finance program is to provide a well-rounded professional education in finance. Such an education should provide the student with: (1) a mastery of basic financial concepts and methods of analysis; (2) an understanding of financial operations in a global setting and of the role of financial institutions in the economies system; (3) an ability to effectively communicate and work with others as the finance member of a team; (4) an ability to demonstrate leadership capabilities in financial analysis and portfolio management.

The department also offers a minor for College of Business students with a different major. They are required to take 15 credits from a list of approved courses, of which 9 credits need to be stand alone.

Graduate Study

The department participates in two graduate degree programs: the M.S. in business and the M.B.A. full-time and part-time programs. The M.S. degree in business is a 30-credit curriculum culminating in a thesis. The M.B.A. program is a 48-credit, nonthesis, noncreative component curriculum. Twenty-four of the 48 credit hours are core courses and the remaining 24 are graduate electives. Within

the M.B.A. program, students may develop an area of specialization in finance. This specialization requires that 12 of the 24 credit hours of the graduate electives be from an approved list of graduate finance courses.

Courses open for nonmajor graduate credit: 415, 424, 445, 462, 472.

Courses Primarily for Undergraduate Students

Fin 301. Principles of Finance. (3-0) Cr. 3. F.S.SS. Prereq: Acct 284; Econ 101, Stat 227. Introduction to financial management with emphasis on corporate financing and investment decision making, time value of money, asset valuation, capital budgeting decision methods, cash budgeting, and financial markets.

Fin 310. Corporate Finance. (3-0) Cr. 3. F.S.SS. Prereq: 301. Theory used in a firm’s investment and financing decisions. Analysis of environment in which financial decisions are made, applications of analytical techniques to financial management problems.

Fin 320. Investments. (3-0) Cr. 3. F.S.SS. Prereq: 301. Introduction to various investment media and markets from the viewpoint of the individual investor. Emphasis on financial planning, behavior of security markets, corporate stocks and bonds, individual asset and portfolio selection techniques.

Fin 330. Financial Markets and Institutions. (3-0) Cr. 3. F.S. Prereq: 301. Introduction to the structure and operations of the United States financial system and its markets and institutions. Emphasis on developing and integrated understanding of markets and financial service providers including global linkages.

Fin 371. Real Estate Principles. (3-0) Cr. 3. SS. Prereq: Econ 101. Legal, economic, social and financial aspects of real estate, including property rights, contracts, mortgage instruments, tax factors, brokerage, valuation, risk and return analysis, financing techniques, and investments.

Fin 380. International Finance. (3-0) Cr. 3. F.S. Prereq: 301. Advanced study of contemporary topics and issues in international finance.

Fin 415. Business Financing Decisions. (3-0) Cr. 3. Prereq: 301. In depth study of the firm’s external financing decision. Emphasis on the development of cash flow statements, projected financing needs and the selection of the appropriate financing instrument. Focus on case studies and application of developed techniques on actual field project. Nonmajor graduate credit.

Fin 424. Financial Futures and Options. (3-0) Cr. 3. Prereq: 320. Advanced study of the pricing and use of derivative market instruments, current topics and issues. Nonmajor graduate credit.

Fin 425. Security Analysis and Portfolio Management. (3-0) Cr. 3. F.S. Prereq: 320 and permission of instructor. Advanced study of security analysis, security selection techniques and portfolio management. Emphasis on the applications of models learned via the selection and evaluation of a portfolio of actual securities purchased in security markets in the U.S. or abroad. Tracking and periodic reporting of the portfolio’s performance relative to standard benchmarks is also required.

Fin 462. Corporate Risk Management and Insurance. (3-0) Cr. 3. Prereq: 381. Analysis of an organization’s approaches to the management of

Courses and Programs Family and Consumer Sciences Education and Studies 2001-2003
Food Science and Human Nutrition

www.fcs.iastate.edu/fsfh

Diane F. Birt, Chair of Department
University Professors: Glatz, Hammond, Parrish, Sebranek

Professors: Birt, Hendrich, Hurburgh, Jane, Johnson, Kaplan, Murphy, Nikolau, Pommet, Prusa, Robson, Schafer, Sharp, Stromer, Swarn, Topel, P. White, Wilson, Wurtele

Professors (Collaborators): Nikolov

Distinguished Professors (Emeritus): Jacobson, Roderuck

Professors (Emeritus): Dupont, Garcia, Kraft, Lagrange, McMillan, Runyan, Rust, Walker

Associate Professors: Ford, Lewis, J. Love, M. Love, Madden, Myers, Oakland, Reitmeier, W. White

Associate Professors (Emeritus): Bohnenkamp, McComber

Assistant Professors: Akekel, Boylston, Briggs, Marquis, Mendoza, Reddy, Schalinske, Wang

Assistant Professors (Collaborators):

Instructors (Adjunct): Anderson, Bassler, Betterley, Hanson, Litchfield, Stroh, Svendsen

The Department of Food Science and Human Nutrition is jointly administered by the College of Agriculture and the College of Family and Consumer Sciences. All curricula offered by the department are available to students in either college. These curricula include dietetic, food science, and nutritional science. Visit our web site at: www.fcs.iastate.edu/fsfh.

Undergraduate Study

The general dietetics curriculum is approved by the American Dietetic Association (ADA) and meets the academic requirements for admission to accredited dietetics internships. The dietetic program includes study in basic sciences, nutrition, and food science applications to medical dietetics and community nutrition. Foodservice management is also an important aspect of the program. Graduates work in hospitals, clinics, long-term care facilities, food and pharmaceutical industries, and government nutrition programs; some are private and home health care nutrition consultants. There is a $30 fee for a statement of verification of completion of the approved program.

Food science is a discipline in which the principles of biological and physical sciences are used to study the nature of foods, the causes of their deterioration, and the principles underlying the processing and preparation of food. It is the application of science and technology to the provision of a safe, wholesome, and nutritious food supply. Biotechnology and toxicology interrelate with food science in the area of food safety. Food science, nutrition, food science and technology or the food science and industry option. Students who wish to go to graduate or professional school or who are biotechnology scholars in the College of Agriculture should elect food science and technology. Students who wish to emphasize business, journalism, or special aspects of food science should elect food science and industry. Students interested in test kitchen positions, food product formulation and recipe development, food promotion, and consumer services in government and industry should elect the consumer food science option. Pre-veterinary and pre-health professional preparation is available through the food science and technology option.

Students who wish to combine education in engineering with food science may select additional courses in chemical or agricultural engineering. Double majors are available and may require an additional year.

Nutritional science offers students a strong basic science and general education that enables them to gain the knowledge and skills necessary to work in research laboratories of colleges and universities, government agencies, industries, and foundations. The curriculum can serve as a preprofessional program for medicine, dentistry, veterinary medicine, or for graduate study in nutrition or other biological sciences.

Students graduating with degrees in dietetics, food science, or nutritional science should: 1) be able to prepare and deliver technical information to food science and nutrition professionals as well as to the general public; 2) be able to find, evaluate and interpret research literature in food science and/or nutrition; 3) demonstrate the ability to define a problem, distinguish verifiable facts from value claims, identify assumptions and detect bias, distinguish relevant information, identify sources of conflicts, and prioritize needs; 4) be well prepared to gain entry into graduate or supervised practice programs and/or successfully perform in entry-level positions in dietetics, nutrition, or the food industry. See also the B.S./M.S. program under Graduate Study.

The department offers minors in food science and in nutrition. See department office or web site for requirements.

English proficiency is certified by a grade of C or better in 6 credits of coursework in composition (Engl 104 and 105 or other communic.
tion-intensive courses) and a grade of C or better in 3 credits of coursework in oral communication.

Postbaccalaureate Program
A dietetic internship program has received developmental accreditation from the American Dietetic Association. For more information, refer to Special Interest Programs listed under the College of Family and Consumer Sciences or visit our website at www.public.iastate.edu/~dietetics/. There is a nonrefundable application fee of $30 and a program fee of $500 payable upon acceptance into the program.

Graduate Study
The department offers work for the degrees of master of science and doctor of philosophy with majors in food science and technology and in nutrition, and minors in food science and technology or in nutrition. Graduate work in meat science is offered as a co-major in animal science and food science and technology.

Prerequisite to major work is a baccalaureate degree in food science, nutrition, or other physical or biological sciences or engineering that is substantially equivalent to those at Iowa State University. Students taking major work for the degree of doctor of philosophy either in food science and technology or in nutrition may choose minors from other fields including anthropology, chemistry, biochemistry, economics, education, journalism, microbiology, psychology, physiology, sociology, statistics, toxicology, or other related fields.

Faculty in the department participate in the major in microbiology; the interdepartmental majors in genetics, MCDB (molecular, cellular, and developmental biology), toxicology, and water resources; and the interdepartmental minor in gerontology.

The department, in conjunction with the Hotel, Restaurant, and Institution Management department, offers three dietetics certificates of 11 credits each and participates in the Master of Family and Consumer Sciences with a Dietetics specialization. The certificate program meets continuing education requirements of The American Dietetic Association for advanced preparation in communication and counseling, dietetics management, and medical nutrition therapy. The graduate certificate courses may be applied to the Master of Family and Consumer Sciences - Dietetics specialization. These programs are open only to registered dietitians. A second Master of Family and Consumer Sciences specialization, offered in the area of Nutrition, does not require certification as a registered dietitian for admittance. Those interested in these programs should contact the department for details.

The department offers a B.S./M.S. program that allows students to obtain both the B.S. and M.S. degrees in 5 years. The program is available to students in the food science and technology option or the nutritional science option. Students interested in this program should contact the department for details. Application for admission to the Graduate College should be made near the end of the junior year. Students begin research for the M.S. thesis during the summer after their junior year and are eligible for research assistantships.

Students graduating with advanced degrees in food science and technology or nutrition should: 1) be able to conduct and interpret research in food science and/or nutrition; 2) be able to present clear, organized, informational seminars; 3) be able to communicate effectively with students in the classroom or teaching laboratory, with peers and with the general public; 4) write an abstract or paper to be submitted for publication; 5) perform successfully in professional-level positions in food science or nutrition; 6) have a comprehensive background in food science and/or human nutrition.

Courses Primarily for Undergraduate Students

FS HN 101. Food and the Consumer. (3-0) Cr. 3. F.S. Prereq: High school biology and chemistry or 3 credits each of biology and chemistry. The food system from point of nurture to the construction of the food by the consumer. Properties of food constituents. Protection of food against deterioration and microbial contamination. Introduction of foods into the marketplace. Processes for making various foods. Government regulations. Use of food additives. Current and controversial topics. Electronic communication from web emphasized for class reports, minor assignments. FS HN 110. Orientation. (1-0) Cr. 0.5. F. Orientation to the department, to Iowa State University, and to careers in food science, nutrition, and dietetics. Curriculum and career planning. Offered on a satisfactory-fail grading basis only.

FS HN 167. Introduction to Human Nutrition. (3-0) Cr. 3. F.S.SS. Prereq: High school biology or 3 credits of biology. Understanding and implementing present day knowledge of nutrition. The use of food for health and satisfaction of the individual and the family.

FS HN 203. Family and Consumer Sciences and Agricultural Systems in Contemporary Societies. (1-0) Cr. 1. F.S. Major family and consumer sciences and agricultural systems courses. Impact of economic, political, social, technological, and belief systems. Emphasis on population, public policy, food production, food and water availability and safety, nutrition, and environmental impact.

FS HN 205. Regulation of Body Weight. (2-0) Cr. 2. Alt. S., offered 2003. Prereq: 167, Biol 109, or Chem 163. Introduction to body composition, fat and muscle biology, macronutrient metabolism, and energy expenditure. The use of food for energy and physical activity in weight control will be examined in recent published human studies. Students will develop an individual weight maintenance program.

FS HN 261. Fundamentals of Human Nutrition. (2-0) Cr. 2. S. Prereq: Credit or enrollment in BBMB 301 or Biol 302. Nutrient composition of foods, nutritional requirements and dietary recommendations, formulation of diet plans, fundamentals of nutrient metabolism.

FS HN 272. Basic Principles of Food Processing. (1-6) Cr. 3-5. F.S. Prereq: Credit or enrollment in Chem 231 & 231L, and Biol 231, advanced biological and physical-chemical principles of food processing as they determine the quality of foods.

FS HN 298. Cooperative Education. Cr. R. F.S.SS. Prereq: Permission of the department chair, sophomore classification. Required of all cooperative education students. Students must register for these courses prior to commencing each work period.

FS HN 311. Food Chemistry. (2-3) Cr. 3. F. Prereq: Chem 231 and 231L or 331 and 331L; credit or enrollment in BBMB 301. The structure, properties, and reactions of food constituents and commodities. Nonmajor graduate credit.

FS HN 340. Introduction to Dietetics. (1-0) Cr. 1. F. Roles of dietitians; professional ethics; health care delivery systems. Offered on a satisfactory-fail grading basis only.

FS HN 342. World Food Issues: Past and Present. (Same as Agron 342, T SC 342, U St 342) (3-0) Cr. 3. S. World food problems in context of historical development of agriculture in major cradles of civilization. Emphasis on population pressures, socioeconomic policies to understand disparities between potential agriculture production and present energy and nutritional deficiencies in key areas of the developing world. Team projects. Nonmajor graduate credit.

FS HN 351. Unit Operations in Food Processing. (3-0) Cr. 3. S. Prereq. A course in calculus and Phys 106. Introduction to material and energy balances. Fluid flow, physical and thermal properties of food materials. Fundamentals of heat and mass transfer. Application of momentum and heat transfer to unit operations in food processing. Calculations and computer applications in food processing. Nonmajor graduate credit.

FS HN 360. Human Nutrition and Metabolism. (3-0) Cr. 3. F.S. Prereq. 261, 3 credits in biochemistry; 3 credits in physiology recommended. Physiological and chemical bases for nutrient needs. Factors to consider in satisfying those needs for individuals and populations. Nonmajor graduate credit.

FS HN 361. Human Nutrition Laboratory. (1-3) Cr. 2. F. Prereq. Credit or enrollment in 380, 3 credits in statistics. The application of nutritional science to measure indicators of nutrition-related health status. Laboratory experiences in dietary, body composition, and biochemical assessment of nutritional status. Nonmajor graduate credit.

FS HN 362. Nutrition in Growth and Development. (3-0) Cr. 3. S. Prereq. 380; credit or enrollment in a course in physiology. Nutrition throughout the human life cycle in relation to biological growth and development. Role of nutrients in cell replication, differentiation, senescence and apoptosis. The relationships between genes, gene expression and nutrients with physiological outcomes during human development and aging. Nonmajor graduate credit.

FS HN 398. Cooperative Education. Cr. R. F.S.SS. Prereq: Permission of the department chair; junior classification. Required of all cooperative education students. Students must register for these courses prior to commencing each work period.
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Title</th>
<th>Prerequisites</th>
<th>Credits</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>FS HN 403</td>
<td>Food Laws, Regulations, and the Regulatory Process. (2-0) Cr. 2 S.S.S.</td>
<td>Prereq: 3 credits in food science coursework at 200 level or above. History of the development of the current federal and state food regulations. Guidelines that govern the practice of regulating the wholesomeness of red meats, poultry, and eggs. Presentations by state and federal food regulators. Nonmajor graduate credit.</td>
<td>3</td>
<td>F.</td>
</tr>
<tr>
<td>FS HN 405</td>
<td>Food Quality Assurance. (2-2) Cr. 3 S. Prereq: 214 or 272 or 471, Stat 101 or 104. Basis of food quality control/assurance programs and establishment of decision-making processes using official (government and industry) instrumental, chemical, and sensory procedures. Statistical process and quality control procedures and their applications to various food systems. Development of hazard analysis procedures, specifications, grades, and standards. Nonmajor graduate credit.</td>
<td>4</td>
<td>F.</td>
<td></td>
</tr>
<tr>
<td>FS HN 406</td>
<td>Sensory Evaluation of Food. (Dual-listed with 506) (2-2 Cr. 3 Alt. F., offered 2001. Prereq: 214 or 311 or An S 380; 3 credits in statistics. Sensory test methods and procedures used to evaluate the flavor, color and texture of foods. Relationships between sensory and instrumental measurements of color and texture. Acceptance and preference testing.</td>
<td>3</td>
<td>F.</td>
<td></td>
</tr>
<tr>
<td>FS HN 407</td>
<td>Microbial Safety of Food. (Same as Micro 407) See Microbiology.</td>
<td></td>
<td>3</td>
<td>F.</td>
</tr>
<tr>
<td>FS HN 410</td>
<td>Food Analysis. (2-3 Cr. 3 S. Prereq: 214 or 311 or BMBB 311 or Chem 211. An introduction to the theory and application of physical and chemical methods for determining the constituents of food. Modern separation and instrumental analysis. Use of food composition data bases. Nonmajor graduate credit.</td>
<td>3</td>
<td>F.</td>
<td></td>
</tr>
<tr>
<td>FS HN 411</td>
<td>Experimental Study of Food. (2-3 Cr. 3 F. Prereq: 214 or 311; a course in biochemistry, microbiology, formulation, microbiology, and processing. Some pilot sample experiments. Electronic communication from web emphasized for class reports, notes and assignments. Nonmajor graduate credit.</td>
<td>3</td>
<td>F.</td>
<td></td>
</tr>
<tr>
<td>FS HN 419</td>
<td>Foodborne Hazards. (Same as Micro 419, Tox 419) (3-0 Cr. 3 Alt. S., offered 2002. Prereq: Micro 201 or 302, a course in biochemistry. Pathogenesis of human microbiological foodborne infections and intoxications. Intoxicants of major classes of toxins in the food supply, governmental regulations of foodborne hazards. Nonmajor graduate credit.</td>
<td>3</td>
<td>F.</td>
<td></td>
</tr>
<tr>
<td>FS HN 420</td>
<td>Food Microbiology. (Same as Micro 420, Tox 420) (3-0 Cr. 3 F. Prereq: Micro 201 or 302. Effects of microbial growth in foods. Methods to control, detect, and enumerate microorganisms in food and water. Foodborne infections and intoxications. Nonmajor graduate credit.</td>
<td>3</td>
<td>F.</td>
<td></td>
</tr>
<tr>
<td>FS HN 421</td>
<td>Food Microbiology Laboratory. (Same as Micro 421) (1) Prereq: Micro 207 302, 311 Cr. 3 Alt. S., offered 2003. Prereq: Micro 207, 208; a course in biochemistry. Introductory to genetic engineering and fermentation technology and their applications in the food industry; molecular and DNA detection methods; bioethics. Laboratories include all steps in production of a recombinant food enzyme from genetic engineering through fermentation, recovery and characterization.</td>
<td>3</td>
<td>F.</td>
<td></td>
</tr>
<tr>
<td>FS HN 441</td>
<td>Hospital Food and Nutrition Services. (1-9 Cr. 5 S.S.S. For students enrolled in the dietetic internship program. Supervised participation in and analysis of foodservice management, delivery, and other functions related to hospital food and nutrition services. Offered on a satisfactory-fail grading basis only.</td>
<td>9</td>
<td>F.S.SS.</td>
<td></td>
</tr>
<tr>
<td>FS HN 442</td>
<td>Medical Dietetics I. (3-11) Cr. 8 F. S.S. For students enrolled in the dietetic internship program. Biological basis of medical, drug, and diet therapy for selected pathologies. Consideration of factors in planning and conducting nutritional care for patients. Integration of principles with clinical experience. Offered on a satisfactory-fail grading basis only.</td>
<td>11</td>
<td>F.S.SS.</td>
<td></td>
</tr>
<tr>
<td>FS HN 443</td>
<td>Medical Dietetics II. (Dual-listed with 543) (1-11) Cr. 3 F. S.S. Prereq: Concurrent enrollment in 442. For students enrolled in the dietetic internship program. Supervised clinical experience in assessing, implementing and evaluating nutritional care of patients in specialized clinical settings. Offered on a satisfactory-fail grading basis only.</td>
<td>11</td>
<td>F.S.SS.</td>
<td></td>
</tr>
<tr>
<td>FS HN 445</td>
<td>Experience in Community Dietetics. (1-12 Cr. 5 S.S.S. For students enrolled in the dietetic internship program. Supervised experience in planning and conducting diet services. Assignments for individuals and groups in a variety of community settings. Offered on a satisfactory-fail grading basis only.</td>
<td>12</td>
<td>F.</td>
<td></td>
</tr>
<tr>
<td>FS HN 446</td>
<td>Experience in Dietetic. (2-0 Cr. 2 F. Prereq: For students enrolled in dietetics internship. Supervised experience and supervised dietetic nutrition education for individuals and groups in a variety of dietetic settings. Offered on a satisfactory-fail grading basis only.</td>
<td>2</td>
<td>F.</td>
<td></td>
</tr>
<tr>
<td>FS HN 448</td>
<td>Professional Development Assessment. (Dual-listed with 548) (2-3 Cr. 1 F. S.S.S. Prereq: Concurrent enrollment dietetic internship. For students enrolled in the dietetic internship program. Web-based course providing information and practice for students to assess and evaluate their own professional development and continuing professional education needs. Offered on a satisfactory-fail grading basis only.</td>
<td>3</td>
<td>F.S.SS.</td>
<td></td>
</tr>
<tr>
<td>FS HN 461</td>
<td>Disease and Medical Nutrition Therapy I. (Dual-listed with 561) (2-3 Cr. 4 F. Prereq: 360, 3 credits in physiology. Pathophysiology of selected medical problems with specific attention to nutritional needs and treatment as part of medical nutrition therapy. Clinical nutrition applications in acute and chronic disease. Assessment of nutritional problems, nutrition care, planning and documentation.</td>
<td>3</td>
<td>F.</td>
<td></td>
</tr>
<tr>
<td>FS HN 463</td>
<td>Community Nutrition. (3-0 Cr. 3 S. Prereq: 362 Survey of current public health nutrition problems, knowledge of nutritionally vulnerable individuals and groups. Discussion of the multidimensional nature of those problems and of community programs designed to help solve them. The role of community nutritionists. Nonmajor graduate credit.</td>
<td>3</td>
<td>F.</td>
<td></td>
</tr>
<tr>
<td>FS HN 464</td>
<td>Disease and Medical Nutrition Therapy II. (Dual-listed with 564) (2-3 Cr. 3 S. Prereq: 461 Pathophysiology of selected disease states and medical problems. Specific attention will be directed to nutrition needs and treatment of each disease state. Clinical nutrition applications in acute and chronic disease. Assessment of nutritional problems, nutrition care, planning and documentation.</td>
<td>3</td>
<td>F.</td>
<td></td>
</tr>
<tr>
<td>FS HN 466</td>
<td>Nutrition Counseling and Education Methods. (Dual-listed with 566) (2-3 Cr. 3 F. S.S. Prereq: 360, 3 credits in psychology. Pathophysiology of chronic illness. Nutrition counseling and education. Nutrition counseling and education. Assessment of the client’s nutrition knowledge and application. Application of counseling and learning theories with emphasis on motivation, decision-making processes using official (government and industry) regulatory agencies in different regions of the world. Pre-planned exercises. Students present the program to classes and groups. Discussion of the multidimensional nature of those problems and of community programs designed to help solve them. The role of community nutritionists. Nonmajor graduate credit.</td>
<td>3</td>
<td>F.</td>
<td></td>
</tr>
<tr>
<td>FS HN 499</td>
<td>Food Science and Human Nutrition Travel Course. (Dual-listed with 596) (2-3 Cr. 2 to 3) May be repeated. (One credit per week travel. Prereq: Permission of instructor. Limited enrollment. Tour and study of food industry, dietetic and nutritional agencies in different regions of the world. Pre-planned exercises. Students present the program to classes and groups. Discussion of the multidimensional nature of those problems and of community programs designed to help solve them. The role of community nutritionists. Nonmajor graduate credit.</td>
<td>3</td>
<td>F.</td>
<td></td>
</tr>
<tr>
<td>FS HN 502</td>
<td>Advanced Food Science-Chemistry. (1-0 Cr. 1 S. Prereq: 3 credits in organic chemistry. Key principles and applications in the chemistry of food.</td>
<td>1</td>
<td>S.SS.</td>
<td></td>
</tr>
<tr>
<td>FS HN 503</td>
<td>Advanced Food Science-Processing. (1-0 Cr. 1 S. Prereq: 3 credits each in physics and mathematics. Key principles and applications in the processing of food.</td>
<td>1</td>
<td>S.SS.</td>
<td></td>
</tr>
<tr>
<td>FS HN 504</td>
<td>Advanced Food Science-Microbiology. (1-0 Cr. 1 S. Prereq: 3 credits each in microbiology and organic chemistry. Key principles and applications in the processing of food.</td>
<td>1</td>
<td>S.SS.</td>
<td></td>
</tr>
<tr>
<td>FS HN 506</td>
<td>Sensory Evaluation of Food. (Dual-listed with 506) (2-3 Cr. 3 Alt. F., offered 2001. Prereq: 214 or 311 or An S 380; 3 credits in statistics. Sensory test methods and procedures used to evaluate the flavor, color and texture of foods. Relationships between sensory and instrumental measurements of color and texture. Acceptance and preference testing.</td>
<td>3</td>
<td>F.S.SS.</td>
<td></td>
</tr>
<tr>
<td>FS HN 507</td>
<td>Microbial Safety of Food. (Same as Micro 507) See Microbiology.</td>
<td></td>
<td>3</td>
<td>F.</td>
</tr>
</tbody>
</table>
FS HN 512. Food Product Development. (Dual-listed with 412.) (2-6) Cr. 4. S. Prereq: 311 or 411, 471. Principles of developing consumer packaged food products. Application of skills gained in food chemistry, formulation, microbiology, and processing. Some pilot plant experiences. Electronic communication from web emphasized for class reports, notes, and assignments.

FS HN 519. Food Toxicology. (Same as Tox 519.) (3-0) Cr. 3. Alt. F., offered 2002. Prereq: A course in biochemistry. Basic principles of toxicology. Toxicants in the food supply: modes of action, toxicant defense systems, toxicant/nutrient interactions, risk assessment.

FS HN 525. Food Biotechnology. (Dual-listed with 425; same as Micro 525.) (3-3) Cr. 3. Alt. S., offered 2003. Prereq: Micro 201L, 302; a course in biochemistry. Introduction to genetic engineering and fermentation technology and their applications in the food industry; immunological and DNA detection methods; bioethics. Laboratories include all steps in production of a recombinant food enzyme from genetic engineering through fermentation, recovery and characterization.

FS HN 542. Introduction to Molecular Biology Techniques. (Same as Zool 542.) See Zoology and Genetics.

FS HN 543. Medical Diethetics I. (1-6) Cr. 3. F.S.S. For students enrolled in the dietetics internship. Discussion of the assessment, diagnosis, intervention, and outcomes of nutritional problems in complex medical conditions with supervised practice experience.

FS HN 548. Professional Development Assessment. (Dual-listed with 448.) (1-3) Cr. 1. F.S.S. Prereq: Concurrent enrollment dietetic internship or MFCS Dietetic Option. For students enrolled in the dietetic internship program or the Master of Family and Consumer Sciences Dietetic Option programs. Web-based course providing information and practice for student to assess and evaluate own professional development and continuing professional education needs. Completion of professional 5-year plan.

FS HN 561. Disease and Medical Nutritional Therapy I. (Dual-listed with 461.) (3-2) Cr. 4. F. Prereq: 362 or 560, 3 credits in physiology. Pathophysiology and medical problems with specific attention to nutrition needs and treatment as part of medical nutrition therapy. Clinical nutrition applications in acute and chronic disease. Assessment of disease problems, nutrition care, planning, and documentation.

FS HN 564. Disease and Medical Nutrition Therapy II. (Dual-listed with 464.) (2-3) Cr. 3. S. Prereq: 561. Pathophysiology of selected disease states and medical problems. Specific attention will be directed to nutrition needs and treatment of each disease state. Clinical nutrition applications in acute and chronic disease. Assessment of nutritional problems, nutrition care, planning, and documentation.

FS HN 565. Malnutrition in Developing Countries. (2-0) Cr. 2. Alt. S., offered 2002. Prereq: Graduate student status or permission of instructor. Identification and assessment of malnutrition in developing countries. Social, political, economic, and geographic determinants of malnutrition. Protein-energy, vitamin and mineral deficiencies. Intervention organizations, programs, and efforts.

FS HN 566. Nutrition Counseling and Education Methods. (Dual-listed with 466.) (3-2) Cr. 3. F.S.S. Prereq: Graduate student status or permission of instructor. Application of counseling and learning theories with individuals and groups in community and clinical settings. Includes discussion and experience in building rapport, data assessment and interpretation, developing client outcomes, selecting learning activities, evaluation, and documentation.

FS HN 572. Food Processing Laboratory. (Dual-listed with 472.) (1-3) Cr. 2. F. Prereq: 503 or equivalent. Pilot plant experiences in thermal processing, food fermentation, oil seed processing, food extrusion. Assist with the setup, operation, and data analysis of at least one laboratory exercise.

FS HN 575. Processed Foods. (3-0) Cr. 3. F. Prereq: 214 or 311; a course in nutrition. Survey of the effects of home and commercial food preparation and processing on the nutrients in food. Effective at 2001.

FS HN 580. Orientation to Food Science and Nutrition Research. (1-0) Cr. 1. F. Orientation to and discussion of research interests in food science and nutrition. Discussion of policy and ethical issues in the conduct of research. Intended for entering students in FS HN and related disciplines. Offered on a satisfactory-fail grading basis.

FS HN 581. Seminar. (1-0) Cr. 1. S. Discussion and practice of oral presentation of scientific data in a professional setting. Discussion of issues related to data presentation. Offered on a satisfactory-fail grading basis only.

FS HN 590. Special Topics. Cr. arr. F.S.S. Prereq: Permission of instructor. A. Nutrition B. Food Science C. Teaching

593. Workshop. Cr. arr. F.S.S. Prereq: Permission of instructor.

FS HN 596. Food Science and Human Nutrition. Travel Course. (Dual-listed with 496.) Cr. 2 to 3. May be repeated. One credit per week traveled. F.S.S. Prereq: Permission of instructor. Limited enrollment. Tour and study of food industry, dietary and nutritional agencies in different regions of the world. Presentation of selected topics. Pre-tour session arranged. Tour expenses paid by students. A. International tours B. Domestic tours

FS HN 606. Instrumental Measurement of Food Quality. (2-3) Cr. 3. Alt. F., offered 2002. Prereq: 311 or 411 or 502 or BBMB 404. Problems of instrumental measurement. Rhenological techniques and instrumentation for measuring the mechanical properties of foods; relationship of these properties to food textural qualities. Isolation and identification of food flavors.

FS HN 610. Food Enzymology. (2-3) Cr. 3. Alt. F., offered 2002. Prereq: 311 or 411 or 502 or BBMB 404. Properties and applications of the nutrients in food. Experimental determination and quantitative evaluation of the influence of concentration of substrates, enzyme, and inhibitors, pH and temperature on the mechanisms important to food and agricultural biochemistry.

FS HN 612. Food Lipids. (3-0) Cr. 3. Alt. S., offered 2002. Prereq: 311 or 411 or 502 or BBMB 404. Structure and analysis of food lipids, glyceride structure, crystal form and texture, autoxidation, refining and processing of fats and oils. Application of skills gained in food chemistry, formulation, microbiology, and processing. Some pilot plant experiences. Electronic communication from web emphasized for class reports, notes, and assignments.

FS HN 614. Carbohydrates in Foods. (3-0) Cr. 3. Alt. S., offered 2003. Prereq: 311 or 411 or 502 or BBMB 404. Study of production of carbohydrates used in foods, changes they undergo during process-
Undergraduate Study

Foreign language study should be a part of the program of most students. The theoretical understanding of and practical experience in language underlie many intellectual disciplines that try to meet the complex problems of contemporary society. Courses offered by the Department of Foreign Languages and Literatures are designed to offer students an understanding of a second culture through the language spoken by that culture, as well as a thorough knowledge of the fundamentals of the language itself. Students who have completed more than one year but less than three years of high-school foreign language study may not enroll in 101 in the same language. Before enrolling in 102, these students are required to take the first-year test-out exam. Students who pass the test-out exam at the 101-102 level receive credit for two semesters of first-year language study; students wishing to continue their study in the language should consult with the Department concerning placement. Students who pass the test-out at the 101 level receive credit for one semester of first-year language study; these students may enroll in 102 and participate in an optional intensive remediation module. Students who fail to pass at the 101 level may enroll in 102 with a required remediation module; 101 may not be taken on a remedial basis. Students who receive a grade of C- or higher in 102 should consult with the Department concerning credit for 101.

Students with disabilities who need to satisfy the foreign language requirement, may direct questions to the Advising Coordinator in the Foreign Language Department and the Disability Resource Office.

Credit by examination (test-out exams) in the Department of Foreign Languages and Literatures for courses numbered 101, 102, 201, and 202 is available only to students who are not currently enrolled in the course. Credit by examination for other courses in the department is not normally available.

The Department of Foreign Languages and Literatures participates in the Iowa Board of Regents’ foreign language summer programs in France and Spain. The Department also offers summer programs in Greece, Russia, Spain and Mexico; and a semester program in Mexico and Spain. Information concerning these programs can be obtained directly from the department. The department also houses the Classical Studies Program.

Language and literature courses numbered 300 and above are principally taught in the target language; courses numbered in the 370s are taught in English. For courses taught in English about Classical Greek or Latin, see Classical Studies. Students may not take intermediate (200 level) courses for credit after successfully completing any advanced (300/400 level) course, except those in the 370 series or courses taught in English translation. Students who have successfully completed any course in the intermediate (200 level) sequence may not take a lower-numbered course in that sequence for a grade.

Courses numbered 110 and 160 are essential-ly equivalent to 101 and 102 combined; credit toward graduation may not be acquired in more than one of these options. Students at all levels of foreign language study will have access to the Language Learning Resource Center, located in 312 Pearson. The resource center contains an extensive collection of foreign language materials, including films, music, books, computer software and hardware, and course-related materials.

Materials fees: A materials fee is assessed for all courses offered in this department except those with the F Lng designation.

Graduate Study

The Department of Foreign Languages offers a graduate minor in French, German, Latin, Russian and Spanish. The graduate minor in each of these languages is designed to provide an opportunity for graduate students to further their knowledge of that language to complement work in their major disciplines. The graduate minor provides formal recognition of student achievement and expertise in one of the languages above. Graduate minor credits are also offered in Greek and Portuguese.

Graduate Minor

Program Requirements:

a. Prerequisites: Graduate students who wish to minor in one of the languages above must have 400-level proficiency in that language. When this is not the case, the student may be required to take a language course below the 400-level, which would not count towards the graduate minor requirements.

b. Course Requirements: For the M.A. or M.S.: Three courses in the language of the minor. No more than three credits may be in courses numbered 401, 402, and 403. For the Ph.D.: Four courses in the language of the minor which must include at least one three credit course at the 500 level. No more than three credits may be in courses numbered 401, 402, or 403. At least two courses for the M.A. and the Ph.D. minors must be taken in residence at Iowa State University. Papers written for these courses are expected to have a content and depth commensurate with the graduate status of the student.

Courses open for nonmajor graduate credit: Chin 490, F Lng 486, 492, 498, Fmth 401, 440, 441, 442, 480, 491, 493; Ger 440, 471, 472; Greek 490; Ital 490; Lat 441, 442; Port 340, 341, 370, 440, 441; Rus 401, 402, 441, 442, 480, Span 304, 330, 331, 332, 351, 352, 370, 401, 403, 440, 441, 442, 443, 444, 445, 461, 462, 463, 480, 493.

Courses Primarily for Undergraduate Students

Chinese (Chin)

Chin 101. Elementary Mandarin Chinese I. (5-1) Cr. 5. Introduction to spoken and written colloquial Mandarin through pinyin and simplified characters. Credit by examination (test out exams) in the Department of Foreign Languages and Literatures for courses numbered 101, 102, 201, and 202 is available only to students who are not currently enrolled in the course. Credit by examination for other courses in the department is normally not available.
Chin 102. Elementary Mandarin Chinese II. (3-0) Cr. 5. S. Prereq: 101. Introduction to spoken and written colloquial Mandarin through pinyin and simplified characters. Emphasis on oral communication (test-out exams) in the Department of Foreign Languages and Literatures for courses numbered 101, 102, 201, and 202 is available only to students who are not currently enrolled in the course. Credit by examination for other courses in the department is normally not available.

Chin 201. Intermediate Mandarin Chinese I. (5-1) Cr. 5. F. Prereq: 102. Development of speaking, writing, reading, and listening skills. Review and expansion of grammar skills, introduction to traditional characters and dictionaries; intensification of character acquisition. Credit by examination (test-out exams) in the Department of Foreign Languages and Literatures for courses numbered 101, 102, 201, and 202 is available only to students who are not currently enrolled in the course. Credit by examination for other courses in the department is normally not available.

Chin 202. Intermediate Mandarin Chinese II. (5-1) Cr. 5. S. Prereq: 201. Development of speaking, writing, reading, and listening skills. Review and expansion of grammar skills, introduction to traditional characters and dictionaries; intensification of character acquisition. Credit by examination (test-out exams) in the Department of Foreign Languages and Literatures for courses numbered 101, 102, 201, and 202 is available only to students who are not currently enrolled in the course.

Chin 370. Topics in Chinese Literature. (3-0) Cr. 3. F. Prereq: Engl 105 or equivalent. Chinese literature in translation. Topics may include traditional prose, poetry, and drama; the Chinese novel; twentieth-century fiction and film; gender and cosmology in Chinese literature. All readings and class discussions in English.

Chin 490, Independent Study. Cr. 1 to 6 each time taken. Prereq: 6 credits in Chinese and permission of department chair to meet the needs of students who seek work in areas other than those in which courses are offered, or who desire to integrate a study of literature or language with special problems in major fields. Nonmajor graduate credit.

French (Frnch)

Majors in French are required to complete the following core courses: 301-302, 321-322, 331-332 and six credits chosen from the following core courses: 301-302, 321-322, 331-332 and 490. Nine additional credits are required for the literature concentration or the language/pedagogy concentration; six additional credits are required for the interdisciplinary studies concentration.

Frnch 101. Elementary French I. (4-1) Cr. 4. F. Beginning level development of reading, writing, listening comprehension, and speaking in French, within the context of French culture. Use of audiovisual materials. Credit by examination (test-out exams) in the Department of Foreign Languages and Literatures for courses numbered 101, 102, 201, and 202 is available only to students who are not currently enrolled in the course. Credit by examination for other courses in the department is normally not available.

Frnch 102. Elementary French II. (4-1) Cr. 4. S. Prereq: 101. Beginning level development of reading, writing, listening comprehension, and speaking in French, within the context of French culture. Use of audiovisual materials. Credit by examination (test-out exams) in the Department of Foreign Languages and Literatures for courses numbered 101, 102, 201, and 202 is available only to students who are not currently enrolled in the course. Credit by examination for other courses in the department is normally not available.

Frnch 110. Intensive Elementary French. Cr. 8. SS. Equivalent to 101, 102 combined, offered summer only.

Frnch 201. Intermediate French I. (3-0) Cr. 3. F. Prereq: 102, 110; concurrent enrollment in 205 re-ommended. Intermediate level development of reading, writing, listening comprehension, and speaking in French within the context of French culture. Credit by examination (test-out exams) in the Department of Foreign Languages and Literatures for courses numbered 101, 102, 201, and 202 is available only to students who are not currently enrolled in the course. Credit by examination for other courses in the department is normally not available.

Frnch 202. Intermediate French II. (3-0) Cr. 3. S. Prereq: 201; concurrent enrollment in 206 recommended. Intermediate level development of reading, writing, listening comprehension, and speaking in French within the context of French culture. Credit by examination (test-out exams) in the Department of Foreign Languages and Literatures for courses numbered 101, 102, 201, and 202 is available only to students who are not currently enrolled in the course. Credit by examination for other courses in the department is normally not available.

Frnch 205. Intermediate Conversation. (3-0) Cr. 3. F. Frnch. Credit or enrollment in 201 or 202. Practice in basic oral communication skills within the context of French culture. May be taken concurrently with 301.

Frnch 301. Grammar Review and Composition. (3-0) Cr. 3. F. Frnch. Credit or enrollment in 305 recommended. Comprehensive grammar review. Compositions and reading of literary and cultural texts.

Frnch 302. Reading and Composition. (3-0) Cr. 3. S. Prereq: 301. Critical reading of literary and cultural texts. Analysis of texts in compositions.

Frnch 305. Advanced Conversation. (3-0) Cr. 3. S. Prereq: Credit or enrollment in 301 recommended. Intensive conversational and listening practice. Communicative study of French culture.

Frnch 321. French Civilization. (3-0) Cr. 3. F. Frnch. French civilization from its origins through the French Revolution.

Frnch 322. French Civilization. (3-0) Cr. 3. S. Prereq: French civilization from the Napoleonic era to the present.

Frnch 331. Survey of French Literature. (3-0) Cr. 3. F. Frnch. French literature from the Middle Ages through the eighteenth century. Introduction to textual analysis.

Frnch 332. Survey of French Literature. (3-0) Cr. 3. S. Prereq: French literature of the nineteenth and twentieth centuries. Introduction to textual analysis.

Frnch 370. French Studies in English. (3-0) Cr. 3. Topics vary according to student and faculty interest. Authors, genre or period study such as Francophone literature, women writers, cinema, or contemporary theory. Readings, discussions, and papers in English. May be repeated up to a maximum of 6 credits.

Frnch 375. Contemporary France. (3-0) Cr. 3. Readings, discussions, and papers in English on contemporary thought, politics, history, anthropology, arts, etc.

Frnch 395. Study Abroad. Cr. 1 to 10. Prereq: 2 years university-level French. Supervised instruction in language and culture of France; formal class instruction at level appropriate to student’s training, augmented by practical living experience.

Frnch 401. Writing French. (3-0) Cr. 3. S. Frnch. Development of advanced writing skills, using a wide range of exercises and writing assignments in a variety of contexts. Review of selected grammar and syntax. Nonmajor graduate credit.

Frnch 440. Topics in French Studies. (3-0) Cr. 3. Frnch. 337 or 338 recommended. A selected topic in literature, literary criticism, or civilization. May be repeated. Nonmajor graduate credit.

German (Ger)

Majors in German are required to complete at least 30 credits beyond the intermediate (201-202) level. Courses required for the German major are 301 or 304, 302, 305, 320 or 330; at least one 440 course for 4 cr. and 471, 472 each for 4 cr. Majors may enroll in no more than three of the following courses for the fourth credit: 371, 375, 378, 471, 472, and F Ling 493.

Ger 101. Elementary German I. (4-1) Cr. 4. F. Introduction to German language within the context of German culture; practice in the basic skills. Credit by examination (test-out exams) in the Department of Foreign Languages and Literatures for courses numbered 101, 102, 201, and 202 is available only to students who are not currently enrolled in the course. Credit by examination for other courses in the department is normally not available.

Ger 102. Elementary German II. (4-1) Cr. 4. S. Prereq: 101. Continuation of German 101. Credit by examination (test-out exams) in the Department of Foreign Languages and Literatures for courses numbered 101, 102, 201, and 202 is available only to students who are not currently enrolled in the course. Credit by examination for other courses in the department is normally not available.

Ger 110. Intensive Elementary German. Cr. 8. SS. Equivalent to 101, 102 combined, offered summer only.
Ger 201. Intermediate German I. (3-4) Cr. 4. F.
 Prereq: 102 or 110. Review of grammar, selected readings, further practice in oral and written communication. Credit by examination (test out exams) in the Department of Foreign Languages and Literatures for courses numbered 101, 102, 201, and 202 is available only to students who are not currently enrolled in the course. Credit by examination for other courses in the department is normally not available.

Ger 202. Intermediate German II. (4-1) Cr. 4. S.
 Prereq: 201. Continuation of German 201. One section will emphasize the use of German in professional contexts. Credit by examination (test out exams) in the Department of Foreign Languages and Literatures for courses numbered 101, 102, 201, and 202 is available only to students who are not currently enrolled in the course. Credit by examination for other courses in the department is normally not available.

Ger 301. Reading. (3-3) Cr. 3. F. Prereq: 202.
 Emphasis on the development of reading skills through a variety of text types with a focus on German culture from circa 1900 to Post WWII.

Ger 302. Composition. (3-0) Cr. 3. S. Prereq. 301.
 Emphasis on writing skills, with further development of grammar and reading skills.

Ger 304. German for Business and Professionals. (3-0) Cr. 3. F.
 Prereq: 202. Communication in business and professional contexts in German-speaking countries. Development of effective communication strategies and project management in the workplace. Cultural contexts of business and professional practice. Preparation for the examination for the "Certificate in German for Professionals".

Ger 305. Advanced Conversation and Listening Comprehension. (3-0) Cr. 3. F. Prereq: 202, concurrent enrollment in 301 recommended. Intensive conversational and listening practice in German with an emphasis on a major German-speaking country.

Ger 320. Germany Today. (3-0) Cr. 3. S. Prereq: 301.
 Selected topics dealing with contemporary German society and culture. Introduction to materials, resources, and forms of communication available on the Internet, and in other electronic and print media.

Ger 330. Introduction to German Literature. (3-0) Cr. 3. S. Prereq: 307. Selected readings in German literature from Classicism to present. Emphasis on techniques of reading and analysis of literary texts.

Ger 370. German Studies in English. (3-0) Cr. 3. Alt. F.

Ger 371. The Holocaust in Text, Image, and Memory. (3-0) Cr. 3 or (3-2) Cr. 4. Alt. F., offered 2001. Prereq: For fourth credit, six credits in German at the 300 level. Examination of such topics as the origins and expressions of Anti-Semitism in central Europe, the political events and structures of the Holocaust, the reality of ghettos and concentration camps, the impact of technological modernization on the Final Solution, and resistance to the Nazis. Materials will include non-fictional texts, literature, art, and music. Taught in English. Fourth credit: supplementary readings and compositions in German.

Ger 375. Grimm’s Tales. (3-0) Cr. 3 or (3-2) Cr. 4. Alt. S., offered 2003. Prereq: For fourth credit, six credits in German at the 300 level. Introduction to Germanic antiquities, mythology, and heroic legends; Herder’s concept of Naturpoesie. Emphasis on the Grimm tales: theoretical approaches to the tales from the late 19th and early 20th centuries; perversions of these traditional tales by the National Socialists (Nazis); Regionalism in contemporary Grimm scholarship. Taught in English. Fourth credit: supplementary readings and compositions in German.

Ger 378. German Film and Media Studies. (3-0) Cr. 3 or (3-2) Cr. 4. F. Prereq: For fourth credit, six credits in German at the 300 level. Analysis and interpretation of film or media in German society. Study of media production and reception within multicultural and global contexts. Thematic emphasis based on faculty and student interest including: 1) film direction, genres, movements (e.g. New German Cinema), aesthetics, and cinematography or 2) media studies (e.g. television, mass press, popular culture). Taught in English. Fourth credit: supplementary readings and compositions in German.

Ger 395. Study Abroad. Cr. 1 to 10. Prereq: 2 years university-level German. Supervised instruction in language and culture of Germany; formal class instruction at level appropriate to student’s training, augmented by practical living experience.

Ger 440. Topics in German literature. (3-0) Cr. 3 or (4-0) Cr. 4. May be repeated up to a maximum of nine credits. F.S. Prereq: 302, and either 320 or 330. Fourth credit required for the major. Nonmajor graduate credit.

Ger 471. Foundations of German Civilization. (3-0) Cr. 3 or (3-2) Cr. 4. F. Prereq: For fourth credit, six credits in German at the 300 level. Study of various aspects of German history and culture from the Germanic tribes and Christianization to the Middle Ages. Taught in English. Fourth credit: supplementary readings and compositions in German. Nonmajor graduate credit.

Ger 472. Topics in German Cultural Studies. (3-0) Cr. 3 or (3-2) Cr. 4. S. Prereq: For fourth credit, six credits in German at the 300 level. This course is a continuation of 471 and will cover German history and culture up to the modern era. Taught in English. Fourth credit: supplementary readings and compositions in German. Nonmajor graduate credit.

Ger 490. Independent Study. Cr. 1 to 6 each time taken. Prereq: 6 credits in German and permission of department chair. No more than 9 credits of Ger 490 may be counted toward graduation. Designed to meet the needs of students who seek work in areas other than those in which courses are offered, or who desire to integrate a study of literature or language with special problems in major fields.

Courses Primarily for Graduate Students, Open to Qualified Undergraduate Students

Ger 590. Special Topics in German. Cr. 2 to 4 each time taken. Prereq: Permission of instructor; 6 credits of 400 level German.
 A. Literature or Literary Criticism
 B. Linguistics
 C. Language Pedagogy
 D. Civilization

Greek (Greek)

For courses in Greek literature taught in English, see Classical Studies.

Greek 101. Elementary Classical Greek I. (4-1) Cr. 4. F. Grammar and vocabulary of ancient Attic Greek, within the context of Greek culture; reading knowledge through texts adapted from classical authors. Credit by examination (test out exams) in the Department of Foreign Languages and Literatures for courses numbered 101, 102, 201, and 202 is available only to students who are not currently enrolled in the course. Credit by examination for other courses in the department is normally not available.

Greek 102. Elementary Classical Greek II. (4-1) Cr. 4. S. Prereq: 101. Grammar and vocabulary of ancient Attic Greek, within the context of Greek culture; reading knowledge through texts adapted from classical authors. Credit by examination (test out exams) in the Department of Foreign Languages and Literatures for courses numbered 101, 102, 201, and 202 is available only to students who are not currently enrolled in the course. Credit by examination for other courses in the department is normally not available.

Greek 201. Intermediate Classical Greek. (4-1) Cr. 4. F. Prereq: 102. Comprehensive review of grammatical principles; emphasis on reading unadapted classical or Hellenistic texts. Credit by examination (test out exams) in the Department of Foreign Languages and Literatures for courses numbered 101, 102, 201, and 202 is available only to students who are not currently enrolled in the course. Credit by examination for other courses in the department is normally not available.

Greek 306. Classical Greek Prose Composition. (2-0) Cr. 2. S. Prereq: 201, concurrent enrollment in 342. Practice in expressing ideas with emphasis on style and idiomatic usage. May be repeated once for credit.

Greek 332. Introduction to Classical Greek Literature. (3-0) Cr. 3. S. Prereq: 201. Masterworks of ancient Greek literature with emphasis on critical analysis of style, structure, or thought.

Greek 490. Independent Study. Cr. 1 to 6 each time taken. Prereq: 6 credits in Greek and permission of department chair. No more than 9 credits of Greek 490 may be counted toward graduation. Designed to meet the needs of students who seek work in areas other than those in which courses are offered, or who desire to integrate a study of literature or language with special problems in major fields. Nonmajor graduate credit.

Italian (Italian)

Ital 101. Elementary Italian I. (4-1) Cr. 4. F.
 Introduction to basic grammar and structure of the language; use of audio materials supplemented by graded reading within the context of Italian culture. Especially recommended as a second area of language study for majors in French and Spanish. Credit by examination (test out exams) in the Department of Foreign Languages and Literatures for courses numbered 101, 102, 201, and 202 is available only to students who are not currently enrolled in the course. Credit by examination for other courses in the department is normally not available.

Ital 102. Elementary Italian II. (4-1) Cr. 4. S. Prereq: 101. Introduction to basic grammar and structure of the language; use of audio materials supplemented by graded readings within the context of Italian culture. Especially recommended as a second area of language study for majors in French and Spanish. Credit by examination (test out exams) in the Department of Foreign Languages and Literatures for courses numbered 101, 102, 201, and 202 is available only to students who are not currently enrolled in the course. Credit by examination for other courses in the department is normally not available.

Ital 201. Intermediate Italian I. (4-1) Cr. 4. Offered as demand warrants. Prereq: 201. Review of first-year principles and expanded study of grammar; development of written and spoken skills; introduction to Italian civilization through extracts from noted authors. Credit by examination (test out exams) in the Department of Foreign Languages and Literatures for courses numbered 101, 102, 201, and 202 is available only to students who are not currently enrolled in the course. Credit by examination for other courses in the department is normally not available.

Ital 202. Intermediate Italian II. (4-1) Cr. 4. Offered as demand warrants. Prereq: 201. Review of first-year principles and expanded study of grammar; development of written and spoken skills; introduction to Italian civilization and literature through extracts from noted authors. Credit by examination (test out exams) in the Department of Foreign Languages and Literatures for courses numbered 101, 102, 201, and 202 is available only to students who are not currently enrolled in the course. Credit by examination for other courses in the department is normally not available.

Ital 490. Independent Study. Cr. 1 to 6 each time taken. Prereq: 6 credits in Italian and permission of department chair. No more than 9 credits of Italian 490 may be counted toward graduation. Designed to meet the needs of students who seek work in areas other than those in which courses are offered, or who desire to integrate a study of literature or language with special problems in major fields. Nonmajor graduate credit.
Latin (Latin)

For courses in Latin literature taught in English, see Classical Studies.

Latin 101. Elementary Latin I. (4-1) Cr. 4. F. Grammar and vocabulary of classical Latin, within the context of Roman culture; reading knowledge through texts adapted from classical authors. Credit by examination (test out exams) in the Department of Foreign Languages and Literatures for courses numbered 101, 102, 201, and 202 is available only to students who are not currently enrolled in the course. Credit by examination for other courses in the department is normally not available.

Latin 102. Elementary Latin II. (4-1) Cr. 4. S. Prereq: 101. Grammar and vocabulary of classical Latin, within the context of Roman culture; reading knowledge through texts adapted from classical authors. Credit by examination (test out exams) in the Department of Foreign Languages and Literatures for courses numbered 101, 102, 201, and 202 is available only to students who are not currently enrolled in the course. Credit by examination for other courses in the department is normally not available.

Latin 201. Intermediate Latin. (4-1) Cr. 4. F. Prereq: 102. Review of grammatical principles; emphasis on reading unadapted texts from the Late Republic or Early Empire. Credit by examination (test out exams) in the Department of Foreign Languages and Literatures for courses numbered 101, 102, 201, and 202 is available only to students who are not currently enrolled in the course. Credit by examination for other courses in the department is normally not available.

Latin 306. Composition and Oral Interpretation. (2-0) Cr. 2. S. Prereq: 201; concurrent enrollment in 332. Practice in composition, and in expressive reading of literary texts in correct style, idiomatic usage, and effective written and oral expression. Compositions based on readings in 342. May be repeated once for credit.

Latin 332. Introduction to Latin Literature. (3-0) Cr. 3. S. Prereq: 201. Study of Latin literature or poetry with emphasis on techniques of literary and historical criticism.

Latin 441. Advanced Readings in Latin. (3-0) Cr. 3. F. Prereq: 332. Study of individual authors or genres; intensive readings in the original supplemented by modern criticism and analysis in English. Authors and genres will vary; courses may be repeated to a maximum of 6 credits each. Nonmajor graduate credit.

Latin 442. Advanced Readings in Latin. (3-0) Cr. 3. S. Prereq: 332. Study of individual authors or genres; intensive readings in the original supplemented by modern criticism and analysis in English. Authors and genres will vary; courses may be repeated to a maximum of 6 credits each. Nonmajor graduate credit.

Latin 490. Independent Study. Cr. 1 to 6 each time taken. Prereq: 6 credits in Latin and permission of department chair. No more than 9 credits in Latin 490 may be counted toward graduation. Designed to meet the needs of students who seek work in areas other than those in which courses are offered, or who desire to integrate a study of literature or language with special problems in major fields. Nonmajor graduate credit.

Courses Primarily for Graduate Students, Open to Qualified Undergraduate Students

Latin 590. Special Topics in Latin. Cr. 2 to 4 each time taken. Prereq: Permission of instructor; 6 credits of 400-level Latin. A. Literature or Literary Criticism B. Linguistics C. Language Pedagogy D. Civilization

Portuguese (Port)

Port 101. Elementary Brazilian Portuguese I. (4-1) Cr. 4. Alt. F., offered 2002. Introduction through the conversational approach within the context of Luso-Brazilian culture. Credit by examination (test out exams) in the Department of Foreign Languages and Literatures for courses numbered 101, 102, 211 is available only to students who are not currently enrolled in the course. Credit by examination for other courses in the department is normally not available.

Port 102. Elementary Brazilian Portuguese II. (4-1) Cr. 4. Alt. S., offered 2003. Prereq: 101. Introduction through the communicative approach within the context of Luso-Brazilian culture. Credit by examination (test out exams) in the Department of Foreign Languages and Literatures for courses numbered 101, 102, 211 is available only to students who are not currently enrolled in the course. Credit by examination for other courses in the department is normally not available.

Port 340. Brazilian Civilization and Culture. (3-0) Cr. 3 each time taken. Alt. S., offered 2002. Prereq: 211 or equivalent. Introduction to Brazilian civilization and culture through the study of historical and literary texts. Readings, discussion, and papers in Portuguese. Nonmajor graduate credit.

Port 370. Portuguese Language Literature in English Translation. (3-0) Cr. 3. Study of a particular period, theme, genre, or author. Topics chosen according to student and faculty interests. Readings, discussion, and written work in English. May be repeated for a maximum of 6 credits. Nonmajor graduate credit.

Port 440. Advanced Readings in Brazilian Literature. (3-0) Cr. 3 each time taken. Alt. S., offered 2003. Prereq: 211 or equivalent. Study of individual authors, genres, or periods. Intensive readings of original Brazilian texts supplemented by theoretical readings in English. Authors, genres, and periods will vary. Readings, discussion, and papers in Portuguese. Nonmajor graduate credit.

Port 490. Independent Study. Cr. 1 to 6 each time taken. Prereq: 6 credits in Portuguese and permission of department chair. No more than 9 credits in Port 490 may be counted toward graduation. Designed to meet the needs of students who seek work in areas other than those in which courses are offered, or who desire to integrate a study of literature or language with special problems in major fields. Nonmajor graduate credit.

Courses Primarily for Graduate Students, Open to Qualified Undergraduate Students

Port 590. Special Topics in Portuguese. Cr. 1 to 4 each time taken. Prereq: Permission of instructor; 6 credits of 300-level Portuguese. A. Brazilian Literature or Culture B. Linguistics and Language Pedagogy C. Lusophone Literature or Culture of Portugal or Africa

Russian (Rus)

Majors in Russian Studies are required to complete 30 credits beyond the intermediate (201, 202) level. Required: Rus 301 and 302 or equivalent, and Rus 480 (9 credits total).

The remaining 21 hours are selected from the following: Hist 421, 422, and 426; Pol S 349, 355; Relig 363; Rus 304, 321, 322, 370, 375, 376, 401, 402, 441, 442, 490, and 590.

Rus 101. Elementary Russian I. (4-1) Cr. 4. F. Introduction to the Russian language, grammar and syntax. Practice in the four basic skills (listening, speaking, reading, and writing) within the context of Russian culture. Credit by examination (test out exams) in the Department of Foreign Languages and Literatures for courses numbered 101, 102, 201, and 202 is available only to students who are not currently enrolled in the course. Credit by examination for other courses in the department is normally not available.

Rus 102. Elementary Russian II. (4-1) Cr. 4. S. Prereq: 101. Introduction to the Russian language, grammar and syntax. Practice in the four basic skills (listening, speaking, reading, and writing) within the context of Russian culture. Credit by examination (test out exams) in the Department of Foreign Languages and Literatures for courses numbered 101, 102, 201, and 202 is available only to students who are not currently enrolled in the course. Credit by examination for other courses in the department is normally not available.

Rus 201. Intermediate Russian I. (4-1) Cr. 4. F. Prereq: 102. Thorough review of grammar and growth of vocabulary. Selected readings. Continued use of the four basic skills. Credit by examination (test out exams) in the Department of Foreign Languages and Literatures for courses numbered 101, 102, 201, and 202 is available only to students who are not currently enrolled in the course. Credit by examination for other courses in the department is normally not available.

Rus 202. Intermediate Russian II. (4-1) Cr. 4. S. Prereq: 201. Thorough review of grammar and growth of vocabulary. Selected readings. Continued use of the four basic skills. Credit by examination (test out exams) in the Department of Foreign Languages and Literatures for courses numbered 101, 102, 201, and 202 is available only to students who are not currently enrolled in the course. Credit by examination for other courses in the department is normally not available.

Rus 301. Composition and Conversation I. (3-0) Cr. 3. F. Prereq: 202. Thorough study of the Russian language, with emphasis on strengthening proficiency in writing, speaking, reading, and listening. Increased focus on syntax and word formation.

Rus 302. Composition and Conversation II. (3-0) Cr. 3. S. Prereq: 301. Thorough study of the Russian language, with emphasis on strengthening proficiency in writing, speaking, reading, and listening. Increased focus on syntax and word formation.

Rus 304. Russian for Science and Technology. (3-0) Cr. 3. Prereq: 301. Designed to meet the needs of students who desire to integrate a study of Russian language with special problems in science and business. Emphasis on scientific or business language, increased focus on reading, grammar, and standards for writing scholarly papers or business documents.

Rus 321. Russian Culture. (3-0) Cr. 3. Alt. F., offered 2003. Prereq: 202. Study of a particular period or phenomenon (i.e., cultural pattern, myth, or archetype) in Russian cultural history from 1988 to 1855.

Rus 322. Russian Civilization. (3-0) Cr. 3. Prereq: 202. Study of a particular period or phenomenon (i.e., cultural pattern, myth, or archetype) in Russian cultural history from 1855 to the present.
Rus 370. Russian Literature in English Translation. (3-0) Cr. 3. Study of a particular period, theme, genre, or author. Topics chosen in light of student and faculty interest. Readings, discussions, and written work in English. May be repeated for a maximum of 6 credits.

Rus 395. Study Abroad. Cr. ar. 1 to 6. Supervised instruction in language and culture of Russia; formal class instruction, and/or site visits. Credit towards student’s training, augmented by practical living experience.

Rus 401. Advanced Composition and Conversation I. (3-0) Cr. 3. F. Prereq: 302. Intensive practice in composition and conversation with emphasis on mastery of speaking and writing skills; development of idiomatic usage and effective expression of ideas. Increased emphasis on vocabulary building, grammatical correctness, and compatibility of style and content. Nonmajor graduate credit.

Rus 402. Advanced Composition and Conversation II. (3-0) Cr. 3. S. Prereq: 401. Intensive practice in composition and conversation with emphasis on mastery of speaking and writing skills; development of idiomatic usage and effective expression of ideas. Increased emphasis on vocabulary building, grammatical correctness, and compatibility of style and content. Nonmajor graduate credit.

Rus 441. Literary Masterpieces of the Nineteenth and Twentieth Century. (3-0) Cr. 3. F. Prereq: 302. Study of representative works by leading authors of the nineteenth and twentieth centuries. Nonmajor graduate credit.

Rus 442. Literary Masterpieces of the Nineteenth and Twentieth Century. (3-0) Cr. 3. S. Prereq: 302. Study of representative works by leading authors of the nineteenth and twentieth centuries. Nonmajor graduate credit.

Rus 490. Independent Study. Cr. 1 to 6 each time taken. Prereq: 6 credits in Russian and permission of department chair. No more than 9 credits of Rus 490 may be counted toward graduation. Designed to meet the needs of students who seek work in areas other than those in which courses are offered, or who desire to integrate a study of literature or language with special problems in major fields.

Courses Primarily for Graduate Students, Open to Qualified Undergraduate Students

Rus 590. Special Topics in Russian. Cr. 2 to 4 each time taken. Prereq: Permission of instructor; 6 credits of 400 level Russian. A. Literature or Literary Criticism B. Linguistics C. Language Pedagogy D. Civilization

Spanish (Span)

Majors in Spanish are required to complete a minimum of 39 credits beyond the intermediate level (i.e., 202). Majors must take the following core courses: 301, 303, 314, 321, 322, 330, 331, 332, 352, 401, and at least one of the courses numbered 440-445, 480/580. The remaining six credits should be chosen from Spanish courses numbered above 300 (except 370 and 403), with at least one course numbered above 400 or higher.

Span 101. Elementary Spanish I. (4-1) Cr. 4. F. S. Essentials of construction and vocabulary with an aural-oral approach within the context of Hispanic culture. Credit by examination (test out exams) in the Department of Foreign Languages and Literatures for courses numbered 101, 102, 201, and 202 is available only to students who are not currently enrolled in the course. Credit by examination for other courses in the department is normally not available.

Span 102. Elementary Spanish II. (4-1) Cr. 4. F. S. Prereq: 101. Continuation of Spanish 101. Credit by examination (test out exams) in the Department of Foreign Languages and Literatures for courses numbered 101, 102, 201, and 202 is available only to students who are not currently enrolled in the course. Credit by examination for other courses in the department is normally not available.

Span 110. Intensive Elementary Spanish. Cr. 8. S. SS. Equivalent to 101, 102 combined, offered summer only.

Span 160. Accelerated Beginning Spanish. (8-2) Cr. 8. S.SS. Prereq: 2 or more years of study in another foreign language. Equivalent to 101, 102 combined.

Span 201. Intermediate Spanish I. (4-1) Cr. 4. F. S. Prereq: 102, 110, or 160. Intensive review of basic grammar. Practice in oral and written communication. Development of fluency with idiomatic expressions. Selected readings on culture and literature. Credit by examination (test out exams) in the Department of Foreign Languages and Literatures for courses numbered 101, 102, 201, and 202 is available only to students who are not currently enrolled in the course. Credit by examination for other courses in the department is normally not available.

Span 202. Intermediate Spanish II. (4-1) Cr. 4. F. S. Prereq: 201. Continuation of Spanish 201. Intensive review of basic grammar. Practice in oral and written communication. Development of fluency with idiomatic expressions. Selected readings on culture and literature. Credit by examination (test out exams) in the Department of Foreign Languages and Literatures for courses numbered 101, 102, 201, and 202 is available only to students who are not currently enrolled in the course.

Span 301. Spanish Grammar and Composition. (3-0) Cr. 3. F. S. Prereq: 202 or 4 years of high school Spanish. Application of grammar concepts in the development of writing and reading skills within the context of Hispanic culture.

Span 303. Spanish Conversation. (3-0) Cr. 3. F. S. Prereq: 202 or 4 years of high school Spanish. Intensive oral practice and improvement of oral proficiency. Application of specific grammar concepts for development of conversational skills within the context of Hispanic culture.

Span 304. Spanish for Business and Professionals. (3-0) Cr. 3. S. Prereq: 202 and permission of instructor. Introduction to basic business terminology within a cultural context. Vocabulary on composition and letter writing. Grammar review as needed. Individual projects will focus on special interests. Nonmajor graduate credit.

Span 314. Introduction to Reading Hispanic Texts. (3-0) Cr. 3. F. S. Prereq: 301, 320 or 326 or 4 years of high school Spanish. Critical reading of Hispanic literary and cultural texts. Presentation of techniques and terminology of literary criticism. Study of basic genres: narrative, poetry, drama, essay. Required as prerequisite for 330, 331 and 332.

Span 320. Introduction to Cultural Readings. (3-0) Cr. 3. S. Prereq: 202 or 4 years of high school Spanish. Readings may include philosophical essays, mass media materials, and other texts which illustrate cultural differences. Readings, discussions, and compositions in Spanish.

Span 321. Spanish Civilization. (3-0) Cr. 3. F. Prereq: 301, 303, 320 or 326. A survey of the social and religious history, the social and political structure, and the cultural heritage of Spain.
Span 442. Spanish Literature of the 18th and/or 19th Century. (3-0) Cr. 3. Prereq: 330, 331 or 332. Alt. S., offered 2003. Discussion and analysis of representative works of authors, and literary trends from Romanticism through Generation `98. May be repeated for a maximum of 6 credits. Nonmajor graduate credit.

Span 443. Spanish Literature of the 20th Century. (3-0) Cr. 3. Alt. F., offered 2002. Prereq: 330, 331 or 332. Topics may include such themes as social protest in the post-war novel, modernism and surrealism in poetry and drama, etc. May be repeated for a maximum of 6 credits. Nonmajor graduate credit.

Span 444. Spanish American Literature from Earliest Times to Independence. (3-0) Cr. 3. Prereq: 330, 331 or 332. Alt. S., offered 2002. Study and analysis of representative works, literary schools, and movements of this period. May be repeated for a maximum of 6 credits. Nonmajor graduate credit.

Span 461. Spanish Linguistics. (Same as Ling 461.) (3-0) Cr. 3. F. Prereq: Credit or enrollment in 301; Ling 219 recommended. An introduction to Spanish linguistics and its applications in teaching Spanish. Phonology, morphology, syntax, and lexicon of Spanish. Theories of foreign language teaching and learning. Nonmajor graduate credit.

Span 462. Contrastive Analysis of Spanish/English Syntax. (Same as Ling 496.) (3-0) Cr. 3. Alt. S.; offered 2003. Prereq: 301 or 304; Eng 219, Span 461 recommended. Linguistic study of the major differences between the Spanish and English grammatical systems, with emphasis on those areas of contrast useful to teachers of Spanish. Nonmajor graduate credit.

Span 463. Hispanic Dialectology. (Same as Ling 463.) (3-0) Cr. 3. Alt. F., offered 2002. Prereq: 301, 304 or 352 recommended; Eng 219 or Span 461. Intensive study of the phonology, morphosyntax and lexicon of the Hispanic dialects and variants of Spain and Latin America in their historical context. Nonmajor graduate credit.

Span 480. Seminar in Hispanic Literature or Culture. (3-0) Cr. 3. each time taken. Alt. F.S. offers work for the bachelor of science degree with a major in forestry and options in forest ecosystem management, urban and community forestry, natural resource conservation, or wood products. The education options in forest ecosystem management and wood products leading to a professional degree in forestry (Bachelor of Science) have been accredited by the Society of American Foresters (SAF) since 1935. The SAF is a specialized accrediting body recognized by the Council on Post Secondary Accreditation and the U.S. Department of Education as the accrediting body for forestry in the United States. The primary goal of the undergraduate curriculum in forestry is to educate foresters to be capable of scientifically managing the nation’s forest lands. The purpose of the undergraduate curriculum in forestry is to prepare students for professional employment in management and utilization of natural resources and to equip them to function effectively in a complex society.

Graduates understand and can apply scientific principles associated with forests, forest ecosystem management, and wood and non-wood products. Graduates are able to communicate effectively and work well in teams. They are capable of preparing and delivering effective oral and written communication of scientific and technical decisions to professional and lay audiences. They are proficient in technical skills such as measurements, computers, inventory, economic analysis, data and situation analysis, and ecosystem assessment. They recognize the importance of ethics in forestry and are sensitive to cultural diversity and broad environmental concerns.

Graduates of the forest ecosystem management option are skilled at understanding how forests function and how forests can be managed to produce desired goods (wood, fiber, recreation, wildlife habitat) and services (clean water, carbon sequestration, wilderness) in the long-run. They are skilled at interpretation of interactions and effects of abiotic and biotic factors in forests and quantification of biophysical, social, and economic outputs from forest ecosystems. They are skilled at complex decision-making involving private and public forest resources where ethical, legal, social, economic, and ecological dimensions are explicitly considered.

Graduates of the urban and community forestry option are able to combine biological, social, legal, and economic expertise to effectively manage trees or forests in an urban setting. They are skilled at decision-making related to site assessment, and long-term management of urban trees and forests to achieve multiple goals.

Graduates of the natural resource conservation option are skilled at assessing the natural functions of the environment and human impacts. They are skilled at interpretation of forest and other natural environments and making decisions relating to their conservation and preservation.

Graduates of the forest wood option understand the anatomical, physical, and chemical properties of wood and processing operations involved in drying, machining, gluing, and chemical treatment of wood. They
are skilled at applying their knowledge in the development of products and processes. They are able to provide scientific and technical problem-solving and marketing decisions for customers of wood products.

Elective courses related to the forest ecosystem management option can be selected to emphasize forest ecology, wildlife, wilderness, and recreation management; water quality and erosion protection; quantitative-analytical techniques; business and marketing; and other areas related to natural resource management. Elective courses in the urban and community forestry option can be selected to emphasize plant health, policy and planning, ecology, hydrology, sociology, business administration, or horticulture/design. Elective courses related to the natural resource conservation option can be selected to emphasize, ecology, wildlife, recreation, nature interpretation, landscape design, sociology and ethics of conservation and preservation. Similarly, elective courses in the wood products option can be selected to emphasize wood production, wood fiber, business and marketing, and quality assurance.

Many private firms as well as national, regional, state, and local agencies seek forestry graduates to fill positions in management of natural resources for commodity and non-commodity multiple benefits. Graduates in forestry are prepared to be involved with evolving forestry systems, such as agro-forestry and urban forestry. Wood processing industries, such as composite products, plywood, particle board, lumber, and pulp and paper offer professional opportunities in production, product development, quality control, and marketing.

With advanced graduate study, the range of professional job opportunities for a person with a B.S. in forestry is expanded. Opportunities include research and education as well as more specialized managerial and administrative positions with private firms and public agencies.

During fall semester of the second year of study (sophomore year, typically), forestry students are required to enroll in the department’s integrated forestry modules consisting of 201, 202, 203, 204, 205, and 206. That semester, consisting entirely of forestry coursework, is designed to give students an early understanding of the many aspects of forestry and how they are interrelated. In addition to work in the classroom, students will spend time in laboratory and field work each week. A 3-week fall camp during the semester will reinforce concepts learned both in the classroom and during laboratory/field sessions. Transfer students should check with the department for counsel on timing their completion of the integrated forestry modules.

The department participates in interdisciplinary programs in environmental studies, pest management, plant health and protection, and international studies (see Index). By proper selection of elective courses, forestry students can obtain a second major in these programs or in other disciplines.

The department offers a minor in forestry which can be earned by completion of a minimum of 15 credits in forestry courses. Students wishing to emphasize management and environmental aspects of forestry must select at least 15 credits from the following courses: 120, 301, 302, 310, 345, 390, 407, 451. Students wishing to emphasize wood products and wood utilization must complete 280 and an additional 12 credits from the following courses: 481, 483, 485, 486, 487.

Visit our departmental website at www.forestry.iastate.edu

Contact us at: e-mail: forestry@iastate.edu

Graduate Study

The department offers programs leading to the degrees of master of science and doctor of philosophy with a major in forestry and minor work to students taking major work in other departments. Areas of specialization for the M.S. degree are forest administration and management, forest biology, forest biometry, forest economics and marketing, and wood science. Areas of specialization for the Ph.D. are forest biology-wood science, forest biometry, and forest economics.

Graduates are skilled at defining a research problem in forestry, applying scientific principles and appropriate methods, and analyzing the results. They are capable of understanding the many facets of forest and wood science and are very knowledgeable in specific areas in forestry. They are able to deal with complex forestry problems, and where appropriate, they are capable of blending ecological, social, ethical, legal, and economic factors in the research process. They are very skilled at communicating, both in written and oral form, research results to professional and lay audiences. They are sensitive to cultural diversity and work effectively with peers, natural resource professionals, and the public.

The graduate program is open to and suitable for students who have majored in forestry or related natural resource fields. A non-thesis master’s option is available. All students are required to teach and conduct research as part of their training for the Ph.D. degree.

The department participates in the Masters in Business Administration (M.B.A.), with specialization in the agriculture program administered by the College of Business, providing an opportunity to obtain an M.B.A. degree while taking advanced courses in forestry and maintaining contact with the profession of forestry. The department also participates in interdisciplinary majors in ecology and evolutionary biology, plant physiology, genetics, and water resources (see Index).

Courses Primarily for Undergraduate Students

For 104. Practical Work. Cr. R. Practical work experience in forestry. See adviser for departmental requirements.

For 110. Orientation in Forestry. (1-0) Cr. R. Orientation to the University and to the Department of Forestry. Discussion of the importance of work experience and developmental of desired resumes. Career opportunities.

For 120. Introduction to Renewable Resources. (Same as Agron 120, AST 120, A Ecl 120, Env S 120) (3-0) Cr. 3. F.S. Overview of soil, water, plants, and animals as renewable natural resources in an ecosystem context. History and organization of resource management. Concepts of integrated resource management.

For 201. Forest Biology. (2-0) Cr. 2. F. Prereq: Concurrent enrollment in 202, 203, 204, 205, and 206. Discussion of ecological concepts, individual tree structure and growth, variation and diversity in tree populations. Physical environment of trees and forest products in forest communities, and introduction to different regional forest communities.

For 203. Resource Measurements/Evaluation. (2-0) Cr. 2. F. Prereq: Concurrent enrollment in 201, 202, 204, 205, and 206. Methods of decision-making related to forest ecosystems, including communications, teams and conflict resolution. Current issues relating to public, private, and urban forests; quantification of processes, services, and goods produced by the forest and expected by the public such as wildlife, water, range, recreation, wilderness, biodiversity, as well as wood and fiber products.

For 205. Integrated Forestry Laboratory. (3-0) Cr. 3. F. Prereq: Concurrent enrollment in 201, 202, 203, 204, and 206. Field and laboratory exercises integrating the evaluation and management of forest goods, services, and the processing of wood products.

For 206. Fall Forestry Camp. Cr. 4. F. Prereq: Concurrent enrollment in 201, 202, 203, 204, and 206. Three-week field camp to address topics and issues covered in 201, 202, 203, 204, and 206.

For 280. Wood Anatomy and Properties. (3-3) Cr. 4. S. Consideration of the anatomy and properties of wood and how they relate to its successful use. Comparative anatomical characteristics and identification of commercially important North American woods.

For 283. Pesticide Application Certification. (Same as Ent 283.) See Entomology.

For 290. Special Problems. Cr. 1 to 3. Prereq: Freshman or Sophomore classification, permission of instructor. A maximum of 4 credits of 290 may be used toward the total credits required for graduation. A. Leadership in Forestry Teams (LIFT) Learning Community B. Forest Ecosystem Management C. Natural Resource Conservation D. Urban and Community Forestry E. Wood Science and Technology

Courses and Programs Forestry 237
For 301. Forest Ecology and Soils. (Same as EnSci 301, PlH 301.) (3-3) Cr. 4. Prereq: Biol 201, 201L; For 201 or a second course in biology. Effects of environmental factors on ecosystem structure and function. Special emphasis is given to soil forming factors and the role of soil in nutrient and water cycling and ecosystem dynamics. Additional emphasis is given to human uses on natural ecosystems. Nonmajor graduate credit.

For 302. Silviculture. (2-3) Cr. 3. S. Prereq: 201. Manipulation of forest vegetation based on ecological principles for the production of goods and services. Nonmajor graduate credit.

For 310. Management of Small Forest Properties. (3-0) Cr. 2. Forest management with emphasis on small private holdings. Non-forestry majors only. Course terminates at the end of 11 weeks.

For 342. Dynamics of Forest Stands. (2-3) Cr. 3. F. Prereq: 203. For 201. Examination of factors affecting individual tree and forest growth. Estimation of growth and yield of even-aged and all-aged stands. Examination of ways to assess site quality and competition. Review of simple random sampling and introduction to stratified random sampling and other sampling techniques. Nonmajor graduate credit.

For 356. Dendrology. (Same as Bot 356.) See Botany.

For 390. Forest Fire Protection and Management. (3-0) Cr. 3. F. Characteristics and role of fire in forest ecosystems. Major topics covered include fuels, fire weather, fire behavior, fire danger rating systems, fire control, and prescribed burning. Nonmajor graduate credit.

For 402. Watershed Hydrology and Surficial Processes. (Same as Agron 402, EnSci 402, Geol 402.) (3-3) Cr. 4. F. Prereq: Credit or enrollment in EnSci 330, or Geol 100 or 201, Phys 111, 3 credits in biology and 6 credits in chemistry. Burras, Simpkins. Examination of the hydrologic systems within biologic and physical factors control hydrology, soil formation, and nutrient transport. Laboratory emphasizes field investigation of watershed-scale processes. Nonmajor graduate credit.

For 407. Watershed Management. (Same as Env S 407.) (3-3) Cr. 4. S. Prereq: A course in general biology. Managing human impacts on the hydrologic cycle. Field and watershed landscape best management practices for modifying the impacts on water quality, quantity and timing are discussed. Field projects includes developing a management plan using landscape buffers. Nonmajor graduate credit.

For 416. Forest Pest Management. (Same as Pl P 416.) See Plant Pathology: Nonmajor graduate credit.

For 453. Forest Resource Policy and Administration. (3-3) Cr. 3. S. Prereq: 451. Forest resource policy - processes, participants, programs, and conflict resolution. Contemporary forest resource policies and issues. Forest resources for administration, personnel management, and use of PER/CFPM in project administration. Ethical issues in forestry. Nonmajor graduate credit.

For 454. Forestry Practicum. (1-4) Cr. 3. S. Prereq: 20 credits in student’s major at 300 level or above. Integrated decision-making related to the conservation, management, and use of forest resources. Nonmajor graduate credit.

For 475. Community Tree Management. (Same as Hort 475, Pl HP 475I.) (2-3) Cr. 3. F. Prereq: Junior or senior classification, 3 credits in biology. Discussion of establishment and management of woody perennials in community-owned urban greenspaces, consideration of urban site and soil characteristics, plant physiology, plant culture, urban forest valuation, inventory methods, species selection, urban forest maintenance (health care and pest management), urban forest administration, legal and political issues, and landscape ecology (including wildlife) of the urban forest. Nonmajor graduate credit.

For 476. Urban Forest Resource Planning and Policy. (2-3) Cr. 3. Prereq: Senior classification, For 475. Analysis of natural resource management, policy, and planning in an urban context. Legal and political issues and policies influencing natural resource use decisions in densely populated areas. Nonmajor graduate credit.

For 490. Independent Study. Cr. 1 to 4 each time elected. Prereq: Junior classification, permission of instructor. A maximum of 6 credits of 490 may be used toward the total of 128 credits required for graduation.

A. Forest Biology
B. Forest Biometry
C. Forest and Recreation Economics
D. Forest Management
E. Wood Science
F. Forest Photogrammetry
G. Forest Recreation Management

For 498. Cooperative Education. Cr. R. Prereq: Permission of departmental chair. Required of all cooperative education students. Students must register prior to commencing each work period.

For 501. Genealogy. (3-0) Cr. 3. Alt., offered 2001. Prereq: Gen 320 or Biol 301. Genealogy principles as they apply to natural and improved populations of plants and animals. Genetic systems as they interact with long-term natural selection to produce clinical or ecotypic variation. The impact of current environments and genetic modifications of domesticated organisms on short-term selection pressures. Special coverage of species of interest to students enrolled in the course.

For 505. Advanced Quantitative Methods in Forestry. (2-3) Cr. 3. Alt., offered 2002. Prereq: Stat 401 and one course in quantitative analysis or systems analysis or forest biometry. Applied problems in forest biometry and mathematical programming and other modeling techniques as applied to modern forest problems.

For 570. Resource Allocation in Forestry. (2-2) Cr. 3. Alt., offered 2003. Prereq: 491 or two courses in economics. Analytical approach to economic aspects of forest resource management problems. Theory and application of economic decision-making criteria to traditional and modern forest resource management issues. Current problems in the allocation of forest resources.

For 580. Sustainable Agriculture Seminar. (Same as An S 580.) See Animal Science.

For 590. Special Topics. Cr. 1 to 4 each time elected. Prereq: Permission of instructor.

A. Forest Biology
B. Forest Biometry
C. Forest and Recreation Economics
D. Forest Management
E. Wood Science
F. Forest Photogrammetry
G. Forest Recreation Resource Management
H. Honors Program
I. Forest Recreation Resource Management
J. Wood Anatomy and Microtechniques
K. Wood Chemistry
L. Wood Physics
M. Wood in Structures

For 599. Creative Component. Cr. 1 to 8.

A. Forest Biology
B. Forest Biometry
C. Forest and Recreation Economics
Courses and Programs

Genetics - Interdisciplinary

www.genetics.iastate.edu

e-mail: genetics@iastate.edu

Courses for Graduate Students

For 603. Tree Growth and Development. (4-0)
Cr. 4. Alt. S., offered 2002. Prereq: 301 or a course in plant physiology. Structure and function of individual trees and shrubs. Emphasis is on factors that make woody plants different from herbaceous plants. Response of individuals to such environmental factors as radiation, temperature, water stress, flooding, and compaction, air pollution, fire and wind.

For 654. Advanced Topics in Forest Economics. (1-0) Cr. 1. May be taken twice for credit. Alt. S., offered 2003. Prereq: Permission of instructor. Discussion and presentation of advanced forest economic problems with particular attention to recent theories and applications. Emphasis on applications of micro and macroeconomic principles to forest resource allocation and long range planning.

For 696. Seminar in Plant Physiology and Molecular Biology. (Same as Bot 696.) See Botany.

For 699. Research. Cr. 1 to 8.
A. Forest Biology—Wood Science
B. Forest Biometry
C. Forest Economics
D. Forest Management and Administration
E. Wood Science
F. Plant Physiology

A bachelor of science degree in Genetics is offered by the Department of Zoology and Genetics.

Graduate Study

Work is offered for the master of science and doctor of philosophy degrees with a major in Genetics in fourteen cooperating departments: Agronomy, Animal Science; Biochemistry, Biophysics and Molecular Biology; Botany; Entomology; Food Science and Human Nutrition; Forestry; Horticulture; Plant Pathology; Statistics; Microbiology; Veterinary Microbiology and Preventive Medicine; Veterinary Pathology; and Zoology and Genetics.

The diversity of faculty in the Interdepartmental Genetics major ensures a broad, well-balanced education from the best instructors, while offering flexibility in choice of research area. Genetics faculty have strengths in many areas, from fundamental studies at the molecular, cellular, organismal, and population levels, to research with immediate practical application. Ongoing research projects span all the major areas of theoretical and experimental genetics, including molecular studies of gene regulation, gene mapping, transposable element studies, developmental genetics, quantitative and mathematical genetics, computational molecular biology, evolutionary genetics, and population genetics.

First-year students majoring in Genetics may enter the Interdepartmental Genetics major by either of two routes: by direct admission to the Interdepartmental Genetics major or by admission to a department participating in the major followed by formal admission to the major. Students admitted directly into the Interdepartmental Genetics major will take Genet 697 (graduate research rotation) in their first two semesters and, by the end of their second semester, enter a department by choosing a major professor from the participating faculty. Students first admitted by a department will do research rotations within that department only and choose a major professor from participating Interdepartmental Genetics faculty in that department.

All Ph.D. candidates take a core curriculum comprising one course each from the following four categories and attend seminars and workshops as described: Transmission Genetics (Genet 510), Molecular Genetics (Genet 511 or BBMB 502), Quantitative and Population Genetics (An S/Agron 561 or Stat 436 or Gen 560 or Gen 562), Biochemistry (BBMB 404 or BBMB 501). Students will make research presentations, attend genetics faculty seminars, and participate in four Workshops in Genetics (Genet 591) in the training period. First-year graduate students will also take Genet 692 (Seminar in the Conceptual Foundations of Genetics). Ph.D. students may elect a computational molecular biology specialty within the genetics major. This requires that the research project be in the field of computational molecular biology. IG majors will be expected to complete all of the courses required for the major, except that one semester of Student Research Seminar in Computational Biology may be substituted for one semester of GENET 690. Students will be expected to take additional courses in the area of specialization. M.S. students will take the above core courses and seminars but will participate in only two workshops in Genetics. Additional coursework may be selected to satisfy individual interests or departmental requirements. The foreign language requirement and teaching requirement are determined by the student’s department.

The course designator Genet applies to graduate courses taught by the interdepartmental major in Genetics. The course designator Gen applies to courses taught by the Department of Zoology and Genetics (see separate listing). Students minoring in Genetics at the Ph.D. level must meet the following requirements: Completion of three of the four categories of the common-core required lecture courses listed above. One semester of seminar in Genetics (Genet 690 or 691 or 692) is recommended. One member of the POS committee must be a Genetics faculty member.

Student Outcomes: Most students awarded doctoral degrees continue their training as postdoctoral associates at major research institutions in the U.S. or abroad in preparation for research and/or teaching positions in academia, industry, or government. A few go directly to permanent research positions in industry. Most students awarded master’s degrees continue their training as doctoral students; however, some choose research support positions in academia, industry, or government. A complete list of outcomes is available at our Web site.

Courses for Graduate Students

Genet 590. Special Topics. Cr. arr.
Genet 591. Workshop in Genetics. (1-0) Cr. 1 each time taken. S. Prereq: Permission of instructor. Current topics in genetics research. Lectures by off-campus experts. Students read background literature, attend preparatory seminars, attend all lectures, meet with lecturers.

Genet 690. Seminar in Genetics. (1-0) Cr. 1 each time taken. F. Prereq: Permission of instructor. Student research presentations.

Genet 691. Seminar in Genetics. (1-0) Cr. 1 each time taken. F. Prereq: Permission of instructor. Faculty research series.

Genet 692. Seminar in the Conceptual Foundations of Genetics. (1-0) Cr. 1. F. Prereq: Permission of instructor. Student and faculty presentations of landmark papers in genetics. Brief history of ideas of the period included as background material.

Genet 697. Graduate Research Rotation. Cr. var. each time taken. F.S.S.S. Graduate research projects performed under the supervision of selected faculty members in the Interdepartmental Genetics major.

Genet 699. Research.

Undergraduate Study

Undergraduates wishing to prepare for graduate study in Genetics should elect courses in basic biology, chemistry at least through organic chemistry, one year of college-level physics, mathematics at least through calculus, and at least one thorough course in basic transmission and molecular genetics. One year of upper level statistics and a year of biochemistry are strongly encouraged.
Graduate Study

The department offers programs leading to the master of science and doctor of philosophy with majors in Earth Science, Geology, and Meteorology. Program options are available for the M.S. and Ph.D. degrees in earth science leading to careers in teaching. The department also cooperates in the interdepartmental major in Water Resources (see Index). Students desiring a major in the above fields normally will have a strong undergraduate background in the physical and mathematical sciences. Individuals desiring to enter a graduate program are evaluated by considering their undergraduate background and performance and their expressed goals.

Programs of study are designed on an individual basis in accordance with requirements of the Graduate College and established requirements for each departmental major. Minor work is normally taken in aerospace engineering, agronomy (soil science), chemistry, civil and construction engineering, computer engineering, computer science, engineering mechanics, materials engineering, mathematics, mechanical engineering, microbiology, physics, or statistics. Departmental requirements provide a strong, broad background in the major and allow considerable flexibility in the program of each individual.

A dissertation is required of all Ph.D. candidates. M.S. students in Geology are required to complete a thesis. The M.S. in Earth Science is available to students electing the non-thesis (Creative Component) option in Geology or Meteorology. A nonthesis option is also offered for the M.S. degree in Meteorology.

Graduates in Geology specialize in a subdiscipline, but they comprehend and can communicate the basic principles of geology and supporting sciences. They possess the capacity for critical and independent thinking. They are able to write a fundable research proposal, evaluate current relevant literature, carry out the proposed research, and communicate the results of their research to peers at national meetings and to the general public. They work
as consultants on engineering and environmental problems, explorers for new minerals and hydrocarbon resources, researchers, teachers, writers, editors, and museum curators.

All candidates for an advanced degree in Meteorology are expected to complete Mteor 542, 543, and 555. In addition, students without prior synoptic course-work must complete Mteor 511; other students must complete Mteor 507 or Agron 507. Students must also complete Mteor 504 (or Agron 504) or Mteor 605 or Agron 505.

Graduates in Meteorology have a good comprehension of basic principles, a capacity for critical and independent thought and an ability to communicate effectively with scientific colleagues. They have an appropriate breadth in their understanding of meteorology with a suitable specialization. Graduates are able to undertake thorough research and explain the results in a scientifically reasonable fashion.

Geology (Geol)

Courses Primarily for Undergraduate Students

Geol 100. The Earth. [3-0] Cr. 3 or (3-1) Cr. 4. F.S.S. Iverson, Staff. What is the earth made of, and how does it work? Emphasis on observations and hypotheses used by geologists to determine the earth’s structure and to understand how geologic features change with time. Students who enroll for the 4 credit option must register for a one hour discussion section. Students enrolling for either option may also enroll for Geol 100L.

Geol 100L. The Earth: Laboratory. [0-2] Cr. 1. F.S. Prereq: Credit or enrollment in 100. Characterization of rocks and minerals; interpretation of structures and landforms.

Geol 101. Environmental Geology: Earth in Crisis. [Same as Env S 101.] [3-0] Cr. 3 or (3-1) Cr. 4. F.S. Staff. An introduction to geological processes and the consequences of human activity from local to global scales. Discussion of human population growth, resource depletion, pollution and waste disposal, global warming, ozone depletion, desertification, and geologic hazards such as earthquakes, landslides, flooding, and volcanism. Students who enroll for the 4 credit option must register for a one hour discussion section. Students enrolling for either option may also enroll for Geol 101L.

Geol 102. History of the Earth. [3-0] Cr. 3. S. Prereq: 100 or 201. Rankey. The earth’s physical and biological evolution; concepts of global tectonics. Methods used to decipher earth history. Students enrolling for the 4 credit option must register for a one hour discussion section. Students enrolling for either option may also enroll for Geol 102L.

Geol 102L. History of the Earth: Laboratory. [0-2] Cr. 1. S. Prereq: Credit or enrollment in 102. Introduction to the use of sedimentary rocks and fossils in reconstructing the earth’s history.

Geol 110. Orientation in Geology. [1-0] Cr. R. F. Staff. Orientation to the profession of Geology, the geology curriculum, and departmental activities. Open to first year Geology majors and transfer students only.

Geol 201. Geology for Engineers and Environmental Scientists. [2-3] Cr. 3. F.S. Windom. Introduction to Earth materials and processes with emphasis on engineering and environmental applications.

Geol 290. Independent Study. Cr. 2 to 4 each time taken. Prereq: Permission of instructor.

Geol 298. Cooperative Education. Cr. R. F.S.S. Prereq: Geol 100 or 201, 100L, 102L, and permission of the department cooperative education coordinator, sophomore classification. Required of all cooperative education students. Students must register for this course prior to commencing the work period.

Geol 302. Summer Field Studies. Cr. 6 to 8. S. Prereq: 102, 356, 368. Vondra, Rankey. Aerial mapping, structural, stratigraphic, and sequence stratigraphic analyses. Written reports with appropriate illustrations required. A 6-week summer field course required of all geology majors. Students who enroll for the 8 credit option must participate in a 3-week excursion to selected regions of the western U.S. Nonmajor graduate credit.

Geol 304. Regional Geology of Northwest Iowa. [Same as IA 3041.] See Iowa Lakeside Laboratory.

Geol 306. Geologic Field Trip. Cr. 2 each time taken. F.S.SS. May be taken more than once. Prereq: 100 or 201, permission of instructor. Geology of selected regions studied by correlated readings followed by a field trip to points of geologic interest. Ten-day field trip required.

Geol 311. Mineralogy and Earth Materials. [A: 3-6 or B: 2-6] Cr. 4 or 5. S. Prereq: 100 or 201, 305, Chem 163. Spry, Windom. Introduction to mineral classification, elementary crystal chemistry, crystal morphology, mineral associations. Laboratory problems in mineral identification methods, including hand-specimen identification and x-ray diffraction. 311A includes more in-depth treatment of crystallography and mineral properties of minerals. 311B emphasizes mineral associations, stability of minerals in the weathering environment, and environmental mineralogy. Students in the traditional geology option should enroll in 311A. Students in the environmental geology/hydrogeology option should enroll in 311B. Nonmajor graduate credit.

Geol 398. Cooperative Education. Cr. R. F.S.S. Prereq: Geol 100 or 201, 100L, 102L, and permission of the department cooperative education coordinator, sophomore classification. Required of all cooperative education students. Students must register for this course prior to commencing the work period.

Geol 402. Watershed Hydrology and Surficial Processes. [Same as EnSci 402.] Cr. 4. F. Prereq: Credit or enrollment in EnSci 330 or Geol 100 or 201, Phys 111, 3 credits in biology and 6 credits in chemistry. Burras, Simpkins.

Examination of watersheds as systems wherein biologic and physical factors control hydrology, soil formation, and nutrient transport. Laboratory emphasis on field investigation of watershed-scale processes. Nonmajor graduate credit.

Geol 403. Environmental Biogeochemistry. [Same as Bot 403, EnSci 403.] Cr. 3. S. Prereq: EnSci 330 or permission of instructor. Raich, Biological, chemical, and physical phenomena controlling material, energy, and element fluxes in the environment. Nonmajor graduate credit.

Geol 411. Hydrogeology. [Dual-listed with 511; same as EnSci 411.] Cr. 3. F. Prereq: 100 or 201, Math 165 or 181, Phys 111 or 221. Simpkins. Physical principles of groundwater flow, nature and origin of aquifers and confining units, well hydraulics, and groundwater geochemistry. Introduction to groundwater flow modeling. Lab emphasizes applied field and laboratory hydrogeological investigations. Nonmajor graduate credit.

Geol 451. Applied and Environmental Geophysics. [Dual-listed with 551.] Cr. 3. S. Prereq: 100 or 201, Math 165 or equivalent experience. Beresnev. Seismic, gravity, magnetic, resistivity, electromagnetic, and ground-penetrating radar techniques for shallow and deep subsurface investigations and imaging. Data interpretation methods. Lab emphasizes computer interpretation packages. Field work with seismic - and resistivity-imaging systems. Nonmajor graduate credit.

Geol 474. Glacial and Quaternary Geology. [Dual-listed with 574.] Cr. 2-3. Alt. S., offered 2003. Prereq: 100 or 201 or equivalent experience. Iverson, Simpkins. The study of the depositional and erosional processes of glaciers using modern glacier analogs and landforms. Discussion of glaciology, glacier hydrology, Quaternary history and stratigraphy, paleoclimatology, and causes of glaciation. Laboratory emphasizes aero photo and topographic map interpretation and the Quaternary stratigraphy of Iowa. Two required field trips. Nonmajor graduate credit.

Geol 475. Surficial Processes. [Dual-listed with 575; same as EnSci 475.] Cr. 2-3. S. Prereq: 100 or 201 or equivalent experience. Iverson, Simpkins. Study of the depositional and erosional processes of glaciers using modern glacier analogs and landforms. Discussion of glaciology, glacier hydrology, Quaternary history and stratigraphy, paleoclimatology, and causes of glaciation. Laboratory emphasizes aero photo and topographic map interpretation and the Quaternary stratigraphy of Iowa. Two required field trips. Nonmajor graduate credit.

Geol 490. Independent Study. Cr. 2 to 4 each time taken. Prereq: 6 credits in geology and permission of instructor. No more than 9 credits of Geol 490 may be counted toward graduation.

Geol 498. Cooperative Education. Cr. 3-0. Prereq: Geol 100 or 201, 100L, 102, 102L, and permission of the department cooperative education coordinator; senior classification. Required of all cooperative education students. Students must register for this course prior to commencing each work period.

Courses Primarily for Graduate Students, Open to Qualified Undergraduate Students

Geol 506. Geology Field Trip. Cr. 2 each time taken. May be taken more than once. F.S. Prereq: Graduate classification. Staff. Geology of selected regions studied on readings, followed by a field trip to points of geologic interest. Ten-day field trip. Required of all students in graduate degree programs.

Geol 507. Mineral Resources Field Trip. Cr. 1. F. Prereq: Geol 365; On-site inspection of various coal and ore deposits, mining operations, and mineral processing plants. Offered on a satisfactory-fail grading basis only.

Geol 510. Field Methods in Hydrogeology. (0-4) Cr. 2. Alt. S., offered 2003. Simpkins. Prereq: 411 or 511 or C E 473 or 573. Introduction to field methods used in groundwater investigations. In-field implementation of pumping tests, slug tests, monitoring well installation and drilling techniques, geochemical and water quality sampling, seeage meters, minipiezometers, stream gaging, electronic instrumentation for data collection, and geophysics. Local field trips to investigate water resource, water quality, and remedial projects. Karst hydrogeology and field trip to the Big Spring Basin in Northeast Iowa.

Geol 511. Hydrogeology. (Dual-listed with 411.) (3-2) Cr. 4. F. Prereq: 100 or 201, Math 165 or 181; Phys 111 or 221. Simpkins. Physical principles of groundwater flow, nature and origin of aquifers and confining units, well hydraulics, and groundwater geochemistry. Introduction to groundwater flow modeling. Lab emphasizes applied field and laboratory methods for hydrogeological investigations.

Geol 522. Environmental Geochemistry. (Dual-listed with 422.) (2-2) Cr. 3. F. Prereq: 511 or equivalent. Chem 163 or equivalent background in chemistry. Staff. Geochemistry of natural waters, including inorganic and organic constituents and water-rock interactions. Interpretation of water quality data. Geochemical equilibrium modeling and introduction to kinetics. Laboratory emphasizes chemical analysis of waters and computer modeling.

Geol 534. Contaminant Hydrogeology. (Dual-listed with 434.) (3-0) Cr. 3. Alt. F., offered 2003. Spry. Basic concepts of bioremediation of groundwater and sediment contamination. Laboratory emphasis on monitoring methods and chemical analysis.

Geol 541. Geochemistry and Mineral Chemistry. (3-0) Cr. 3. Alt. F., offered 2001. Prereq: 311, physical chemistry recommended. Windom. Thermodynamical and kinetic methods for interpreting geochemical processes and environments, particularly those at elevated temperature and pressure. Emphasis on crystal chemistry, chemical bonding, phase relations in binary and ternary systems, and hydrothermal systems.

Geol 543. Microanalysis of Geologic Materials. (1-3) Cr. 2. F. Prereq: 541 and permission of instructor. Staff. Theory and operation of the electron microscope with emphasis on the analysis of geologic materials. Sample preparation, data acquisition and data correction schemes utilizing both energy dispersive and wavelength dispersive x-ray detection systems. Class size strictly limited to 12.

Geol 555. Soil Clay Mineralogy. (Same as Agron 555.) See Agronomy.

Geol 556. Soil Clay Mineralogy Laboratory. (Same as Agron 556L.) See Agronomy.

Geol 574. Glacial and Quaternary Geology. (Dual-listed with 474.) (3-0) Cr. 3. Alt. S., offered 2003. Prereq. 100 or 201. Ivesen, Simpkins. The study of the depositional and erosional processes of glaciers using modern glacial analogs and landforms. Discussion of glaciation, glacier hydrology, Quaternary history and stratigraphy, paleoclimatology, and causes of glacialiation. Laboratory emphasizes aerial photo and topographic map interpretation and the Quaternary stratigraphy of Iowa. Two required field trips.

Geol 575. Surficial Processes. (Dual-listed with 475.) (2-2) Cr. 3. F. Prereq. 100 or 201 or equivalent experience. Study of surficial processes in modern and ancient geological environments. Topics include weathering, sediment transport, and landform generation with emphasis on fluvial, glacial, hillslope, eolian, and coastal processes. Applications to engineering and environmental problems. Laboratory emphasizes aerial photo and topographic map interpretation.

Geol 576. Advanced Sedimentation. (2-2) Cr. 3. Alt. F., offered 2001. Prereq. 368, 571. Rankey. Interpretation of clastic and chemical sediments to infer environments, environments, and the tectonic settings in which they were formed. Survey of the origin of recent and ancient chemical sedimentary rocks, including carbonates and evaporites. Field trips.

Geol 590. Special Topics. Cr. 1 to 3 each time taken. Prereq: Permission of instructor

A. Surficial Processes
B. Stratigraphy
C. Sedimentation
D. Paleontology
E. Petrology
F. Structural Geology
G. Hydrogeology
H. Earth Science
J. Mineral Resources
K. Geophysics
L. Mineralogy
M. Tectonics

Geol 595. Graduate Seminar. Cr. R. F.S. Prereq: Senior or graduate classification. Weekly seminar on topics of current research interest. All students seeking graduate degree in geology must enroll during each semester of residence. Students pursuing a non-thesis option for the M.S. in Earth Science must enroll for one semester.

Geol 599. Creative Component. Cr. var.

Courses for Graduate Students

Geol 610. Advanced Seminar. Cr. 1 to 3 each time taken. F.S. Prereq: Graduate standing and permission of instructor

A. Earth Materials
B. Economic Geology
C. Environmental Geochemistry
D. Geophysics
E. Geotectonics
F. Hydrogeology
G. Surficial Processes
H. Sedimentation and Stratigraphy

Geol 699. Research. Cr. var.

A. Surficial Processes
B. Stratigraphy
C. Sedimentation
D. Paleontology
E. Petrology
F. Structural Geology
G. Geochemistry
H. Hydrogeology
I. Earth Science
J. Mineral Resources
K. Geophysics
L. Mineralogy
M. Tectonics

Meteorology (Mteor) Courses Primarily for Undergraduate Students

Mteor 101. Introductory Seminar. (1-0) Cr. R. F. An overview of the atmospheric sciences, the meteorology program, weather forecasting, and general university procedures.

Mteor 111. Synoptic Applications. (1-0) Cr. 1 each time taken, maximum of 3. F.S. Current weather discussions and introduction to synoptic-scale interpretation of meteorology. Cannot be counted toward a major. Others with permission of instructor.

Mteor 206. Introduction to Meteorology. (Same as Agron 206.) (3-0) Cr. 3. F.S. Basic concepts in meteorology, including atmospheric measurements, radiation, stability, precipitation, fronts, forecasting, and severe weather. Applied topics include global warming, ozone depletion, world climates, weather safety, and atmospheric optics.
Mteor 265. Scientific Balloon Engineering and Operations. (Same as Agron 265.) See Aerospace Engineering.

Mteor 298. Cooperative Education. Cr. R. F.S.S.S. Prereq: Permission of the department cooperative education coordinator; junior or senior classification. Required of all cooperative education students. Students must register for this course prior to commencing the work period.

Mteor 301. General Meteorology I. (4-0) Cr. 4. S. Prereq: Math 166; credit or enrollment in Phys 222. Global distribution of temperature, wind, and atmospheric constituents; atmospheric thermodynamics, radiative transfer, global energy balance, storms and clouds, introductory dynamics. Nonmajor graduate credit.

Mteor 306. Use of Weather Data in Agriculture. (Same as Agron 306.) See Agronomy. Nonmajor graduate credit.

Mteor 311. Introduction to Synoptic Meteorology. (1-2) Cr. 2. F. Prereq: 301. Concepts of weather map plotting and analysis. Introduction to forecasting and to the use of real-time UNIDATA computer products. Nonmajor graduate credit.

Mteor 321. Meteorology Internship. Cr. 1 or 2 each time taken, maximum of 3 cr. F.S.S.S. Prereq: 311; junior or senior standing; permission of co-op program coordinator; acceptance by sponsoring agency. Supervised practical experience in a professional meteorological agency. Experiences may include providing weather information for radio, TV, utilities, government agencies, construction, or agribusiness.

Mteor 342. Atmospheric Physics II. (3-0) Cr. 3. S. Prereq: 341. Precipitation physics, radar, atmospheric radiation, atmospheric optics, atmospheric electricity. Nonmajor graduate credit.

Mteor 398. Cooperative Education. Cr. R. F.S.S.S. Prereq: Permission of the department cooperative education coordinator; junior classification. Required of all cooperative education students. Students must register for this course prior to commencing the work period.

Mteor 404. Global Change. (Dual-listed with 504; same as Agron 404, EnSci 404, Env S 404.) (3-0) Cr. 3. S. Prereq: Permission of instructor. No more than 3 cr. of Mteor 404 may be counted toward graduation. A. Synoptic Meteorology. B. Dynamics. C. Physical Meteorology. D. Instrumentation.

Mteor 498. Cooperative Education. Cr. R. F.S.S.S. Prereq: Permission of the department cooperative education coordinator; senior classification. Required of all cooperative education students. Students must register for this course prior to commencing each work period.

Mteor 499. Independent Study. Cr. 1 to 3 each time taken. Prereq: 8 credits in meteorology, permission of instructor. No more than 9 credits in Mteor 490 may be counted toward graduation. A. Synoptic Meteorology. B. Dynamic Meteorology. C. Physical Meteorology. D. Instrumentation.

Mteor 511. Synoptic Meteorology. (Dual-listed with 411.) (1-4) Cr. 3. S. Prereq: Permission of instructor. No more than 3 cr. of Mteor 511 may be counted toward graduation. Current weather forecasting and discussion. Applications of atmospheric physics and dynamics in real-time weather situations. Use of UNIDATA computer products. Nonmajor graduate credit.

Mteor 517. Mesoscale Forecasting Laboratory. (Dual-listed with 517.) (6-0) Cr. 2. S. Prereq: Credit or enrollment in 411. Real-time computer analysis of current weather, with emphasis on small-scale features. Studies of severe weather, lake-effect snow, CSI, cold-air damming. Nonmajor graduate credit.

Prerequisites and corequisites:

Mteor 432. Instrumentation and Measurements. (Dual-listed with 532.) (3-0) Cr. 3. S. Prereq: Credit or enrollment in Stat 105, Math 266, Phys 222. Measurement of meteorological variables and instruments used, including surface, upper air, and remote sensors; measurement errors, signal processing, recording and archiving; quality assurance. Nonmajor graduate credit.

Mteor 454. Dynamic Meteorology II. (3-0) Cr. 3. F. Prereq: 443. Planetary boundary layer, linear perturbation theory, atmospheric wave motions, baroclinic and convective instability, mesoscale circulations. Nonmajor graduate credit.

Mteor 455. General Circulation/Advanced Dynamics. (Dual-listed with 555.) (3-0) Cr. 3. S. Prereq: 454. General circulation of the atmosphere, including energy, momentum and hydrologic balances. Weather forecast and analysis systems. Nonmajor graduate credit.

Mteor 508. Micrometeorology. (3-0) Cr. 3. Alt. F., offered 2001. Prereq: 455 or E M 378 or M E 335 or Phys 361. Basic concept of rotating fluid dynamics, governing equations and boundary conditions. Dynamics of vorticity, potential vorticity and geostrophic motion, wave motion in a rotating system, dynamics of Ekman and Stewardson layers, ocean circulation.

Mteor 599. Research. Cr. var.

Courses Offered at the Gulf Coast Research Laboratory (GCRL), Ocean Springs, Mississippi

The Gulf Coast Research Laboratory is affiliated with the University of Southern Mississippi. Iowa State students may register for the following University of Southern Mississippi/GCRL courses and transfer them to their ISU degree programs. Written permission of the ISU coordinator for the GCRL, 201 Bessey, is required for this arrangement. Inquire at 201 Bessey for further information.

Mteor 504. Global Change. (Dual-listed with 504; same as Agron 504.) (3-0) Cr. 3. S. Prereq: Four courses in physical or biological sciences or engineering. Biogeophysical cycles, ozone chemistry, global energy balance, structure and circulation of the atmosphere and oceans, climate modeling, climate variability; and implications for agriculture, water resources, energy use, sustainable development, and public policy. Human dimensions and ethical issues of global environmental change. Nonmajor graduate credit.

Mteor 505. Biometeorology. (Same as Agron 505.) See Agronomy.

Mteor 511. Synoptic Meteorology. (Dual-listed with 411.) (1-4) Cr. 3. Alt. S., offered 2003. Prereq: 455 or E M 378 or M E 335 or Phys 361. General circulation of the atmosphere, including energy, momentum and hydrologic balances. Weather forecast and analysis systems. Nonmajor graduate credit.

Mteor 517. Mesoscale Forecasting Laboratory. (Dual-listed with 517.) (6-0) Cr. 2. S. Prereq: Credit or enrollment in 411. Real-time computer analysis of current weather, with emphasis on small-scale features. Studies of severe weather, lake-effect snow, CSI, cold-air damming. Nonmajor graduate credit.

Mteor 528. Atmospheric Physics. (Same as Phys 528.) See Physics.

Mteor 532. Instrumentation and Measurements. (Dual-listed with 432.) (3-0) Cr. 3. S. Prereq: Credit or enrollment in Stat 105, Math 266, Phys 222. Measurement of meteorological variables and instruments used, including surface, upper air, and remote sensors; measurement errors, signal processing, recording and archiving; quality assurance.
Geron 471. Design for All People. (Same as HD FS 377.) See Human Development and Family Studies.
Geron 472. Aging and the Family. (Same as HD FS 563.) See Human Development and Family Studies.
Geron 476. Housing for Specific Groups. (Same as HD FS 463.) See Human Development and Family Studies.
Geron 534. Adult Development. (Same as HD FS 534.) See Human Development and Family Studies.
Geron 561. Life Course Research. (Same as Soc 561.) See Sociology.
Geron 562. Housing for the Aging. (Dual-listed with 563; same as HD FS 463.) See Human Development and Family Studies.
Geron 566. Housing for Specific Groups. (Same as HD FS 463.) See Human Development and Family Studies.
Geron 577. Aging and Intergenerational Relations. (Same as HD FS 577.) See Human Development and Family Studies.
Geron 600. Seminar. Cr. arr. F.S.SS.

Undergraduate Study

Undergraduate study in this program provides the student with an opportunity to develop a minor in gerontology. A balanced grouping of courses assists the student in developing both a sensitivity to the issues and the ability to synthesize ideas from the variety of disciplines important to the study of the aging process.

Undergraduate students may minor in gerontology by taking 16 semester hours of gerontology related courses. Nine of these credits must come from the following courses: Geron 377, 448, 461, 463, 471, 476. Students will participate in a prepracticum seminar, Geron 466, and will complete a supervised field practicum after all gerontology coursework is completed (Geron 467). A minimum of 3 semester credits must be selected from a list of supportive gerontology related courses. Supportive courses include units or topics related to aging and can be used to complement the student’s major interests. The student’s minor program must be approved by the undergraduate gerontology coordinator.

Graduate Study

Christine Cook, Coordinator

A declared graduate minor in gerontology consists of a minimum of 12 credits taken from a list of acceptable courses, and from at least two departments. Nine of the 12 credits must be in courses that are focused specifically on aging. One 590 course (3 credits maximum) can be taken as part of the 12 credits. At least one member of the gerontology faculty will be on the student’s advisory committee; this person must be a member of the Graduate Faculty. Contact the coordinator to determine whether courses other than those listed below are available.

Courses open for nonmajor graduate credit: 448, 471, 476.

Courses Primarily for Undergraduate Students

Geron 448. Economics of Aging. (Same as HD FS 448.) See Human Development and Family Studies. Nonmajor graduate credit.
Geron 461. Life Course Sociology. (Same as Soc 461.) See Sociology.
Geron 463. Housing for the Aging. (Dual-listed with 563; same as HD FS 563.) See Human Development and Family Studies.
Geron 466. Gerontology Prepracticum Seminar. (10 Cr. 1. F.S. Prereq: 9 credits in core courses for the gerontology minor and approval of the gerontology undergraduate coordinator. Prepracticum training for students planning a gerontology practicum. Exploration of possible agencies for the practicum, in-depth study of a selected agency, and development of goals and objectives for the practicum.
Geron 467. Gerontology Practicum. Cr. 3 to 6 each time taken. F.S. Prereq: 466, advance reservation. Supervised field experience related to aging. Offered on a satisfactory-fail grading basis only.
Geron 471. Design for All People. (Same as Arch 471.) See Architecture. Nonmajor graduate credit.
Geron 476. The Aged in American Society. (Same as Soc 476.) See Sociology. Nonmajor graduate credit.

Courses Primarily for Graduate Students, Open to Qualified Undergraduate Students

Geron 534. Adult Development. (Same as HD FS 534.) See Human Development and Family Studies.
Geron 561. Life Course Research. (Same as Soc 561.) See Sociology.
Geron 562. Housing for the Aging. (Dual-listed with 563; same as HD FS 463.) See Human Development and Family Studies.
Geron 566. Housing for Specific Groups. (Same as Arch 566.) See Architecture.
Geron 577. Aging and Intergenerational Relations. (Same as HD FS 577.) See Human Development and Family Studies.

Health and Human Performance

Jerry R. Thomas, Chair of Department
Professors: Anderson, Bloedel, Sharp, J. Thomas
Distinguished Professors (Emeritus): Forker, Toman
Professors (Emeritus): Frye, Hutchison, Schneider
Professors (Emeritus Adjunct): Beran
Associate Professors: Conover, Cooney, Engelhorn, Franke, King, K. Thomas
Assistant Professors: Baker, Chang, Derrick, Ekkekakis, Kohut, McLean, Murdoch, Sando, Schabel, Smiley-Owen, Symons, Trail, Weik
Assistant Professors (Collaborators): Buck
Assistant Professors (Emeritus): McDonald
Instructors (Adjunct): Coberley, Condon, Harklau, McVan, Meier, Nespor, Pak, Peel, Power, Shaffer
Instructors (Collaborators): Deeter

Undergraduate Study

Health Studies. For the undergraduate curriculum in community health education leading to the degree of bachelor of science, see College of Education, Curricula. The community health education program is designed to prepare students for professional involvement in programs which incorporate health services and the educational process. Typical employment settings include city, county, regional, and state health departments; hospitals and clinics; voluntary organizations, and private businesses which focus on health promotion or offer health education as a benefit to employees. The following options are available:
Option 1 Community/Public Health
Option 2 Substance Abuse Prevention
Option 3 Wellness/Fitness
Course work is available which meets the current educational requirements for certification as a Prevention Specialist as established by the Iowa Board of Substance Abuse. See the departmental advising office for details.

Students interested in teaching may select health education as a major endorsement area (teaching licensure). In addition, students may select health education as a second teaching area provided that licensure requirements are met in another subject (see *Teacher Education, Requirements for Areas of Specialization*).

To be accepted into the teacher education program, students must be approved by the departmental committee and the College of Education Teacher Education Committee. See the *University Teacher Education Handbook* for GPA, course work, credits, field experience, and ACT or PPST score requirements for admission to the University Teacher Education Program. Further details are available from the department advising office.

Introductory courses in health studies offer opportunities for learning experiences in personal and community health, drug education, and emergency health care.

The department offers a minor in health studies which may be earned by completing the following: H S 105, 110, 215, 310, 350, 430 or 380; and three additional credits selected from: H S 390; HD FS 276, 373, 377; FS HN 167; Psych 360; Zool 258.

Dance. Coursework in dance provides opportunities for students to develop an understanding and appreciation of dance as part of a liberal education. Those interested in teaching dance and Physical Education in the public schools may major in exercise and sport science (teacher licensure option) and minor in dance.

An interdisciplinary Performing Arts major with a dance emphasis is available through the College of Liberal Arts and Sciences. For further information see *Index, Theatre and Performing Arts*.

The department offers a minor in dance that may be earned by completing the following: Dance 220, 222, 270, 320, 360, 384, 385 or 386; and two additional credits selected from dance courses numbered 200 or above. Participation in Orchesis I or II is recommended.

Exercise and Sport Science. For the undergraduate curriculum in exercise and sport science leading to the degree of bachelor of science, see *College of Education, Curricula*. The curriculum in exercise and sport science has three facets: the general education component, the human movement core, and a specialization option (see *College of Education, Curriculum in Exercise and Sport Science* for information on minimum grade requirements in core courses and minimum requirements for admission to professional options). The following options are available: 1. teacher licensure (K-12), 2. exercise science, 3. athletic training, 4. sport management, and 5. general exercise and sport studies.

Graduates of the teacher licensure programs will demonstrate an understanding of human movement in relation to anatomy, physiology, biomechanical, developmental, sociological, and psychological considerations. A graduate will understand how students learn motor skills and will be able to design, evaluate, and modify tasks and experiences for diverse audiences. Graduates will also be able to determine the appropriateness of various teaching styles, instructional strategies, and learning experiences with respect to curriculum goals and the needs of individual students.

To be accepted into the teacher education program, students must be approved by the departmental committee and the College of Education Teacher Education Committee. See the *University Teacher Education Handbook* for GPA, course work, credits, field experience, and ACT or PPST score requirements for admission to the departmental program. Details are available from the department advising office.

Several options are offered for students who are interested in the study of human movement as preparation for professional roles other than public school teaching.

The exercise science option leads toward professional roles as directors and leaders in the fitness field in corporate, recreational, clinical, or institutional settings. Graduates of this option understand the immediate and long-term effects of physical activity, especially as they relate to improving and maintaining human health. Graduates are able to evaluate a person’s physical fitness, prescribe safe and effective exercise programs tailored to an individual’s needs and goals, and to effectively supervise these programs.

The athletic training option prepares students for the NATABOC certification examination or for graduate work in athletic training. Graduates of this option will effectively use their understanding of anatomy, kinesiology, physiology, sport psychology, and nutrition to plan strategies aimed at the prevention of injuries. When injuries do occur, they will be able to provide emergency care and to employ appropriate assessment techniques, treatment modalities, and rehabilitation strategies. To be accepted into the athletic training education program a student must apply, must have completed Ex Sp 221, and 125 clinical observation hours and must be approved by the department Athletic Training Education Program Committee. Admissions are limited to about fifteen new students each year for the program total not to exceed forty-five. Additional details are available from the athletic training program coordinator or the department advising office.

The sport management option serves students seeking entry-level positions in sport or fitness-related businesses or organizations. Graduates of the sport management program will understand the structure, function, and impact of the sport industry on the community, as well as the social and ethical issues facing sport management professionals. Based on their understanding of principles of managing sport organizations, graduates will be able to critically analyze sport environments, conduct feasibility studies, develop marketing plans, and communicate effectively with others in sport organizations, health and fitness industries, and other sport and recreation agencies.

The exercise and sport studies option is designed to allow students to take coursework outside the department to support and enhance an individualized program in such areas as sports information and promotion, pre-physical therapy, pre-medicine, and other allied health and sport-related fields.

The department offers a minor in athletic training and in athletic coaching. The athletic training minor may be earned by completing the following: Ex Sp 221, 222, 224, 225, 226, 227, 323, 326, 327, 355, 358, 425; H S 110, 215; FS HN 167.

The athletic coaching minor may be earned by completing the following: Ex Sp 220, 258, 315, 358, 368, 366; Zool 165; and Psych 230.

Endorsement to Coach Interscholastic Athletics. The State Department of Education has provided for the endorsement of licensed teachers for the coaching of athletic teams in schools. The endorsement does not lead to licensure to teach physical education. For requirements of the program, leading to the coaching endorsement, see *Teacher Education, Requirements for Areas of Specialization*.

Basic Activity Instruction Program. The department offers a wide selection of beginning, intermediate, and advanced courses in the areas of aquatics, dance, and sports. These courses are designed to serve general education purposes for all students.

Graduate Study

The department offers work for the master of science with a major in exercise and sport science, and work for a doctor of philosophy degree with a major in health and human performance. Specializations are available for both M.S. and Ph.D. candidates in behavioral basis of physical activity and biological basis of physical activity.

The department also participates in the Master of Education degree by offering specializations in behavioral basis of physical activity and biological basis of physical activity. The normal prerequisite to major graduate work is the satisfactory completion of a curriculum essentially equivalent to that required of undergraduate students in exercise and sport science at this university. However, it is possible for students to qualify for graduate study even though undergraduate preparation has been in a related area.

Students in the M.S. and Ph.D. degrees are required to complete original research and write a thesis or dissertation. The M.Ed. degree is a non-thesis degree requiring more coursework and an internship experience or other creative component. Specific information about the requirements for these degree
options is available from the department office or from the department web site (www.educ.iastate.edu/hhp/grad).

The department participates in the interdepartmental minor in gerontology (see Index).

Courses open for nonmajor graduate credit: Ex Sp 355, 358, 395, 465, 475.

Courses Primarily for Undergraduate Students

Athletics (Ath)

Ath 101. Intercollegiate Athletics. Cr. 1 in any one semester. Limited credit per year to a maximum of 4. F.S. Prereq: Permission of head coach. Offered on a satisfactory-fail grading basis only. Credit for a sport section of Ath 101 may not be applied toward graduation if credit is also received for Ex Sp 166 or any skill technique course in the same sport.

A. Baseball (men)
B. Basketball (men)
C. Basketball (women)
D. Cross Country (men)
E. Cross Country (women)
F. Football (men)
G. Golf (men)
H. Gymnastics (women)
I. Softball (women)
J. Swimming/Diving (men)
K. Swimming/Diving (women)
L. Tennis (women)
M. Track and Field (men)
N. Track and Field (women)
O. Volleyball (women)
P. Wrestling (men)
Q. Golf (women)
R. Soccer (women)

Health Studies (HS)

H S 105. First Aid and Emergency Care. (1-2) Cr. 2. F.S. Discussion and application of the basic techniques of administering first aid and cardiopulmonary resuscitation. ARC certification available.

H S 110. Personal and Consumer Health. (3-0) Cr. 3. F.S. Physical, mental, and social aspects of health as a basis for understanding and preventing health problems. False and misleading advertising and effects of cultists and fanatics on consumer health. Study of legislation and agencies concerned with consumer protection and health insurance.

H S 215. Drug Education. (3-0) Cr. 3. Prereq: Psych 101 or 233. Use and abuse of mood modifying substances in contemporary society. Includes study of tobacco, alcohol, and other drugs.

H S 250. Health and Human Performance Orientation. (Same as Ex Sp 250.) Cr. 1. F.S. See Exercise and Sport Science.

H S 251. Health and Human Performance Learning Community. (Same as Ex Sp 251.) (0-1) Cr. 5. Prereq: Membership in the HHP Learning Community, concurrent enrollment in 250. To explore career opportunities in HHP professions through field trips and work with faculty and peer mentors. Offered on a satisfactory-fail grading basis only.

H S 255. Foundations in Health Education. (3-0) Cr. 3. A review of the development of health education as a profession, CHES, foundational theory and skills in health education.

H S 275. Health Education in the Elementary School. (3-0) Cr. 3. Prereq: HD FS 102 or 226. An overview of school health services, healthful school living, and health instruction for teachers at the elementary level. Credit for both 275 and 375 may not be applied toward graduation.

H S 292. Acquired Immune Deficiency Syndrome and Sexually Transmitted Diseases. (3-0) Cr. 3. An introductory, nontechnical examination of the biological, social, psychological, and ethical aspects of AIDS and sexually transmitted diseases.

H S 294. Health Issues for Women. (3-0) Cr. 3. Examines health and health care issues related to women.

H S 305. Instructor's First Aid and Cardiopulmonary Resuscitation. (1-2) Cr. 2. Prereq: 105, current Standard First Aid and Community CPR Certification. Discussion and practice of skills needed to teach first aid and cardiopulmonary resuscitation. ARC certification available.

H S 310. Community and Public Health. (3-0) Cr. 3. Prereq: 110. Introduction to community health problems, programs of prevention, environmental health agencies, and health services. Study of local, state, and national community health agencies, their purposes and functions.

H S 375. Teaching-Learning Process in Health Education. (3-0) Cr. 3. Prereq: 105. 110, 215. Principles, methods, materials, and resources involved in the teaching of health. Includes organization and development of the health education curriculum (K-12). Credit for both 275 and 375 may not be applied toward graduation.

H S 380. Health Promotion in the Community and Workplace. (3-0) Cr. 3. Prereq: 310. Provides a survey of health promotion programs. In addition, the organization, implementation, and administration of health promotion programs such as physical activity, back care, weight loss, smoking cessation, self-care, nutrition, and stress management will be studied.

H S 385. Search Strategies for Field Experience and Employment. (Same as Ex Sp 385.) (1-0) Cr. R. F.S. Prereq: Junior classification, to be taken as a minimum of two semesters prior to H S 485. Search techniques and preparation of materials utilized for acquisition of internship and jobs in HHP fields. Internship procedures and policies will be covered. Offered on a satisfactory-fail grading basis only.

H S 390. Administration of the School Health Program. (3-0) Cr. 3. Prereq: 310. History and legal basis of school health programs. Procedures for developing, organizing, administering, and evaluating a modern program of health services, healthful school living, and health instruction. Includes school-community relationships.

H S 395. Substance Abuse Prevention: Theories and Practical Professional. (3-0) Cr. 3. Prereq: 215. Current approaches to substance abuse prevention programs; examination of risk and resiliency factors in school, community, and institutional contexts; examination of legal and ethical concerns; and consideration of career and professional opportunities in the substance abuse prevention field.

H S 417. Supervised Teaching in Health Education. (3-0) Cr. 3. F.S. Course work in a modern program of health services, healthful school living, and health instruction. Supervised experience in health education. Offered on a satisfactory-fail grading basis only.

H S 420. Modern Dance Composition. (1-3) Cr. 2. Prereq: 120 or previous modern dance experience. Theory and practice of the creative skills involved in solo and small group composition.

H S 422. Modern Dance II. (3-0) Cr. 1. F.S. Prereq: 120 or previous modern dance experience. Dance techniques emphasizing strength, balance, endurance, rhythmic activity and extended combinations.

H S 423. Modern Dance III. (3-0) Cr. 1. F.S. Prereq: 222. Continued experience in dance techniques and extended combinations. Emphasis on maturation of skill and artistry. Exposure to a variety of modern dance technical styles.

H S 424. Concert and Theatre Dance. (Same as Theatre 224.) (3-0) Cr. 2. Prereq: 101 or 233. Leading and following more defined. Techniques of solo dance. Designed for exercise and sport science majors, open to others.

H S 485. Directed Field Experience in Health Education. (3-0) Cr. 3. F.S. See Exercise and Sport Science.

No previous ballet experience required. Offered on a satisfactory-fail grading basis only.

Dance 140. Jazz I. (3-0) Cr. 1. F.S. Introduction to the modern jazz style with concentration on isolation and syncopation. No previous jazz experience required. Offered on a satisfactory-fail grading basis only.

Dance 150. Tap Dance I. (3-0) Cr. 1. F.S. Instruction and practice in basic tap technique and terminology. No previous tap experience required. Offered on a satisfactory-fail grading basis only.

Dance 160. Ballroom Dance I. (0-2) Cr. 1. F.S. Instruction and practice in foxtrot, waltz, swing, cha-cha, tango, and selected contemporary dances. Offered on a satisfactory-fail grading basis only.

Dance 199. Dance Continuum. Cr. 0.5 to 2 each time taken, maximum of 6 credits. F.S. Prereq: Permission of instructor. Advance registration required. Continued instruction and practice in either modern dance, recreational dance, ballet, jazz and/or compositional skills. Offered on a satisfactory-fail grading basis only.

Dance 211. Fundamentals and Methods of Social and World Dance. (3-1) Cr. 2. F.S. Skill enhancement, teaching, progressions with emphasis on world and social dance. Designed for exercise and sport science majors, open to others.

Dance 220. Modern Dance Composition. (1-3) Cr. 2. Prereq: 120 or previous modern dance experience. Theory and practice of the creative skills involved in solo and small group composition.

Dance 222. Modern Dance II. (3-0) Cr. 1. F.S. Prereq: 120 or previous modern dance experience. Dance techniques emphasizing strength, balance, endurance, rhythmic activity and extended combinations.

Dance 223. Modern Dance III. (3-0) Cr. 1. F.S. Prereq: 222. Continued experience in dance techniques and extended combinations. Emphasis on maturation of skill and artistry. Exposure to a variety of modern dance technical styles.

Dance 224. Concert and Theatre Dance. (Same as Theatre 224.) (3-0) Cr. 2. Prereq: 101 or 233. Leading and following more defined. Techniques of solo dance. Designed for exercise and sport science majors, open to others.

Dance 232. Ballet II. (3-0) Cr. 1. Prereq: Previous ballet experience. Technical skills in the classical movement vocabulary. Emphasis on alignment, techniques, sequence development, and performing quality.

Dance 233. Ballet III. (3-0) Cr. 1. Prereq: 232. Concentration on technical proficiency at the intermediate level. Pointe work and partnering opportunities available.

Dance 242. Jazz II. (3-0) Cr. 1. Prereq: Previous jazz dance experience. Dance concepts within the jazz idiom. Instruction in extended movement sequences and artistic interpretation.

Dance 243. Jazz III. (3-0) Cr. 1. Prereq: 242. Integration of the concepts of jazz dynamics, phrasing, and skills into performance situations. Some repertory work of historical and contemporary pieces.

Dance 270. Dance Appreciation. (3-0) Cr. 3. F.S. Introduction to the many forms and functions of dance in world cultures. Develops abilities to distinguish and analyze various dance styles. No dance experience required.
Dance 320. Sound and Movement. (2-2) Cr. 3. S. offered odd numbered years. Prereq: 220. Intermediate composition based on the relationship of movement to improvised sounds, rhythmic scores, and the musical works of composers from various periods.

Dance 360. History and Philosophy of Dance. (3-0) Cr. 3. Alt. S., offered even numbered years. Prereq: 270. Study of the history of dance from early to modern times with emphasis on the theories and philosophies of contemporary modern dance, dancers, and dance educators.

Dance 370. Advanced Studies in Dance. Cr. 1 to 3 in any one semester to a maximum of 8 credits. F.S. Prereq: 3 credits in dance. Advance registration required. Designed to meet special interests and talents of students to include both group and independent study in various aspects of dance as a performing art including production, choreography, and performance.

Dance 384. Teaching Children's Dance. (1-3) Cr. 2. S. Content, experiences, and methods of a comprehensive dance program at the elementary school level. Theories and practice in guiding elementary school children in expressive movement experiences.

Dance 385. Methods of Teaching Dance. (1-3) Cr. 2. F. Methods and techniques of teaching social and world dance forms. Introduction to teaching educational modern dance.

Dance 386. Teaching Dance Technique and Composition. (1-3) Cr. 2. Prereq: 320. Teaching of dance as an expressive art form with emphasis on technique, rhythm, and the creative teaching process.

Dance 490. Independent Study. Cr. 1 to 3, maximum of 6. Cr. 6 credits in dance and permission of coordinator. Independent study of problems or areas of interest in dance.

Exercise and Sport Science (Ex Sp)

Ex Sp 101. Swimming I. (0-3) Cr. 1. F.S. Basic course for nonswimmers. Emphasis on two fundamental strokes and personal water safety skills. Offered on a satisfactory-fail grading basis only.

Ex Sp 102. Swimming II. (0-3) Cr. 1. F.S. Prereq: 101 or equivalent skill. Intermediate course. Emphasis on learning and improving five basic strokes and personal water safety skills. Offered on a satisfactory-fail grading basis only.

Ex Sp 108. Aquatic Fitness. (0-3) Cr. 1. Prereq: 102 or equivalent skill. Water related exercises, activities, and swimming workouts to improve physical fitness. Offered on a satisfactory-fail grading basis only.

Ex Sp 109. Basic Skin and Scuba Diving. (1-3) Cr. 2. F.S. Prereq: Swimming competence. Offered on a satisfactory-fail grading basis only.

Ex Sp 113. Scuba Assistant Instructor Practicum. (0-2) Cr. 1. Prereq: 109 and permission of instructor. Supervised experience in conduct of basic scuba diving program. Offered on a satisfactory-fail grading basis only.

Ex Sp 114. Lifeguard Training. (0-3) Cr. 1. F.S. Prereq: Abilities continuously of front crawl, sidestroke, and breaststroke; perform a standing and surface dive; swim underwater; and tread water for one minute. Minimum age 16. Specific training for Red Cross Lifeguard certification. First aid and CPR included. Offered on a satisfactory-fail grading basis only.

Ex Sp 115. WSI and Lifeguard Training Instructor. (0-5) Cr. 2. F.S. Prereq: Minimum age 17; current life-guard, first aid, and CPR certifications. Stroke analysis and methods of class organization and instruction of swimming, water safety, and rescue skills. Red Cross Water Safety Instructor and Lifeguarding Instructor certifications. Offered on a satisfactory-fail grading basis only.

Ex Sp 116. Water Safety Instructor Practicum. (0-3) Cr. 1. Prereq: 115, H S 105, CPR certification, and permission of instructor. Supervised teaching experience in swimming, aquatic fitness, lifeguard training, and WSI courses. Offered on a satisfactory-fail grading basis only.

Ex Sp 119. Archery. (0-2) Cr. 1. F.S. Offered on a satisfactory-fail grading basis only.

Ex Sp 122. Badminton. (0-2) Cr. 1. F.S. Offered on a satisfactory-fail grading basis only.

Ex Sp 126. Pocket Billiards. (0-2) Cr. 1. F.S. Introduction to the basic strokes (stop, draw, follow) and contemporary game forms associated with pocket billiards. Offered on a satisfactory-fail grading basis only.

Ex Sp 129. Bowling. (0-2) Cr. 1. F.S. Offered on a satisfactory-fail grading basis only.

Ex Sp 132. Fencing. (0-2) Cr. 1. Offered on a satisfactory-fail grading basis only.

Ex Sp 135. Golf I. (0-2) Cr. 1. F.S. Beginning skills only. Offered on a satisfactory-fail grading basis only.

Ex Sp 136. Golf II. (0-2) Cr. 1. Prereq: 135 or equivalent skill. Offered on a satisfactory-fail grading basis only.

Ex Sp 139. Gymnastics. (0-2) Cr. 1. Offered on a satisfactory-fail grading basis only.

Ex Sp 144. Racquetball. (0-2) Cr. 1. F.S. Offered on a satisfactory-fail grading basis only.

Ex Sp 151. Cross Country Skiing. (0-2) Cr. 1. S. Offered on a satisfactory-fail grading basis only.

Ex Sp 153. Ice Skating. (0-2) Cr. 1. Offered on a satisfactory-fail grading basis only.

Ex Sp 158. Tennis I. (0-2) Cr. 1. F.S. SS. Introduction to basic skills (forehand, backhand, service) and basic knowledge of game play. Offered on a satisfactory-fail grading basis only.

Ex Sp 159. Tennis II. (0-2) Cr. 1. Prereq: 158. Expansion of basic skills to include volley and spins. Introduction to basic strategy. Offered on a satisfactory-fail grading basis only.

Ex Sp 162. Triathlon Training. (0-3) Cr. 1. F.S. Prereq: 102 or equivalent skill. Introduction to the sport of triathlon integrating the discipline(s) of running, cycling, and swimming. Emphasis on cross-training systems and skill enhancement. Offered on a satisfactory-fail grading basis only.

Ex Sp 163. Physical Fitness. (0-3) Cr. 1. Evaluation of fitness status. Exercises, activities, and programs to improve physical fitness. Relationship of physical activity and weight control. Offered on a satisfactory-fail grading basis only. Credit for only 163 or 258 may be applied toward graduation.

Ex Sp 164. Walking for Fitness. (0-3) Cr. 1. F.S. Fitness walking as an activity to improve health and fitness; values of this type of activity as a lifetime endeavor. Offered on a satisfactory-fail grading basis only.

Ex Sp 165. Aerobics. (0-3) Cr. 1. Exercise class designed to improve fitness, incorporating exercise to music along with various dance styles. Offered on a satisfactory-fail grading basis only.

Ex Sp 166. Weight Training. (0-3) Cr. 1. F.S. Offered on a satisfactory-fail grading basis only.

Ex Sp 170. Tae Kwon Do/Karate I. (0-2) Cr. 1. F.S. Offered on a satisfactory-fail grading basis only.

Ex Sp 171. Tae Kwon Do/Karate II. (0-2) Cr. 1. Prereq: 170. Offered on a satisfactory-fail grading basis only.

Ex Sp 172. Badminton. (0-2) Cr. 1. F.S. Offered on a satisfactory-fail grading basis only.

Ex Sp 179. Flag Football. (0-2) Cr. 1. Offered on a satisfactory-fail grading basis only.

Ex Sp 180. Softball. (0-2) Cr. 1. Offered on a satisfactory-fail grading basis only.

Ex Sp 185. Soccer. (0-2) Cr. 1. Offered on a satisfactory-fail grading basis only.

Ex Sp 220. Basic Athletic Training. (1-2) Cr. 2. Prereq: Zool 155. Introduction to methods of prevention and immediate care of athletic injuries. Basic information concerning basic supervision of athletes, and some basic wrapping and strapping techniques for common injuries.

Ex Sp 221. Athletic Training Practicum. (0-3) Cr. 1. Prereq: Credit or enrollment in 222 and permission of program director. Training room experience to accompany 222. Open to students in the athletic training option. Offered on a satisfactory-fail grading basis only.

Ex Sp 222. Basic Athletic Training for Athletes Trainers. (2-3) Cr. 3. S. Prereq: Zool 155, 156. This course is intended to provide pre-athletic training students with the knowledge of the profession of a certified athletic trainer, factors associated with injury prevention, treatment, emergency care of athletic injuries, protective equipment, basic organization, administrative, and legal concepts in the athletic training setting. Utilize knowledge to evaluate, analyze and demonstrate appropriate taping, wrapping and basic skill techniques. To be taken with Ex Sp 221.

Ex Sp 224. Evaluation of Athletic Injuries I. (2-3) Cr. 3. F. Prereq: 222, permission of program director. Sport injury assessment procedures and evaluation techniques for lower body injuries. Includes an overview of mechanisms of injury, general musculoskeletal disorders, and dermatological conditions. Designed for students in the athletic training option or preprofessional health programs.

Ex Sp 225. Athletic Training Practicum. (0-3) Cr. 1. Prereq: Credit or enrollment in 222 and permission of program director. Training room experience to accompany 222. Open to students in the athletic training option. Offered on a satisfactory-fail grading basis only.

Ex Sp 226. Evaluation of Athletic Injuries II. (2-3) Cr. 3. F. Prereq: 222, permission of program director. Sport injury assessment procedures and evaluation techniques for upper body injuries. Includes an overview of common illnesses of athletes and sport specific injuries. Designed for students in the athletic training option or preprofessional health programs.

Ex Sp 227. Athletic Training Practicum. (0-3) Cr. 1. Prereq: Credit or enrollment in 226 and permission of program director. Training room experience to accompany 226. Open to students in the athletic training option. Offered on a satisfactory-fail grading basis only.

Ex Sp 229. Fundamentals of Skill Analysis. (1-2) Cr. 2. Prereq: Open to physical education teacher licensure students only. Basic safety and emergency water safety. Skill enhancement, understanding, and progressions.

Ex Sp 230. Fundamentals of Aquatics. (0-3) Cr. 1. S. Prereq: 101 or equivalent skill. Open to physical education teacher licensure students only. Basic water safety and emergency water safety. Skill enhancement, understanding, and progressions.

Develop perceptual-motor and fundamental movement skills in an appropriate learning environment to help children to learn movement skills in an elementary school setting. Elementary and pre-school movement planning, and facilitating movement experiences of developmentally appropriate physical education for students in pre-school and elementary schools.

Ex Sp 250. Health and Human Performance Orientation. (Same as H S 250.) (1-0) Cr. R. F. Orientation to various aspects of health and human performance and assistance in learning how to use facilities of the university and department. Offered on a satisfactory-fail grading basis only.

Ex Sp 251. Health and Human Performance Learning Community. (Same as H S 251.) (1-0) Cr. R. F. Orientation to various aspects of health and human performance and assistance in learning how to use facilities of the university and department. Offered on a satisfactory-fail grading basis only.

Ex Sp 258. Physical Fitness and Conditioning. (1-3) Cr. 2. F. S. Prereq: Exercise and sport science or CHE majors only. Development of personal fitness using a variety of conditioning and exercise techniques such as aerobic, weight training, and aquatic fitness. Introduction to acute and chronic responses to exercise, and the role of exercise in health promotion and weight management. Credit for only one of the following courses may be applied toward graduation: 163, 258.

Ex Sp 259. Leadership Techniques for Fitness Programs. (1-3) Cr. 2. F. S. Prereq: 258. Development of exercise leadership skills for a variety of activities, teaching, promotion, and teaching techniques for developing fitness for different user populations. The use of exercise programs to develop skills among aging and physically challenged populations. Emphasis on the learning and control of skilled movement over the lifespan.

Ex Sp 275. Movement Education in Elementary School Physical Education. (3) Cr. Prereq: HD FS 226. Ex Suntent enrollment in Ex Sp 280. Prerequisites for planning and management of developmentally appropriate physical education for children pre-school through elementary grade 6. Laboratory experience required. Credit for only one of the following courses may be applied toward graduation: 275, 284.

Ex Sp 280. Directed Field Experience in Elementary Education. (3-0) Cr. 1. S. Prereq: Observation, planning, and facilitating movement experiences of children in an elementary school setting.

Ex Sp 284. Elementary and Pre-school Movement Education. (2-3) Cr. 3. F. S. S. Prereq: 3 credits in human development and family studies. Approaches to teaching movement skills in pre-school and elementary school age children. Emphasis on planning appropriate learning environments to help children develop perceptual-motor and fundamental movement skills as well as a positive self concept.

Practical experience provided through participation in a children’s movement education laboratory. Credit for only one of the following courses may be applied toward graduation: 275, 284.

Ex Sp 315. Coaching Theory and Administrative Issues. (2-3) Cr. 3. Prereq: Beginning-level skills in two of the following sports (basketball, baseball, football, golf, soccer, softball, swimming, tennis, track & field, volleyball). Study in the theory, strategy, and skills of the sport, coaching techniques, and ethical and/or intercollegiate sports. Emphasis on formulating a philosophy, identifying goals and psychological aspects, teaching skills, and developing strategies. Practical experience provided.

Ex Sp 323. Therapeutic Modalities for Athletes. (1-2) Cr. F. S. Prereq: 228, permission of program director. Theory and technique of therapeutic modalities used in the management of athletic injuries.

Ex Sp 324. Athletic Training Practicum. (0-3) Cr. Prereq: Credit or enrollment in 323 and permission of program director. Practicum experience to accompany 324. Open to students in athletic training option. Offered on a satisfactory-fail grading basis only.

Ex Sp 326. Rehabilitation of Athletic Injuries. (2-2) Cr. 3. S. Prereq: 323. Theory and practical application of rehabilitation principles used in the management of athletic injuries.

Ex Sp 327. Athletic Training Practicum. (0-3) Cr. Prereq: Credit and permission of program director. Practicum experience to accompany 326. Open to students in the athletic training option. Offered on a satisfactory-fail grading basis only.

Ex Sp 350. Sport Marketing. (2-3) Cr. Prereq: 270, MKT 340, Econ 101, JI MC 220 or Advt 230. Application of fundamental marketing concepts to the sport industry, including marketing strategies/research, information management, identification of targeted market segments, and promotion of incentive programs. Topics include sport consumer behavior, advertising, growth and changes in sport and exercise.

Ex Sp 360. Sociology of Sport and Exercise. (3-0) Cr. 3. F. S. S. S. Prereq: Soc 134. Sport and exercise as social systems and as institutions related to other institutions such as politics, the economy, mass media, and education.

Ex Sp 375. Teaching Physical Education. (3-0) Cr. 3. S. Prereq: 372, credit or enrollment in C1 201, admission to Coaching Teacher Education Program, one or more semesters prior to enrollment. Current theory, practice and research on teaching focusing on management, instructional, and learning styles of students in secondary schools.

Ex Sp 395. Applied Physical Education. (Dual-listed with 595) (2-3) Cr. 3. S. F. Specific disabling conditions in terms of etiology, characteristics, needs, and potential for movement. Techniques of assessment, prescription, adaptation of activities, methods, and program planning. Laboratory experience required. Nonmajor graduate credit.

Ex Sp 385. Search Strategies for Field Experiences and Employment. (Same as H S 385.) (1-0) Cr. F. S. Prereq: 385, 395, 470, 475. Students must be fully admitted to Teacher Education. Students must apply for approval to enroll at the beginning of the semester prior to registering. Supervised teaching in the secondary schools.

Ex Sp 418. Supervised Teaching in Physical Education in the Elementary School. Cr. 8 or 12. F. S. Prereq: 385, 395, 470, 475. Students must be fully admitted to Teacher Education. Students must apply for approval to enroll at the beginning of the semester prior to registering.

Ex Sp 440. Physical Activity Promotion in the Community and Workplace. (3-0) Cr. 3. Prereq: Ex Sp 258, 268, FS HN 167. Survey of physical activity and health promotion programs in community and workplace settings. Emphasis is on developing and implementing incentive programs and behavioral interventions. A variety of computerized assessments and web-based materials will be utilized to provide experiences with resources available in the health and activity promotion fields.

Ex Sp 445. Legal Aspects of Sport. (3-0) Cr. Prereq: Ex Sp 352, 380, and Mgmt 371. A presentation of the basic legal system, its terminology, and principles as applied to professional and amateur sports. Emphasis is on identifying and analyzing legal issues in sport, the ramifications of those issues in contemporary society with special attention to contract, tort and constitutional law. Designed for coaches, athletic directors and other sport management professionals.

Ex Sp 458. Principles of Fitness Assessment and Exercise Prescription. (2-2) Cr. 3. Prereq: 358. Physiological principles of physical fitness; design and administration of fitness programs; testing, evaluation, and prescription; cardiac risk factor modification.

Ex Sp 459. Internship in Exercise Leadership. (0-3) Cr. Prereq: C or better in 259, CPR certification, concurrent enrollment in Ex Sp 385. Students must be fully admitted to Teacher Education. Students must apply for approval to enroll at the beginning of the semester prior to registering.

Ex Sp 462. Medical Aspects of Exercise. (3-0) Cr. 3. Prereq: 258. The role of exercise in preventive medicine. Impact of exercise on various diseases, and the effect of various medical conditions on the ability to participate in vigorous exercise and competitive sports. Principles of exercise testing and prescription for individuals with these conditions. Environmental and nutritional aspects of exercise.

Courses and Programs

History

249

dren. All literature and theories applied to the physical education environment.

Ex Sp 590. Special Topics. Cr. 1 to 3.
A. Physical Education
B. Health and Exercise Promotion
C. Sport Management
D. Exercise Physiology
E. Sport Sociology
F. Sport Psychology
G. Motor Learning
H. Biomechanics

Ex Sp 591. Supervised Field Experience. Cr. 1 to 6. Prereq: 10 graduate credits in exercise and sport science and/or related areas. Supervised on-the-job field experience in special areas.
A. Physical Education
B. Health and Exercise Promotion
C. Sport Management
D. Exercise Physiology

Ex Sp 593. Workshops. Cr. 1 to 3.
Ex Sp 595. Adapted Physical Education. Dual-listed with 395. I(2-3). Cr. 3-6. Prereq. 375. Specific disabling conditions in terms of etiology, characteristics, needs, and potential for movement experiences. Techniques of assessment, prescription, adaptation of activities, methods, and program planning. Laboratory experience required. May not be taken by students who have previously earned credit in 395.

Ex Sp 599. Creative Component. Cr. 1 to 3.

Courses for Graduate Students
Ex Sp 615. Seminar. Cr. 1 to 3.

History

www.public.iastate.edu/~history

George T. McJimsey, Chair of Department
Professors: Cravens, Hurt, Keller, Kottman, Marcus, McJimsey, Plakans, Wilson
Professors (Adjunct): Dobbs
University Professors (Emeritus): Schwieder
Professors (Emeritus): Bennett, Dobson, Geiger, Lovitt, Ravson, Schofield, Wilt
Associate Professors: Bix, Liu, Pope, Riney-Kehnberg
Associate Professors (Emeritus): Avraamides, Whittaker
Assistant Professors: Andrews, Garcia, Griffiths, Kleinberg, Madison, Rieger, Taylor
Assistant Professors (Emeritus): Osborn, Zaring

Instructors (Adjunct): Hill

The department offers a variety of survey courses (200 series, basically for first- and second-year students) designed to serve as either general education courses or as introductions to advanced courses in history or other subject areas. The department also offers curricular leading to the B.A. and B.S. degrees in history, the M.A. degree in history, the M.A. and Ph.D. degrees in the history of technology and science, and the Ph.D. degree in agricultural history and rural studies.

In addition to the survey (200-level) courses, advanced undergraduate courses are offered in the history of Europe, Asia, Latin America, the United States, technology and science, agriculture, and of some selected topics.

Courses Primarily for Graduate Students, Open to Qualified Undergraduate Students

Ex Sp 505. Research Laboratory Techniques in Exercise Physiology. (3-0). Cr. 2. Prereq. 358 or equivalent course with basic laboratory experience. Application and use of laboratory research equipment in exercise physiology, including operation, calibration, and use in selected situations.

Ex Sp 510. Advanced Medical Aspects of Exercise. (2-2). Cr. 2. Prereq. 358. Role of exercise in preventive medicine. Impact of exercise on various diseases, and the effect of various medical conditions on the ability to participate in vigorous exercise and competitive sports. Principles of exercise testing and prescription for individuals with these conditions.

Ex Sp 515. Qualitative Analysis of Human Movement. (2-3). Cr. 3. Prereq. 355. The kinematic analysis of developmental movement tasks and sport skills.

Ex Sp 520. The Social Analysis of Sport. (3-0). Cr. 3. Prereq. 360. Sociological analysis of sport with emphasis on sociological theory, sports structure, and function in modern industrialized society; the systems of sport in regard to their role structure, formal organization, and professionalization and its differentiation along social class, age, and sex.

Ex Sp 521. Sport Psychology. (3-0). Cr. 3. Prereq. 365. 3 courses in psychology. Aspects of psychology which form a basis for understanding and explaining behavior in a sport context. Variables underlying individual as well as group performance will be analyzed. A critical analysis of current research literature.

Ex Sp 522. Social-Psychological Perspectives of Sport and Motor Performance. (3-0). Cr. 3. Prereq. 360. Analysis of social-psychological dimensions that modify to facilitate motor behavior; focuses on the individual and small group behavior in the sports context.

Ex Sp 523. Gender Roles and Sport. (Same as W S 523). (3-0). Cr. 3. Prereq. 360. 3 courses in sociology and/or psychology. Analysis of the influence of sport on male and female sex role development. Survey of literature related to sport and sex role socialization, stereotyping, and conflict. Discussion of future issues and alternative roles.

Ex Sp 540. Administration of Sport Programs. (3-0). Cr. 3. Prereq. 270. Theory and practice of administration in physical education and sport; development of concepts related to the process of administration, types of administrative behavior, tasks and responsibilities of the administrator; evaluation of effectiveness of administration.

Ex Sp 541. Sport Marketing and Promotion. (3-0). Cr. 3. Prereq. 350 or Mkt 340. Marketing of sport as a product and marketing of non-sport-related products through sport. Includes market definition, consumer analysis, market research, market segmentation, product positioning, pricing, promotion, marketing communication, distribution, and sponsorship applied to sport.

Ex Sp 542. Sport Business. (3-0). Cr. 3. Prereq. 435 and Acct 216 or 284. Analysis of theoretical and applied principles of economics, finance, accounting, and budgeting related to sport.

Ex Sp 558. Physical Fitness—Principles, Programs, and Evaluation. (2-3). Cr. 3. Prereq. 358. Physiological principles of physical fitness, design and administration of fitness programs; testing, evaluation, and prescription; electrocardiogram interpretation.

Courses and Programs

History 249

dren. All literature and theories applied to the physical education environment.

Ex Sp 590. Special Topics. Cr. 1 to 3.
A. Physical Education
B. Health and Exercise Promotion
C. Sport Management
D. Exercise Physiology
E. Sport Sociology
F. Sport Psychology
G. Motor Learning
H. Biomechanics

Prereq: 10 graduate credits in exercise and sport science and/or related areas. Supervised on-the-job field experience in special areas:
A. Physical Education
B. Health and Exercise Promotion
C. Sport Management
D. Exercise Physiology

Ex Sp 593. Workshops. Cr. 1 to 3.

Ex Sp 595. Adapted Physical Education. (Dual-listed with 398) (3-2) Cr. 3. F. Prereq: 378. Specific disabling conditions in terms of etiology, characteristics, needs, and potential for movement experiences. Techniques of assessment, prescription, adaptation of activities, methods, and program planning. Laboratory experience required. May not be taken by students who have previously earned credit in 395.

Ex Sp 599. Creative Component. Cr. 1 to 3.

Courses for Graduate Students

Ex Sp 615. Seminar. Cr. 1 to 3.

History

www.public.iastate.edu/~history

George T. McJimsey, Chair of Department

Professors: Cravens, Hurt, Keller, Kottman, Marcus, McJimsey, Plakans, Wilson

Professors (Adjunct): Dobbs

University Professors (Emeritus): Schwieder

Professors (Emeritus): Bennett, Dobson, Geiger, Lovitt, Ravson, Schofield, Wilt

Associate Professors: Bix, Liu, Pope, Riney-Kehnberg

Associate Professors (Emeritus): Avraamides, Whittaker

Assistant Professors: Andrews, Garcia, Griffiths, Kleinberg, Madison, Rieger, Taylor

Assistant Professors (Emeritus): Osborn, Zaring

Instructors (Adjunct): Hill

The department offers a variety of survey courses (200 series, basically for first- and second-year students) designed to serve as either general education courses or as introductions to advanced courses in history or other subject areas. The department also offers curriculum leading to the B.A. and B.S. degrees in history, the M.A. degree in history, the M.A. and Ph.D. degrees in the history of technology and science, and the Ph.D. degree in agricultural history and rural studies.

In addition to the survey (200-level) courses, advanced undergraduate courses are offered in the history of Europe, Asia, Latin America, the United States, technology and science, agriculture, and of some selected topics.

Courses Primarily for Graduate Students, Open to Qualified Undergraduate Students

Ex Sp 500. Research Methods in Physical Activity. (3-0) Cr. 3. Prereq: Graduate classification in exercise and sport science. Methods and techniques used in the design and interpretation of research involving physical activity. Emphasis on styles of writing, library use, and computer applications.

Ex Sp 505. Research Laboratory Techniques in Exercise Physiology. (3-0) Cr. 2. Prereq: 358 or equivalent course with basic laboratory experience. Application and use of laboratory research equipment in exercise physiology, including operation, calibration, and use in selected situations.

Ex Sp 510. Advanced Medical Aspects of Exercise. (2-0) Cr. 3. Prereq: 358. The role of exercise in preventive medicine. Impact of exercise on various diseases, and the effects of various medical conditions on the ability to participate in vigorous exercise and competitive sports. Principles of exercise testing and prescription for individuals with these conditions.

Ex Sp 515. Qualitative Analysis of Human Movement. (2-3) Cr. 3. Prereq: 355. The kinematic analysis of developmental movement tasks and sport skills.
Undergraduate Study

The History major. For a description of the undergraduate curriculum with a major in History see Liberal Arts and Sciences, Curriculum. The History major may earn either a bachelor of arts or bachelor of science degree. Candidates for the B.A. must complete two years of university-level study in one foreign language or the equivalent. The minimum required for a major in history is 30 credits, of which at least 24 must be in courses numbered 300 or above. A minimum of 12 credits numbered 300 or above must be taken in residence at Iowa State. All History majors must complete two enrollments in Hist 495 (for R credit) or, if qualified and willing, one graduate-level writing/research seminar. The history major prepares a student with the ability to write and think clearly and to understand the nature of social organization. It specifically prepares the student to think chronologically, to understand past events in their relation to the present, to carry out research with a variety of sources, and to analyze and interpret past and present events. History majors who choose minors in other departments usually select from such complementary disciplines as Political Science, English, Sociology, Psychology, Economics, Philosophy, or Foreign Languages and Literatures.

English proficiency requirement: History majors must receive a grade of C or better in each of Engl 104 and 105 (or 105H), and Hist 495 or any graduate seminar.

For a description of the major in History as preparation for professional programs, see Teacher Education and Preprofessional Study. Students majoring in History may also earn a second major in International Studies; see International Studies.

Although the department does not require specialization, majors and nonmajors may elect to group their courses in one of several areas of emphasis. The following short list shows the department’s undergraduate courses by such areas of emphasis. Qualified undergraduates may also take some 500-level graduate courses, with permission of the instructor (see listing of graduate courses below). Consult the main listing of courses for full description.

Technology and Science: 280, 281, 284, 285, 288, 380, 387, 482, 483, 484, 486, 489.

Topical Courses: 374, 376, 381, 382, 386, 389, 390, 480, 490, 495.

Courses dealing with the history of technology and science have been structured to offer a sequence leading from basic surveys through courses in the history of particular technologies and sciences. In this area of emphasis, it is recommended that students electing Hist 482 or 483 have taken a basic survey in the history of technology and science (either Hist 280-281 or 284-285) or have taken a college-level course in an appropriate technology or science, or seek permission of the instructor. An undergraduate emphasis in the history of technology and science could include either Hist 281-282 or 284-285 and some combination from Hist 322, 380, 387, 388, 482, 483, 484, 485, 486, and 489.

The department offers a minor in History, which may be earned with 15 credits in History courses, of which at least 9 must be in courses numbered 300 or above. A minimum of 9 credits numbered 300 or above must be taken at Iowa State. The History minor is most frequently chosen by students majoring in Political Science, English, Journalism, Computer Science, and Business.

Graduate Study

Graduate students may take any 400-level history course except 490 and 495 for graduate credit. No more than 12 credits of 400-level courses, however, may be used toward the minimum credits required for a graduate degree in history. Additional work is required for graduate credit in 400-level courses.

Most history graduate courses are either proseminars or seminars. Proseminars acquaint students with the historical literature of a field and prepare them for careers in teaching and research. Seminars require students to conduct original historical research and to write extensive research papers reporting the results.

The M.A. in History. For the M.A. in history, students may elect a thesis or a nonthesis program. History 583C is required of all M.A. students during their first fall semester. See the departmental brochure on the M.A. in History for a full discussion of the options and requirements. A student shall demonstrate proficiency in the use of a research tool such as a foreign language, statistics, computer programming, or the like, as prescribed by his or her advisory committee. The M.A. in history program serves as the basis for continued study in history, law, or business; preparation for teaching in high school or junior college; preparation for government service; or as part of a general education. For international students, a TOEFL score of 600 is required at the time of admission.

The M.A. and Ph.D. in history of technology and science. The graduate program in the history of technology and science examines the role of technology and science in the formation of modern societies and their attitudes toward people and the world. The program is structured in a sequence of courses leading to the M.A. and Ph.D. degrees. Since these courses approach their subject in the context of social and cultural change, they are also open to and appropriate for students in engineering, the sciences, science education, and science journalism. For a thorough description of the program requirements, see the department’s brochure on the history of technology and science program.

The Ph.D. in agricultural history and rural studies. The program is designed as a Ph.D. program, but students without an M.A. in history will be expected to qualify for the departmental M.A. in history while progressing toward the doctorate. In some cases, the M.A. may be recommended as the terminal degree. Thirty semester hours of graduate credit are required for the M.A. and 72 for the Ph.D. Students who continue beyond the M.A. are expected to pass a qualifying examination in their general field of study and preliminary examinations in three areas of specialization, complete a dissertation, and defend it orally in the Ph.D. final examination. See the departmental brochure on the program for a full description of requirements.

The following short list of the department’s graduate courses is organized by areas of emphasis; see the main listing for complete descriptions. Courses at the 500 level are taken by graduate students (major or minor) and, occasionally, by qualified undergraduates; those at the 600 level are taken by graduate students (major or minor) only.

Europe: 512 series, 530 series, 594 series.

Asia, Latin America: 510, 513, 592, 595.

United States: 511 series, 572, 593 series.

Technology and Science: 570, 571, 574, 575, 576, 602, 603, 604, 605, 606, 607.

Agriculture and Rural Studies: 550, 552 series, 556, 608, 610.

Topical: 580, 583 series, 590, 597.

Courses open for nonmajor graduate credit: 472.

Courses Primarily for Undergraduate Students

Hist 201. Introduction to Western Civilization I. (3-0) Cr. 3. F. Western civilization from ancient Mediterranean world to 1800. Social and cultural developments; economic and political ideas and institutions; problems of historical change and continuity.

Hist 202. Introduction to Western Civilization II. (3-0) Cr. 3. S. Western civilization from 1800 to present. Social and cultural developments; economic and political ideas and institutions; problems of historical change and continuity.

Hist 207. Chinese Civilization. (3-0) Cr. 3. F. Origins, development, decline and transformation of China from earliest times to present.

Hist 208. Japanese Civilization. (3-0) Cr. 3. S. Origins, development, and transformation of Japan from earliest times to present.

Hist 221. Survey of United States History I. (3-0) Cr. 3. F. Colonial foundations: revolution, confederation, and constitution; nationalism and democracy; sectional disunity, Civil War, and reunion.

Hist 222. Survey of United States History II. (3-0) Cr. 3. S. Industrialization; emergence as a great power; boom and depression; war, internationalism and Cold War; modern industrial society.

Hist 240. Latina/o History. (3-0) Cr. 3. S. Prereq: Sophomore classification. Historical and cultural heritage of Latinas/os in the United States. The histories of Mexican, Puerto Rican, Cuban, and other Latin American peoples in the U.S. emphasizing political and cultural convergence and congruencies.
Hist 280. Introduction to History of Science I. (Same as M E 280.) (3-0) Cr. 3. F. Ideas of nature from Babylonia to Renaissance.

Hist 281. Introduction to History of Science II. (Same as M E 281.) (3-0) Cr. 3. F. Science from sev-ent-e-teenth-century scientific revolution to Darwin and Einstein.

Hist 284. Introduction to History of Technology and Engineering I. (Same as M E 284.) (3-0) Cr. 3. F. Technology in various civilizations from Sumer and Egypt to 18th century Europe.

Hist 285. Introduction to History of Technology and Engineering II. (Same as M E 285.) (3-0) Cr. 3. S. Technology in Western world in nineteenth and twentieth centuries.

Hist 305. Cultural Heritage of the Modern World. (3-0) Cr. 3. Prereq: Sophomore classification. Marcus. Examination of parallel formal and structural ele-
ents in scientific and social thinking, technological design, and composition in literature and the arts from the late medieval period to the 20th century.

Hist 307. American Popular Culture. (3-0) Cr. 3. Prereq: Sophomore classification. Social practices, beliefs and material traits of everyday life in America from the mid-19th century to the present. Includes literature, music, theater and other entertainments. Dime novels, vaudeville and roll music, Hollywood and establishment of professional athletic leagues are among the cultural artifacts and phenom-
ena considered.

Hist 310. Introduction to African History I. (Same as Af Am 310.) (3-0) Cr. 3. Prereq: Sophomore classi-
cification. Provides an overview of cultures and soci-
eties of Africa: prehistory to 1700.

Hist 311. Introduction to African History II. (Same as Af Am 311.) (3-0) Cr. 3. Prereq: Sophomore classi-
cification. Provides an overview of cultures and soci-
eties of Africa, 1700 to present.

Hist 323. Science and Religion. (Same as Relig 323.) (3-0) Cr. 3. Prereq: Sophomore classification. Wilson. History of changing interplay of science and religion in our understanding nature, from Platonicism to Darwinism.

Hist 330. History of Modern China I. (3-0) Cr. 3. F. Prereq: Sophomore classification. China from 1644 to 1864; internal and external stimuli on traditional society; emphasis on employment, education, concepts of sexuality, and changing nature of the home. Concentrates especially on 19th and 20th century United States, concluding with an examination of current issues of special interest to women in science, technology, and medicine.

Hist 331. Economic History of Europe. (Same as Econ 331.) (3-0) Cr. 3. F. Prereq: Sophomore classification. Davis. History of women’s relationship to the fields of sci-
cence, technology, and medicine, as students and professionals, consumers, subjects and patients, family members, workers and citizens. Concentrates especially on 19th and 20th century United States, concluding with an examination of current issues of special interest to women in science, technology, and medicine.

Hist 381. International Economic History. (Same as Econ 381.) (3-0) Cr. 3. F. Prereq: Sophomore classification. Davis. History of women’s relationship to the fields of sci-
cence, technology, and medicine, as students and professionals, consumers, subjects and patients, family members, workers and citizens. Concentrates especially on 19th and 20th century United States, concluding with an examination of current issues of special interest to women in science, technology, and medicine.

Hist 382. United States Economic History. (Same as Econ 382.) (3-0) Cr. 3. S. Prereq: Sophomore classi-
cification. Origins and evolution of United States cap-
italism; importance of varieties of economics; impor-
tance of legal structures; growing interdependence of power sectors.

Hist 386. History of Women in America. (Same as W S 386.) (3-0) Cr. 3. Prereq: Sophomore classification. Davis. History of women’s relationship to the fields of sci-
cence, technology, and medicine, as students and professionals, consumers, subjects and patients, family members, workers and citizens. Concentrates especially on 19th and 20th century United States, concluding with an examination of current issues of special interest to women in science, technology, and medicine.

Hist 389. History of Latin America I. (3-0) Cr. 3. Prereq: Sophomore classification. Wilson. From the late eighteenth-century beginnings of industrial revo-
lution in Britain to World War I. Examination of recip-
rocal influences on scientists, engineers, and society.

Hist 391. Modern Military History II. (3-0) Cr. 3. S. Prereq: Sophomore classification. Military History from wars of attrition to the modern age in light of the American military. Relationships between war and society in America and Europe from 1750 to 1918.

Hist 402. Ancient Greece. (Same as Cl St 402.) (3-0) Cr. 3. F. Prereq: Sophomore classification. Ancient Greece from the Bronze Age to Hellenistic Kingdoms; evolution of Greek polis and its cultural contributions.

Hist 403. Ancient Rome I. (Same as Cl St 403.) (3-0) Cr. 3. Prereq: Sophomore classification. Political, social, and institutional history of ancient Rome, and its cultural contributions studied through original sources: Republican Era: Punic Wars to the assassi-
nation of Julius Caesar.

Hist 404. Ancient Rome II. (Same as Cl St 404.) (3-0) Cr. 3. Prereq: Sophomore classification. Political, social, and institutional history of ancient Rome, and its cultural contributions studied through original sources: Imperial Age: Augustus to the rise of Constantine.

Hist 406. History of Medieval Western Europe II. (3-0) Cr. 3. S. Prereq: Sophomore classification. Maddison. Development of political, economic, and social institutions: High and Late Middle Ages, 1050-1500.

Hist 408. Europe, 1500-1648. (3-0) Cr. 3. Prereq: Sophomore classification. Northern Renaissance; Church and Luther; Protestant reform and Roman-
Catholic counter-reform; social, cultural, and econom-
ic changes; Spain in triumph and decline; religious wars; emperors of France.

Hist 410. 19th Century Europe. (3-0) Cr. 3. F. Prereq: Sophomore classification. Nationalism, revolu-
tion, and war.

Hist 414. European Cultural and Intellectual History. (3-0) Cr. 3. F. Prereq: Sophomore classification. A study of perennial ideas: nature, man, God, society, history and creativity, from Dante to Sartre.

Hist 419. History of Modern France. (3-0) Cr. 3. Prereq: Sophomore classification. From absolutism to revolution and the rise of modern democracy.

Hist 421. History of Russia I. (3-0) Cr. 3. F. Prereq: Sophomore classification. Andrews. Russia since 1850. Origins of Russian people; Byzantine influences; Mongol invasion; rise of Moscow; Westernization.

Hist 422. History of Russia II. (3-0) Cr. 3. S. Prereq: Sophomore classification. From absolutism to revolution and transformation of soci-
ey; USSR as a world power; recent changes.

Hist 424. History of Modern Germany. (3-0) Cr. 3. Prereq: Sophomore classification. Cultural, econom-
ic, and political developments in nineteenth century Germany.
Hist 571. Seminar in General History of Science II. (3-0) Cr. 3. Prereq: Permission of instructor. The history of science from Galileo to modern times, with emphasis on the historical literature, varying interpretations of the period, and problems for continuing research.

Hist 572. Seminar in American Environmental History. (3-0) Cr. 3. S. Prereq: 511D and permission of instructor. Taylor. History of human interaction with nature from aboriginal settlement through the 20th century. Emphasis on individual research.

Hist 574. Seminar in General History of Technology I. (3-0) Cr. 3. Prereq: Permission of instructor. Bix. The history of technology from preclassical civilizations to the eve of the Industrial Revolution with emphasis on the historical literature, varying interpretations of the period, and problems for continuing research.

Hist 575. Seminar in General History of Technology II. (3-0) Cr. 3. Prereq: Permission of instructor. Marcus. The history of technology from the Industrial Revolution to modern times, with emphasis on the historical literature, varying interpretations of the period, and problems for continuing research.

Hist 576. Colloquium in Historiography of Technology and Science. (1-0) Cr. F. Topical lectures, reports, and discussion of methodology and research in history of technology and science. Required of all graduate students in history of technology and science program.

Hist 580. Museum Internship. Cr. varies each time taken. Prereq: 15 graduate credits in history and permission of instructor.

Hist 583. Historical Methods. (3-0) Cr. 3. Study of evidence, theory, and methods. 583C required of all M.A. students during their first fall semester.
A. Statistical Evidence and Analysis
B. Conceptual approach to history

Hist 585. Teaching Methods. Cr. 1 to 2 each time taken. Prereq: Permission of instructor. Topics vary each time of the semester.
A. Curriculum Development in History
B. Implementing Teaching Techniques

Hist 586. Proseminar in Women’s History and Feminist Theory. (3-0) Cr. 3. Prereq: Permission of instructor. Pope. Feminist theory from the 1960s to the present as it relates to the writing of women’s history. Analysis of interpretations of U.S. women’s history from patriarchal to postmodernist perspectives.

Hist 590. Special Topics. Cr. 1 to 3 each time taken. Prereq: Permission of instructor.

Hist 592. Seminar in East Asian History. (3-0) Cr. 3. S. Prereq: Permission of instructor. Topics vary each time offered.

Hist 593. Seminar in American History. (3-0) Cr. 3. each time taken. Prereq: Permission of instructor. Topics vary each time offered.
A. Colonial Period
B. Nineteenth Century
C. Twentieth Century

Hist 594. Seminar in European History. (3-0) Cr. 3. each time taken. Prereq: Permission of instructor. Topics vary each time offered.
A. Ancient (Same as CI S1 594A)
B. Medieval
C. Modern

Hist 595. Seminar in Latin American History. (3-0) Cr. 3 each time taken. Prereq: Permission of instructor. Topics vary each time offered.

Hist 597. Seminar in Comparative Economic History. (3-0) Cr. 3 each time taken. Prereq: Permission of instructor. Topics vary each time offered.

Courses for Graduate Students

Hist 603. Seminar in Nineteenth Century Technology. (3-0) Cr. 3. Alt. S. Prereq: Permission of instructor. Marcus, Bix. Emphasis varies each time offered.

Hist 604. Seminar in American Science. (3-0) Cr. 3. Alt. F. Prereq: Permission of instructor. Cravens, Marcus. Emphasis varies each time offered.

Hist 605. Seminar in American Technology. (3-0) Cr. 3. Alt. F. Prereq: Permission of instructor. Cravens, Bix. Emphasis varies each time offered.

Hist 606. Seminar in Early Twentieth Century Science. (3-0) Cr. 3. Alt. F. Prereq: Permission of instructor. Wilson, Cravens, Marcus. Emphasis varies each time offered.

Hist 607. Seminar in Early Twentieth Century Technology. (3-0) Cr. 3. Alt. S. Prereq: Permission of instructor. Bix, Marcus. Emphasis varies each time offered.

Hist 608. Seminar on European Rural Life. (3-0) Cr. 3. Pakans. Prereq: Permission of Instructor.

Hist 610. Seminar on American Rural Life. (3-0) Cr. 3. S. Prereq: Permission of instructor. Hurt.

Hist 699. Research.

Honors Program

Don Beitz, Chair, University Honors Program Committee

The Honors Program provides a vehicle for highly motivated and able students to pursue an innovative and challenging undergraduate education. Oversight of students’ progress toward this goal is primarily the responsibility of the undergraduate colleges, each of which operates its own Honors Program. The college Honors Program committees admit students into the Program, approve programs of study, and are responsible for the administration of their college Honors Programs. The University Honors Program Committee, which includes the chairs of the college Programs, is responsible for the general coordination of the college Honors Programs and the Freshman Honors Program.

Students in the Honors Program are offered a variety of academic opportunities designed to help them derive the fullest benefit from their undergraduate education. To enhance their individualized programs of study, students are offered numerous Honors courses, seminars, and independent research opportunities. (For other benefits, see Index, Honors Program.)

Honors courses and Honors sections of regular courses are offered by several departments and programs. These courses, open only to Honors Program members, have limited enrollment and are taught by specially selected instructors. Most of these courses are listed by department or program. (See Classical Studies, Economics, Engineering, English, Mathematics, Physics, Psychology, and Speech Communication.)

In addition to established Honors courses, Honors students may designate any course as an Honors course by making appropriate arrangements with the course instructor and obtaining approval of the Honors Program Director. Most departments offer opportunities for independent study and research under 290 and 490; when designated by an H, these courses also carry Honors credit.

Courses and Programs

Horticulture

Michael H. Chaplin, Head of Department

University Professors: Christians
Professors: Chaplin, Domoto, Gleason, Graves, Nornecke, Taber
Professors (Emeritus): Bauske, Hall, Hodges, Mahlstede, Schilletter, Weigle
Associate Professors: Gladon, Hannapel, Iles, Minner, Stephens, Summers
Assistant Professors: Delate, Evans, Haynes
Assistant Professors (Collaborators): Widlechner
Instructors (Adjunct): Dilley, Gaul, Oosborn

Undergraduate Study

For undergraduate curriculum in horticulture leading to the bachelor of science degree, see Horticulture, Curriculum.

The horticulture curriculum is designed to permit commodity emphasis in general horticulture, landscape horticulture, greenhouse management, fruit production, vegetable production, nursery management, turfgrass science and management, or horticultural communications and public education. Students consider-
ing graduate degrees should participate in the science option. Specialization options com-
plete the educational goal by combining one of the above interest areas with those skills
required in environmental horticulture, greenhouse management, fruit and vegetable pro-
duction and management, nursery crop produ-
duction and management, science option or turfgrass management.

Graduates possess the technical knowledge and skills to be a professional horticulturist.
They understand plant growth and develop-
ment and the culture and management of hor-
ticultural crops. They are able to communicate
clearly and work effectively with others in the
many disciplines of horticulture. Graduates
understand the ethical and environmental
dimensions of problems and issues facing hor-
ticultural professionals.

The rapidly expanding field of horticulture pro-
vides employment opportunities in nurseries, seed companies, interior landscaping firms,
greenhouses, garden centers, conservatories, public gardens and arboreta, orchards, food
processing companies, or vegetable farms.

The allied industries associated with horticultu-
re provide employment in the areas of sales, management, and communications. turf man-
gers are needed for golf courses, athletic
fields, parks, and the lawn care industry.

Further opportunities exist in sod production,
landscape development and maintenance, and
garden botanicals.

Opportunities also exist for further education in
graduate school to prepare for a career in
research, teaching, and extension.

Students have the option of selecting a sec-
ondary major in interdepartmental programs:
est management, seed science, agricultural
extension education, environmental studies,
or international agriculture (see Index).

The department offers a minor in horticulture
that may be earned by taking Hort 221 plus
at least 12 credits in horticulture at the 200 level or
above.

Visit our departmental website at www.hort.iastate.edu

Graduate Study

The department offers master of science and
doctor of philosophy degrees with a major in
horticulture, and minor work for students in
other departments. Under special circum-
stances a nonthesis master’s degree is avail-
able through the master of agriculture pro-
gram.

Prerequisite to major graduate study is the completion of courses covering horticulture,
botany, and the underlying sciences.

Students majoring in horticulture usually will
take minor work in agronomy, botany (cytology,
morphology, or physiology), biochemistry,
chemistry, entomology, food science and
human nutrition, genetics, pathology, or statis-
tics.

There is no uniform foreign language require-
ment for either the master of science or the
doctor of philosophy degree.

The department also cooperates in the inter-
departmental majors of genetics; water
resources; molecular, cellular, and develop-
mental biology, and plant physiology (see Index).

Graduates possess a broad understanding of
horticulture and the underlying plant sciences.
They are able to communicate effectively with
members of the scientific community, indus-
try groups, and the general public. They are
experienced in conducting and writing the
results of research. They are capable of
addressing and solving complex problems
associated with the agricultural and plant sci-
ence professions. They understand the ethi-
cal, legal, social, and environmental issues
associated with modern agricultural practices.

Courses open for nonmajor graduate credit:

Courses Primarily for Undergraduate
Students

Hort 110. Orientation in Horticulture. (1-0) Cr. 1. F.
Introduction to the field of horticulture.

Hort 121. Home Horticulture. (2-0) Cr. 2. S.
Growing plants in and around the home including
requirements for growing house plants; plant propa-
gation; designing and maintaining flower, fruit,
and vegetable gardens; lawn, tree, and shrub mainte-
nance.

Hort 221. Principles of Horticulture. (2-2) Cr. 3. F.
Prereq: BIOL 210. Biological principles of growing
horticultural crops including anatomy, reproduction,
light, temperature, water, nutrition, and growth and
development. Laboratory exercises emphasize envi-
nomental factors and permit detailed observation of
plant growth.

Hort 233. Herbaceous Ornamental Plants. (2-2)
Cr. 3. F. Prereq: 221. Identification, botanical charac-
teristics, origins, propagation, uses and general cul-
ture of herbaceous annual and perennial plants.

Hort 241. Woody Landscape Plants. (3-2) Cr. 5.
Prereq: 221. Identification, botanical characteristics, landscape values,
and culture of native and introduced woody
plants. Emphasis on managing landscapes in
the Middle West. Field trips outside of
scheduled class time required. Weekend/overnight
field trips may be required.

Hort 253. Tropical Plants and Interiorscapes. (2-2)
Cr. 3. Alt. S., offered 2003. Prereq: 221. Identifica-
tion, nomenclature, culture, and use of tropical plants
in interior landscapes. Understanding plant needs in
interior environments such as malls, offices, and lob-
bies. Planning, designing, installation, maintenance,
and selection of plants for interiorscapes.

Hort 282. Educating Youth Through Horticulture.
(Same as AgEds 282.) (2-3) Cr. 3. S. Planning, de-
veloping, and implementing science-based educational
programs in a public garden setting. Through hands-
on experiences at Reiman Gardens, students will
learn about horticulture, learning theory, and
the application of science principles as they pertain to
educating youth.

Hort 283. Pesticide Application Certification.
(Same as Ent 283.) See Entomology.

Hort 302. Plant Nutrition. (Same as PH 302. (2-0)
Cr. 3. S. Prereq: 221 or Agron 114 or BIOL 201 and
Agron 154 or 155. Factors influencing nutrient
absorption and composition; criteria of essentiality
and roles of the elements; nutrient status and plant
analysis techniques; deficiency and toxicity symp-
toms, the laboratory emphasizes techniques for
determining plant nutritional status, water quality,
and crop monitoring. Nonmajor graduate credit.

Hort 321. Horticulture Physiology. (2-2) Cr. 2. F.
Prereq: 221 or BIOL 201. Principles of plant physiology
relating to problems in horticulture including photo-
synthesis, respiration, metabolisms, water relations,
and developmental processes.

Hort 322. Plant Propagation. (2-2) Cr. 3. S. Prereq:
221 or BIOL 202. Fundamental principles underlying sexual and
asexual propagation of plants; practice in
reproducing plants by use of seeds, leaves, stems,
and roots.

Hort 332. Greenhouse and Controlled Environments. (3-3) Cr. 4. F.
Prereq: 221. Principles of greenhouse and controlled environment operation and
management. Methods of monitoring and
manipulating environmental conditions (light, temper-
ature, fertility, production media, etc.) to maximize
production and quality and minimize production costs and
time.

Hort 338. Seed Science and Technology. (Same as
Agron 338.) See Agronomy.

Hort 341. Woody Plant Cultivars: Shade Trees. (2-2)
beginning first week of semester. Students will learn
pruning, and training, and use of public gardens
importantly shade tree taxa suitable for the Midwest.
Cultivars of the most prevalent species also will be
taught. Each class period will feature indoor and out-
door sessions.

Hort 342. Landscape Plant Establishment and
Maintenance. (2-3) Cr. 3. F. Prereq: 241 or L A 321.
Principles and practices involved with establishment
and maintenance of woody ornamental plants in the
landscape. Laboratory work involves site evaluation,
installation techniques, post-plant care, and mainte-
nance of established landscape plants.

Hort 344. Landscape Horticulture. (Same as L A
344.) (2-6) Cr. 4. S. Prereq: 241 or L A 321 recom-
manded. Principles and practices of designing resi-
dential and small business landscapes. Site analysis,
terrain alteration for drainage and aesthetics, func-
tional areas and circulation, use of construction and
plant materials for site development. Basic sketching
and drafting, perspective drawing, and plan refine-
ment techniques.

Hort 345. History and Development of Public
Gardens. (2-0) Cr. 2. Alt. S., offered 2002. Prereq:
221. In-depth presentation of the history, establish-
ment, development, and use of public gardens
nationally and internationally. Emphasis on relation-
ship of public garden management to local, national,
and international quality of life of society.

Cr. 1 to 2. SS. Prereq: 221 and 345. Recitation and
field trip course to accompany Hort 345. Recitation
about and field trips to North American public
gardens. No more than two (2) credits of Hort 345 may be
counted toward graduation. Tour/field trip expens-
es paid by students.

Hort 351. Turfgrass Establishment and
Management. (Same as Agron 351.) (3-0) Cr. 3. F.
Prereq: 221 or Agron 114 or BIOL 201. Principles and
practices of turfgrass propagation and management.
Specialized practices relative to professional lawn
care, golf courses, athletic fields, highway roadways,
and seed and sod production. The biology and con-
trol of turfgrass pests. Nonmajor graduate credit.

Hort 351L. Turfgrass Establishment and
Management Laboratory. (Same as Agron 351L.)
(0-3) Cr. 1. F. Prereq: Credit or enrollment in 351.
Those enrolled in the horticulture curriculum are
required to take 351L in conjunction with 351 except
by permission of the instructor. Nonmajor graduate
credit.

Hort 391. Horticultural Management Experience.
Cr. alt., maximum of 2. F.S.SS. Prereq: 221, permis-
sion of instructor. A structured work experience for
the student to gain insight into management opera-
"ations associated with production of horticultural
crops. A report of 10 or more pages describing the
student’s experience is required. One credit is given
for each term the student is enrolled in the course.
A maximum of two credits may be used toward the
horticultural sciences course requirements, and two
additional credits may be used toward the 128 cred-
its required for graduation.

Hort 424. Sustainable and Environmental Horticulture Systems. (Dual-listed with S24; same as Env S 424.) (2-0) Cr. 2. S. Inquiry into ethical issues and environmental consequences of horticultural cropping systems and production practices. Emphasis on production systems that are resource efficient, environmentally sound, socially acceptable, and profitable.

Hort 442. Nursery Crop Production. (2-3) Cr. 3. Alt. F., offered 2002. Prereq: 241 or LA 321, Agron 154 or 155. Management decisions involved with the operation of a production nursery including selection of a nursery site; soil and nutrition management for field and container-grown nursery plants; plant growth, irrigation, storage facilities. Nonmajor graduate credit.

Hort 444. Landscape Construction. (2-3) Cr. 3. F. Prereq: Junior or senior classification. Theory and practice of construction or installing landscape features including layout, contours, retaining walls, paving, and irrigation.

Hort 445. Public Horticulture Management and Administration. (2-2) Cr. 2. F. Prereq: 221, 345, and 391. In-depth presentation and discussion of techniques and requirements for the management and administration of a public horticultural facility. Topics include oral and written presentation skills, proposal development, public relations, budgeting, fundraising, dealing with governing boards, interpersonal relationships and managing horticultural operations.

Hort 451. Professional Turfgrass Management. (2-0) Cr. 2. Alt. S., offered 2003. Prereq: 351. Turfgrass science including the study of (1) specific information on soil chemistry and soil modification as they relate to the development and maintenance of turfgrass areas, (2) specialized management practices used in athletic field care, professional lawn care and golf course industries, and (3) construction methods for golf courses and athletic fields. Nonmajor graduate credit.

Hort 452. Integrated Management of Diseases and Insect Pests of Turfgrasses. (Dual-listed with S52; same as P1 452, Ent 452.) See Plant Pathology or Entomology.

Hort 453. Sports Turf Management. (2-0) Cr. 2. Prereq: 351. Management techniques for today’s specialized athletic fields. The horticultural and budgetary aspects of football, soccer, baseball, and softball fields will be presented. Field trips and laboratory exercises will develop theoretical understanding of actual principles in field development, construction, and management. Nonmajor graduate credit.

Hort 475. Community Tree Management. (Same as For 475.) See Forestry.

Hort 480. Independent Study. Cr. arr. Prereq: Senior classification in horticulture, permission of instructor. A maximum of 4 credits of 480 may be used toward the total of 128 credits required for graduation. Involves developing special interest to the student. Comprehensive report required. Election of course and topic must be approved by department head.

A. Greenhouse Management
B. Nursery Crops
C. Turfgrass
D. Fruit Crops
E. Vegetable Crops
F. Cross-Commodity

H. Honors

Courses Primarily for Graduate Students, Open to Qualified Undergraduate Students

Hort 511. Integrated Management of Tropical Crops. (Same as P1 511.) See Plant Pathology.

Hort 524. Sustainable and Environmental Horticulture Systems. (Dual-listed with S24.) (2-0) Cr. 2. S. Inquiry into ethical issues and environmental consequences of horticultural cropping systems and production practices. Emphasis on production systems that are resource efficient, environmentally sound, socially acceptable, and profitable.

Hort 529. Publishing in Plant Science Journals. (2-0) Cr. 2. S. Prereq: Permission of instructor; evidence of a publishable unit of the student's research data. Process of preparing a manuscript for submission to a refereed journal will be dealt in the plant sciences. Emphasis on publishing self-generated data from thesis or dissertation research.

Hort 530. Research Orientation. (2-0) Cr. 1. F. Instruction in scientific methods and communication skills.

Hort 546. Organizational Strategies for Diversified Farming Systems. (Same as Agron 546, Soc 546, SusAg 546.) (3-0) Cr. 3. Alt. S., offered 2002. Prereq: SusAg 509. The day-to-day operation and social relations of the complex diversified farm. Alternative organizational strategies for the diversified and sustainable farm. Farm family dynamics and goal setting. Cooperation between farmers. The social relations of alternative marketing, including green labeling, community supported agriculture, farmer’s markets, and relationship marketing.

Hort 551. Growth and Development of Perennial Grasses. (Same as Agron 551.) (2-0) Cr. 2. Alt. S., offered 2003. The grass plant. Selected topics on anatomy, morphology, and physiology relative to growth and development of perennial grasses. Emphasis on growth and development characteristics peculiar to grasses and variations of such characteristics under natural and managed conditions.

Hort 552. Integrated Management of Diseases and Insect Pests of Turfgrasses. (Dual-listed with S52; same as Ent 452, P1 P 552.) See Plant Pathology or Entomology.

Hort 590. Special Topics. Cr. arr. Prereq: A major or minor in horticulture.

Hort 593. Workshop in Horticulture. Cr. arr. Workshops in horticulture, with emphasis on off-campus instruction. A. Greenhouse Management
B. Nursery Crops
C. Turfgrass
D. Fruit Crops
E. Vegetable Crops
F. Cross-Commodity

Hort 599. Creative Component. Cr. arr.

Courses for Graduate Students

Hort 610. Graduate Seminar. Cr. 1 each time elected. F.S.

Courses and Programs

Horticulture 255

2001-2003
Undergraduate Study

The department offers work for the degree in hotel, restaurant, and institution management. Coursework is planned to provide students with a general education plus professional preparation for supervisory and executive positions in hospitality management. Principles of business management are presented, as well as fundamentals of hospitality operations.

Graduates understand the principles necessary to successfully practice hospitality management in an ethical manner. They are able to determine, accept, and implement management responsibilities. They can identify and evaluate environmental trends and adapt operating practices to meet these changing forces. They are able to make a positive contribution to the growth and improvement of the hospitality industry.

Learning experiences are provided in the quantity food production and service facility of the HRIM Department and other approved establishments. Field trips and guest speakers are scheduled to introduce students to the diversity of career opportunities in the hospitality industry. These opportunities apply course content to specific work settings. Students are required to have 400 hours of relevant work experience prior to graduation.

The HRIM Department offers a minor that may be earned by successfully completing at least 15 credits of HRIM courses in consultation with the undergraduate coordinator.

A hotel, restaurant, and institution management area of concentration can be combined with a major in advertising or journalism and mass communication in the College of Liberal Arts and Sciences. See the department for details.

The department requires a grade of C or better in Engl 104 and 105 or equivalent transfer courses. A student who does not get a C or better in these classes is required to get a C or better in Engl 302.

Graduate Study

The department offers work for the degree master of science with a major in hotel, restaurant, and institution management. This is a general hospitality management program.

Graduates of the program are able to interpret trends and adapt operating practices of hospitality organizations to changing economic, social, political, technological, and environmental conditions. They can manage a food or lodging enterprise successfully to achieve objectives of the operation or, at the doctoral level, successfully carry out responsibilities of a hospitality educator. Graduates will make positive contributions to the growth and improvement of the hospitality industry using current research in the decision-making process.

A degree in hotel, restaurant, and institution management is the usual background for graduate study; however, applicants with preparation in dietetics, business, or closely-related fields are encouraged to apply. Prior to admission, students must have completed most prerequisite courses. These include basic principles courses in financial accounting, managerial accounting, business law, computer science, economics, human resources, management, and marketing. In addition, basic principles courses in nutrition, food preparation, and quantity food preparation are required.

The master of science degree requires either a thesis or non-thesis (creative component) project. Students also are required to take one HRIM course in three of four core areas (human resources, financial management, marketing, and strategic management).

The department participates in the Master of Family and Consumer Sciences degree by offering a specialization in HRIM. The department also participates in the Master of Family and Consumer Sciences degree with specialization in Dietetics, offered in cooperation with the Food Science and Human Nutrition Department.

A graduate minor in HRIM at the MS level requires a minimum of 9 credits of HRIM coursework; 6 credits must be at the 500- or 600-level.

Work may be taken for the degree doctor of philosophy as a joint major. A second major must be chosen from a related area offered by a department authorized to grant a doctoral degree. The most common choice for a joint-major program has been with family and consumer sciences education. A dissertation is required.

Courses open for nonmajor graduate credit: 352, 437, 438, 452, 460.

Courses Primarily for Undergraduate Students

HRI 101. Introduction to the Hospitality Industry. (3-0) Cr. 3. F. Introduction to the foodservice, lodging, and tourism components of the hospitality industry. Background information, current issues, resume writing, and future challenges in various segments of the industry.

HRI 233. Hospitality Sanitation and Safety. (3-0) Cr. 3. F. Sanitation and safety principles and issues in food service and lodging operations. Application of HACCP. Preparation for national foodservice sanitation certification examination. Characteristics of food, supplies, and equipment as related to sanitation and safety.

HRI 287. Principles of Hospitality Management. (3-0) Cr. 3. S. F. Principles of hospitality management concepts and principles with application to the hospitality industry. Includes service quality management, professionalism, and social responsibility. Credit for either 391 or 287 and 438 may count toward graduation.

HRI 289. Private Club Operations. (2-0) Cr. 2. F. Prereq: 101. The organization and management of various types of private clubs including city, country, and other recreational and social clubs. Field trip required.

HRI 333. Foodservice Operations Controls. (3-0) Cr. 3. F. Prereq: HRI 233. Introduction to revenue and cost control in foodservice and hotel operations: systems for controlling sales and food, beverage, labor, and other costs. Application of principles related to procurement, production, and inventory controls. Specifications for food and equipment. Field trip required.

HRI 352. Lodging Operations Management I. (3-0) Cr. 3. F. Prereq: 101. Introduction to functional department activities of lodging organizations, includ-
ing front office, housekeeping, purchasing, accounting, human resources, and food and beverage. Introduction to property management systems. Principles of management skills applied to lodging operations. Nonmajor graduate credit.

HRI 360. Global Tourism Management. (3-0) Cr. 3. S. Prereq: 101. Overview of the global tourism industry: hospitality and related services, destination/attractions, and transportation. Introduction to travel behavior, tourism, and hospitality management and its economic and social impacts of tourism development.

HRI 380. Quantitative Food Production Management. (3-0) Cr. 3. F. S. Prereq: 233 or 2 cr. Micro, FS HN 111 or 214, Junior classification, enrollment in 380L. Principles and procedures used in quantity food production management including quality control, food costing, work methods, menu planning, sanitation, and safety.

HRI 380L. Quantitative Food Production and Service Management Experience. (0-0) Cr. 2. F. S. Prereq: 233 or 2 cr. Micro, FS HN 111 or 214, Junior classification, enrollment in 380, reservation with department required. Application of quantity food production and service management principles and procedures in the departmental foodservice operation.

HRI 383. Introduction to Beverages. (2-0) Cr. 2. F. Prereq: Must be at least 21 years old and permission of the instructor. Introduction to history and methods of production for a variety of wines, spirits, and other beverages. Product knowledge and service techniques related to sales.

HRI 391. Foodservice Systems Management I. (3-0) Cr. 3. F. S. Prereq: Credit or enrollment in 380, 380L. Principles and techniques related to basic management, organizational leadership, and human resource management of foodservices in health care and other institutional settings. Not accepted for credit toward a major in HRIM. Credit for either 391 or 287 and 438 may count toward graduation.

HRI 392. Foodservice Systems Management II. (3-0) Cr. 3. S. Prereq: Credit or enrollment in 380, 380L. Introduction to cost control in foodservice departments, including controlling food, labor, and other variable costs. Application of principles related to food product selection, specification, purchase, and storage in health care and other institutions. Not accepted for credit toward a major in HRIM. Credit for either 392 or 333 and 433 may count toward graduation.

HRI 393. Hospitality Work Experience. Cr. 1. Prereq: Adviser approval. Approved work experience for HRIM majors in food, lodging, or related operations. Experience in at least two different entry-level positions or management responsibilities after high school graduation required. A minimum of 400 hours required. Offered on a satisfactory-fail grading basis only.

HRI 433. Hospitality Managerial Accounting. (Dual-listed with 533.) (3-0) Cr. 3. S. Prereq: 333 and Acct 284. Use of common financial statements, accounting ratios, and financial techniques to impact management decisions.

HRI 438. Hospitality Human Resource Management. (3-0) Cr. 3. S. Prereq: 287, work experience, junior classification, and completion of a certain number of human resource management relevant to hospitality organizations. Emphasis on the entry-level manager's role in hospitality organizations. Credit for either 391 or 287 and 438 may count toward graduation. Nonmajor graduate credit.

HRI 440. Hospitality Marketing. (Dual-listed with 540.) (3-0) Cr. 3. F. Prereq: 287 and Stat 101, credit or enrollment in MK 340. Application of marketing theories to the hospitality industry. Emphasis on consumer behavior, market opportunities, marketing research and strategies, and marketing plans.

HRI 452. Lodging Operations Management II. (3-0) Cr. 3. S. Prereq: 352 and Com S 103. Advanced topics in lodging operations, including international project development, operations, and contracts. Property management systems including computer exercises. Principles of yield management. Nonmajor graduate credit.

HRI 455. Hospitality Strategic Management. (Dual-listed with 555.) (3-0) Cr. 3. F. Prereq: Credit or enrollment in 433, 438, and 440; senior classification. Introduction to the strategic management process as a planning and decision-making framework in hospitality organizations. Integration of human resources, operations, marketing, and financial management concepts. Use of case studies and group projects to facilitate development of conceptual and analytical skills.

HRI 460. Hospitality Law. (3-0) Cr. 3. S. Prereq: Acct 215. Laws relating to ownership and operation of hospitality organizations. The responsibility of management and employees to customers and society. Nonmajor graduate credit.

HRI 474. Entrepreneurship in Family and Consumer Sciences. (Same as HD FS 474, TC 474.) (3-0) Cr. 3. S. Prereq: 6 credits in HRIM at 300-level or above. Explores entrepreneurship for family and consumer sciences-related building international family, home-based, rural and women-owned businesses. Development of a feasibility analysis. Guest speakers.

HRI 491. Internship. Cr. 2. Prereq: Department approval. Offered on a satisfactory-fail grading basis only. A. Foodservice Operations B. Lodging Operations

Courses and Programs

Hotel, Restaurant, and Institution Management 257

Courses Primarily for Graduate Students, Open to Qualified Undergraduate Students

HRI 504. Seminar. (0-2) Cr. 1. F.(A), S.(B). 504B may be taken more than once for credit. A. Hospitality Research B. Current Issues.

HRI 533. Hospitality Managerial Accounting. (Dual-listed with 433.) (3-0) Cr. 3. S. Prereq: 333 and Acct 284. Use of common financial statements, accounting ratios, and financial techniques to impact management decisions.

HRI 540. Hospitality Marketing. (Dual-listed with 440.) (3-0) Cr. 3. F. Prereq: 3 credits in principles of marketing and statistics. Application of marketing theories to the hospitality industry. Emphasis on consumer behavior, market opportunities, marketing research and strategies, and marketing plans.

HRI 555. Hospitality Strategic Management. (Dual-listed with 555.) (3-0) Cr. 3. F. Prereq: Credit or enrollment in 433, 438, and 440. Introduction to the strategic management process as a planning and decision-making framework in hospitality organizations. Integration of human resources, operations, marketing, and financial management concepts. Use of case studies and group projects to facilitate development of conceptual and analytical skills.

HRI 575. Professional Management Experience in the Hospitality Industry. Cr. 2-4. F.S.SS. Prereq: 9 credits in hotel, restaurant, and institution management at 400 level or above and permission of instructor. Analysis and interpretation of professional functions and data in a hospitality organization. Design and implementation of a management project.

HRI 587. Fine Dining Management. (Dual-listed with 487.) (2-0) Cr. 2. F. Prereq: 380, 380L. Creative experiences with U.S. regional and international foods appropriate for fine dining. Application of management principles in food preparation and service in fine dining operations. Emphasis on ethnic foods, religious restriction on foods, and other cultural implications for fine dining management. Exploration of the historical and cultural development of the world food table.

HRI 590. Special Topics. Cr. arr. Credit maximum of 3 per topic. Prereq: 9 credits in hotel, restaurant, and institution management at 400 level or above and permission of instructor. A. Hospitality Management B. Lodging Operations C. Foodservice Operations

HRI 599. Creative Component.

Courses for Graduate Students

HRI 608. Administrative Problems. Cr. arr. May take more than once. Prereq: 485. I or 3-0 cr. F. S. Prereq: 3 cr. in hotel, restaurant, and institution management at 400 level or above and permission of instructor. Consideration of advanced administrative problems. Case studies in foodservice, lodging, or other approved establishments.
HRI 611. Hospitality Marketing Strategies. (3-0) Cr. 3. Alt. S., offered 2002. Prereq: 3 credits in principles of marketing and statistics. Formulation, implementation, and control of strategic marketing plans in hospitality organizations. Analysis of cases related to the hospitality industry.

HRI 639. Management of Professionals in Profit and Non-profit Organizations. (3-0) Cr. 3. Alt. F., offered 2002. Prereq: 439 or 539 or 3 years in supervisory position. Theories of leadership and management applied to selected profit or non-profit organizations. Principles and practices related to recruitment, selection, and development of professional personnel in hospitality, health care, and similar service-related work settings.

HRI 675. HRIM Teaching Experience. Cr. 2. F.S. Prereq: 9 credits in hotel, restaurant, and institution management at 400 level or above and permission of instructor. Development of objectives, teaching methods and materials, and test items for selected topics. Implementation in an HRIM course.

HRI 699. Research.

Human Development and Family Studies

Maurice M. MacDonald, Chair of Department

Professors: Brooke, Crase, Draper, Fletcher, Hira, Joanning, Lempers, MacDonald, Martin, Meeks, Winter

Professors (Collaborators): Bruner

Distinguished Professors (Emeritus): Briens, Meynert

Professors (Emeritus): Coulson, Deacon, Engel, Galejs, Mercier, Petersen, Pickett, Schwieder

Associate Professors: Allen, Brotherson, Cook, Dail, Garasky, Hegland, Herrwig, Labensohn, N. Miller, Molgaard, Peterson, Torrie, Yeams

Associate Professors (Collaborators): Sellers

Associate Professors (Emeritus): K. Miller, Strong

Assistant Professors: Bryant, Crull, Enders, García, Godrey, Graham, Hatcher, Oleson, Thiemann, Werner-Wilson, Xiong

Assistant Professors (Adjunct): Colbert

Assistant Professors (Emeritus): Glass

Instructors (Adjunct): Enloe, Jolly, Long, Luze, Oesterreich, Walsh

Undergraduate Study

For undergraduate curricula in human development and family studies, leading to the degree bachelor of science, see Family and Consumer Sciences, Curricula.

The Department of Human Development and Family Studies offers courses that focus on the interactions among individuals, families, their resources, and their environments throughout the life span. The department offers work for the bachelor of science degree in four curricula: child and family services; family resource management and consumer sciences; housing and the near environment; and early childhood education.

At the completion of undergraduate study in Human Development and Family Studies, undergraduates will demonstrate knowledge and understanding of: a) family systems, including special populations, and their relationships to environments and institutions; b) life span development, including special populations; c) professionalism, ethics, and public policy issues for working with individuals and families, including special populations; d) personal and professional communication with children and families, including special populations; e) management of human and material resources for children and families, including special populations.

The child and family services curriculum leads to work in the helping services with employment opportunities in public and private agencies, including Head Start and schools. Opportunities exist to observe and work with infants, preschoolers, school-age children, adolescents, the elderly, and families. Graduates of the program are prepared for employment in agencies and organizations serving children, youth, families, and the elderly as program development specialists, coordinators, directors, teachers, and administrators. This flexible program provides a broad emphasis in theory, research, and application in child and family services including attention to community issues and public policy. A student may seek a double major or preprofessional preparation.

The family resource management and consumer sciences curriculum focuses on the behavior of families as they allocate and manage their resources and function as consumers. The curriculum leads to employment with agencies and organizations concerned with family financial management, financial counseling, consumer economics, and analysis and implementation of public policies that affect family resource management.

The curriculum in housing and the near environment focuses on housing needs, issues, and trends, such as housing alternatives for families and children; housing for the elderly and persons with disabilities; residential property management; and public policy. Graduates of this curriculum are prepared for employment in public and private (profit and not-for-profit) agencies and organizations; real estate and lending institutions; housing management and administration; the housing and furnishings industries; and housing advocacy.

The curriculum in early childhood education is planned for students preparing to teach young children and work with their families. This program leads to careers in working with young children who are typically developing and those with special needs from birth through age eight. Graduates in this curriculum may teach in early childhood (preschool and primary) classrooms or home based programs, with emphasis on inclusive services; graduates may be employed by either public or private agencies or schools. This curriculum has been approved by the Iowa Department of Education and meets requirements for the early childhood education unified teacher license, which permits individuals to teach general and special education for children from birth through age eight. The program is administered jointly by the Department of Curriculum and Instruction within the College of Education and the Department of Human Development and Family Studies within the College of Family and Consumer Sciences.

The department offers minors in family resource management and consumer sciences, child and family services, and housing and the near environment. The department also offers journalism areas of concentration in child and family services, housing and the near environment, and family resource management and consumer sciences; see department for details.

The family resource management and consumer sciences minor may be earned by completing 15 credits in the following courses: 102, 283, 379, 395, 448, 483, 488, 489.

The child and family services minor may be earned by completing 102; selecting 3 credits from 379 or 449; selecting 3 credits from 220, 221, 226, 227 or 377; selecting 3 credits from 276, 349, 360, 370, 373, or 378; and selecting 3 credits from 340, 343, 345, 395, 460 and 479.

The housing and the near environment minor may be earned by completing credits from the following courses: 239, 317K, 341, 360, 416, 460, 484, 490B.

English proficiency requirement: A student must achieve a grade of B or higher in English 104 and 105. A student achieving a grade of C– or lower in 104 and/or 105 must either repeat the course(s), earning a minimum grade of B, or, in consultation with the adviser and the coordinator of Freshman English, complete another appropriate English writing course with a minimum grade of C.

Graduate Study

The department offers work for the degrees master of science and doctor of philosophy with the major in human development and family studies, and minor work for students taking major work in other departments. Graduates of M.S. and Ph.D. programs in the department will understand and apply relevant theories to educational, research, and/or intervention programs. It is intended that they will produce and disseminate research results and provide leadership in human development and family studies professions.

Within the major of human development and family studies students may choose from different specializations. Specializations are available for both M.S. and Ph.D. candidates in child development, early childhood education, early childhood special education, family policy, family studies, life-span studies, and marriage and family therapy. The marriage and family therapy specialization is accredited by the Commission on Accreditation for Marriage and Family Therapy Education. The Department of Human Development and Family Studies offers coursework and experi-
courses leading to National Council of Family Relations certification as a family life educator.

The department also participates in the Master of Family and Consumer Sciences degree by offering a specialization with that program.

The department cooperates in the interdepartmental minor in gerontology.

Prerequisite to work in the major is the completion of a related undergraduate program with basic courses in one or more of the following areas: architecture, child/infant development, community and regional planning, economics, education, family studies, interior design, psychology, or sociology. Additional prerequisites, if any, depend upon the area of specialization.

Guidelines for graduate programs of study in human development and family studies have been developed. However, the student's program of study committee has the major responsibility for determining requirements for an individual program.

Courses open for nonmajor graduate credit:
448, 449, 455, 479, 483, 488, 489.

Courses Primarily for Undergraduate Students.

HD FS 102. Individual and Family Life Development. (3-0) Cr. 3. F.S.S.S. Development of individuals, families, and their reciprocal relationships as affected by external factors; examined within a framework of life-span developmental tasks.

HD FS 218. Study Tour and Service Learning. Cr. 2. F. S. Prereq: 102. Restricted to HD FS majors. The process of professional development and the scope of professional responsibilities, and career exploration in child and family services. Study of and visits to programs that serve children and families with diverse needs. Participation in service learning project required. Offered on a satisfactory-fail grading basis only.

HD FS 221. Development and Guidance: Ages 3 through 8 Years. (2-2) Cr. 3. F.S. Alt. SS., offered 2002. Prereq: 102. Typical and atypical development from three through eight years of age. Development and guidance within the contexts of family, program, and society. Guided observation of physical, motor, cognitive, communication, social, and emotional development; participation in an accredited preprimary program.

HD FS 227. Adolescent Development. (3-0) Cr. 3. F. Prereq: 102 or Psych 101 or 230. Physical, cognitive, and socioemotional development of adolescents and young adults in the context of family, relationships, and culture.

HD FS 239. Housing and Consumer Issues. (3-0) Cr. 3. S., www and classroom enhanced www. Introduction to factors affecting housing consumption of individuals and families, including current housing consumer issues related to housing choices, housing context of neighborhoods and communities, housing structure types, and credit and housing finance. Issues such as homelessness, housing discrimination, indoor air quality, accessible design.

HD FS 270. Family Diversity Across Cultures. (3-0) Cr. 3. S. Prereq: 102, Psych 101, or Soc 134. Current psychosocial theories, methods, research findings, and applications to the understanding of families and cultures among diverse human populations. Includes field work on various cultures.

HD FS 283. Family Financial Management. (3-0) Cr. 3. F.S.S.S. Basic principles of money management. Development, maintenance, enrichment, and change in family, personal, and professional relationships through the life span.

HD FS 287. Death as a Part of Living. (3-0) Cr. 3. F.S. Alt. SS., offered 2003. Prereq: 102. Emphasis on role changes, social interaction, and independence as influenced by health, finances, life styles, and community development.

HD FS 288. Family and Management Patterns. (3-0) Cr. F.S. S.S. Prereq: 220. Emphasis on role changes, social interaction, and independence as influenced by health, finances, life styles, and community development. Supervised field experience in human development and family studies programs. May be repeated. Offered on a satisfactory-fail grading basis only.

A. Early Childhood Education Programs. Prereq: 343. permission of instructor.
B. Family Services Programs. Prereq: 9 credits in HD FS, permission of instructor.
C. Early Childhood Special Education Programs. Prereq: 220, 221, permission of instructor.
D. School-Age Child Care Programs. Prereq: 226, permission of instructor.
E. Infant/Toddler Programs. Prereq: 340, permission of instructor.
F. Research. Prereq. 269, permission of instructor.
G. Family Resource Management Programs.
H. Housing Programs. Prereq: Permission of instructor.

HD FS 417. Supervised Student Teaching. Cr. 8. May be repeated. Reservation required.
A. Kindergarten Programs. F.S. Prereq: GPA 2.5; full admission to program, 455. Teaching experience with young children in kindergarten settings.
B. Preschool Programs. F.S. Prereq: GPA 2.5; full admission to teacher education program, 455, 456. Teaching experience with young children from birth to 5 in group settings.
C. Early Childhood Special Education Programs. F.S. Prereq: GPA 2.5; full admission to teacher education program, 455, 456, enrollment in C 416. Teaching experience with preschool children with disabilities.
HD FS 445. Administration of Programs for Children. (3-0) Cr. 3. S. Prereq: 340 or 343. Management principles and techniques, including an introduction to financial management, involved in programs for children with diverse needs and their families. Staff development, supervision, and evaluation in programs for children and families. Government regulations concerning child and family programs; community relations; and advocacy for children and families.
HD FS 448. Economics of Aging. (Same as Geron 448.) (3-0) Cr. 3. Alt. S., offered 2002. Prereq: 3 credits in principles of economics, 3 credits in human development and family studies. Economic status of the aging; retirement planning and the retirement decision; role of Social Security; public transfer programs for the elderly; family transfer costs from the elderly; private pensions; financing medical care and housing for the elderly; prospects and issues for the future. Nonmajor graduate credit.
HD FS 449. Linking Families and Communities. (3-0) Cr. 3. S. Prereq: 269 or Psych 333. Assessing family needs and community resources across the lifespan. Characteristics of successful community-based family intervention and support programs. Strategies and skills needed by community-based professionals, including linkers. Linking families to community resources. Nonmajor graduate credit.
HD FS 455. Curricula for Ages 3 through 6 Years. (3-0) Cr. 4. F. Prereq: 343, 345. Program models and methods leading to development and organization of appropriate preschool and kindergarten programs for young children with diverse learning needs. Government regulations and professional standards for child programming. Teaming with parents, colleagues, and paraprofessionals to plan, implement, and evaluate developmentally and culturally appropriate individualized education plans in inclusive settings. Integrated practicum setting. Nonmajor graduate credit.
HD FS 456. Family-Focused Interventions for Young Children. (3-1) Cr. 3. F. Prereq: 340, 345. Application of family systems theory in family-focused service delivery models. Teaming with parents and colleagues to plan, implement, and evaluate individualized family service plans. Focus on home-based intervention using routines and activities to embed intervention goals, family support, and linking families to other community resources. Field experience in home-based programs. Nonmajor graduate credit.
HD FS 460. Housing and Environments for Children. (Dual-listed with 560.) (3-0) Cr. 3. F. Prereq: 6 credits in architecture, art, and design, education, interior design, human development and family studies, psychology. Assessment of environments for children including home, child care, school, and community settings. Emphasis on design of developmentally appropriate settings that foster independence for children with and without disabilities.
HD FS 463. Housing for the Aging. (Dual-listed with 563; same as ArtID 463, Geron 463.) (3-0) Cr. 3. S. Prereq: 360 or 3 credits in housing, architecture, interior design, rehabilitation, psychology, or human development and family studies. Emphasis on independent living within residential settings including specialized shelter, supportive services, and housing management. Application appropriate for accessibility and functional performance of activities; universal design principles. Creative project provides service learning opportunities.
HD FS 474. Entrepreneurship in Family and Consumer Sciences. (Same as HR 474, T C 474.) (3-0) Cr. 3. S. Prereq: FS 430 or 563; senior classification. Explores entrepreneurship for family and consumer sciences-related businesses. Includes family, home-based, rural and women-owned businesses. Development of a feasibility analysis. Guest speakers.
HD FS 479. Family Interaction Dynamics. (3-0) Cr. 3. F. Prereq: 378. Analysis of family interaction processes and patterns with emphasis on relationship dynamics across the family life span. Nonmajor graduate credit.
HD FS 483. Advanced Family Financial Management. (3-0) Cr. 3. S. Prereq: 283. Managerial approaches to achievement of short- or long-term financial goals for households. Investigation of different factors influencing investment and risk management in financing current and future consumption. Analyses of tax, estate, and retirement planning needs of the family. Nonmajor graduate credit.
HD FS 486. Administration of Programs for Families. (3-0) Cr. 3. F. Prereq: 370, 378. An examination of purposes, staffing, operation, and clientele of organizations and agencies serving families. Analysis of issues in coordination and delivery of services. Includes focus on interagency collaboration and services for the elderly. Nonmajor graduate credit.
HD FS 488. Family in the Economy. (3-0) Cr. 3. S. Prereq: Econ 101. Analysis of the family as an economic unit in society. Structure and composition of the family. Patterns of resource use and activities pursued by the family. Family economic transitions such as marriage, divorce, and childbirth. Nonmajor graduate credit.
HD FS 489. Family Financial Counseling. (Dual-listed with 589.) (3-0) Cr. 3. S. F. Prereq: 283. Personal, social/psychological, and legal climates affecting family financial decisions. A life-cycle approach to financial decision-making. Development of financial counseling and planning skills to assist families and individuals to become self-sufficient in family financial management. Nonmajor graduate credit.
HD FS 489L. Laboratory in Family Financial Counseling. (2-0 or 4-0) Cr. 1-2. May be repeated. F.S. Prereq: 489. Experience in remedial, preventive, and productive financial counseling.
HD FS 491. Practicum. Cr. 4 or 8. May be repeated. F.S.S.S. Prereq: 449; permission of instructor. Reservation required one semester before placement; minimum 2.0 GPA. Supervised work experience off campus, approved by the student’s curriculum. Offered on a satisfactory-fail grading basis only.
HD FS 493. Workshop. (Dual-listed with 593.) Cr. arr. May be repeated. F.S.S.S. Prereq: Senior classification.
HD FS 500. Short Course. Cr. arr. May be repeated. Prereq: Permission of instructor. Concentrated group study of various developmental and educational issues in the field of human development and family studies.
HD FS 501. Graduate Study Orientation. (1-0) Cr. R. F. Orientation to graduate study and current research in the department.
HD FS 503. Research Methods in Human Development and Family Studies. (3-3) Cr. 4. S. Prereq: Stat 401 or Research Concepts, methods, and strategies for research in human development and family studies. Topics include the nature of scientific research, measurement, types of research in human development and family studies, validity of research designs, methods of data gathering, and strategies for and issues in the study of change. Coding, entry, and manipulation of research data. Practical applications with interactive statistical software.
HD FS 511. Family Theory. (3-0) Cr. 3. S. F.SS. Prereq: 9 credits in social sciences. Theoretical approaches and current research in family development. Review the nature and value of theory to the study of the family. Emphasis on theory and empirical research. Policy implications.
HD FS 521. Housing and the Social Environment. (3-0) Cr. 3. S. Prereq: Graduate classification, 511 or 6 credits in social sciences. Housing adjustment behavior of individuals and families in the context of the social and cultural framework of society. Analysis of conceptual frameworks, methodological approaches, and current research in housing. Impact of housing on the family.
HD FS 523. Household Resource Development and Allocation. (3-0) Cr. 3. Alt. S.; offered 2002. Prereq: 378, 6 credits in sociology or economics. Theories and research in goal-oriented behavior. Emphasis on the fit between household behavior in resource allocation and policies designed to foster or inhibit such behavior.
HD FS 534. Adult Development. (Same as Geron 534.) (3-0) Cr. 3. S. Prereq: 510 or 511. Adult development of cognition, personal characteristics, and cultural aspects in human relationships. Emphasis on development and psychosocial health in young, middle, and later adulthood.
HD FS 538. Developmental Disabilities in Children. (Same as Psych 538.) (3-0) Cr. 3. S. Prereq: 9 credits in human development and family studies or psychology. Theories, research, and current issues regarding development in children with disabilities. Investigation of interventions with children and families.
HD FS 541. Housing and Real Estate in Family Financial Planning. (3-0) Cr. 3. SS. www only. The role of housing and real estate in the family financial planning process, including taxation, mortgaging, financial calculations, legal concerns, and ethical issues related to home ownership and real estate investments. Emphasis on emerging issues in the context of housing and real estate.

HD FS 556. Families and Disability. (3-0) Cr. 3. S. Prereq: 9 credits in social sciences. Review of research, policy, and practice regarding families with children who are disabled. Educational, environmental, economic, and social issues faced by families. Communication and consultation skills to work collaboratively with interdisciplinary professionals and families to implement individualized family and educational programs.

HD FS 560. Housing and Environments for Children. (Dual-listed with 463; same as Geron 563) (3-0) Cr. 3. S. Prereq: 6 credits in architecture, art and design, education, interior design, human development and family studies, or psychology. Assessment of environments for children including home, child care, school, and community settings. Emphasis on design of developmentally appropriate settings that foster independence for children with and without disabilities.

HD FS 563. Housing for the Aging. (Dual-listed with 463; same as Geron 563) (3-0) Cr. 3. S. Prereq: 360 or 3 credits in housing, architecture, interior design, rehabilitation, psychology, or human development and family studies. Emphasis on independent living within retirement settings and specialized shelter, supportive services and housing management. Application of criteria appropriate for accessibility and functional performance of activities; universal design principles. Creative project provides service learning opportunities.

HD FS 566. Impact of Public Policy on the Family. (3-0) Cr. 3. S. Prereq: 9 credits in social sciences. The effect of legislative policy on families and children, especially their at-risk families. Explicit and implicit family policies in the U.S. compared to such policies in other nations. Historical basis and theoretical perspectives emphasized. Analysis of current legislation.

HD FS 570. Families Across the Life Span. (3-0) Cr. 3. F. Prereq: 9 credits in social sciences. Theory and research in development and change in family systems and in their reciprocal relationships with the individual and the environment across the family life span. Students develop an understanding of the fundamental concepts, theories, and research relevant to the study of family relationships. This course offers major insights into the family life span, from the early years to old age. Emphasis is on using the family’s overall financial and economic goals to help inform decisions about which investments to make and what to give away.

HD FS 571. Marital Therapy. (3-0) Cr. 3. S. Prereq: 9 credits in social sciences. Techniques and principles of marital therapy across the life cycle. Theories of change, process, and outcome in marital therapy.

HD FS 572. Family, Stress and Community Resources. (3-0) Cr. 3. F., offered 2003. Prereq: 9 credits in social sciences. Examination of strengths and challenges of marginalized families. Identification of barriers to services and support and exploration of approaches to assist families in overcoming these barriers.

HD FS 573. Ethics and Professional Studies in Marriage and Family Therapy. (3-0) Cr. 3. Alt. S., offered 2003. Prereq: 571. Prerequisites: Professional ethics and values relevant to family therapy; review of professional organizations, private practice, and grant writing.

HD FS 576. Marriage Across the Life Course. (3-0) Cr. 3. Alt. S., offered 2003. Prereq: 511. A developmental approach to exploring predictors of the formation, maintenance, and dissolution of intimate relationships across the life course. Understanding how intimate relationships develop and change over time, beginning with the development of early adolescent relationships and continuing through later life.

HD FS 577. Aging and Intergenerational Relations. (Same as Geron 577) (3-0) Cr. 3. Alt. S., offered 2002. Prereq: 9 credits in social sciences. Review of theories and research related to personal and family adjustment in later life affecting older persons and their intergenerational relationships. Related issues including demographics are also examined through the use of current literature.

HD FS 579. Family Interaction Dynamics. (3-0) Cr. 3. S. Prereq: 9 credits in social sciences. Current research and theory in family interaction, with emphasis on family dynamics and family change across the life course. Emphasis on effective functioning within the limits of the legal environment. Legal and quasi-legal services available in the community.

HD FS 584. Family Policy Analysis. (3-0) Cr. 3. S. Prereq: 510 or 404. Prerequisites: An understanding of the law and the legal process, an understanding of public policy, and an understanding of the role of the government in society. Emphasis on methods and techniques for evaluating the impact of legislative policy on families and children, including the role of legislative policy in shaping the family life span.

HD FS 585. Family Policy Analysis. (3-0) Cr. 3. F. Prereq: 6 credits in graduate level social sciences. Theoretical and practical issues related to family policy program evaluation. Assessment of programs’ success in meeting goals. Examination of concepts related to family policy development in the United States. Emphasis on the examination of the role of individuals and groups which can influence family policy development.

HD FS 589. Family Financial Counseling. (Dual-listed with 489.) (3-0) Cr. 3. F. Prereq: Graduate classification. Personal, social/psychological and legal climates affecting family financial decisions. A life cycle approach to financial decision making. Development of financial counseling and planning skills to assist families and individuals to become self-sufficient in family financial management.

A. Family Studies

1. Housing
2. Family Resource Management
3. Human Development
4. Child Development
5. Early Childhood Education
6. Early Childhood Special Education
7. Human Development and Family Studies
8. Marriage and Family Therapy
9. Family Policy

HD FS 591. Practicum. Cr. arr. May be repeated. F.S.S.S. Prereq: 10 graduate credits. Supervised experience in an area of human development and family studies.

A. Family Studies

1. Housing
2. Family Resource Management
3. Human Development
4. Child Development
5. Early Childhood Education
6. Early Childhood Special Education
7. Human Development and Family Studies
8. Marriage and Family Therapy
9. Family Policy

HD FS 593. Workshop. (Dual-listed with 493.) Cr. arr. May be repeated. F.S.S.S. Prereq: Senior classification.

HD FS 660. Measurement Issues in Family Research. (3-0) Cr. 3. Alt. S., offered 2002. Prereq: 503, 511. Selection of appropriate, reliable, and valid research instruments for families; attention to technical issues associated with collecting and interpreting data from multiple family members; sensitivity to diversity issues (e.g., ethnic and gender bias).

HD FS 672. Intergenerational and Experiential Therapies. (3-0) Cr. 3. Alt. S., offered 2003. Prereq: 571, 574. Intergenerational and experiential theories and techniques of therapy. Emphasis on research, practice, and supervision issues in marriage and family therapy.

HD FS 690. Advanced Topics. Cr. arr. Prereq: Permission of instructor and enrollment in Ph.D. program.
A. Family Studies
B. Housing
C. Family Resource Management
D. Human Development
E. Child Development
F. Early Childhood Education
G. Early Childhood Special Education
H. Human Development and Family Studies
I. Marriage and Family Therapy
J. Family Policy

Immunobiology

(Interdepartmental Graduate Major)

Supervisory Committee: R. Rosenbusch, Chair; C. Andreasen, D. Jones, F. Minion, R. Sacco

The Graduate Faculty: Mark Ackerman, Claire Andreasen, Arny Andreotta, Jan Buss, Susan Carpenter, Norman Cheville, Joan Cunnick, Ronald Griffith, James Jones, Hank Harris, Julie Jarvinen, Doug Jones, Merlin Kaeberle, Marcus Kehrli, Susan Lamont, F. Chris Minion, Harley Moon, Andy Norris, Brian Nonnecke, Evelyn Nystrom, Prem Paul, Ken Platt, Don Reynolds, Ricardo Rosenbusch, Richard Ross, James Roth, Max Rothschild, Randy Sacco, Mary Schmer, Ioana Sonea, Judy Stabel, Louisa Tabatabai, Eileen Thacker, Charles Thoen, Mike Wannemuehler, En-Min Zhou

Graduate Study

Work is offered for the master of science and doctor of philosophy degrees with a major in Immunobiology. Faculty are drawn from seven departments: Animal Science; Biochemistry, Biophysics, and Molecular Biology; Biomedical Sciences; Microbiology; Veterinary Diagnostic and Production Animal Medicine; Veterinary Microbiology & Preventive Medicine; and Veterinary Pathology. The diversity of faculty expertise ensures a broad education, while offering flexibility in choice of specialization. Ongoing research projects include areas such as: antibody and cell-mediated immunity, immunocommunity, immunogenetics, immunomodulation, mucosal immunity and nutritional immunology.

Students may enter the Immunobiology major in one of two ways; they may apply to and be directly accepted into the major, or they may be admitted to a participating department followed by formal admission to the major. Students directly admitted into the Interdepartmental Immunobiology Major will take Imbio 697 (graduate research rotation) in their first two semesters, and by the end of the second semester, enter a department by choosing a major professor from the participating faculty. Students first admitted to a department will choose a major professor from the participating faculty in that department.

Students should have a strong background in the biological sciences, including work in immunology, genetics and biochemistry. Prior research experience is highly encouraged. Submission of scores of the GRE General Test is required.

Immunobiology students should include in their program of study a core of courses which will provide a broad coverage of the basic program in immunobiology. Formal courses should include immunology, biochemistry, and statistics. Additional coursework may be selected to satisfy individual interests or departmental requirements. The foreign language and teaching requirements are determined by the student’s department. All students will take a minimum of one seminar course per year.

Graduates have a broad understanding of the interdisciplinary field of immunobiology, and can effectively integrate the principles of immunology with related disciplines. They are able to effectively communicate with scientific colleagues and the general public in both formal and informal settings. Graduates are able to integrate theory and research to address complex problems facing scientific professionals studying animal and human health, taking into account related ethical, social, legal and environmental issues. They are skilled at carrying out research, communicating research results, and writing persuasive grant proposals.

Courses for Graduate Students

Imbio 604. Seminar in Immunobiology. (1-0) Cr. 1 each time taken. Student and faculty presentation.

Imbio 690. Special Topics. Cr. var. each time taken. Advanced study of specific topics in specialized field of immunobiology.

Imbio 697. Graduate Research Rotation. Cr. Var. each time taken. Graduate research projects performed under the supervision of selected faculty members in the Interdepartmental Immunobiology major.

Imbio 699. Research.

Industrial Engineering

(Administered by the Department of Industrial and Manufacturing Systems Engineering)

Patrick Patterson, Interim Chair of Department

Professors: Barta, Berger, Heising, Morris, Vardeman

Professors (Collaborators): Egbelu

Distinguished Professors (Emeritus): Cowles

University Professors (Emeritus): David

Professors (Emeritus): Even, Griffin, Hempstead, Kleinschmidt, McRoberts, Mohr, Montag, Moore, C. Smith, G. Smith, Squires, Tamashunas, Vaughan, Walkup

Associate Professors: Adams, Gemmill, Jackman, Meeks, Min, Patterson, Ryan

Associate Professors (Emeritus): Love

Assistant Professors: Chen, Narayanawami, Olafsson, Peters, Van Voorhis
Undergraduate Study
For the undergraduate curriculum in industrial engineering leading to the degree bachelor of science, see College of Engineering, Curricula. This curriculum is accredited by the Engineering Accreditation Commission of the Accreditation Board for Engineering and Technology.

Industrial engineers are employed to design, analyze, and improve systems and processes found in manufacturing, consulting, and service industries. Professional responsibilities are typically in design, management, analysis, optimization, and modeling of industrial systems. An industrial engineer is focused on human factors, operations research, enterprise computing, engineering management, manufacturing engineering, and quality. Industrial engineers are typically found in organizations responsible for operations management, process engineering, automation, logistics, supply chain management, scheduling, plant engineering, quality control, and technical sales.

The goal of the industrial engineering undergraduate curriculum is to produce technically qualified industrial engineers who are capable of successful professional practice in the field. Graduates of the program will be able to work effectively with other members of the workforce to accomplish engineering advances in their assigned areas. The program also provides graduates with the necessary educational foundation to pursue advanced studies in industrial engineering or related fields.

Graduate Study
The department offers work leading to the degrees of master of science, and doctor of philosophy with a major in industrial engineering. A formal minor is available to doctoral students having a major in another department. Graduate study is designed to improve the student’s capability in the professional practice of industrial engineering and to develop research ability.

The prerequisite to major graduate work is the completion of a curriculum substantially equivalent to that required of undergraduate students in engineering at this institution.

With the help of a program of study committee, a graduate student develops an educational program in areas within industrial engineering. Typical areas of concentration include engineering economy, human factors, systems analysis and control, manufacturing systems analysis, manufacturing processes, production systems analysis and design, life cycle analysis and depreciation, operations research and optimization, enterprise modeling and integration, information management, and the human machine interface. A major in operations research leading to a master of science degree is co-offered with the Department of Statistics.

Courses open for nonmajor graduate credit: 305, 312, 313, 341, 348, 361, 375, 408, 409, 419, 436, 439, 441, 448, 465, 471.

Courses Primarily for Undergraduate Students
IE 101. Orientation. (1-0) Cr. R. S. Introduce students to the industrial engineering profession, its scope, industrial engineering tools, and future trends.

IE 248. Introduction to Manufacturing Processes and Specifications. (2-2) Cr. 3. F. Prereq: Credit or enrollment in Mat E 271. Theory, applications, and quality issues related to machining and other nontraditional material removal processes. Introduction to metrology, engineering drawings and specifications.

IE 271. Applied Ergonomics and Work Design. (4-0) Cr. A. S. Prereq: Phys 227. Basic concepts of ergonomics and work design. Their impact on worker and work place productivity and cost. In-depth investigations of work physiology, biomechanics, anthropometry, work methods, and their measurement as they relate to person-machine systems.

IE 298. Cooperative Education. Cr. R. F.S.S. Prereq: Permission of department. First professional work period in the cooperative education program. Students must register for this course before commencing work.

IE 305. Engineering Economic Analysis. (3-0) Cr. 3. F. Prereq: Math 166. Analysis of economic decisions related to planning, developing, and managing engineering projects. Time value of money, evaluating alternative projects; decisions involving capital expenditures in private and public sectors. Nonmajor graduate credit.

IE 312. Optimization. (3-0) Cr. 3. F. Prereq: Math 266. Concepts, optimization and analysis techniques, and applications of operations research. Formulation of mathematical models for systems, concepts, and methods of improving search, linear programming and sensitivity analysis, network models and integer programming. Nonmajor graduate credit.

IE 313. Stochastic Analysis. (3-0) Cr. 3. F. Prereq: Math 266, Stat 231. Development of basic queueing models and related applications. Use of simulation for some applications. Project involving data collection and analysis of a queuing system is required. Nonmajor graduate credit.

IE 341. Production Systems. (3-0) Cr. 3. S. Prereq: Stat 231. Introduction to key concepts in the design and analysis of production systems. Topics include inventory control, forecasting, material requirement planning, project planning and scheduling, operations scheduling, and other production systems such as Just-In-Time (JIT) and warehousing. Nonmajor graduate credit.

IE 348. Solidification Processes. (2-2) Cr. 3. S. Prereq: IE 248. Theory, applications, and quality issues related to metal casting, welding, polymer processing, and other solidification processes. Use of CAD and process modeling software. Nonmajor graduate credit.

IE 361. Quality Control. (Same as Stat 361) (3-0) Cr. 3. S. F. Preqs: Stat 231 or 401. Techniques for controlling the quality of manufacturing processes and services. Techniques for improving quality through process control. Project involving design of quality system. Nonmajor graduate credit.

IE 375. Introductory Production Systems. (3-0) Cr. 3. S. Preqs: Junior classification, Math 162 or 166. Principles and concepts in the design and control of production systems, including demand forecasting, fixed and variable capacity planning, master production scheduling, inventory control, types of production and work flow systems, quality control, and project management. Nonmajor graduate credit.

IE 396. Summer Internship. Cr. R. SS. Prereq: Permission of department. Summer professional work period.

IE 397. Engineering Internship. Cr. R. F.S.S. Prereq: Permission of department. One semester maximum per academic year professional work period.

IE 398. Cooperative Education. Cr. R. F.S.S.S. Prereq: 298, permission of department. Second professional work period in the cooperative education program. Students must register for this course before commencing work.

IE 408. Interdisciplinary Problem Solving. (Same as E E 408, I Tec 408) (3-0) Cr. 3. F. S. Preqs: Junior or senior standing. Focus on functions that determine the effectiveness of an entire organization. Generic Theory of Constraints solutions to production, distribution, project management are compared to traditional solutions. Strategy for improvements discovered using simulations and group projects. Nonmajor graduate credit.

IE 419. Manufacturing Systems Modeling. (3-0) Cr. 3. F. S. Preqs: Stat 231. Modeling material handling systems, inventory systems, and production systems for performance analysis. Introduction to analysis, simulation, and physical models of manufacturing systems. Simulation languages such as ARENA, AweSim, and ProModel are nonmajor graduate credit.

IE 436. Introduction to Reliability Engineering. (3-0) Cr. 3. F. Preqs: Senior classification, Stat 231 or 401. Mathematical basics for dealing with reliability data, theory and analysis of load and strength, and systems reliability prediction methods to assure reliability designed systems. Reliability demonstrations and reliability growth monitoring. Fault tree and event tree analysis. Nonmajor graduate credit.
Courses Primarily for Graduate Students, Open to Qualified Undergraduate Students

(An undergraduate student must have an academic standing in the upper one-half of his/her class to enroll in any 500-level industrial engineering course.)

I E 508. Design and Analysis of Allocation Mechanisms. (3-0) Cr. 3. S. Prereq: 312 or Math 307. Market-based allocation mechanisms from quantitative economics perspective. Pricing and costing models designed and analyzed with respect to decentralized decision processes, information requirements, and coordination. Case studies and examples from industries such as regulated utilities and semiconductor manufacturers.

I E 512. Introduction to Stochastic Production Systems. (3-0) Cr. 3. S. Prereq: 317. Modeling techniques to evaluate performance and address issues in design, control and operation of systems; Markov models of single-stage made-to-order and made-to-stock systems, approximations for non-Markovian systems, impact of system reliability on flow lines, open and closed queueing networks.

I E 514. Production Scheduling. (Same as Stat 514.) (3-0) Cr. 3. S. Prereq: 312, 314. Introduction to the theory of machine shop systems. Complexity results for various systems such as job-shop and open shops. Applications of linear programming, integer programming, network analysis. Enumerative methods for machine sequencing. Introduction to stochastic scheduling.

I E 519. Simulation Modeling and Analysis. (3-0) Cr. 3. S. Prereq: Coreq: Stat 547L. Event simulation, process interaction, and continuous modeling techniques. Probability and statistics related to simulation parameters including run length, inference, design of experiments, variance reduction, and stopping rules. Aspects of simulation languages.

I E 520. Knowledge Based Manufacturing Systems. (2-3) Cr. 3. S. Prereq: 419 or 465 or Com S 472. Knowledge-based systems as applied to automated manufacturing. Planning, scheduling, group technology, robotics, facilities design, and process control. Knowledge representation, search, and predicate calculus.

I E 521. Biomechanics. (Same as BME 521, EM 521.) (3-0) Cr. 3. Alt. F., offered 2001. Prereq: Phys 111 and 112; Math 221 or ENGR 221. Students with interest in the life sciences, ergonomics, or rehabilitation engineering. Topics include equilibrium, motion, energy, stress and deformation, material properties, flow of fluids, dimensional analysis and modeling of biological systems. Illustrative examples taken from biology and medicine.

I E 533. Reliability. (Same as Stat 533.) See Statistics.

I E 539. Game Theory. (Same as Stat 539.) See Statistics.

I E 541. Inventory Control and Production Planning. (3-0) Cr. 3. S. Prereq: 341. Economic Order Quantity, dynamic lot size, newsvendor, base stock, and (Q,i) models. Material Requirements Planning, JIT, variability in demand and lead times, push and pull production systems, aggregate and workforce planning, and capacity management.

I E 565. Systems Engineering and Analysis. (Same as AER E 565, E E 565.) (3-0) Cr. 3. F. Prereq: Graduate classification in engineering. Introduction to organized multidisciplinary approach to designing and developing systems. Concepts, principles, and practice of systems engineering as applied to large integrated systems. Life-cycle costing, scheduling, risk management, functional analysis, conceptual and detail design, test and evaluation, and systems engineering planning and organization. Not available for degrees in industrial engineering.

I E 566. Applied Systems Engineering. (3-0) Cr. 3. S. Prereq: E E AER E 565. Design for reliability, maintainability, usability, supportability, producibility, disposability, and life cycle costs in the context of the systems engineering process. Students will be required to apply the principles of systems engineering to a project including proposal, program plan, systems engineering management plan, and test and evaluation plan. Not available for degrees in industrial engineering.

I E 590. Special Topics. Cr. 1 to 5 each time elected. Prereq: Senior classification, permission of instructor. Independent study and work in the areas of industrial engineering design, practice, or research.

A. Manufacturing
B. Human Factors
C. Operations Research
D. Enterprise Computing and Information Management
E. Engineering Management
H. Honors

I E 498. Cooperative Education. Cr. R. F. S.S.S. Prereq: 298, permission of department. Third and subsequent professional work periods in the cooperative education program. Students must register for this course before commencing work.
A student majoring in industrial relations will choose a major professor from the graduate faculty of the cooperating departments. The student’s program of study will be developed with the guidance of an advisory committee selected by the student and the major professor, and approved by the chair of the Industrial Relations Supervisory Committee. Students may elect the thesis option (consisting of 30 semester-hour credits) or the nonthesis option (consisting of 36 semester-hour credits).

Regardless of which option is taken, all students must take the following core courses: Econ 320, Econ 322, Mgmt 570, Mgmt 571, and Stat 401. For students enrolled in the nonthesis option, the research component of their degree program will be satisfied via the completion of a 6-credit thesis. The balance of the program of study for students in either option will consist of electives from the recommended courses in the industrial relations curriculum, with a maximum of four courses in any one department. A minimum of 12 semester credits must be taken from 500-level (or above) courses. In general, the degree program in industrial relations is designed to be as flexible as possible to support the student’s own professional interest. Satisfactory completion of a final comprehensive oral examination is required of all students. As part of their graduate education, students enrolled in the nonthesis program have the option of enrolling in an off-campus internship program.

Courses appropriate for the master of science degree are determined by the student’s program of study committee. Sample recommended courses for graduate students majoring in industrial relations include: Econ 320, 322, 590; Fin 555; I Tec 504, 506; Mgmt 501, 503; Pol S 547, 571, 573, 575, 579; MIS 501, 537; Psychol 571, 572, 573, 574, 575, 576, 590, Psychol 440, 450, 550, 590, 623, Soc 420, 511, 526, 529, 530, 532, 5908, 642, Stat 401, 402. See departmental listings for course descriptions and credits.

Courses for Graduate Students

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>I R 598</td>
<td>Internship</td>
<td>1 to 6</td>
<td>Prereq. Graduate enrollment in industrial relations. Internship designed for work exposure in a human resources or labor relations department of a private or public employer. Not recommended for students already having had such work experience. Offered on a satisfactory-fail grading basis only.</td>
</tr>
<tr>
<td>I R 599</td>
<td>Creative Component</td>
<td>3</td>
<td>Cr. 3. Preparation and writing of creative component. Offered on a satisfactory-fail grading basis only.</td>
</tr>
<tr>
<td>I R 699</td>
<td>Research</td>
<td>1 to 6</td>
<td>Cr. 1 to 6 each time, maximum of 6. Offered on a satisfactory-fail grading basis only.</td>
</tr>
</tbody>
</table>
Courses and Programs: Industrial Technology

2001-2003

and education. Graduates are committed to life-long learning and the pursuit of excellence in their chosen field.

The department stipulates no foreign language requirement for either the master of science or doctor of philosophy degree.

Students not electing the thesis option at the master’s degree level will be required to complete a minimum of 3 credits of a creative component project.

Courses open for nonmajor graduate credit: 392, 402, 408, 409.

Industrial Technology (I TEC)

Courses Primarily for Undergraduate Students

I Tec 110. Introduction to Industrial Technology. (3-0) Cr. 1. Qualifications, strategies, assessment, and expectations for students in the major. Academic and degree requirements leading to the degree of bachelor of science in industrial technology along with an orientation to industrial technology as a field of study. Strategies for working together, with faculty, and industrial personnel in a learning community. Development of awareness of individual potential. Career and employment opportunities for graduates.

I Tec 120. Introduction to Design in Industrial Technology. (1-4) Cr. 3. Basic systems for representing size and shape descriptions, national and international standards for documentation and contemporary design models and practices are covered. AutoCAD and Mechanical Desktop are the primary software tools.

I Tec 130. Introduction to Non-metallic Manufacturing Materials and Processes. (1-4) Cr. 3. An introduction to selected non-metallic materials used in manufacturing and related processes. Laboratory and lecture activities focus on the understanding of thermal, chemical, electrical, and mechanical properties of non-metallic materials and related industrial processes.

I Tec 140. Electrical Fundamentals. (1-4) Cr. 3. Prereq: Math 160. Electrical phenomenal theory will include but not be limited to Ohm’s, Kirchoff’s, and Power Laws. Thevenin and Superposition Theorems will be presented. Students will become familiar with concepts of frequency, various wave forms and various loads. Concepts of phase angle, transient timing, and step up/step down of voltages and current will be introduced. Safety issues concerning the use of electricity and electrical equipment will also be introduced.

I Tec 202. Introduction to Training and Development in Industry and Business. (3-0) Cr. 3. A systemic overview of the training and development function and its essential role in today’s organizations. Systems theory, needs assessment, learning objectives, learning theories, training program development, delivery, transfer and evaluation are introduced.

I Tec 216. Computer Applications in Industrial Technology. (2-2) Cr. 3. Provides a working knowledge of microcomputers and their application in industrial technology. Emphasis on computer languages useful in manufacturing.

I Tec 224. Advanced Technical Graphics, Interpretation, and CAD. (2-4) Cr. 4. Prereq: 120. Advanced design systems incorporating 2D and 3D design and productivity tools for use in manufacturing settings. Topics include: Geometric Tolerancing, 3D models, planar and coordinate systems, solid modeling, feature based design, assemblies, ProEngineer software.

I Tec 231. Introduction to Metallic Materials and Processes. (1-4) Cr. 3. A study of selected metallic materials and processes used in manufacturing. Lecture and laboratory activities focus on metallic materials, properties, and processes. Field trip.

I Tec 240. Analog Manufacturing Applications. (1-4) Cr. 3. Prereq: 140. Amplification fundamentals for voltage, current, and power. Amplification techniques include Bipolar junction, Field effect transistors, Operational amplifiers, and Darlington configurations applied to impedance matching of sensors and relays and for motor control. Split Power supplies will be introduced for developing op-am circuitry.

I Tec 244. Integrated/Mechanical Fluid Systems. (1-4) Cr. 3. Prereq: 140. Modern mechanical/fluid power systems. Includes laws of mechanics, components, circuits, and instrumentation. Emphasis on control and utilization.

I Tec 270. Principles of Injury Prevention. (3-0) Cr. 3. Basic foundations of accident causation and prevention in home, motor vehicle, public, and work environments.

I Tec 272. Introduction to Occupational Safety. (2-0) Cr. 2. F.S. Information and health and safety administration and management. Includes accident investigation and response.

I Tec 296. Fire Protection and Prevention. (3-0) Cr. 3. Prereq: 272. An overview of the current problems and technology in the fields of fire protection and fire prevention. Strategies for meeting industry needs, focusing on the individual with industrial safety responsibilities.

I Tec 330. Polymer and Composite Processing. (1-4) Cr. 3. F.S. Prereq: 130 or equivalent. Design and production of plastic parts including thermoplastics and thermosets/composites. A study of plastic properties and their relationships to processing parameters and control techniques. Applying advanced CAE technology to check process feasibility, determine optimal process conditions, evaluate part and mold designs, and estimate the cost of plastic injection processes.

I Tec 336. Automated Manufacturing Processes. (2-2) Cr. 3. Prereq: 224, 227. NC programming operation for CNC mills and lathes. The transfer of part descriptions into detailed process plans, tool selection, and NC machine codes. Computer-assisted CAD/CAM NC programming for 2D machining is emphasized. Verification is accomplished through laboratory work.

I Tec 360. Total Quality Improvement. (3-0) Cr. 3. Prereq: Stat 101, junior classification. Application of the Deming methodology to establish a defect prevention system for a particular company. Focus on customer, participative management through teamwork; emphasis on continuous improvement; application of SPC methods using problem-solving models.

I Tec 390. Construction Safety. (2-0) Cr. 2. Prereq: 272. Identifies the hazards to life and property, particularly to the workers in the construction industry. Includes the use of equipment, fall protection, and containment, for building health and safety problems. Students must have a working knowledge of the workplace and its environment.

I Tec 392. Safety in Manufacturing. (3-0) Cr. 3. Prereq: 270. Identifies safety and health risks in industrial work environments, particularly to workers in manufacturing industries. Includes the prevention of workplace exposures, and the safe use of equipment for materials handling and production operations. Nonmajor graduate credit.

I Tec 394. Legal Aspects of Occupational Safety and Health. (3-0) Cr. 3. Prereq: 272. Legal implications of legislation as it applies to health and safety in the workplace.

I Tec 402. Facilitation of Workplace Learning. (3-0) Cr. 3. Application of theories of learning and motivation, effective participative learning facilitation and delivery techniques, analysis of learning styles; learner goal-setting and feedback; and the incorporation of learning to learn skills are explored and practiced for the purpose of preparing workplace learning facilitators. Nonmajor graduate credit.

I Tec 408. Interdisciplinary Problem Solving. (Same as I E 408, E E 408.) (3-0) Cr. 3. Prereq: Junior or senior standing. Use the Theory of Constraints as a way of approaching problem solving, win-win negotiations, project planning and effective design in the context of engineering/business systems. Team projects are aimed at improving design outcomes. Nonmajor graduate credit.

I Tec 409. Interdisciplinary Systems Effectiveness. (Same as I E 409, E E 409.) (3-0) Cr. 3. Prereq: Junior or senior standing. Focus on functions that determine the effectiveness of an entire organization. Generic solutions to production, distribution, project management are compared to traditional solutions. Strategy for improvements discovered using simulations and group projects. Nonmajor graduate credit.

I Tec 410. Facility Planning. (3-0) Cr. 3. Prereq: 120 or equivalent; Stat 101. Principles and practices in designing, evaluating, and organizing existing facilities or creating new facilities and effective design in the context of engineering/business systems. Team projects are aimed at improving design outcomes. Nonmajor graduate credit.

I Tec 412. Statics and Strength of Materials for Industrial Technology. (1-4) Cr. 3. Prereq: 224, Phys 111. Application of the fundamental concepts and techniques of solving problems related to force and moments. The properties of materials and how to select appropriate materials for a particular design. Stress, strain, torsion, bending of beams.

I Tec 435. Computer for Automatic Manufacturing Systems. (2-2) Cr. 3. Prereq: 336, 240. Reviews principles and concepts required for implementation of automated production techniques and for design of manufacturing systems. Includes sensors and sensing systems, numerical control, robotics, CAD/CAM, simulation, manufacturing economics. Emphasis on computer technology as “tools” to improve production and control needs.

I Tec 470. Industrial Hygiene: Chemical and Biological Hazards. (3-0) Cr. 3. Prereq: 272; Chem 163, 163L. A consideration of health related problems found in the industrial setting with emphasis on toxic chemicals, ventilation, and noise.

I Tec 471. Industrial Hygiene: Physical Hazards. (2-2) Cr. 3. Prereq: 272; Chem 163, 163L. The use and calibration of instruments designed to measure the quality and quantity of contaminants in the work environment.

I Tec 475. Safety Analysis and Design. (1-2) Cr. 2. Prereq: Instructor approval. Students review the use of systems safety as a management technique to control risk. Individual student capstone project pursuits/design projects are completed in conjunction with faculty or a business/industry partner.

I Tec 480A. Supervised Industrial Cooperative Experience. Cr. 2. May be repeated for credit. Prereq: 395 and permission of cooperative coordinator.
Collaborative Team based Learning, Learning to Learn, permission of instructor.

I Tec 535. Comprehensive Modern Manufacturing Systems. (3-0) Cr. 3. Prereq: Permission of instructor. The study, design, and implementation of PULL manufacturing systems and their integration with functional aspects of the process-oriented system for the manufacture of superior quality, low-cost products. Topics include cellular manufacturing system, group technology, cost estimation, justification, dynamic cost control, JIT manufacturing, integrated quality, inventory control, automation, and CAD/CAM.

I Tec 549. Internship in Industrial Technology. (Arr.) Cr. 1 to 4 each enrollment. Prereq: 15 credits in industrial technology. Extension of technical competence in emerging technologies.

Courses Primarily for Graduate Students, Open to Qualified Undergraduate Students

Prior to registration for graduate-level courses, the student shall be classified as a senior or have an earned bachelor's degree, and be required to complete additional assigned readings, term papers, and graduate projects.

I Tec 502. Advanced Design and Manufacturing. (3-0) Cr. 3. Prereq: Permission of instructor. An integrated study of entrepreneurship, the development of new products, organization of production, production control, and business planning in contemporary manufacturing settings. Topics include market analysis, design, prototyping, quality functional deployment in process and product design, benchmarking, Kaizen, cost estimation, marketing strategies, documentation for productivity and quality strategies.

I Tec 504. Principles of Training and Development. (3-0) Cr. 3. Prereq: Graduate classification. An examination of the training and development function in industry, and business and the advancement of competencies in analysis, design, development, implementation, and evaluation of training in conjunction with analysis and synthesis of theoretical perspectives.

I Tec 506. Facilitating Change Through Training and Development. (3-0) Cr. 3. Prereq: Graduate classification. Change and the change process, diagnosing and defining planned change, investigating various transformation theories and methodologies, and team development. Opportunities to apply knowledge in experiential learning environment.

I Tec 509. Interdisciplinary Systems Thinking. (Same as E E 509.) (3-0) Cr. 3. Prereq: Junior or senior standing. Student does an extensive individual project using the systematic thought processes of Theory of Constraints to solve and implement the solution to a problem in their current reality. Groups scrutinize and improve each other's work.

I Tec 510. Technology Teaching. (2-0) Cr. 2. Prereq: Permission of instructor. Teaching and learning implications and strategies in technological settings. Focuses on trends, instructional planning, execution, collaborative-team based learning, learning to learn, and integrating workplace activities.

I Tec 514. Foundations of Industrial Technology. (2-0) Cr. 2. Prereq: Graduate classification. Historical development and philosophy.

Courses and Programs Information Assurance

(Interdepartmental Graduate Major)

Supervisory Committee: J. Davis (Chair), D. Jacobson, J. Wong, D. Norris.

Work is offered for the degree Master of Science with a major in Information Assurance under a cooperative arrangement with various departments including Electrical and Computer Engineering, Computer Science, Political Science, Logistics, Operations, and Management Information Systems, Mathematics, Industrial and Manufacturing Systems Engineering. Students graduating from the major will help to fill the need for well-educated system security specialists in the government, private sector, and academia. The program objectives identified as being critical to the accomplishment of this mission are: (1) impart and enhance knowledge about information infrastructure security; (2) Expand and develop ability to engineer complex systems; (3) Instill and nurture social awareness, and the ability to function in a team; (4) Instill and nurture a sense of ethics; and (5) Develop an understanding of strategic and policy issues.

Students interested in the interdepartmental major apply and are admitted to both a home department (the department that is most closely aligned with the student's research interest and background) and to the program. The home department sets the admission standards, course requirements, and thesis standards.

The program is broadly based and uses courses in the various departments. The program will consist of 24 course credits with 6 credits of research work for a Master of Science with thesis. A non-thesis Master of Science will consist of 27 credits of courses and 3 credits of creative component. The courses are divided into three categories: core, electives, and thesis research.

A student’s Program of Study Committee, in consultation with the student, determines the elective courses to be taken and the acceptability of transfer credits. The major professor will be selected from the discipline where the student is admitted (home department).

The basic prerequisite for admission to this program is a baccalaureate degree in engineering, mathematics, computer science, management information systems, political science, or closely related field. The GRE examination may be required based on the
standards of the home department. If the GRE is not required it will be considered in admissions decisions if offered. Potential students with baccalaureate degrees in the physical sciences, statistics, or other related fields will be considered on an individual basis, possibly with provisional admission. The degree awarded is a Master of Science in Information Assurance.

For additional information students should contact the chair of the Supervisory Committee, 2413 Cooper Hall, ISU, Ames, Iowa 50011, or www.issi.iastate.edu/msia.html

Courses Primarily for Graduate Students

InfAs 592. Seminar in Information Assurance. Cr. 1 to 3 each time elected. Projects or seminar in Information Assurance.

Interdisciplinary Graduate Studies

(Interdepartmental Graduate Program)

Supervisory Committee: P. M. Keith, Chair; D. D. Roberts (Arts and Humanities), E. C. Powell (Biological and Physical Sciences), P. M. Keith (General), T. I. Chacko (International Development Studies), S. J. Crase, (Social Sciences)

The degree of master of science or master of arts with major in interdisciplinary graduate studies is available to graduate students who wish to have a more diversified program of advanced study than that generally permitted students who specialize in a single subject. Areas of specialization in arts and humanities, biological and physical sciences, international development studies, physical sciences, social sciences, and a general area are designed to broaden and supplement a student's program. Students must take courses in three different graduate subject matter areas, each subject contributing a minimum of nine credits toward the 35 graduate credits required for the degree. Courses which may be used for credit toward this degree program are selected from those listed in the Graduate College Catalog for graduate credit.

Both thesis and nonthesis options are available except in arts and humanities in which a thesis is required. If the thesis option is chosen, a minimum of three credits of IGS 699 (Research) is required and a maximum of five credits of IGS 699 may be counted in the total of 35 required credits. If the nonthesis option is elected, evidence of original creative effort must be presented. This may be in the form of a demonstration of independent creativity such as a written report of laboratory, field, or library research; a project in fine arts; or some other original contribution acceptable to the student's committee. In the nonthesis option a minimum of three credits of IGS 599 (Creative Component) is required and a maximum of five credits of IGS 599 may be counted toward the total of 35 graduate credits. The student, in consultation with the program of study committee, will decide on the option. The committee also aids the student in planning a program of study and in selecting appropriate courses.

Foreign language requirements, if any, will be decided by the student's committee.

Graduates will have experience in designing their own program centered around issues they have identified. Because of the interdisciplinary nature of IGS, students are expected to synthesize knowledge from three different areas of study.

Students who wish to apply for admission to interdisciplinary graduate studies should communicate with the chair of the program, the chair of the supervisory committee or one of its members (see above).

Courses for Graduate Students

IGS 599. Creative Component. Cr. var.

Interdisciplinary Studies

A major in interdisciplinary studies is offered in the College of Liberal Arts and Sciences for undergraduate students who have unique interdisciplinary educational goals. The major is designed by a faculty review board, the academic adviser, and student. Leading to either the bachelor of arts or the bachelor of science degree, the major includes 36 to 48 credits of coursework chosen to provide a coherent, carefully planned program in an area of interest that bridges two or more departments. This specialized area is identified on the diploma.

A student seeking admission to the program in interdisciplinary studies writes a letter of application that explains how the proposed major meets specific educational goals. Applications are screened by a faculty review board. Since students are expected to earn at least 30 credits after they are admitted into the program, the proposal is ordinarily submitted to the review board in the sophomore or junior year. The proposal will be considered if the area of interest properly falls within the College of Liberal Arts and Sciences and if the student's educational goals cannot be accommodated by a more traditional combination of existing majors, minors, and electives.

Students who wish to prepare for professional schools in health-related fields and students who wish to develop an area of interest based upon one of the College's cross-disciplinary programs may wish to propose a degree in Interdisciplinary Studies. Areas of interest in Interdisciplinary Studies have included Classical Studies, International Relations, Ecology Studies, African American Cultural Studies, Asian Studies, and U.S. Latino/a Studies.

The interdisciplinary studies major must satisfy the requirements of the liberal arts and sciences curriculum in the College of Liberal Arts and Sciences. With the approval of the review board, the student will identify courses leading to either the B.A. or the B.S. degree. A major emphasizing the humanities or communicative arts normally leads to a B.A.; a major emphasizing the natural or social sciences normally leads to a B.S.) Different requirements for the B.A. and B.S. degrees are determined by the nature of the chosen field of study.

Courses listed in the major may come from any department of the university with the following restrictions:

1. The selection of courses needs to focus on a single theme and be consistent with the career and educational goals of the student.

2. At least one half of the courses in the major must come from degree-offering departments within the College of Liberal Arts and Sciences.

3. The courses must be chosen from at least two disciplines.

4. The courses chosen for the major must be at the 200 level or higher. Overall, the degree program must include 45 credits at the 300 level or higher, with at least 6 credits at the 400 level or higher.

5. An average grade of C or better must be earned in 15 credits at the 300 level or higher in the major.

6. The university diversity and international perspectives requirement may be met by choosing two 3-credit courses from the approved list.

The following English proficiency requirements applies:

1. An average grade of C or better is to be earned in Engl 104 and 105. If this grade is not achieved, the student will be required to take an additional writing course as appropriate and earn a grade of C or higher.

2. A grade of C or better must be earned in either an advanced English composition course or a course in the major with a significant writing component.

Further information may be obtained from the college office.

International Agriculture

(Interdepartmental Undergraduate Program)

Supervisory Committee: Robert A. Martin, Chair; Ricardo Salvador; Elwood Hart; Anthony Pompetto III; Robert Andrews

The international agriculture program provides opportunities to develop knowledge and skills related to the factors that interact to impact agricultural and environmental issues, production, processes, distribution and utilization worldwide. The program puts emphasis on international experience through structured internships and study abroad. The international agriculture program is appropriate for students seeking positions that require knowledge and experience related to global agricultural issues and their impact on local, regional, national and international policies and practices. Students preparing for careers in the following areas will benefit from the international agriculture program; governmental and non-governmental development agencies, agribusi-
nesses, educational institutions, and non-profit assistance agencies. Outcomes from participating in this program focus on developing an awareness for the role of international agriculture in the career development process, analyzing international agricultural issues and policies, acquiring skills for solving problems in international development and agribusiness and experiencing real situations and gaining perspectives about agriculture in a global setting.

Secondary Major

International agriculture is an undergraduate secondary major that may be taken only in conjunction with a primary major in an agriculture curriculum. Students choosing international agriculture will strengthen their career placement with a business or agency involved in international activities. Technical knowledge of a primary major discipline will be strengthened by a global awareness of agriculture. A secondary major in international agriculture will give students practical insight into the role of agriculture in a world of increasing food and fiber needs. It is ideal for those who wish to broaden their international perspective or prepare for international work in agriculture. The secondary major includes an emphasis on international and/or foreign languages, and selection of appropriate courses (from an approved list) to meet the needs and interests of the student.

See International Agriculture, Curriculum, for the specific program. Students interested in earning a secondary major in international agriculture must contact a program adviser. The early indication of an interest in international agriculture allows for effective integration of the secondary major course requirements with those of the primary major.

Minor

A minor in international agriculture is available to interested students regardless of their major. Students selecting the minor should have at least minimal familiarity with agriculture and agricultural systems.

Courses for the minor should come from the following list: Internship; Study Abroad; Foreign Language; Agron 342; TSC 341; Pol S 241; Agron 406X; Econ 370; and Econ 385. Nine credits of the 15 credit total for the minor can not be used for meeting requirements for the major.

For more information about a secondary major or minor in international agriculture, see descriptions in the designated departments or the supervisory committee.

For more information about courses required for either a secondary major or a minor in international agriculture, see descriptions in the designated departments.

International Business

Interdepartmental Undergraduate Secondary Major

Supervisory Committee: Mary Anderson (contact person) and others annually appointed by College.

The international business program is designed to provide students with information that will enable them to work for companies that are involved with international business. Students are expected to develop an understanding of international business issues applied to the different functional areas of business. They will also develop skills to prepare themselves for business positions with international responsibilities. The program is designed to prepare students for employment in multinational companies and for business assignments beyond the United States.

International business is an undergraduate secondary major that may be taken only in conjunction with a primary major in business. Technical knowledge of international business will strengthen the expertise acquired with the primary major. Business students pursuing this program should strengthen their placement opportunities with multinational corporations.

A student in the College of Business may earn a secondary major in International Business. The requirements for this major include 12 credits in international business courses, one year of the same university-level foreign language (minimum of 6 credits) and an approved international experience (minimum 3 months). Students who pursue this secondary major will be required to complete the requirements for a primary major in Business. Fifteen of the 18 credits required for the International Business major must not be used for the primary major.

International Studies

(Interdepartmental Undergraduate Major and Minor)

University International Studies

Supervisory Committee: Steffen W. Schmidt (LAS), Chair; T. Barta (Engineering), B. Hand (Education), W. Grundmann (Design), S. Hendrich (FCS), D. Acker (Ag), K. Platt (Vet Med), H. Van Auken (Business), T. Weber (Faculty Senate), two student members

The international studies program provides opportunities for students to develop skills and understanding about international events, issues, and problems. Each college has specific requirements. Students will be advised by the representative from the college of their primary major on the Supervisory Committee (see above).

International studies students are strongly encouraged to participate in a study abroad program. Planning should occur early in a student’s academic career. Options include participating in one of ISU’s study abroad programs, enrolling in a foreign university with which ISU has an exchange agreement, or participation in programs offered through other institutions. The Study Abroad Resource Center in the International Educational Services (IES) has information on specific offerings as well as materials on financial assistance or see your college international adviser.

A secondary major and a minor in international studies are available for undergraduates. The program requirements are outlined below. The international studies program is designed for students who wish to prepare for work in international careers, such as in foreign service, journalism, advocacy organizations, scientific or research institutions, multinational and international business, development projects, humanitarian agencies, environmental organizations, human rights and women’s groups, think tanks, international agriculture, engineering, and other fields.

Secondary Major

The international studies major may be taken only as a secondary major program (i.e., together with another major) in most colleges except Family and Consumer Sciences where it may also be a primary major.

A student seeking a secondary major in international studies must successfully complete a minimum of 24 credits in courses approved for use in the international studies program, including University Studies 235 and 430. Normally, courses used in the major should be related and follow a theme. The member of the University International Studies Supervisory Committee in the college of the student’s primary major degree program (see above) can provide a list of approved courses.

In addition to the 24 credits in approved courses, a student seeking a secondary major must demonstrate the equivalent of two years of university-level study in one language in addition to English. A student whose language is other than English must pass Engl 105 with a grade of C or better.

Majors participating in a study abroad program, may petition to use up to nine credits of work to meet the 24-credit requirement in international studies courses.

Minor

A student seeking a minor in international studies must successfully complete a minimum of 15 credits in courses approved for use in the international studies program, including University Studies 235 and 430. Normally, courses used for the minor should be related and follow a theme. Interested students should see a representative of the University International Studies Supervisory Committee in the college of their primary major or degree program (see above) for the list of approved courses.

In addition to the 15 credits in approved courses, a student seeking a minor must demonstrate the equivalent of one year of university-
level study in one language in addition to English. A student whose language is other than English must pass Engl 105 with a grade of C or better.

Minors who study abroad may petition to use up to four credits of work to meet the 15-credit requirement in international studies courses. Students interested in the minor should consult with the representative of the University International Studies Committee from the college of the student’s primary major or degree program.

International Studies (IntSt)

Procedures for obtaining credit for international study programs vary by program. In some, such as exchange programs, students enroll in the foreign institution and transfer credit back to Iowa State University. In international study programs designed for specific majors, students enroll in specified Iowa State University courses within the appropriate departments. In others, students may obtain Iowa State University credit through enrollment in the international study courses listed below.

Information about international study opportunities, requirements, and procedures for obtaining university credit may be obtained from academic advisers, college representatives to the University International Studies Supervisory Committee, or the Study Abroad Resource Center located in the International Educational Services (IES).

Courses Primarily for Undergraduate Students

IntSt 120. Study Abroad Credit. (Same as U St 120.) Cr. Var. Prereq: Permission of the program coordinator. ISU offers numerous opportunities for study abroad. Please contact the Study Abroad Resource Center or your academic advisor for current programs.

IntSt 220. Study Abroad Credit. (Same as U St 220.) Cr. Var. Prereq: Permission of the program coordinator. ISU offers numerous opportunities for study abroad. Please contact the study abroad center or your academic advisor for current programs.

IntSt 235. Introduction to International Studies. (Same as U St 235.) (3-0) Cr. 3. F.SS. Overview of international studies, emphasizing cultural, geographic, economic, and political characteristics of major world areas, and nations.

IntSt 320. Study Abroad Credit. (Same as U St 320.) Cr. Var. Prereq: Permission of the program coordinator. ISU offers numerous opportunities for study abroad. Please contact the Study Abroad Resource Center or your academic advisor for current programs.

IntSt 420. Study Abroad Credit. (Same as U St 420.) Cr. Var. Prereq: Permission of the program coordinator. ISU offers numerous opportunities for study abroad. Please contact the Study Abroad Resource Center or your academic advisor for current programs.

IntSt 430. Seminar in International Studies. (Same as U St 430.) (3-0) Cr. 3. S. Capstone seminar in the representative of the University International Studies Committee from the college of the student’s primary major or degree program.

Iowa Lakeside Laboratory

www.lakeside.iastate.edu

(Internstitutional Program)

Director: Arnold van der Valk

Participating Faculty: Dennis E. Anderson (Biology Emeritus, Humboldt State University), Neil P. Bernstein (Biology, Mount Mercy College), University of Northern Iowa), C. Lee Burras (Agronomy, Iowa State University), C. Arthur Coyle (Art and Design, Iowa State University), Paul J. Currier, (Director, Platte River Whooping Crane Maintenance Trust), James J. Dinsmore (Animal Ecology, Iowa State University), John F. Daeschler (Anthropology, University of Iowa, and State Archaeologist), Charles Drewes (Zoology and Genetics, Iowa State University), Steven M. Herrnstad (Art and Design, Iowa State University), Laura L. Jackson (Biology, University of Northern Iowa), Kenneth L. Lang (Biological Sciences, Humboldt State University), Michael J. Lannoo (Muncie Center for Medical Education, Ball State University), David R. Mercer (Biology, University of Northern Iowa), Clay L. Pierce (Animal Ecology, Iowa State University), Thomas R. Rosburg (Biology, Drake University), Michael J. Shott (Sociology, Anthropology, and Criminology, University of Northern Iowa), Dary D. Smith (Biology, University of Northern Iowa), Sarah A. Spaulding (Diatom Collection, California Academy of Sciences), Eugene F. Steomer (Center for Great Lakes, University of Michigan), Lois H. Tiffany (Botany, Iowa State University), Joseph A. Tiffany (Anthropology, Iowa State University), U. Sunday Tim (Ag/Biosystems Engineering, Iowa State University), James L. Wee (Biological Sciences, Loyola University).

Iowa Lakeside Laboratory is a field station run cooperatively by Iowa State University, the University of Northern Iowa, and the University of Iowa through the State Board of Regents.

The laboratory was established in 1909 for the conservation and study of the rich flora and fauna of northwest Iowa, especially those of the Iowa Great Lakes region with its numerous lakes, wetlands, and prairies. Its campus is located on approximately 140 acres of restored prairie, wetland, and gallery forest along the west shore of West Okoboji Lake. Lakeside’s mission is to provide undergraduate and graduate students an opportunity to do independent projects at Lakeside and graduate students are strongly encouraged to do independent projects at Lakeside and graduate students are welcome to use it as a base for their thesis and dissertation research. Laboratory space and other facilities are available for long-term or short-term research projects.

Teaching and research facilities include eight laboratory buildings, a library, and a lecture hall. Living accommodations include cottages, motel-style units, and a large mess hall. All students are encouraged to stay at Lakeside while they are taking courses to take full advantage of its educational, professional, and social life.

Financial Aid

Iowa Lakeside Laboratory Scholarships are available to both undergraduates and graduate students. All scholarships cover room and board. Information about how to apply for Iowa Lakeside Laboratory Scholarships is included in the Iowa Lakeside Bulletin. Students should also consult the Student Financial Aid Office for other scholarship, work study, and loan programs for which they are eligible.

Registration

Students can only enroll in Iowa Lakeside courses by submitting an Iowa Lakeside Registration and Scholarship Form and Housing Form to the Iowa Lakeside Laboratory Administrative Office. These forms are found in the Iowa Lakeside Bulletin, which also contains information on current course offerings, and in the Iowa State University Summer Session Bulletin. The Iowa Lakeside Laboratory Bulletin can be obtained from:

Iowa Lakeside Laboratory

131 Bessey Hall

Iowa State University

Ames, IA 50011-1020

Phone: (515) 294-2488

Fax: (515) 294-9777

E-Mail: lakeside@iastate.edu

Early registration is advisable. Because enrollment in Lakeside courses is limited, students should register before May 1 for the following summer session. Housing is very limited and

Enrollments in most courses are limited to 8 to 10 students. Courses are taught at the undergraduate (sophomore and junior) and the senior/graduate level. Students obtain one credit for each week (40 hours) in class. One and two week courses are also available, including classes designed especially for teachers. Weather permitting, students normally spend at least part of each day doing field work, either as part of their class work or working on individual or group projects. Because there are courses offered only alternate summers, the current Iowa Lakeside Laboratory Bulletin or Iowa State University Summer Session Bulletin should be consulted for the list of courses being offered in a given summer session. The Iowa Lakeside Bulletin also contains additional information about the Laboratory and about each course being offered.

Research projects by undergraduates, graduate students and faculty can be done either on the campus or at many nearby natural areas. Undergraduate and graduate students are strongly encouraged to do independent projects at Lakeside and graduate students are welcome to use it as a base for their thesis and dissertation research. Laboratory space and other facilities are available for long-term or short-term research projects.

Teaching and research facilities include eight laboratory buildings, a library, and a lecture hall. Living accommodations include cottages, motel-style units, and a large mess hall. All students are encouraged to stay at Lakeside while they are taking courses to take full advantage of its educational, professional, and social life.
courses and programs

students must apply for housing or indicate that they plan to live off campus at the time of registration.

Courses open for nonmajor graduate credit: 402I, 403I, 415I, 419I, 422I, 427I, 461I, 473I, 480I, 484I.

Courses Primarily for Undergraduate Students

la LL 205I. Flora of the Iowa Lakes Region. Cr. 2. SS.

la LL 301I. Iowa Natural History. (Same as A Ecl 301I, Bot 301I, Zool 301I) Cr. 4. Alt. SS., offered 2003. Prereq: One course in the biological sciences. Biological diversity and its causes examined through lectures, field trips to native, climax, forest, marsh, and prairie habitats; topics include measuring the environment, sampling and identifying organisms, experimenting with the ecosystem, understanding species interactions, and appreciating influences of past and present climates and geologic events on natural ecosystems of the region.

la LL 302I. Plant-Animal Interactions. (Same as Bot 302I) Cr. 3. Alt. SS., offered 2002. Prereq: One course in the biological sciences. Introduction to ecology and co-evolution of plants and animals; emphasis on dispersal, pollination, and plant-herbivore interactions; field and laboratory work, reading, discussion.

la LL 303I. Undergraduate Internships. (Same as A Ecl 303I) Cr. 1 to 5. SS. Prereq: Placement with county conservation boards, camps, parks, etc. for experience as interpreters, rangers, and technicians.

la LL 312I. Ecology. (Same as A Ecl 312I, Biol 312I, Bot 312I, EnSci 312I, Zool 312I) Cr. 4. SS. An introduction to the principles of ecology at the population, community, and ecosystem level. Field studies of local lakes, wetlands, prairies, and big woods are used to examine factors controlling distributions, interactions, and roles of plants and animals in native ecosystems.

la LL 326I. Ornithology. (Same as A Ecl 326I) Cr. 4. SS. The biology, ecology, and behavior of birds with emphasis on field studies of local avifauna. Group projects stress techniques of population analysis and methodology for population studies.

la LL 364I. Biology of Aquatic Plants. (Same as Bot 364I) Cr. 3. Alt. SS., offered 2003. A field-oriented introduction to the taxonomy and ecology of aquatic plants in lakes, wetlands, and rivers. Individual or group projects.

la LL 367I. Plant Taxonomy. (Same as Bot 367I) Cr. 4. SS. Principles of classification and evolution of vascular plants; taxonomic tools and collection techniques; use of keys. Field and laboratory studies emphasizing identification of local flowering plants and recognition of major plant families.

la LL 371I. Introduction to Insect Ecology. (Same as Ent 371I) Cr. 4. Alt. SS., offered 2003. Field and laboratory study of insects, their diversity, life history; emphasis on ecology and behavior.

la LL 401I. Statistical Methods for Field Biologists. (Same as Stat 401I) Cr. 4. Alt. SS., offered 2003. Introduction to the design and implementation of ecological and environmental field studies and statistical analyses, interpretation, and presentation of field data. Fundamentals of experimental design; hypotheses testing with continuous and discrete data; simple and multiple regression and correlation; introduction of analysis of variance, and data presentation. Individual or group projects will be used to collect field data.

la LL 402I. Watershed Hydrology and Surficial Processes. (Same as Agron 402I, EnSci 402I) Cr. 4. SS. Prereq: Four courses in physical or biological sciences or engineering. Effects of geomorphology, soils, and land use on transport of water and materials (nutrients, contaminants) in watersheds. Fieldwork will emphasize investigations of the Iowa Great Lakes watershed. Nonmajor graduate credit.

la LL 403I. Evolution. (Same as Biol 403I, Bot 403I, Zool 403I) Cr. 4. SS. Mechanisms and patterns in microevolution and macroevolution. Field exercises will emphasize studies of natural selection, adaptation, genetic variation, and population genetics of local plant and animal populations. Nonmajor graduate credit.

la LL 404I. Behavioral Ecology. (Same as A Ecl 404I, Zool 404I) Cr. 4. Alt. SS., offered 2002. Prereq: Two semesters of biology. Animal colonization, courtship, territory defense, habitat selection, foraging, mating systems, and parental care will be examined in the field in order to evaluate various ecological and evolutionary theories of animal behavior.

la LL 415I. Freshwater Invertebrates. (Same as Zool 415I) Cr. 3. SS. Prereq: One or more ecology courses. Field-oriented introduction to the identification, life-history, and ecology of common, free-living freshwater invertebrates of north-temperate lakes, rivers, and local streams. Emphasis on the role of invertebrates in aquatic food chains and litter processing. Nonmajor graduate credit.

la LL 419I. Vertebrate Ecology and Evolution. (Same as A Ecl 419I, Zool 419I) Cr. 4. SS. Field and laboratory study of representative vertebrates of northwestern Iowa. Observations and experimentation emphasize ecological histories by integrating concepts of functional morphology, behavioral ecology, and evolutionary biology. Nonmajor graduate credit.

la LL 420I. Amphibians and Reptiles. (Same as A Ecl 420I, Zool 420I) Cr. 4. Alt. SS., offered 2002. Prereq: Two semesters of biology. Ecology, behavior, and conservation biology of amphibians and reptiles with emphasis on their anatomy and morphology; temperature and water regulation; locomotion; life history; reproduction; population and community ecology; and conservation.

la LL 427I. Archaeology. (Same as Anthr 427I) Cr. 4. SS. Nature of cultural and environmental evidence in archaeology and how they are used to model past human behavior and land use; emphasis on Iowa prehistory; basic reconstruction surveying and excavation techniques. Nonmajor graduate credit.

la LL 435I. Illustrating Nature. I. Sketching. (Same as BMP 435I) Cr. 2. SS. Sketching plants, animals and terrain. Visual communication, development of a personal style, and integration of typographic and visual elements on a page will be emphasized.

la LL 436I. Illustrating Nature. II. Photography. (Same as BMP 436I) Cr. 2. SS. Beginning to intermediate technical and compositional aspects of color photography of natural areas and their plants and animals.

la LL 480I. Introduction to Environmental Planning. (Same as Env S 480I, LA 480I) Cr. 4. Alt. SS., offered 2002. Introduction to environmental planning theories and methods, emphasis on environmental planning using GIS modeling approaches and public participation in the planning process. Students should have basic familiarity with ArcView and database programs. Individual or group environmental planning projects.

la LL 484I. Plant Ecology. (Same as Bot 484I) Cr. 4. SS. Principles of plant population, community, and ecosystem ecology illustrated through studies of native vegetation in local prairies, wetlands and forests. Group or individual projects. Nonmajor graduate credit.

la LL 490I. Undergraduate Independent Study. (Same as A Ecl 490I, Anthr 490I, Biol 490I, Bot 490I, Zool 490I) Cr. 1 to 4. SS. Prereq: Junior or senior classification and permission of instructor.

la LL 493I. Natural History Workshop. Cr. 1 to 2. SS. Offered as demand warrants. Five day-long, non-technical introductions to important aspects of the natural history of the Upper Midwest or techniques for studying natural history.

A. Amphibians and Reptiles.
B. Birds and Birding.
C. Nature Photography.
D. Mushrooms and Other Fungi.
E. Iowa’s Trees and Fungi.
F. Fish Biology.
G. Prairies and Prairie Restoration.
H. Common Algae.
I. Common Insects.
J. Aquatic Plants.
K. Life in Rivers.
L. Life in Lakes.
M. Mosses and Liverworts.
N. Natural History of Iowa Great Lakes Region.
P. Field Archaeology.
Q. Scuba Diving.
R. Sketching Nature.

la LL 499I. Undergraduate Research. Cr. 1 to 4. Prereq: Junior or senior classification and permission of instructor.

Courses Primarily for Graduate Students, Open to Qualified Undergraduate Students

la LL 501I. Freshwater Algae. (Same as Bot 501I) Cr. 4. Alt. SS., offered 2003. Structure and taxonomy of freshwater algae based on field collected material; emphasis on genus-level identifications, habitats varied include include lakes, fens, streams, and rivers; algal ecology.

la LL 502I. Watershed Modeling and GIS. (Same as A Ecl 502I, EnSci 502I) Cr. 4. Alt. SS., offered 2002. GIS techniques for watershed hydrologic and water quality modeling and watershed management, including various approaches to watershed analysis, modeling and management; analytical tools for modeling watershed hydrology and water quality, and case studies in modeling and managing rural and urban watersheds.

la LL 508I. Aquatic Ecology. (Same as A Ecl 508I, EnSci 508I) Cr. 4. SS. Prereq: Courses in ecology, chemistry, and physics. Analysis of aquatic ecosystems using basic ecological principles; ecological theories tested in the field; identification of common plants and animals.

la LL 511I. Field Parasitology. (Same as Zool 511I) Cr. 3. Alt. SS., offered 2003. Ecology and life history of parasites, protozoans, helminths, arthropods; field and laboratory investigations including identification, and morphology of representative types and stages; general and comparative concepts of parasitology.
Journalism and Communication, The Greenlee School of

www.greenlee.iastate.edu

John B. Eighmey, Chair of the School

Professors: Abbott, Beell, Eighmey, Emmerson, Peterson, Smith

Professors (Emeritus): Blinn, Boyd, Disney, Friederich, Gillette, Hvistendahl, Kunerth, Schwartz, Shelley, Wechsler

Associate Professors: Coon, Fowler, Geske, Haws, Mack, Prior-Miller, Redmond, Rodriguez

Assistant Professors: Abraham, Appiah, Chadwick, Christen, Kioussis, Patton

Assistant Professors (Adjunct): Vochta

Instructors (Adjunct): Haynes, Witherspoon

Undergraduate Study

The Greenlee School of Journalism and Communication offers work for the bachelor of arts in advertising, the bachelor of arts in communication studies and the bachelor of arts or science degree in journalism and mass communication.

The unit, founded in 1905, has been continuously accredited every six years since 1948 by the Accrediting Council on Education in Journalism and Mass Communications and was reaccredited in 1998. Accreditation, which applies only to the majors in advertising and journalism and mass communication, is based on the principle that students need a broad-based, liberal arts education, as well as a solid core of courses within the discipline.

This is why there is both a minimum (33) and a maximum number (40) of credits allowed within the Jl MC and Advrt majors for students graduating with 124.5 credits.

The School encourages students to develop an emphasis or specialization to ensure the depth necessary to succeed in the professional world of communication. Supporting work is designed to provide expertise and depth in related content areas. Graduates of the School will be able to generate ideas, gather and interpret data and disseminate information.

The School also prepares students throughout the university to be informed media participants and consumers.

To become a journalism and mass communication or advertising major, all students including transfer students, must successfully complete Jl MC 101, 110 and 201. Until these courses are successfully completed, students are designated as pre-majors. There is no prerequisite classification or comparable course requirements for communication studies.

English Proficiency Requirement

To graduate as a Jl MC or an Advrt major, the student must either have achieved a score of 26 or higher on the ACT-English examination or passed the School's own English Usage Test. To meet the University's English Proficiency requirement, all majors in the School must earn a grade of C or better in English 104 and 105 (or 105H). These additional requirements apply:

Advrt majors must earn a C+ or better in Jl MC 201

ComSt majors must earn a C+ or better in one additional course from this list: Engl 302, 309, 314, 415. Jl MC majors must earn a C+ or better in Jl MC 201 and 202 or 206.

The Advertising Major

The advertising major prepares students for graduate education and careers in business and industry. Students majoring in Advrt will find their career opportunities enhanced in professions requiring applied communication expertise. Graduates are qualified for positions in the creative and account sides of advertising within corporations, businesses, and advertising agencies.

To receive a bachelor of arts degree in advertising a student must earn at least 124.5 credits. Of these:

- at least 45 credits must be at the 300 and 400 course level.
- at least 65 credits must come from the liberal arts and sciences.

A minimum of 33 and a maximum of 40 credits may be taken in Advrt and Jl MC.

Major Requirements (15 credits)

1. Audience Identification, Advrt 301
2. Law of Mass Communication, Jl MC 310
4. Professional Media Internship, Jl MC 499

Select 3 credits from:

1. Advertising Campaigns, Advrt 343
2. Advanced Advertising Campaigns, Advrt 435
3. Advanced Portfolio Practicum, Advrt 436

Major Electives/Options (9-12 credits)

Choose 9-12 credits from the following:

1. Electronic Media Production, Jl MC 306
2. Fundamentals of Photojournalism, Jl MC 310
3. Multimedia Production, Jl MC 315
4. Public Relations Techniques, Jl MC 321
5. Advertising Creativity, Advrt 334
6. Media Buying, Advrt 335
7. Media Sales, Advrt 336
8. Visual Principles & Lab, Jl MC 342 & 342L

Courses for Graduate Students

La LL 580I. Field Museum (Same as Bot 580I.) Cr. 1 to 4. Field and laboratory study of freshwater diatoms; techniques in collection, preparation, and identification of diatom samples; study of environmental factors affecting growth, distribution, taxonomic characters; project design and execution including construction of reference and voucher collections and data organization and analysis.

La LL 590I. Graduate Independent Study. (Same as A Ecl 590I, Bot 590I, Zool 590I.) Cr. 4. SS. Prereq: Graduate classification and permission of instructor.

La LL 593I. Advanced Field Ornithology. (Same as A Ecl 526I.) Cr. 2. SS. Prereq: Concurrent registration in 320I. Field study of birds of the upper Midwest; extended field trip to Minnesota and Wisconsin; individual or group project.

La LL 531I. Conservation Biology. (Same as Bot 531I.) Cr. 4. Alt. SS., offered 2002. Prereq: A course in ecology. Ecological principles for the restoration of native ecosystems; establishment (site preparation, selection of seed mixes, planting techniques) and management (fire, mowing, weed control of native vegetation); evaluation of restorations. Emphasis on the restoration of prairie and wetland vegetation.

La LL 573I. Techniques for Biology Teaching. Cr. 1 or 2 each time taken. SS. The development and implementation of laboratory exercises suitable for inclusion in elementary, middle, high school, and community college biology and environmental courses. Exercises will be built around common organisms and ecosystems in Iowa. Field trips.

A. Animal Biology (Same as A Ecl 573A)
B. Plant Biology
C. Fungi and Lichens
D. Aquatic Ecology
E. Prairie Ecology
F. Wetland Ecology
G. Limnology (Same as A Ecl 573G)
H. Animal Behavior (Same as A Ecl 573H)
I. Insect Ecology
J. Leopold Education Project
K. Project WET (Same as A Ecl 573W)

La LL 575I. Field Museum. (Same as Bot 575I.) Cr. 4. Alt. SS., offered 2002. Identification and classification of the common fungi; techniques for identification, preservation, and culture practiced with members of the various fungal groups.

La LL 580I. Ecology and Systematics of Diatoms. (Same as Bot 580I and Lab 580L.) Cr. 1 to 4. SS. Prereq: Concurrent registration in 580L. Field and laboratory study of freshwater diatoms; techniques in collection, preparation, and identification of diatom samples; study of environmental factors affecting growth, distribution, taxonomic characteristics; project design and execution including construction of reference and voucher collections and data organization and analysis.

La LL 590I. Graduate Independent Study. (Same as A Ecl 590I, Bot 590I, Zool 590I.) Cr. 4. SS. Prereq: Graduate classification and permission of instructor.

La LL 593I. Natural History Workshop. Cr. 1 to 3. Offered as demand warrants. Prereq: Permission of instructor. Graduate workshop on some aspect of the natural history of the Upper Midwest or on techniques for studying natural history.

Courses for Graduate Students

The Communicaton Studies Major

The communicaton studies major prepares students for careers in business and industry and graduate education. Students majoring in ComSt will find their career opportunities enhanced in professions requiring applied communication expertise, e.g., human resource management, personnel, training and development, sales, management, public relations, organizational development, public information, business communication, and international and intercultural relations.

The ComSt major needs to master a focused course of inquiry into the contemporary study of human communication. The ComSt major provides this focus through emphasis in applied communication theory and research in interpersonal, small group, organization, intercultural, and nonverbal communication.

The student who majors in Communication Studies must earn at least 124.5 credits, with 45 credits at the 300-400 level, and a minimum of 36 credits in ComSt.

The following courses are required for a major in communication studies: ComSt 101, 102, 203, 214 or 218, 301, 310, 311, 314, 317, 325, 404; Stat 101; Engl 302 or 309 or 314 or 415.

The Core for the Communication Studies Major

Foundation Requirements (12 credits)
3 Introduction to Communication Studies, ComSt 101
3 Introduction to Interpersonal Communication, ComSt 102
3 Introduction to Communication Research Methods, ComSt 203

Select one of these courses:
3 Professional Communication, ComSt 214
3 Conflict Management, ComSt 218

Upper Division Requirements (24 credits)
3 Human Communication Theory, ComSt 301
3 Intercultural Communication, ComSt 310
3 Communication of Organizational Communication: Theory and Research, ComSt 311
3 Organizational Communication, ComSt 314
3 Small Group Communication,

Courses and Programs

The Journalism and Mass Communication Major

The major in journalism and mass communication allows the student to select one of five emphases: electronic media studies, print media (magazine and newspaper), public relations/public information, science communication, or visual communication. A sixth option is also available that allows the student to pursue a general program of study.

To receive a bachelor of arts or a bachelor of sciences degree in journalism and mass communication a student must earn at least 124.5 credits. Of these:
- at least 45 credits must be at the 300 and 400 course level
- at least 65 credits must come from the liberal arts and sciences
- a minimum of 33 and a maximum of 40 credits may be taken in JI MC and Advrt

The Core for the Journalism and Mass Communication Major

Cr. Degree Requirements
3 Mass Media and Society—JI MC 101
3 Orientation to Journalism and Mass Communication—JI MC 110
3 Reporting and Writing for the Mass Media—JI MC 201

Requirements of all JI MC majors (9 credits)
3 Intermediate Reporting and Writing for the Media—JI MC 202 or 206
3 Law of Mass Communication—JI MC 460
3 Professional Media Internship—JI MC 499

Requirements determined by emphasis (Minimum of 12 credits) Emphasis-based courses must be selected from courses numbered from JI MC 220 to JI MC 355.

Jl MC 202 or Reporting and Writing for the Electronic Media—JI MC 206
3 Law of Mass Communication—JI MC 460
3 Professional Media Internship—JI MC 499

The Journalism and Communication, The Greenlee School of

Additional credits can be selected from any JI MC courses above 220.

33 credit minimum - Total

Enhancement Requirement (4 credits)
4 Principles of Statistics, Stat 101

The Jl MC major needs a broad-based academic background that the School seeks to ensure by requiring a designated area of concentration (DAC) made up of 24 credits. All courses for the DAC must be taken outside of Advrt and JI MC. At least 15 credits must be from the 300 level or above. This is a student-designed, adviser-approved grouping of related courses that will meet the student’s professional or academic interests. A second major or two minors may substitute for the DAC.

Minors

Advertising. To become an advertising minor, the student must have achieved a score of 26 or higher on the ACT-English examination or have passed the School’s own English Usage Test and have earned a grade of at least a C+ in JI MC 201.

Advertising minors are required to complete at least 18 credits in Advrt and JI MC courses. This includes 9 credits in the core (JI MC 201 with a C+ or better, Advrt 230 and Advrt 301), and either Advrt 434 or 435 or 436 (3 credits), 3 credits at the 300-400 level in Advrt or related JI MC courses and 3 credits of Advrt or JI MC electives.

Communication Studies. The requirements for a minor in ComSt may be fulfilled by credit in ComSt 101 plus at least 15 additional hours of communications studies, of which 9 credits are in courses numbered 300 or above. All credits taken for the minor must have a grade of 2.0 or higher. No credits in 290, 490, 493, 499, or 590 may apply toward the minor.

Journalism and Mass Communication. JI MC minors are designed within each of the School’s emphasis areas. See the School’s literature or an adviser in JI MC for more information.

To become a JI MC minor, the student must have achieved a score of 26 or higher on the ACT-English examination or have passed the School’s own English Usage Test and have earned a grade of at least a C+ in JI MC 201.

JI MC minors are required to complete at least 18 credits in JI MC or Advrt courses. This includes 6 credits in the core (201 and either 202 or 206), 6 credits from courses numbered 220 to 355, and 3 credits from among 400-level courses and 3 credits of JI MC (or Advrt) elective.
Graduate Study

The School offers work for the master of science degree with a major in journalism and mass communication. A minor is available to students taking major work in other departments.

The emphasis of the program is on the study of scientific and technological communication from both theoretical and professional skills perspectives.

 Majors plan programs of study in one of three concentrations:

I. Science Communication—developing effective reporting and writing skills to disseminate information about science, technology, and agriculture to a range of publics through a variety of channels. Appropriate for media professionals and those with a science background.

II. Mass Communication in Science and Technology—the study of the theory, preparation, and use of media materials to transmit scientific, technological, and agricultural knowledge to the public. Appropriate for those interested in public information or international development communication.

III. Mass Communication as a Social Science—the study of the role and impact of mass communication on individuals and society, primarily from a social science perspective. Appropriate for those interested in studying the mass media from a variety of perspectives.

Students in all three concentrations have the option of writing a thesis or completing a creative component.

Core courses for students in the three concentrations are: MC 501, 502, 510, 601, and 650. Elective coursework is selected with approval of the student’s program of study committee.

Students with bachelor’s degrees in a variety of academic disciplines and with diverse professional experiences may be accepted into the program. However, students without a degree or experience in journalism or mass communication may be required to take additional coursework.

Courses open for nonmajor graduate credit: MC 460, 461, 462, 464, and 477.

Advertising (Advrt)

Courses Primarily for Undergraduate Students

Advrt 301. Audience Identification, Research, and Analysis. (Same as MC 301) (3-0) Cr. 3. F.S. Prereq: Advrt 230 or MC 220; majors and minors must also have credit or concurrent enrollment in MC 201. Prospect analysis, market segmentation, positioning, public opinion formation, communication strategy formulation and development of critical thinking skills.

Advrt 336. Advertising Media Sales and Management. (3-0) Cr. 3. F.S. Prereq: Advrt 301 and Advrt 335. Fundamentals of advertising media sales with emphasis on sales techniques, presentation skills and strengths of competing media. Includes development of sales and training materials for a variety of media. Sales simulations.

Advrt 434. Advertising Campaigns. (3-0) Cr. 3. F.S. Prereq. Advrt 301. Development of advertising campaign for business and social institutions. Projects involve budgeting, media selection, market analysis, campaign strategy, and creative execution.

Advrt 436. Advertising Portfolio Practicum. (0-0) Cr. 3. Prereq: Advrt 334, portfolio review and permission of instructor. Advanced advertising writing and design. Emphasis on creative strategy, problem solving and execution of creative materials in print, broadcast and on-line media, or for a variety of clients. Visit to advertising agencies.

Advrt 497. Seminar in Advertising. Cr. 1 to 3. Seminars or one-time classes on topics of relevance to students in advertising.

Communication Studies (ComSt)

Courses Primarily for Undergraduate Students

ComSt 101. Introduction to Communication Studies. (3-0) Cr. 3. F.S.SS. An introduction to communication theory, the development and functions of communication, and a survey of interpersonal, small group, organizational, and intercultural communication.

ComSt 102. Introduction to Interpersonal Communication. (3-0) Cr. 3. F.S.SS. Application of communication principles, theory, and research to an examination of the process of interpersonal communication and the improvement of communication skills that are most relevant to a broad range of interpersonal settings.

ComSt 203. Introduction to Communication Research Methods. (3-0) Cr. 3. F.S. An introduction to reading reports of and conducting communication research. Includes theory development, statistics, and Methodologies used in variety of communication contexts.

ComSt 214. Professional Communication. (3-0) Cr. 3. F.S.SS. Communication theory and skill development in organizational settings. Emphasis on four oral communication competencies: interpersonal skill development, team and meeting facilitation, interpersonal interviewing, and team presentations. Emphasis on self-assessment.

ComSt 218. Conflict Management. (3-0) Cr. 3. S.SS. Exploration of the relationship between communication and conflict. Communication theories, principles and methods associated with effective conflict management in interpersonal and organizational contexts.

ComSt 301. Human Communication Theory. (3-0) Cr. 3. F.S.SS. Prereq: 101. Introduction of the major theories related to human communication with particular emphasis on those theories underlying interpersonal, small group, organizational, and intercultural communication.

ComSt 310. Intercultural Communication. (3-0) Cr. 3. Prereq: 101 or 203, 301. Studies the theories, principles and research on intercultural communication with the intent of enhancing cultural sensitivity and ability to recognize, accept, and adapt to cultural diversity. Interactive assignments.

ComSt 311. Interpersonal Communication: Theory and Research. (3-0) Cr. 3. Prereq: 102, 203, 301. A study of contemporary interpersonal communication theories and research through the examination of published scholarship. Emphasis on relational development research including initiation, maintenance, conflict management, and dissolution.

ComSt 314. Organizational Communication. (3-0) Cr. 3. Prereq: 101 or 203, 301. Theory and research in organizational communication; strategies for assessing and improving individual and organizational communication effectiveness; and an understanding of how organizational meaning is created and sustained through human communication.

ComSt 317. Small Group Communication. (3-0) Cr. 3. Prereq: 101 or 203, 301. Theory and research in small group communication; application to group decision-making and leadership. Includes communication analyses of groups and teams.

ComSt 325. Nonverbal Communication. (Same as Ling 325, Sp Cm 325.) (3-0) Cr. 3. Prereq: 101 or 202, 203, 301. A survey of theory and research in nonverbal communication; examination of nonverbal codes and covert subcodes; function of nonverbal communication in various contexts. Application of material through student-designed investigations.

ComSt 398. Cooperative Education. Cr. R. F.S.SS. Prereq: Permission of instructor, junior or senior classification. Required of all cooperative education students. Students must register for this course prior to commencing each work period.

ComSt 404. Seminar in Communication Studies. (Dual-listed with 504.) Cr. 3. Prereq: a 3 credit 300-level ComSt course, plus the appropriate 300-level course (as indicated in parentheses below).

A. Communication Theory or Research (any 300-level 3-credit course)
B. Interpersonal Communication (ComSt 311)
C. Small Group Communication (ComSt 317)
D. Organizational Communication (ComSt 314)
E. Intercultural Communication (ComSt 310)
F. Nonverbal Communication (ComSt 325)
G. Training and Development (ComSt 314)

ComSt 490. Independent Study. Cr. 1 to 3 each time taken, maximum of 5 credits. Prereq: 6 credits in communications studies and junior classification. Application must be submitted for approval the semester prior to the independent study.

ComSt 499. Communication Internship. Cr var. 1 to 3 each time taken, maximum of 5. F.S.SS. Requires a professional situation that provides a variety of experiences. Four hundred hours of on-site work is required for 3 hours credit. Registration by application only. Application must be submitted to Communication Studies faculty adviser for approval the semester prior to the internship.

Courses Primarily for Graduate Students, Open to Qualified Undergraduates

ComSt 504. Seminar in Communication Studies. (Dual-listed with 504.) Cr. 3. F.S. Prereq: Graduate standing.

A. Communication Theory and Research
B. Interpersonal Communication
C. Small Group Communication
D. Organizational Communication
E. Intercultural Communication
F. Nonverbal Communication
G. Training and Development

ComSt 590. Special Topics. Cr. 1 to 4 each time taken. Application must be submitted for approval the semester prior to the independent study.
Courses and Programs Journalism and Communication, The Greenlee School of 275

Journalism and Mass Communication (Jl MC)

Courses Primarily for Undergraduate Students

Jl MC 101. Mass Media and Society. (3-0) Cr. 3. F.S.SS. Communication models and their application to the mass media; the mass communication process; organization, characteristics and responsibilities of the mass media; media-related professional operations.

Jl MC 110. Orientation to Journalism and Communication. (1-0) Cr. R. F.S. Orientation to career opportunities, emphasis areas, and requirements in the advertising and journalism and mass communication curricula.

Jl MC 201. Reporting and Writing for the Mass Media. (1-4) Cr. 3. F.S.SS. Prereq: English 105 (or testout) and either a score of 26 or higher on the ACT-English examination or satisfactory performance on the English Placement Test. Primer on reporting and writing. Focuses on news and informational material for a variety of media. Emphasis on analyzing and organizing facts, as well as accuracy and principles of good writing.

Jl MC 202. Intermediate Reporting and Writing for the Mass Media. (1-4) Cr. 3. F.S. Prereq: Majors in Jl MC who select 206 must complete the course with a C+ in order to fulfill the Continuing English Proficiency Requirement. Students should note that this course fulfills prerequisite for Jl MC 308, 344, 346, 347, 349, 499. Covering standard news assignments and beats for student print publication. Enhancing and refining skills in developing sources and generating story ideas; information-gathering techniques, reporting and writing. Includes segments on local government and judiciary. Primarily designed for students interested in writing for newspapers, magazines, and online media administered by the School before registering for the course. Majors in advertising and journalism must complete Jl MC 201 with a C+ in order to fulfill the Continuing English Proficiency Requirement. Students should note that this course is a prerequisite to Jl MC 202 and Jl MC 206. Generating story ideas, exercising news judgment and gathering information via interviews, observation and documentary sources to produce news and informational material for a variety of media. Emphasis on analyzing and organizing facts, as well as accuracy and principles of good writing.

Jl MC 204. Fundamentals of Photojournalism. (1-3) Cr. 3. F.S. Prereq: 201 or permission of instructor. Basic photojournalism and photo techniques. Includes camera and lighting technology, composition, lighting and depth of focus, and photo reproduction techniques for print, broadcast, or computer-mediated applications. Basic use of digital imaging and editing software.

Jl MC 315. Multimedia Production. (3-0) Cr. 3. F.S. Prereq: 342L or 342L. Concepts and principles for evaluating, constructing, and designing information for the World Wide Web and other computer-mediated communication systems. Explores the use of computer-generated animation and graphics, audio and video. Issues of ethics and ownership of work pertinent to the new media are discussed.

Jl MC 342. Visual Principles for Mass Communications. (2-0) Cr. 2. F.S.SS. Prereq: Sophomore classification. Understanding of the visual message. Visual perception, design syntax, design elements and how they fit in the visual communication of messages. Instruction in basic principles of design.

Jl MC 342L. Laboratory in Basic Visual Principles. (2-0) Cr. 2. F.S.SS. Prereq: Credit or enrollment in 342. Introduction to desktop publishing, beginning techniques of layout in a step-by-step process; application of visual principles to simple print projects.

Jl MC 343L. Laboratory in Intermediate Visual Principles. (2-0) Cr. 2. S. Prereq: 342L or equivalent course. Advanced and in-depth features of desktop publishing and other document-enhancing software. Production of newsletters, multi-page brochures and other documents.

Jl MC 344. Depth Reporting and Writing. (2-2) Cr. S. F. Prereq: 202 or 206. Developing and writing comprehensive and multi-sectional articles and magazine articles.

Jl MC 346. Public Affairs Reporting. (2-2) Cr. 3. S. Prereq: 202 or 206. Reporting on government, business, and other institutions; identification of and access to public records; investigative reporting techniques; development of public agencies and issues for print and broadcast media.

Jl MC 347. Science Communication. (Dual-listed with 547) (2-2) Cr. 3. S. Prereq: 202 or 206 for Jl MC majors; Advrt 334 for Advrt majors. Nonmajors welcome, but by permission of instructor. Reporting and writing about science, technology subjects for the general audience. Outlets for stories include print, broadcast, and online media. Story topic choices for students include reporting about basic and applied sciences as well as ethical and policy issues related to science and technology. Topics from A to Z, anthropology to zoology.

Jl MC 349. Print Media Editing. (1-5) (1-5) Cr. 3. S. Prereq: 202 or 206. Grammar, punctuation, usage, syntax and logic. Editing newspaper, magazine, and online copy. Headline, title writing and visual presentation. Use of computer editing technology.

Jl MC 350. Fundamentals of Photojournalism. (1-3) Cr. 3. F.S. Prereq: 201 or permission of instructor. Basic photojournalism and photo techniques. Includes camera and lighting technology, composition, lighting and depth of focus, and photo reproduction techniques for print, broadcast, or computer-mediated applications. Basic use of digital imaging and editing software.

Jl MC 354. Advanced Studio Production. (2-3) Cr. 3. F. Prereq: 206; 306. Detailed application of studio television techniques; producing, directing and asset management during production of live information programs.

Jl MC 390. Workshop. Cr. 1 each time taken, maximum of 3 S.S. Offered as elective credit only. Check School for course availability. Offered on a satisfactorily grading basis only.

A. Basic Desktop Publishing
B. Intermediate Desktop Publishing
C. Electronic Newsgathering
D. Reporting and Writing
E. Photojournalism
F. Advanced Desktop Publishing
G. Advising Publications
H. Publications Practicum
I. Teaching High School Journalists
J. Computer Applications for Journalism
K. Online Journalism

Jl MC 401. Mass Communication Theory. (3-0) Cr. 3. S. Prereq: Sophomore standing. Theory and research in mass communication processes and effects; the scientific process; methods of measuring evaluating and reporting mass communication research.

Jl MC 406. Media Management. (Dual-listed with 506) (3-0) Cr. 3. S. Prereq: Junior classification. Decision-making functions of media. Basic media market analysis, media management, circulation and audience development, technological developments affecting management decisions, and relationships with labor and regulatory agencies that affect media operations.

Jl MC 424. Public Relations Campaigns. (Dual-listed with 524) (3-0) Cr. 3. S. Prereq: 220, 301, 302, and 312. Development of public relations and corporate communications campaigns for business and social institutions. Projects involving budgeting, media selection, campaign strategy, and creative execution.

Jl MC 460. Law of Mass Communication. (3-0) Cr. 3. S. Prereq: 201, 342, 342L or equivalent. History of American Journalism. Legal publication, and other business activities of the legal and ethical development of mass communication.

the land with a concern for the stewardship and conservation of natural, constructed, and human resources. The resulting environments shall serve useful, aesthetic, safe, and enjoyable purposes. Graduates are able to communicate clearly and work effectively with others on complex land design and planning problems. They understand the ethical, social, and environmental dimensions of issues involving changes in the landscape.

For students entering the professional program, the department highly recommends purchase of a laptop/notebook computer and appropriate software. See the "Undergraduate Academic Advising Handbook" in the departmental office or on the departmental Web pages for hardware and software specifications.

To enhance the study of landscape architecture in off-campus settings, the department recommends that each student participate in an approved study abroad program. In addition, the department recommends that each student participate in professional internship opportunities available through the department, National Student Exchange programs through other campuses, or both. Additional information is available in the departmental office.

The curriculum is accredited by the American Society of Landscape Architects and provides the education which, combined with experience, is necessary for professional registration.

The curriculum is composed of a one-year pre-professional program and a four-year professional program. Admission into the professional program depends upon available resources and is subject to the approval of a faculty committee at the completion of the preprofessional program. Scholastic performance, aptitude, and personal development are the qualifications considered. The department also cooperates in the undergraduate minor in design studies.

For undergraduate curriculum in landscape architecture leading to the degree bachelor of landscape architecture, see College of Design, Curricula.

Graduate Study

The department offers opportunities for post-professional study leading to the degree master of landscape architecture. Minor work is offered to students taking major work in other departments.

The M.L.A. degree is granted upon completion of 36 credits and the acceptance of a thesis or creative component. Typically, the program will require four semesters of study for students with a bachelor’s degree in landscape architecture. Students with a bachelor’s degree in landscape architecture may also enter a special program to earn both the M.L.A. and the landscape architecture and regional planning (M.C.R.P.) degrees in three years. Graduate students who do not possess a bachelor's degree in landscape architecture may complete additional coursework in the fundamental skill areas of the profession. This is accomplished by concurrent enrollment in the undergraduate program to earn the B.L.A. degree before fully engaging in graduate study. The time necessary to earn the B.L.A. in addition to the M.L.A. will vary according to the student’s background upon admission. Students interested in the concurrent B.L.A./M.L.A. and double degree M.C.R.P. programs should write the department to receive a detailed description of requirements. Graduates have a broad understanding of landscape architecture and related disciplines. They are able to communicate effectively with colleagues in the sciences and/or humanities as well as in the allied professions. Graduates are prepared to work individually and in multidisciplinary teams to address complex problems dealing with the physical environment. They are skilled at undertaking research and/or creative activities and communicating the results of these efforts in a concise and persuasive manner. Courses open for nonmajor graduate credit: 302, 4611, 4801.

Courses Primarily for Undergraduate Students

L A 101. Landscape Architectural Design and Visualization I. (1-8) Cr. 4. F. Prereq: Concurrent enrollment in L A 141 recommended. Introduction to landscape architectural visualization and interpretation. Landscape change and precedence explored through analytic and expressive drawings, photographs, models, and computers.

L A 102. Landscape Architectural Design and Visualization II. (1-6) Cr. 4. S. Prereq: 101. Projects with an emphasis on cultural expression, environmental ethics, and technical constituents of the design process.

L A 103. Introduction to Graphics. Communication for Planners. (2-2) Cr. 3. F. S. Prereq: CRP major. Basic skills to research and evaluate site plans. Graphic formulation of land use plans and land development and zoning ordinances. Focus on both working and presentation graphics.

L A 129. Introduction to Creativity. (Same as Dsn S 129.) (3-0) Cr. 3. F. Creativity and humor in the problem solving process. The use of lateral thinking for developing new ideas.

L A 141. Introduction to Landscape Architecture. (3-0) Cr. 3. Overview of the profession, including: noteworthy works, areas of practice, theories, philosophies, and approaches of various landscape architects. Lectures, discussions, readings.

L A 201. Studio 1: Midwestern Landscape Studies. (1-15) Cr. 6. F. Prereq: Enrollment in the professional program. Investigation, analysis and documentation of the midwestern landscape. Development of aesthetic sensitivity to the geomorphology, vegetation and cultural influences on this landscape. Emphasis on “reading” and representing the region’s varied landscape.

L A 202. Studio 2: Site Planning and Design I. (1-15) Cr. 6. S. Prereq: 201. Fundamental issues of landscape planning and design at a site scale. Projects include design for housing and other land uses. Projects encompass site analysis, precedent study, site engineering and design proposals, expressed through a variety of graphic and written media. An integrated seminar component is devoted to issues relating to housing design factors, social and behavioral design factors, and open space planning.

L A 272. Introduction to Landscape Architectural Theory. (3-0) Cr. 3. F. Prereq: Enrollment in the professional program. Introduction to landscape architecture as a mode of cultural production that shapes and is shaped by various social, political, and economic processes. Exploration of landscape as one of the most permanent, yet dynamic watersheds for this relationship. Lectures, readings, and writing.

L A 273. Landscape Architectural History: Prehistory to 1900. (Same as Dsn S 273.) (3-0) Cr. 3. S. Landscape design concepts as observed over time. Outstanding works and the midwest personalities from pre-history through the 19th century. Landscape design vocabulary and significant literature. Social, economic, political, and technical forces contributing to the evolution of design styles. Lectures, readings, abstracts, reports.

L A 274. The Social and Behavioral Landscape. (Same as Dsn S 274.) (3-0) Cr. 3. S. Exploration of social and behavioral factors pertinent to the design of the domestic, civic, and commercial landscape. The course will focus on design and working familiarity with design principles as they relate to the behavior and activities of people across a broad demographic and cultural spectrum and equip students to apply these principles to the design of exterior environments. Lecture and discussions, including group exercises and field trips.

L A 281. Investigating Landscape Constructions. (1-3) Cr. 2. F. Prereq: Enrollment in professional program. Defining landforms, watersheds, modeling of landforms, exploring material types and their connections, weathering, and impact on natural processes such as hydrology, erosion, and sedimentation. Surface modeling.

L A 301. Site Planning and Design II. (1-15) Cr. 6. F. Prereq: 202. Continuation of exploration of landscape planning and design at the site scale. Students explore greater levels of design complexity and sophistication, particularly in the refinement of detail elements integrated into site-scale design proposals.

L A 302. Regional Landscape Design. (1-15) Cr. 6. S. Prereq: 301 or permission of instructor. Land use and natural resource data used in the regional landscape planning and design process. Review of data characteristics, landscape analysis techniques, environmental impact assessment, geographic information systems, and their applications to regional level design. Identifying opportunities and limitations of landscape characteristics in the planning and design for human use. Nonmajor graduate credit.

L A 303. Landscape Design Studio. (0-12) Cr. 4 each time taken, maximum of 8. S. S. Prereq: Enrollment in the professional program and permission of advisor: Development of solutions for landscape architectural problems at intermediate and advanced levels of design. A maximum of 8 credits may be applied towards graduation.

L A 309. Field Travel. Cr. 1 to 2 each time taken. F. S. Prereq: Enrollment in professional program, permission of advisor and permission of instructor. Observation of professional practice and landscapes in urban, rural, and wilderness areas. Offered on a satisfactory-fail grading basis only.

L A 321. Introduced Plants of the Midwest. (2-3) Cr. 3. F. Prereq: 221. Observation and study of exotic plants and horticultural varieties introduced to and cultivated in the midwest region. Emphasis on functional and aesthetic uses and cultural requirements of plants used in landscape design.

L A 341. Contemporary Landscape Architecture. (1-0) Cr. 1. S. Students assist faculty in the design of the annual lecture series for the Department of Landscape Architecture. Readings of contemporary landscape architects, coordination of guest speakers, and communication of lecture series and lecture attendance.
Courses and Programs: Landscape Architecture

L A 344. Landscape Horticulture. (Same as Hort 344.) (2-0) Cr. 4. S. Prereq: Hort 241 or L A 321 recommended. Principles and practices of designing residential and small business landscapes. Site analysis, soil quality, design techniques, landscape construction plans, and plant material selection for site development. Basic drafting, perspective drawing and plan refinement techniques.

L A 371. Landscape Architectural History: 1900 to Present. (Same as Dsn S 371.) (3-0) Cr. 3. F. Landscape design concepts as observed over time. Outstanding works and significant personalities from 1900 to the present. Historical landscape design vocabulary and significant literature. Social, economic, political, and technical forces contributing to the development of landscape design styles. Lectures, readings, abstracts, reports.

L A 376. Environmental Art. (Dual-listed with 576; same as Art H 376, Dsn S 376) (3-0) Cr. 3. S. Prereq: One art or design history course. Survey of environmental art, 1965-present, including earth art, public art, competitions, memorials.

L A 381. Shaping the Land. (1-3) Cr. 2. S. Prereq: 281. Complex land and water manipulations and their implications on the surrounding environment.

Advanced surface modeling, complex grading plans.

L A 402. Urban Landscape Design. (1-15) Cr. 6. F. Prereq: 302. Comprehensive planning and design for urban sites or for large areas within urban contexts, often engaging outreach projects in Iowa communities. Projects typically include planning for a variety of integrated land uses, and cover the full range of design scales from master planning to proposals for site details. Emphasis on written and verbal as well as graphic communications. Integrated seminar component will engage topical issues in community design, precedent studies, town planning, and urban design principles.

L A 405. Senior Thesis. (0-15) Cr. 6. S. Prereq: 401, 402, 403 and permission of advisor, chair and thesis advisor. Individual advanced forum for the demonstration of sophistication in landscape architectural design. Experimentation and innovation are expected.

L A 441. Professional Practice. (3-0) Cr. 3. F. Prereq: 482. Exploration of professional practice in the private, public, non-governmental organization and academic setting. Develop office management techniques; budgeting, scheduling; proposal preparation; construction supervision; and project management.

L A 450. Landscape Architecture Professional Internship, Study Abroad or National Student Exchange Seminars. (1-1) Cr. 1. S. Prereq: 301. Orientation to and preparation for L A 451.

L A 451. Landscape Architecture Professional Internship, Study Abroad, or National Student Exchange. Cr. R. F. S. S. Prereq: 450, permission of advisor and chair. Exploration of regional landscape design, implementation and history, and theory through professional work experience, out-of-region national study experience or international study experience.

A. Professional Internship.
B. Study Abroad.
C. National Student Exchange.

L A 461. Introduction to GIS Landscape Modeling. (Same as LL 461.) See Iowa Lakeside Laboratory. Nonmajor graduate credit.

L A 478. Topical Studies in Landscape Architecture. (Dual-listed with 578; same as Dsn S 478.) (2-0 or 3-0) Cr. 2 or 3 each time taken. F. S. Prereq: 371 or senior classification or graduate standing.

A. Landscape Design
B. Planting Design
C. Construction
D. History/Theory/Criticism
E. Landscape Planning
F. Urban Design
G. Graphics
H. Honors
I. Interdisciplinary Studies
J. International Studies
K. Computer Applications
L. Ecological Design

L A 480. Introduction to Environmental Planning. (Same as LL 480.) See Iowa Lakeside Laboratory. Nonmajor graduate credit.

L A 481. Landscape Construction. (1-3) Cr. 2. F. Prereq: 381. Solving complex site construction problems with an emphasis on the aesthetic and functional characteristics of site and building landscape elements and their uses of construction materials. Wood technology and structural theory, paving systems, retaining walls, site and preparation of contract documents.

L A 482. Advanced Landscape Construction. (1-3 to 1-15) Cr. 2 - 6 each time taken, maximum of 6 credits applied to degree program. F. S. Prereq: 481. Advanced construction detailing water and irrigation systems, mechanical and electrical systems, site lighting, project scheduling, costing, final contract document preparation, with drawings and specifications.

A. Design practice
B. Design/build

L A 490. Independent Study. Cr. 1 to 4. F. S. S. Prereq: Written approval of instructor and department chair on required form. Investigation of a topic of special interest to the student.

A. Landscape Design
B. Planting Design
C. Construction
D. History
E. Landscape Planning
F. Urban Design
G. Graphics
H. Honors
I. Interdisciplinary Studies
J. International Studies
K. Computer Applications
L. Ecological Design

Courses Primarily for Graduate Students, Open to Qualified Undergraduate Students

L A 501. Seminar. Cr. 3. S. Prereq: Admission to graduate program or permission of instructor. Discussion of landscape design theories. Evaluation of how the landscape is perceived; how that perception is formed, filtered, and focused.

L A 509. Mining Reclamation and Mitigation. (3-0) Cr. 3. Alt. S. Offered 2002. F. S. Prereq: Admission to graduate program or permission of instructor. Historical and cultural attitudes toward mining and reclamation, environmental impacts of mining, mining and reclamation planning, pre-and post-mining inventories, and legal requirements for mining and reclamation.

L A 541. Principles of Research for Landscape Architects. (3-0) Cr. 3. F. Prereq: Admission to graduate program or permission of instructor. Examination of research methods applicable to landscape architectural projects, including bibliographical, historical, numerical, statistical, survey, and geographical methods. Readings, discussions, and application problems. Preparation of a research proposal.

L A 561. Resource Conservation and Management. (3-0) Cr. 3. F. Prereq: Admission to graduate program or permission of instructor. Exploration of landscape patterns and landscape ecology as a framework for land planning and use at local, regional, national, and global scales. Concepts and strategies that strive toward a sustainable earth society. Lectures, readings, interviews, guest speakers.

L A 562. Studio in Resource Conservation and Management. (1-3 to 1-15) Cr. 2 - 6 each time taken, maximum of 6 credits applied to degree program. S. Prereq: Admission to graduate program or permission of instructor. Developing plans and policies that feature ecological landscape description, planning, and resource conservation. Hands-on field experience with professional resource planners and managers.

L A 564. Landscape Planning for Wildlife. (2-3) Cr. 3. Alt. F., offered 2002. Prereq: Admission to graduate program or permission of instructor. Principles of planning wildlife habitat, greenways, corridors and reserves, wildlife habitat requirements and habitat evaluation methods for landscape architects. Planning projects, lectures, oral presentations, written reports, and field trips.

L A 572. Landscape Architectural History and Preservation. (3-0) Cr. 3. F. Prereq: Admission to graduate program or permission of instructor. Research methods applied to the preservation and restoration of the historic landscape. Outstanding landscape architectural works of the 18th, 19th, and 20th centuries will be used to familiarize students with methods of archaeological and documentary research, technical problems of restoration and conservation, and curatorial problems of interpretation and maintenance. Lectures, readings, abstracts, reports.

L A 573. Reading the Common Landscape. (3-0) Cr. 3. S. Prereq: Admission to graduate program or permission of instructor. The evolution and interpretation of the design of ordinary midwestern cultural landscapes. Emphasis on how to read the landscape as a record of social-cultural processes. Selected prototypes of landscapes of rural and urban Iowa and the Midwest are explored.

L A 576. Environmental Art. (Dual-listed with 376; same as Art H 576, Dsn S 576) (3-0) Cr. 3. S. Prereq: Admission to graduate program or permission of instructor. Survey of environmental art, 1965-present, including earth art, public art, competitions, memorials.

L A 578. Topical Studies in Landscape Architecture. (Dual-listed with 478; same as Dsn S 578.) (2-0 or 3-0) Cr. 2 or 3 each time taken. F. S. Prereq: Senior classification or graduate standing.

A. Landscape Design
B. Planting Design
C. Construction
D. History/Theory/Criticism
E. Landscape Planning
F. Urban Design
G. Graphics
H. Honors
I. Interdisciplinary Studies
J. International Studies
K. Computer Applications
L. Ecological Design

L A 580. Thesis, Creative Component Tutorial. Cr. 1 to 4 each time taken, maximum of 4 credits applied to degree program. F. S. S. Prereq. Permission of major professor. Hands-on participation in a creative or research activity in the student’s area of specialization. Development of a detailed prospectus that defines the thesis or creative component.

L A 582. Research Colloquium. (1-0) Cr. 1. F. Prereq: Admission to graduate program or permission of instructor. Examination and discussion of professional practice, research in landscape architecture, and environmental planning through research and projects by faculty in landscape architecture and related fields.
A. Landscape Design
B. Planting Design
C. Construction
D. History
E. Landscape Planning
F. Urban Design
G. Graphics
H. Honors
I. Interdisciplinary Studies
J. International Studies
K. Computer Applications
L. Ecological Design

LAS 199. Special Topic. Cr. 1 to 4. F.S.S.S. Prereq: Written approval of instructor and department chair on required form.

Course for Graduate Students, major or minor

Cross-Disciplinary Programs

African American Studies Program (Minor only) see Index, African American Studies.

American Indian Studies Program (Minor only) see Index, American Indian Studies.

Biological/Premedical Illustration Program (Major or minor) see Index, Biological/Pre-Medical Illustration.

Classical Studies (Minor only) see Index, Classical Studies.

Criminal Justice Studies (Minor only) see Index, Criminal Justice Studies.

Environmental Science (Major or minor) see Index, Environmental Science.

Environmental Studies (Secondary minor or major) see Index, Environmental Studies.

The Honors Program in Liberal Arts and Sciences see Index, Honors Program.

Interdisciplinary Studies Program (Major only) see Index, Interdisciplinary Studies.

International Studies Program (Second major or minor) see Index, International Studies.

U.S. Latino/a Studies Program

Program Director: J. Garcia

U.S. Latino/a Studies is devoted to the study of Mexican Americans, Puerto Ricans, Cuban Americans and other groups of people living in the United States who trace their ancestry to the Spanish-speaking countries of Latin America, and who comprise the fastest-growing ethnic groups in America. U.S. Latino/a Studies is to be distinguished from Latin American studies, which focuses on people living in Latin America. The methodology of U.S. Latino/a Studies is cross-disciplinary, drawing from the methods established in anthropology, sociology, political science, economics, history, literary studies, and other fields.

In addition to the general requirements of a major in Interdisciplinary Studies, (see Index, Interdisciplinary Studies) a major in Interdisciplinary Studies focusing on U.S. Latino/a Studies would require the completion of 24 credit hours. At least 15 of the 24 credits must be in courses numbered 300 and above. These 24 credits in the major focusing on U.S. Latino/a Studies must include the following courses, each of which is worth three credits: LAS 211 (Introduction to U.S. Latino/a Studies), Anth 223 (Peoples and Cultures of Latin America), Engl 344 (U.S. Latino/a Literature); Hist 441 (History of Mexico and Central America), or a course in U.S. Latino/a history, expected to be offered beginning in 1999-2000; Relig 338 (The Latino/a Religious Experience); and Soc 332 (The Latino/a Experience in U.S. Society).

The student must have an average grade of C in the required courses of the major. Fulfillment of the foreign language requirement with Spanish is strongly recommended, but not required. For a list of other eligible courses and more information on the U.S. Latino/a Studies Program, contact the program committee chair.

Linguistics Program (Major or minor; graduate minor) see Index, Linguistics.

Premedical and Preprofessional Health Programs see Index, Preprofessional Study.

Speech Communication Program (Major or minor) see Index, Speech Communication.

Teacher Education Program see Index, Teacher Education, Courses and Programs.

Technology and Social Change (Minor, graduate minor)

Women’s Studies Program (Major or minor) see Index, Women’s Studies.

Courses Primarily for Undergraduate Students

LAS 101. Orientation for Open Option and Preprofessional Students, (1-0) Cr. 0.5. F.S. First 8 weeks. Liberal Arts and Sciences staff. Self-responsibility and university procedures. LAS general education requirements, ISU departments and programs, time management, academic study skills, adjustment to the university environment. Required of all first year students in the Open Option and Preprofessional Health Programs. Offered on a satisfactory-fail grading basis only.

LAS 104. Personal Career Development, (2-0) Cr. 2. F.S. Prereq: 15 credits of ISU coursework. Comprehensive approach to personal career development; intensive self-analysis; utilization of a computerized career exploration system; contact with area professionals; examination of work in modern society and the impact of technology on the future of work; exposure to research skills necessary for career choice implementation.

LAS 111. Elementary Physical Science, (2-4) Cr. 4. S. For students in elementary education and child development. Topics are selected from astronomy, geology, meteorology, physics, and chemistry.

LAS 130. Cross-Cultural Learning Community Seminar, (1-0) Cr. 1. Required seminar for participants in the Cross-Cultural Learning Community. The focus is on developing students’ cross-cultural communication skills, increasing their awareness of international concerns and issues, and introducing them to international sources and opportunities available at Iowa State University. Offered on a satisfactory-fail grading basis only.

LAS 150. Society, Culture and Change in a Diverse Nation, Cr. 3. Prereq: Approval of instructor. An analysis of contemporary patterns of diversity in the United States. The focus will be on patterns of gender, class, ethnicity, and race in the development of a multi-cultural society. There will also be an analysis of multiculturalism and national character.

LAS 211. Introduction to U.S. Latino/a Studies, (3-0) Cr. 3. S. A survey of the people in the United States who trace their origin to the Spanish-speaking countries of Latin America, focusing principally on Mexican Americans, Puerto Ricans, and Cuban Americans. History, religion, social structure, political participation, literature, and other aspects of each group within the framework of various sociological theories of ethnic identity and relationship.

LAS 250. Cultures in Transition: Central Europe, Cr. 3. An interdisciplinary introduction to a world region in a state of rapid social and cultural transition, focused on the Czech and Slovak Republics. Discussion of the historical and political institutions, arts, economy, agriculture, and environment of the new nations of Central Europe.

LAS 290. Special Problems, Cr. 1 to 3 each time taken. F.S.S.S. Prereq: Freshman or sophomore classification. This course may be taken only with permission of the dean of the College of Liberal Arts and Sciences.

G. Catt Center Project. Cr. 1 to 3.

LAS 298. Internship/Co-op, Cr. R. F.S.S.S. Prereq: Permission of Business/Liberal Arts and Sciences Career Services and the College of Liberal Arts and Sciences; sophomore classification. Students participating in an internship or co-op on a full-time basis must register for this course prior to beginning their work experience to remain in full-time student status.

LAS 350. Topics in Interdisciplinary Studies, Cr. 2-4. Prereq: Engl 105. Content varies.

LAS 395. Interdisciplinary Study Abroad.

Interdisciplinary examination of a selected world region via study abroad. Multi-faceted exploration of a selected world region directed at developing a comprehensive understanding of a selected culture’s role in contemporary society.

A. Pre-Departure Seminar, Cr. 1.
B. Humanities, Cr. 1-3.
C. Communications, Cr. 1-3.
D. Mathematics & Natural Science, Cr. 1-3.
E. Social Sciences, Cr. 1-3.

Courses and Programs

Liberal Arts and Sciences 279
LAS 398. Internship/Co-op. Cr. R. F.S.S.S. Prereq: Permission of Business/Liberal Arts and Sciences Career Services and the College of Liberal Arts and Sciences, junior classification. Students participating in an internship or co-op on a full-time basis must register for this course prior to beginning their work experience to remain in full-time student status.

LAS 417. Student Teaching. (Same as C I 417.) Cr. var., each time taken. F. S. Prereq: Engl 494, or F Lng 496, or Math 497, or Music 466, or LAS 492 or 493A and 493B, or Sp Cm 498B; admission to teacher education; approval of coordinator during semester before student teaching. Evaluation of instruction, lesson planning, and teaching in the liberal arts and sciences.

A. History/Social Sciences
B. Physical Sciences
C. Mathematical Sciences
D. Biological Sciences
E. English and Literature
F. Speech Communication
G. Foreign Languages and Literatures
H. Earth Sciences
I. Music—Secondary
J. Music—Elementary
K. Music
L. International Student Teaching
P. Project Opportunity Cr. 8.

LAS 480. Field Experience for Secondary Teaching Preparation. (Same as C 480.) Cr. 1 to 2 each time taken, maximum of 2. Observation and participation in a variety of school settings after admission to the teacher preparation program. Permission of area coordinator required prior to enrollment. (S/F grading may be used in some offerings of some sections)

A. History/Social Sciences
B. Physical Sciences
C. Mathematical Sciences
D. Biological Sciences
E. English and Literature
F. Speech Communication
G. Foreign Languages and Literatures
H. Earth Sciences
K. Music

LAS 490. Independent Study. Cr. var. F.S.S.S. Prereq: Permission of the dean of the College of Liberal Arts and Sciences. No more than 9 credits of LAS 490 may be applied toward graduation. This course may be taken only with the permission of the dean of the College of Liberal Arts and Sciences.

G. Catt Center Project

LAS 492. Methods for Teaching Science. (Same as C 492.) See Curriculum and Instruction.

LAS 493. Methods of Teaching History/Social Sciences. (Same as C 493) 3-0 Cr. 3. F. S. Prereq: Admission to teacher education and 30 credits in subject-matter field. Course is taught at Ames High School. Students observe classes, plan and implement lessons. Course content also includes determining appropriate learning objectives, questioning strategies, cooperative learning activities, use of technology, curriculum development, differentiating instruction, evaluation, and classroom management.

LAS 498. Internship/Co-op. Cr. R. F.S.S.S. Prereq: Permission of Business/Liberal Arts and Sciences Career Services and the College of Liberal Arts and Sciences, senior classification. Students participating in an internship or co-op on a full-time basis must register for this course prior to beginning their work experience to remain in full-time student status.

LAS 499. Internship. Cr. 1 to 4. F.S.S.S. Prereq: Permission of the dean of the College of Liberal Arts and Sciences. Work experience in professional setting appropriate to the student’s degree program. Academic work under faculty supervision may include written projects, reports, and guided reading.

Library
Olivia M. A. Madison, Dean of Library Services

Professors: Cole, Madison

Professors (Emeritus): Cook, Dobson, Galejs, Kuhn, McNee, Morris, Sage, Yates

Associate Professors: Boydstun, Gerhard, Goedecken, Gregory, Hanthorn, Jackson, Knox, Kushkovski, Lawson, Lee, Leves, Marinko, McKieman, Osmun, Parsons, Pedersen, Pelzer, Shenrock, Wiese, Wool

Associate Professors (Emeritus): Mathews, Wendl

Undergraduate Study
The library offers non-credit presentations for undergraduate students in the effective use of the library’s resources. The presentations cover electronic and print sources of information in varied fields. Arrangements are made by individual course instructors.

Graduate Study
The library provides non-credit presentations to assist faculty and graduate students in the effective use of the library’s research resources. The presentations cover electronic and print sources of information in varied fields. Offered F.S.S. For more information, call the library at 294-3642.

Courses Primarily for Undergraduate Students
Lib 160. Library Instruction. (1-0) Cr. 0.5. F.S. 8 weeks. Prereq: for students whose native language is not English: Completion of English 101 requirement. Use of libraries and information sources, both print and electronic, including locations and services of the University Library with an emphasis on the research process. To be taken as early as possible in the student’s undergraduate career. See course descriptions of Eng 105 and 105H for prerequisite related to Lib 160. Offered on a satisfactory-fail grading basis only.

Courses and Programs Liberal Arts and Sciences

Linguistics

www.engl.iastate.edu/tesling/ba.html

(Interdepartmental Program)

Program Committee: D. Bratsch-Prince, J. Dow, D. Douglas, B. Schwarte, C. Thogmartin, H. Venkatagiri, J. Wagner

Undergraduate Study
The linguistics program is a cross-disciplinary program in the College of Liberal Arts and Sciences designed to meet the needs of students interested in various aspects of language—its structure, history, varieties, meanings, and uses. The program includes courses in anthropology, English, computer science, foreign languages and literatures, psychology, and speech communication, thus providing a multi-disciplinary approach to the study of human language.

Courses in linguistics serve as background for students interested in any career that involves working with language, such as anthropology, computer word processing, foreign language teaching, teaching English both as a first and as a second language, psychology, sociology, speech-language pathology and audiology.

In the College of Liberal Arts and Sciences, courses in linguistics can be applied as electives or as part of the group requirements. They may also be used in a minor or in a major.

Majors in linguistics complete a minimum of 33 hours in courses from the list below. Courses specifically required are Ling 219, 309, 371, 419, and one of the following: 420, 492, or 498. Credit for only one course from the following set may be applied toward the major: 486, 487, 524, 525. To graduate with a major in linguistics, a student must earn a C (not a C–) or better in each of the courses taken to fulfill the minimum requirements of the program of study in linguistics. Students who believe they have extenuating circumstances may appeal to the chair of the supervisory committee. In addition, majors in linguistics must show proficiency in a foreign language equivalent to that achieved after two years of university-level study.

Minors in linguistics are usually individually tailored to the interests of the student, who consults with the chair of the supervisory committee for linguistics. All minors must have a minimum of 15 credits in linguistics, of which 6 must be in courses numbered over 300. All programs must include Ling 219 or 309.

English proficiency requirement: The linguistics program requires grades of C or better in each of the following: English 104, 105 (or 105H); and one of English 305, 314, or a Foreign Language 370 course.

For information about using linguistics courses in an interdisciplinary studies major, see Liberal Arts and Sciences, Cross-Disciplinary Studies.

Graduate Study
A graduate minor in linguistics is offered through a cooperative agreement with the departments and programs of Anthropology, Computer Science, English, Foreign Languages and Literatures, Psychology, and Speech Communication. The minor permits students to investigate a variety of aspects of linguistics, emphasizing the ability to think about language in a systematic and disciplined way and to apply the methods of the field to research problems in their own disciplines.

For the master’s degree, a declared minor consists of 9 credits in linguistics including two foundation courses (511 and either 514 or 516) and one elective from the list of courses approved for graduate credit. For the Ph.D. degree, the minor consists of 12 credits in linguistics including three foundation courses (511, 514, and 516) and one elective. It is recommended that the elective course be taken in a department other than English. Additional
Courses beyond those listed below may be used as electives. The chair of the supervisory committee can provide information about these.

At least one member of the linguistics faculty will serve on a student’s program of study committee. A list of faculty members may be obtained from the chair of the supervisory committee. Ph.D. candidates will write one section of the preliminary examination on an area of linguistics. All students in the minor are expected to attend linguistics lectures and colloquia. Students in English with a specialization in Teaching English as a Second Language/Linguistics are not eligible for a graduate minor in linguistics.

Courses open for nonmajor graduate credit: 331, 413, 420, 422, 425, 461, 462, 463, 471, 491, 492, 498.

Courses Primarily for Undergraduate Students

Ling 207. Introduction to Symbolic Logic. (Same as Phil 207.) See Philosophy.

Ling 219. Introduction to Linguistics. (Same as Engl 219.) See English.

Ling 220. Descriptive English Grammar. (Same as Engl 220.) See English.

Ling 275. Introduction to Communication Disorders. (Same as CmDis 275.) See Speech Communication.

Ling 286. Basic Sign Language. (Same as CmDis 286.) See Speech Communication.

Ling 309. Linguistic Anthropology. (Same as Anthr 309.) See Anthropology.

Ling 325. Nonverbal Communication. (Same as ComS 325.) See Speech Communication.

Ling 331. Theory of Computing. (Same as ComS 331.) See Computer Science. Nonmajor graduate credit.

Ling 371. Phonetics and Phonology. (Same as CmDis 371.) See Speech Communication.

Ling 413. Psychology of Language. (Same as Psych 413.) See Psychology. Nonmajor graduate credit.

Ling 419. Grammatical Analysis. (Dual-listed with 516; same as Engl 419.) See English.

Ling 420. History of the English Language. (Same as Engl 420.) See English. Nonmajor graduate credit.

Ling 422. Women, Men, and the English Language. (Same as Engl 422.) See English. Nonmajor graduate credit.

Ling 425. Second Language Learning and Teaching. (Same as Engl 425.) See English. Nonmajor graduate credit.

Ling 461. Spanish Linguistics. (Same as Span 461.) See Foreign Languages and Literatures. Nonmajor graduate credit.

Ling 462. Contrastive Analysis of Spanish/English Syntax. (Same as Span 462.) See Foreign Languages and Literatures. Nonmajor graduate credit.

Ling 463. Hispanic Dialectology. (Same as Span 463.) See Foreign Languages and Literatures. Nonmajor graduate credit.

Ling 471. Language Development. (Same as CmDis 471.) See Speech Communication. Nonmajor graduate credit.

Ling 486. Methods in Elementary School Foreign Language Instruction. (Same as F Ling 486.) See Foreign Languages and Literature.

Ling 487. Methods in Secondary School Foreign Language Instruction. (Same as F Ling 487.) See Foreign Languages and Literatures.

Ling 489. Undergraduate Seminar. (Same as Engl 489.) See English. Acceptable only when offered as a course in linguistics.

Ling 490D. Independent Study: Linguistic Anthropology. (Same as Anthr 490D.) See Anthropology.

Ling 491. French Linguistics. (Same as Franch 491.) See Foreign Languages and Literatures. Nonmajor graduate credit.

Ling 492. History of the Romance Languages. (Same as F Ling 492.) See Foreign Languages and Literatures. Nonmajor graduate credit.

Ling 498. History of the Germanic Language. (Same as F Ling 498.) See Foreign Languages and Literatures. Nonmajor graduate credit.

Courses Primarily for Graduate Students, Open to Qualified Undergraduate Students

Ling 500. Language and Culture. (Same as Anthr 500.) See Anthropology.

Ling 511. Introduction to Linguistic Analysis. (Same as Engl 511.) See English.

Ling 525. Methods in Teaching Listening and Speaking Skills to Nonnative Speakers of English. (Same as Engl 525.) See English.

Ling 527. Discourse Analysis. (Same as Engl 527.) See English.

Ling 590. Special Topics. (Same as Anthr 590.) See Anthropology. Acceptable only when taught as a course in linguistics.

Ling 590B. Special Topics: Teaching English as a Second Language (TESL)/Linguistics. (Same as Engl 590B.) See English.

Ling 592. History of the Germanic Languages. (Same as Engl 592.) See English.

Ling 593. Nonverbal Communication. (Same as ComS 593.) See Speech Communication.

Ling 595. Language Acquisition. (Same as Engl 595.) See English.

Ling 598. Advanced Semantics. (Same as Engl 598.) See English.

Ling 599. Language in Society. (Same as Engl 599.) See English.

Ling 599B. Special Topics: Teaching English as a Second Language (TESL)/Linguistics. (Same as Engl 599B.) See English.

Ling 600. Language Development. (Same as CmDis 600.) See Speech Communication. Nonmajor graduate credit.

Ling 618. Language and Culture. (Same as Engl 618.) See English.

Ling 662. Methods in Elementary School Foreign Language Instruction. (Same as F Ling 662.) See Foreign Languages and Literature.

Ling 666. Methods in Secondary School Foreign Language Instruction. (Same as F Ling 666.) See Foreign Languages and Literatures.

Ling 667. Undergraduate Seminar. (Same as Engl 667.) See English. Acceptable only when offered as a course in linguistics.

Ling 690. Independent Study. Semantics. (Same as Engl 690.) See English.

Ling 691. History of the Romance Languages. (Same as F Ling 691.) See Foreign Languages and Literatures. Nonmajor graduate credit.

Ling 698. History of the Germanic Languages. (Same as F Ling 698.) See Foreign Languages and Literatures. Nonmajor graduate credit.

Ling 700. Language and Culture. (Same as Anthr 700.) See Anthropology.

Ling 711. Introduction to Linguistic Analysis. (Same as Engl 711.) See English.

Ling 725. Methods in Teaching Listening and Speaking Skills to Nonnative Speakers of English. (Same as Engl 725.) See English.

Ling 726. Computer Assisted Language Learning. (Same as Engl 726.) See English.

Ling 727. Discourse Analysis. (Same as Engl 727.) See English.

Ling 790. Special Topics. (Same as Anthr 790.) See Anthropology. Acceptable only when taught as a course in linguistics.

Ling 790B. Special Topics: Teaching English as a Second Language (TESL)/Linguistics. (Same as Engl 790B.) See English.

Management

Russell N. Lacznia, Chair of Department

Distinguished Professors: Wortman

University Professors: Morrow

Professors: Chacko, Hunger, McElroy, Schrader, Van Aukcn, Weibel

Associate Professors: Blackburn, Johnson

Associate Professors (Emeritus): Aitchison

Assistant Professors: DeMarie, Herrman, Reed

Courses and Programs Management 281

Undergraduate Study

For undergraduate curriculum in business, major in management, see College of Business, Curricula.

The Department of Management offers a major in management. Students will complete the general education requirements (including business foundation courses), and business core requirements for the bachelor of science degree (B.S.).

Management is a broadly defined discipline and activity, which is neither industry nor function specific. Management concepts, theories, techniques, and skills are applicable to all business functional areas and are essential components for successful organizations.

Management requires sound conceptual, technical, and human skills for the effective utilization of organizational resources. The management major at Iowa State University encompasses the diversity of these skills by providing students with alternative programs of study from which they can select a curriculum that most closely matches their academic interests and career opportunities. Within the management major, students can select from three options: entrepreneurship and strategy, human resources management or general business.

The entrepreneurship and strategy option is designed for students interested in acquiring skills associated with creating and managing new and small businesses. Students are required to take Mgmt 310 and 377, as well as either Mgmt 413 or 415. Also, students select three additional courses from an approved list to complete the 18-credit major. These three choice classes are designed to enable the student to tailor the major to their specific areas of interest.

The human resources management option allows students to focus on behavioral and labor issues surrounding the management of people in organizations. Students choosing the option are required to take Mgmt 371 and 471, plus four additional courses selected from an approved list.

The general business option enables students to gain a broad understanding of the functional areas of business. Students selecting this option are required to take the following five courses: Acct 383, Fin 310, Mgmt 371, Mkt 447, and Mgmt 471. These required courses are designed to expose a student to the technical, behavioral, and functional nature of businesses and the integrative nature of management. In addition, students choose one course from an approved list to round out the 18-credit major. Students may also choose to utilize elective credits to take other courses that are of interest beyond the 18 required credits.

The department also offers a minor for College of Business students with a different major. They are required to take 15 credits from a list of approved courses, of which 9 credits need to be stand alone.
Courses and Programs

Management

Graduate Study

The Department of Management participates in three graduate programs: the M.S. in Business, the M.B.A. full-time and part-time programs, and the interdisciplinary M.S. degree in Industrial Relations. The M.S. in Business is a 30-credit curriculum culminating in a thesis. The M.B.A. program is a 48-credit hour curriculum. Twenty four of the 48 credit hours are core courses and the remaining 24 are graduate electives. A student can obtain a specialization in Human Resource Management by taking 12 credit hours of courses from a selected list of courses. Finally, the department is one of several participating departments offering coursework leading to an interdisciplinary M.S. in industrial relations.

Courses open for nonmajor graduate credit: Mgmt 413, 414, 415, 472, 479.

Courses Primarily for Undergraduate Students

Mgmt 310. Entrepreneurship and Innovation. (3-0) Cr. 3. F.S. Prereq: Econ 101. An introduction to the entrepreneurial process with emphasis on starting a new business. How to analyze opportunities, develop an innovative product, organize, finance, market, launch, and manage a new venture. Deals with the role of the entrepreneur and the importance of a business plan. Speakers and field project.

Mgmt 313. Feasibility Analysis and Business Planning. (3-0) Cr. 3. S. Prereq: 310. Not available for credit to business students. Developing an idea for a new business venture by conducting a feasibility study, researching the potential market, analyzing the competition, and writing a formal business plan. Basic business functions are discussed in terms of their application to corporate feasibility analysis and writing a business plan for an entrepreneurial venture.

Mgmt 370. Management of Organizations. (3-0) Cr. 3. F.S.SS. Prereq: Econ 101. A management functions approach is used to explain what managers do in organizations; how they deal with external constituents, how they structure their companies, and how they deal with employees. A contingency approach is used as a framework for understanding how to increase the effectiveness and efficiency of organizations in today’s dynamic, highly competitive business environment.

Mgmt 371. Organizational Behavior. (3-0) Cr. 3. F.S. Prereq: 370. The study of individual attributes, interpersonal relations, and employee attitudes in organizations. Instructional emphasis is placed on how management concepts such as reward systems, job design, leadership, teams, etc. can be used to manage employee attitudes and behavior.

Mgmt 377. Competitive Strategy. (3-0) Cr. 3. F. Prereq: Econ 101. Developing competitive strategy and achieving competitive advantage in firms, including: industry analysis, generic strategies, hypercompetition, competing against time, and building distinctive capabilities.

Mgmt 413. Launching New Ventures. (3-0) Cr. 3. F.S. Prereq: 310, 377, Mkt 340, Fin 301. Initiation, acquiring, and building an entrepreneurial activity either within or outside existing businesses. Emphasis on feasibility study and on proposing a realistic business plan for a new venture. Managing an entrepreneurial activity for sustained success. Nonmajor graduate credit.

Mgmt 414. International Management. (3-0) Cr. 3. F. The nature and economic role of the multinational firm and international business strategies, including the impact of legal, political, and cultural variables upon firm performance and managerial activity; case studies illustrate interdependent nature of functional areas of business projected across national boundaries. Nonmajor graduate credit.

Mgmt 415. Managing New Ventures. (3-0) Cr. 3. F.S. Prereq: 370, Mkt 340, Fin 301; TriLog 360, POM 320. Examination of business problems and issues in new and growing firms. Emphasis is on analyzing existing businesses. Includes a field project. Nonmajor graduate credit.

Mgmt 419. Social Responsibility of Business. (3-0) Cr. 3. S. A consideration of the role of business in society. Critical analysis of ethical, managerial, and public issues as they affect the corporation.

Mgmt 471. Personnel and Human Resource Management. (3-0) Cr. 3. F.S. Prereq: Junior standing. Recruitment and selection, utilization, and development of people in organizations. Examination of each personnel function; interrelationships among the functions.

Mgmt 472. Management of Diversity. (3-0) Cr. 3. F.S. Prereq: Junior classification. One of the most crucial problems in organizations today is the management of diversity. Attempts to define the relationship between equal employment opportunity/affirmative action, which has a legal basis, and diversity which has an educational basis. Organized around the concepts of: (1) cultural diversity and cultural unity; (2) development of skills and tools to manage diversity; and (3) structure of diversity development programs in organizations. Nonmajor graduate credit.

Mgmt 478. Strategic Management. (3-0) Cr. 3. F.S.SS. Prereq: 370, POM 320, Fin 301; Mkt 340; TriLog 360, graduate formulation of strategy, implementation, and evaluation of control in today’s organizations. Emphasis is on strategic planning and decision making using the case method and/or project.

Mgmt 479. Management Seminar. (3-0) Cr. 3. S. Prereq: Senior classification in management and permission of the instructor. Discussion of new or controversial issues in management. Course utilizes advanced material and research drawn from topical areas within management. Nonmajor graduate credit.

Mgmt 490. Independent Study. Cr. 1 to 3 each time taken. Prereq: 370, senior classification, permission of instructor.

Courses Primarily for Graduate Students, Open to Qualified Undergraduate Students

Mgmt 507. Organizational Behavior. (2-0) Cr. 2. F.S. Prereq: Graduate classification. Understanding human behavior in organizations and the nature of organizations from a managerial perspective. Special emphasis is placed on how individual differences, such as perceptions, personality, and motivation, influence individual and group behavior in organizations and on how behavior can be influenced by job design, leadership, groups, and the structure of organizations.

Mgmt 511. Ethics and Social Responsibility. (1-0) Cr. 1. S. Prereq: Graduate classification. The ethical issues, moral dilemmas, and stakeholder responsibilities embraced by today’s corporate decision makers. The morality of current management models and practices. Corporate governance and control, moral reasoning in groups, whistleblowing, employee safety, truth in advertising, environmental pollution, plant closings, insider trading, employee rights.

Mgmt 566. Entrepreneurship and New Business Creation. (3-0) Cr. 3. Prereq: 512. The essentials of starting and operating a new business. Topics include current research on entrepreneurial perspectives, starting and developing a new business, financing the venture, managing the growing firm, and special issues.

Mgmt 570. Managing Employee Attitudes and Behaviors. (3-0) Cr. 3. F.S. Prereq: 371 or 507 or Psych 450. Advanced topics germane to the management of individuals and groups over their work lives; sustained work commitment, motivation and job/career satisfaction, absenteeism, turnover, stress, leadership and career development (e.g., career ladders, mentoring).

Mgmt 571. Seminar in Personnel and Human Resources Management. (3-0) Cr. 3. S. Prereq: 371 or 507 or Soc 420. Topics and issues in personnel management with a focus on the management of human resources in organizations. Current personnel practices, philosophies, and behavioral science research.

Mgmt 573. Employment Law for Managers. (3-0) Cr. 3. Prereq: Graduate classification. Survey of employment law for managers. Topics include: hiring employees, employment practices (e.g., handbooks, harassment, drug testing, discipline), union relations, and termination of employment (e.g., COBRA).

Mgmt 575. Compensation Management. (3-0) Cr. 3. F. Prereq. 571. Concepts, techniques, and issues dealing with compensation of the workforce. The impact of government legislation as well as organizational and societal issues.

Mgmt 581. Strategic Planning and Environmental Analysis. (3-0) Cr. 3. S. Pr. Prereq: 501 or permission of instructor. Discussion of concepts and techniques used in long range strategic planning. Examination of planning practices in business and not-for-profit organizations. Topics include environmental scanning, industry analysis, forecasting, corporate and competitive strategies, and tactics.

Mgmt 590. Special Topics. Cr. 1 to 3 each time taken. F.S.SS. Prereq: Permission of instructor. For students wishing to do individual research in a particular area of management.

Management Information Systems

(Administered by the Department of Logistics, Operations and Management Information Systems)

Michael R. Crum, Chair of Department

Distinguished Professors: Allen, Baumel

Professors: Crum, Poist, Wacker

Professors (Emeritus): Thompson, Voorhees

Associate Professors: Hendrickson, Lummus, Mennecke, Nilakanta, Norris, Premkumar, Walter

Assistant Professors: Hackbart, Johnson, Montabon, Ruben, Strader, Suzuki, Zhu

Instructors (Adjunct): Blanshan, Choobineh, Clayton

Undergraduate Study

For undergraduate curriculum in business, major in management information systems, (MIS) see College of Business, Curricula.
and management of information systems to prepare them to provide effective information services and support to organizations. The coursework is designed to provide the technical and conceptual skills associated with the use of information technology in business organizations. The program will impart knowledge on existing and emerging information technologies and their impact on the IS function; train to critically analyze business processes, identify inefficiencies and problems, assess information requirements, create business solutions and technical specifications for the supporting system; provide expertise to design and develop database applications using the latest database technologies; provide expertise in the latest telecommunication technologies; train in interpersonal and communication skills to effectively interact with various information systems’ clients; and provide managerial skills to manage IS projects.

To enter the MIS major, students must achieve a cumulative ISU grade-point average of 2.75 or a grade point average of 2.75 in the foundation courses (see College of Business Curriculum). The MIS major requires students to take six courses. The required courses are: Com S 201, MIS 331, MIS 432, MIS 433, MIS 435. In addition they will take one additional elective course from an approved list. These courses are designed to provide the conceptual, technical, and managerial skills necessary to design and develop systems in organizations. The department also offers a minor for College of Business students with a different major. They are required to take 15 credits from a list of approved courses, 9 credits of which may not be used to satisfy any other requirement.

Graduate Study

The MIS area participates in two graduate programs in the College of Business—M.S. in Business and, full-time and part-time M.B.A. programs. The M.S. program is a 30 credit hour curriculum with a thesis. The M.B.A. program is a 48 credit hour curriculum. Twenty-four of the 48 credit hours are core business courses and the remaining 24 credit hours are graduate electives. Students can obtain a MIS specialization in the M.B.A. program by taking 12 credit hours of graduate MIS courses from a selected list of courses. The MIS area also participates in an interdisciplinary MS program in Information Assurance. Courses open for nonmajor graduate credit: 432, 433, 435 and 438.

Courses Primarily for Undergraduate Students

MIS 330. Management Information Systems. (3-0) Cr. 3. Prereq: Com S 103 or equivalent. The role of information technology in organization. Overview of methodologies for design and development systems including decision support systems, expert systems, data bases, end-user computing, etc. Computer applications relate concepts to practice. Lecture and laboratory work emphasizes the enabling role of IT in contemporary organizations.

MIS 331. File Structures and Programming. (3-0) Cr. 3. Prereq: 330, Com S 207. Introduction to the concepts and use of data structures, file accesses and object oriented programming methodologies in contemporary business environments. Object orienting programming languages such as C++ used. Application development environments will be covered.

MIS 432. Information Systems Analysis. (3-0) Cr. 3. Prereq: 330, Com S 201. Critical analysis of business processes, data and process modeling, feasibility studies, CASE tools, and developing system design specifications. Nonmajor graduate credit.

MIS 433. Database Management Systems. (3-0) Cr. 3. Prereq: 333, development and implementation. Focus on data models, both classical and object oriented. Uses relational and/or object oriented database management systems. Nonmajor graduate credit.

MIS 435. Business Telecommunications. (3-0) Cr. 3. Prereq: 331. Overview of communications technology used in various business applications - local area network, wide area network, broad band network, wireless and voice network. Understand the tele of protocols, particularly internet protocols, in communications. Train to analyze network requirements, design and implement local area networks. Nonmajor graduate credit.

MIS 436. Information Systems for Entrepreneurs. (3-0) Cr. 3. Prereq: 330. Only for non-MIS majors. Provides the basic skills to manage a small IS operation in a small business/new venture. Topics will focus on small IS operations. Training will be provided on basics of hardware/software, databases, nuts and bolts, and common small business IS applications.

MIS 438. Information Systems Development. (3-0) Cr. 3. Prereq: 432, 433. Design of business systems using contemporary tools and methods such as SQL, CASE tools, OOD tools, etc. Focuses on synthesizing concepts from earlier MIS courses. Nonmajor graduate credit.

MIS 439. Topics in Management of Information Systems. (3-0) Cr. 3. Prereq: 433. Permission of instructor. A variety of topics will be covered and topics may vary between semesters. Some of the topics are information resources management, electronic commerce, decision support systems, and expert systems.

MIS 490. Independent Study. Cr. 1 to 3 each time taken. Prereq: 330, senior classification, permission of instructor.

Courses Primarily for Graduate Students. Open to Qualified Undergraduate Students

MIS 503. Management Information Systems. (2-0) Cr. 2. Prereq: Graduate classification. Current theories and practices of information processing and decision making. Focus on information technology and its uses in improving work practices, products, and tools for decision support. Use of artificial intelligence and other developments in technology. Competitive pressures and risks of information technology (IT). Setting IT strategy, information system planning and development of enterprise architecture. Focus on systems development and implementation.

MIS 531. Business Software Development. (3-0) Cr. 3. Prereq: 503 or equivalent. A survey of business-oriented programming languages with emphasis on design, writing, debugging and testing of computer programs for business transaction processing, and managerial decision support. Topics include structured programming and file processing.

MIS 533. Data Management for Decision Makers. (3-0) Cr. 3. Prereq: 503 or equivalent. The course will address the data needs of functions such as marketing, finance, production etc. The course will focus on teaching advanced data base management skills needed to design, develop and use database, data warehousing and data mining systems for effective decision support. Importance of contemporary technologies will be stressed.

MIS 534. Electronic Commerce. (3-0) Cr. 3. Prereq: 503 or equivalent. Overview of how modern communication technologies including the internet and world wide web have revolutionized the way we do business. It will provide an understanding of various Internet technologies and how companies are using the Internet for commercial purposes. The course will also explore future scenarios on the use of these technologies and their impact on various industries and the society.

MIS 535. Telecommunications Management. (3-0) Cr. 3. Prereq: 503 or equivalent. Issues involved in the management of telecommunications function. Overview of communications technology used in various business applications, local area network, wide area network, voice network. Internet technologies and protocols. Analyzing the strategic impact of these technologies on organizations. Strategic planning for telecommunications, including network planning and analysis.

MIS 537. Information Resource Management. (3-0) Cr. 3. Prereq: 503 or consent of the instructor. Information Resource Management (IRM) is a popular concept of viewing information systems resources from a strategic resource perspective. This course will present and discuss the IRM concept as well as provide pragmatic tools for implementing this approach within the organization. Topics will include: IS outsourcing, total cost of ownership, IS planning and strategic analysis, justification for IT investment, management of IT human resources, traditional project management theory, and project management techniques derived from the Theory of Constraints (TOC).

MIS 538. Business Processes and Systems Development. (3-0) Cr. 3. Prereq: 503 or equivalent. Discusses the theory and techniques used to analyze information systems to support various business processes. The course also discusses the theory and concepts related to business systems design such as data and process modeling, relational data, database design, systems design, and developing technical specifications for a business system. A working prototype for a business application will be developed using popular software development packages.

MIS 539. Topics in Management of Information Systems. (3-0) Cr. 3. Prereq: 503 or equivalent. A variety of topics may be offered in different semesters. Topics may include electronic commerce, information resources management, decision support systems, and expert systems.

MIS 590. Special Topics. Cr. 1 to 3 each time taken. Prereq: Permission of instructor. For students wishing to do individual research in a particular area of MIS.

MIS 599. Creative Component. Cr. 3. Prereq: Graduate classification, permission of supervisory committee chair. Preparation and writing of creative component.

Courses for Graduate Students

MIS 699. Research. Cr. 3 to 6, arranged. F.S.SS. Prereq: Graduate classification, permission of major professor. Research.
Courses open for nonmajor graduate credit: 410, 442, 444, 447, 449 and 492.

Courses Primarily for Undergraduate Students

Mkt 340. Principles of Marketing. (3-0) Cr. 3. F.S.SS. Prereq: Econ 101. The role of marketing in society. Markets, marketing institutions, and marketing functions with emphases on product, price, marketing communication, and marketing channel decisions.

Mkt 343. Personal Sales. (3-0) Cr. 3. Prereq: 340. Analysis of the theory and practice of personal selling with the context of relationship marketing and sales force automation. Topics include: goal setting, prospecting, time/territory management, questioning, presentations, objections, commitment and customer service; simulations of selling situations.

Mkt 410. Promotional Strategy. (3-0) Cr. 3. F.S. Prereq: Credit or enrollment in 447. Principles, concepts, and techniques of communication and implementation of promotional strategies. Coordination of a variety of promotional elements: advertising, sales promotion, direct marketing, public relations and publicity of web communications, and personal selling. Nonmajor graduate credit.

Mkt 442. Sales Management. (3-0) Cr. 3. F.S. Prereq: 340. Functional aspects of sales force management; personal selling methods; procedures for recruiting, selecting, and training new salespeople; compensation and expense control systems; problems of sales force motivation and supervision; methods of territorial and quota assignment; sales department budgets; distributor-dealer relationship; other selected topics. Nonmajor graduate credit.

Mkt 443. Strategic Marketing Management. (3-0) Cr. 3. F.S. Prereq: 444, 447. Analysis of major elements of strategic marketing management. May include case studies or business simulations involving decision making using marketing tools from previous courses. (For marketing majors only.)

Mkt 444. Fundamentals of Marketing Research. (3-0) Cr. 3. F.S. Prereq: 340. Stat 227. Marketing research techniques: problem formulation, research design, questionnaire construction, sampling, data collection procedures, and analysis and interpretation of data related to marketing decisions. Nonmajor graduate credit.

Mkt 446. Retailing. (3-0) Cr. 3. F.S. Prereq: 340. Basic areas of retail management: buying, merchandising, retail property, store layout, store design, credit management, and inventory control. Emphasis on practical application of retail management principles.

Mkt 447. Fundamentals of Consumer Behavior. (3-0) Cr. 3. F.S. Prereq: 340. Study of how consumers select, purchase, use, and dispose of goods and services. Includes analyses of how markets and others influence these processes. Application of concepts and methods of the behavioral sciences to marketing management decision making. Nonmajor graduate credit.

Mkt 448. Fundamentals of International Marketing. (3-0) Cr. 3. F.S. Prereq: 340. Introduction to terms used in international marketing and sources of information on international markets. Development of sensitivity toward foreign business environments and familiarity with operations of multinational corporations. Nonmajor graduate credit.

Mkt 449. Marketing Seminar. (3-0) Cr. 3. Prereq: 340. Analysis of current issues and problems in marketing with emphasis on new theoretical and methodological developments. Additional seminars may be offered. Nonmajor graduate credit.

Mkt 490. Independent Study. Cr. 1 to 3 each time taken. Prereq: 340, senior classification; permission of the instructor.

Mkt 492. Comparative Marketing. (3-0) Cr. 3. SS. Prereq: 340. The course is designed to provide experience to students in culture, social, economic, and political environment of marketing in a foreign country. Students complete a term project (e.g., a market plan) based on information collected in the foreign country. Students attend briefings by experts/officials of private and public organizations. Nonmajor graduate credit.

Courses Primarily for Graduate Students, Open to Qualified Undergraduate Students

Mkt 504. Marketing. (2-0) Cr. 2. Prereq: Graduate classification. The scope of marketing and the identification and assessment of marketing opportunities. Consumer behavior and decision making process, organizational buyer behavior, and the role of research in the marketing planning process. Market definition and analysis, segmentation, competitor analysis, targeting and strategic decisions involved in developing the marketing program. Developing marketing strategies and plans that implement the overall strategic marketing plan. Organizational design for marketing strategy implementation and control, and effectiveness.

Mkt 540. Marketing Management. (3-0) Cr. 3. F.S. Prereq: 504. Strategic marketing and decision making, with emphasis on cases utilizing qualitative and quantitative techniques and modeling approaches.

Mkt 541. International Marketing. (3-0) Cr. 3. F.S. Prereq: 504, 509. Scope and nature of global marketing operation; the context of international environment in which firms operate. Recent developments in international business and marketing environment, with emphasis on cases utilizing qualitative and quantitative techniques, and frameworks for better understanding of the basic forces driving international business and marketing operations. Development of market entry strategies and global marketing mix policies, as well as export operations. Organizational issues related to the globalization of the firm.

Mkt 542. New Product Development and Marketing. (3-0) Cr. 3. S. Prereq: 504. Principles and concepts of new product development and introduction; decision areas include market definition and structure, idea generation, concept evaluation, test marketing, launch tracking, and global product planning; models and techniques of new product evaluation used by consumer product companies.

Mkt 544. Marketing Research. (3-0) Cr. 3. S. Prereq: 504, Stat 328 or 401. Marketing research methods are examined with emphasis on the use of advanced research methods in business research. Application of advanced sampling, measurement, and data analysis methods in research on market segmentation, market structure, consumers’ perceptions and decision processes, marketing communication, new product development, and pricing.

Mkt 547. Consumer Behavior. (3-0) Cr. 3. S. Prereq: 504. The behavior of consumers. Intensive review of literature from relevant disciplines. Applications of concepts and methods of the behavioral sciences to marketing management decision making.

Mkt 590. Special Topics. Cr. 1 to 3 each time taken. Prereq: Permission of instructor. For students wishing to do individual research in a particular area of marketing.

Undergraduate Study

Undergraduate curriculum in business, major in marketing, see College of Business, Curricula.

In addition to the business core, marketing majors are required to complete 18 credits of marketing or department-approved courses. Included in these 18 credits are three required courses: Mkt 443, 444, and 447.

The department also offers a minor for College of Business students with a different major. They are required to take 15 credits from a list of approved courses, 9 credits of which may not be used to satisfy any other requirement.

Marketing is concerned with management decisions that deal with the satisfaction of customer needs and wants in the purchase and use of goods and services. The primary decision areas in marketing involve the identification of market segments and decisions dealing with product design, pricing, promotion (including personal selling and marketing communications), and distribution. A major in marketing prepares the student for careers in selling and sales management, marketing research, marketing management, retailing, marketing communications, promotion management, and international marketing. Each field of study may be applied to consumer, industrial, and service marketing in business and nonprofit organizations.

The instructional objective of the Marketing department is to provide knowledge of the marketing process and an understanding of the marketing function. The students are expected to develop decision-making, computational, and communication skills with appreciation for global marketplace and ethical concerns.

Graduate Study

The Department of Marketing participates in two graduate programs: the M.S. in Business and the M.B.A., full-time and part-time programs. The M.S. in business is a 30-credit curriculum culminating in a thesis or creative work. The M.B.A. program is a 48-credit, nonthesis, noncreative-component curriculum. Twenty four of the 48 credit hours are core courses and the remaining 24 are graduate electives. Within the M.B.A. program, students may develop an area of specialization in marketing. This specialization requires that 12 of the 24 credit hours of graduate electives be from marketing.
Materials Engineering

Mufit Akinc, Chair of Department

Distinguished Professors: Gschneidner, Thompson, Trivedi

Professors: Akinc, Genalo, Jiles, S. Martin, McGee, Pecharsky, Tsukruk

Professors (Adjunct): Anderson, McCallum

Distinguished Professors (Emeritus): D. Martin, Verhoeven

Professors (Emeritus): Kayser, Larsen, Patterson, Smith, Wiencek; Wilder

Associate Professors: Chumbley, K. Constant, Otaigbe, Russell, Schilling

Associate Professors (Adjunct): Biner, Lograsso

Assistant Professors: Cann, A. Constant, Gleeson, Mallapragada, Napolitano

Assistant Professors (Adjunct): Selby, Snyder, Sordelet

Courses and Programs Materials Engineering 285

Materials Engineering

The objectives of the Materials Engineering Program are to produce graduates who:

• practice materials engineering in a broad range of industries including materials production, semiconductors, medical/environmental, consumer products, and transportation products
• are capable of responding to environmental, social, political, and economic constraints to improve the quality of life in Iowa and the world
• are capable of working independently and in teams and are proficient in written, oral and graphical communication
• engage in lifelong learning in response to the rapidly changing knowledge base and changing environment of our world
• engage in advanced study in materials and related or complementary fields.

Materials Engineering graduates are able to apply scientific and engineering principles to select or design the best materials to solve engineering problems. They are also able to control the microstructure of materials through processing to optimize properties and performance. They are skilled in creative, independent problem solving under time and resource constraints. Graduates will have gained experience in materials engineering practice through cooperative work experience or internships in industry, national laboratories, or other funded research work. They will have hands-on skills with a broad range of modern materials processing and characterization equipment and methods.

A degree in Materials Engineering relies on a strong foundation of math, chemistry, and physics. The core materials courses include fundamentals of materials, kinetics and thermodynamics, mechanical properties, computational methods, and design experience throughout the program (beginning in the sophomore year). Students tailor their programs to their goals and interests through the selection of two areas of specialization from the four available: ceramic materials, electronic materials, metallic materials and polymeric materials. Additional technical electives can be taken in other areas of interest. The breadth and depth of the program provide excellent preparation for both immediate entry into industry or further study in graduate school.

The department also offers a cooperative education program that combines classroom learning with work experience. (See College of Engineering Cooperative Programs). Well qualified juniors in Materials Engineering who are interested in graduate study may apply for concurrent enrollment during their senior year in the Graduate College to simultaneously pursue both B.S. and M.S. degrees. See Materials Science and Engineering for more information.

Courses open for nonmajor graduate credit: All 300 or 400 level courses except 313, 370, 396, 397, 398, 413, 414, 446, 490, 498.

Materials Engineering 285

Thermodynamics of chemical reactions. Homogeneous and heterogeneous equilibrium. Phase diagrams for materials systems.

Mat E 213. Integrated Materials Design. (3-3) Cr. 2. F. Prereq: Credit or enrollment in 211. Design of devices, parts, processes or systems (including experiments) taking into account physical, chemical, mechanical, economic and ethical principles. Project planning, including scheduling and cost estimation. Application of design tools such as CAD, CAM and FEM. Analysis of problems, design and development of solutions. Safety, concept of shared responsibility, teamwork, communication. Testing and data collection. Interpretation of results and reporting. Oral presentation skills.

Mat E 214. Structural Characterization of Materials. (1-6) Cr. 3. S. Prereq: Credit or enrollment in Phys 221. Structural characterization of ceramic, electronic, polymeric and metallic materials. Techniques include optical and electron microscopy, x-ray diffraction, and thermal analysis. Identification of materials type, microstructure, and crystal structure.

Mat E 271. Introduction to Materials Science and Engineering. (3-0) Cr. 3. F.S. Prereq: Chem 167 or 177. Bonding, structure and properties of solids. Relationship between the structure and defects in solids and their mechanical, thermal, electrical and optical properties. General overview of properties and processing of metals, ceramics, polymers and composite materials systems with an emphasis on control of mechanical properties of steels and lightweight load-bearing metals. Case study of lightweight structures.

Mat E 298. Cooperative Education. Cr. R. F.S.S. Prereq: Permission of department. First professional work period in the cooperative education program. Students must register for this course before commencing work.

Mat E 313. Integrated Materials Design. (3-3) Cr. 2. F. Prereq: 213. Design of devices, parts, processes or systems (including experiments) taking into account physical, chemical, mechanical, economic and ethical principles. Project planning, including scheduling and cost estimation. Application of design tools such as CAD, CAM and FEM. Analysis of problems, design and development of solutions. Safety, concept of shared responsibility, teamwork, communication. Testing and data collection. Interpretation of results and reporting. Oral presentation skills.

Mat E 315. Kinetics and Phase Equilibria in Materials. (3-0) Cr. 3. F. Prereq: 211. Kinetic phenomena and phase equilibrium relevant to the origins and stability of microstructure in metallic, ceramic and polymeric systems. Application of thermodynamics to the understanding of stable and metastable phase equilibria, interfaces and their effects on stability: defects and diffusion, empirical rate equations for transformation kinetics, driving forces and kinetics of nucleation, diffusional and diffusionless phase transformations. Nonmajor graduate credit.

Undergraduate Study

For the undergraduate curriculum in materials engineering leading to the degree bachelor of science, see College of Engineering, Curricula. The previously offered undergraduate degrees in Metallurgical Engineering and in Ceramic Engineering are accredited by the Engineering Accreditation Commission of the Accreditation Board for Engineering and Technology (ABET). Accreditation for the new undergraduate degree in Materials Engineering is being sought and a decision by ABET will be made in July 2001. Further specific information regarding the accreditation status of the undergraduate program in Materials Engineering will be available from the department, the College of Engineering, and ABET in early Fall 2001.

Materials Engineering is a broadly-based discipline relating the composition, microstructure, and properties of materials to their properties, uses and performance. Materials Engineering includes a variety of traditional and modern technologies involving metals, ceramics, polymers, composites, and electronic materials. Because of its interdisciplinary nature, career opportunities for Materials Engineers bridge all industrial and government sectors including: materials based technologies (materials production), communication/information technologies (semiconducting materials, fiber optics), medical/environmental technologies (biomedical, medical equipment production, waste containment), consumer products (building and construction, durable goods), and transportation industries (automotive, aerospace).

The objectives of the Materials Engineering Program are to produce graduates who:

• practice materials engineering in a broad range of industries including materials production, semiconductors, medical/environmental, consumer products, and transportation products
• are capable of responding to environmental, social, political, and economic constraints to improve the quality of life in Iowa and the world
• are capable of working independently and in teams and are proficient in written, oral and graphical communication
• engage in lifelong learning in response to the rapidly changing knowledge base and changing environment of our world
• engage in advanced study in materials and related or complementary fields.

Materials Engineering graduates are able to apply scientific and engineering principles to select or design the best materials to solve engineering problems. They are also able to control the microstructure of materials through processing to optimize properties and performance. They are skilled in creative, independent problem solving under time and resource constraints. Graduates will have gained experience in materials engineering practice through cooperative work experience or internships in industry, national laboratories, or other funded research work. They will have hands-on skills with a broad range of modern materials processing and characterization equipment and methods.

A degree in Materials Engineering relies on a strong foundation of math, chemistry and physics. The core materials courses include fundamentals of materials, kinetics and thermodynamics, mechanical properties, computational methods, and design experience throughout the program (beginning in the sophomore year). Students tailor their programs to their goals and interests through the selection of two areas of specialization from the four available: ceramic materials, electronic materials, metallic materials and polymeric materials. Additional technical electives can be taken in other areas of interest. The breadth and depth of the program provide excellent preparation for both immediate entry into industry or further study in graduate school.

The department also offers a cooperative education program that combines classroom learning with work experience. (See College of Engineering Cooperative Programs).

Well qualified juniors in Materials Engineering who are interested in graduate study may apply for concurrent enrollment during their senior year in the Graduate College to simultaneously pursue both B.S. and M.S. degrees. See Materials Science and Engineering for more information.

Courses open for nonmajor graduate credit: All 300 or 400 level courses except 313, 370, 396, 397, 398, 413, 414, 446, 490, 498.

Courses Primarily for Undergraduate Students

Mat E 212. Thermodynamics in Materials Engineering. (3-0) Cr. 3. S. Prereq: Chem 178 and credit or enrollment in Math 286. Basic laws of thermodynamics applied to materials systems.
Mat E 321. Ceramic Processing - Forming. (2-3) Cr. 3. F. Prereq: 211. Raw materials, characterization of ceramic powders and slurries, ceramic forming methods - slip casting, extrusion, dry pressing, and evaluation of green microstructures. Inclusion techniques and the detection and sizing of flaws in materials and to the characterization of material's microstructure. Included are experiments in hardness, microhardness, electrical properties, and magnetic properties of metallic, semiconducting and dielectric materials. Laboratory experiments. Nonmajor graduate credit.

Mat E 331. Introduction to Electronic Properties of Materials. (2-3) Cr. 3. F. Prereq: 211. Introduction to electronic properties of materials and their practical applications. Band theory of electron states in material, conduction and valence bands, electrical properties, and magnetic properties of metallic, semiconducting and dielectric materials. Laboratory experiments. Nonmajor graduate credit.

Mat E 332. Semiconductor Materials and Devices. (Same as E E 332.) (3-0) Cr. 3. S. Prereq: 331 or E E 333 and credit or enrollment in E E 312 or Phys 222. Introduction to semiconductor material and device physics. Quantum mechanics and band theory of semiconductors. Charge carrier distributions, generation/recombination transport properties. Physical and electrical properties and fabrication of semiconductor devices such as MOSFETs, bipolar transistors, laser diodes and LEDs. Nonmajor graduate credit.

Mat E 351. Introduction to Polymeric Materials. (3-0) Cr. 3. F. Prereq: 211. Introduction to polymeric materials, synthesis, structure and properties. Relationship between polymer composition, processing and properties. Oral presentation. Nonmajor graduate credit.

Mat E 362. Principles of Nondestructive Testing. (Same as E M 362.) (3-0) Cr. 3. S. Prereq: Phys 112 or 222. Radiographic testing, magnetic particle inspection, eddy current testing, dye penetrant testing, and other techniques. Physical bases of tests; materials to which applicable; types of defects detectable; reliability, and safety precautions. Nonmajor graduate credit.

Mat E 362L. Nondestructive Testing Laboratory. (Same as E M 362L.) (1-3) Cr. 1. S. Prereq: Credit or enrollment in 362. Application of nondestructive testing techniques to the detection and sizing of flaws in materials and to the characterization of material's microstructure. Included are experiments in hardness, microhardness, electrical properties, and magnetic properties of metallic, semiconducting and dielectric materials. Laboratory experiments. Nonmajor graduate credit.

Mat E 370. Tying with Technology. (Same as Cpr E 370) (3-2) Cr. 3. F. S. Prereq: C L 201, junior standing in non-engineering major. A project-based, hands-on learning laboratory. An introduction to the application of technological innovations, principles behind many technological innovations, hands-on laboratory experiences based upon simple systems construction of LEGO and other small microcomputers. Future K-12 teachers will leave the course with complete lesson plans for use in their upcoming careers.

Mat E 396. Summer Internship. Cr. 4. S. Prereq: Permission of department. Summer professional work period.

Mat E 397. Engineering Internship. Cr. 4. S. Prereq: Permission of department; junior classification. Professional work period, one semester maximum per academic year.

Mat E 398. Cooperative Education. Cr. 4. F.S.SS. Prereq: 298 permission of department. Second professional work period in the cooperative education program. Students must register for this course before commencing work.

Mat E 413. Integrated Materials Design. (0-4) Cr. 2. F. Mat E 331, 332, 341, 342, 351, and other processes or systems (including experiments) taking into account physical, chemical, mechanical, economic and ethical principles. Project planning, including scheduling and cost estimation. Application of design tools such as CAD, CAM and FEM. Analysis of problems, design and development of solutions. Safety, concept of shared responsibility, teamwork, communication. Testing and data collection. Interpretation of results and reporting. Oral presentation skills.

Mat E 414. Materials Engineering Design. (0-4) Cr. 2. S. Prereq: Senior classification. Practical applications of physical, chemical, mechanical and/or electrical principles to solving materials science and engineering design problems. Consideration of economic and time constraints in design of materials and processes. Involvement in "real world" design problems specified by external sponsors such as industry or government. Oral and written final project report.

Mat E 423. Glass Science and Engineering. (2-3) Cr. 3. F. Prereq: 212. Composition, structure, properties, manufacturing, and uses of inorganic glasses, especially silicate glasses. Nonmajor graduate credit.

Mat E 424. Ceramic Industries. (3-0) Cr. 3. S. Prereq: 322 Property control of products for various ceramic industries. Utilization of ceramic products in contemporary applications with a global perspective for raw materials, engineering science and industrial activity. Ethical, economic, and life-long learning aspects for professional engineering practice. Nonmajor graduate credit.

Mat E 453. Introduction to Polymer Composites. (3-0) Cr. 3. S. Prereq: 351. Basic concepts in polymer composites; solubility and compatibility, blending and grafting, filling and crosslinking. Thermodynamics of mixing, basic microstructures and mechanical behavior. Polymer surfaces and interfaces: polymer-polymer and polymer-inorganic interfaces, adhesion and bonding, compatibility and strength of interfaces. Major types of composites: rubber toughened plastics, thermoplastic elastomers, block copolymers, thermosets, fiber reinforced and laminated composites. Nonmajor graduate credit.

Mat E 454. Industrial Polymers and Processing. (2-3) Cr. 3. S. Prereq: 351. Techniques of polymer and polymer composite processing, theoretical background for laboratory processing experiments, materials selection, design, performance and cost. Selection of processing techniques. Written and oral reports. Laboratory experiments in rheology, viscosity, hot pressing and molding processing. Nonmajor graduate credit.

Mat E 466. Multidisciplinary Engineering Design. (Same as Cpr E 466, E E 466, E Sci 466, J 466, M 46 etc.) (1-4) Cr. 3. F. S. Prereq: Student must be within two semesters of graduation and receive permission of the instructor. Application of team design concepts to projects of a multidisciplinary nature. Concurrent treatment of design, manufacturing and life cycle considerations. Application of design tools such as CAD, CAM, and FEM. Design methodologies, project scheduling, cost estimating, quality control, manufacturing processes. Development of a prototype and appropriate documentation in the form of written reports, oral presentations, computer models and engineering drawings.

Mat E 498. Cooperative Education. Cr. R. F.S.S. Prereq: 398, permission of department. Third and subsequent professional work periods in the cooperative education program. Students must register for this course before commencing work.
Materials Science and Engineering

Mufti Akinc, Chair of Department
Distinguished Professors: Gschnieder, Thompson, Trivedi
Professors: Akinc, Genalo, Jiles, S. Martin, McGee, Pecharsky, Tsukruk
Professors (Adjunct): Anderson, McCallum
Distinguished Professors (Emeritus): D. Martin, Verhoeven
Professors (Emeritus): Kayser, Larsen, Patterson, Smith, Wechsler, Wilder
Associate Professors: Chumbley, K. Constant, Otaigbe, Russell, Schilling
Associate Professors (Adjunct): Biner, Lograsso
Assistant Professors: Cann, A. Constant, Gleeson, Mallapragada, Napotilano
Assistant Professors (Adjunct): Selby, Snyder, Sordelet

Graduate Study

The department offers work toward the degrees master of science (with thesis) and doctor of philosophy, with a major in Materials Science and Engineering. Research in the department is administered through the Engineering College and Institute for Physical Research and Technology (IPRPT) Centers such as the America Laboratory, the Center for Nondestructive Evaluation, the Microelectronics Research Center and the Center for Advanced Technology Development which provide excellent facilities and graduate student research assistantships. Graduates have a broad understanding of materials science and engineering and related disciplines. They are able to communicate effectively with scientific colleagues in formal and informal settings. Graduates are able to address complex problems in materials science and process design while considering the various constraints inherent to both industrial and research environments. They are skilled in carrying out independent and collaborative research, communicating research results and writing concise and persuasive grant proposals.

Prerequisite to major graduate work is completion of an undergraduate curriculum in physical science or related engineering. However, well qualified juniors in materials engineering interested in graduate study can apply for concurrent enrollment in the Graduate College to simultaneously pursue M.S. and B.S. degrees. Graduate assistantships can be awarded to students concurrently enrolled. Both M.S. and B.S. degrees can be obtained in five years of study under the concurrent enrollment plan.

The requirements for the MS and PhD degrees are established by the student’s program of study committee within the established guidelines of the Graduate College. These requirements include coursework, research, dissertation, and a final oral examination. The PhD degree also includes a qualifying examination. There are no foreign language requirements for either of the graduate degrees administered by the Department of Materials Science and Engineering.

Graduate students wishing to declare a formal minor in Materials Science and Engineering will have at least one M S E faculty member serving on their advisory committee. For the M.S. and Ph.D. degrees, they will take a minimum of 8 and 12 M S E course credits, respectively.

Courses Primarily for Graduate Students, Open to Qualified Undergraduate Students

M S E 518. Metallurgy of Rare Earths. (2-0) Cr. 2. Prereq: Mat E 443 or Phys 322 or Chem 321. Electronic configuration, valence states, minerals, ores, beneficiation, extraction, separation, metal preparation and purification, crystal structure, transformation, melting and boiling points, chemical behavior, inorganic compounds, alloy chemistry, nature of the chemical bond, mechanical and elastic properties, magnetic properties, resistivity, and superconductivity.

M S E 519. Magnetism and Magnetic Materials. (Same as E E 519.) (3-0) Cr. 3. Prereq: Mat E 211 or 271 or 272 or 211 or E E 313 or Phys 364. Magnetic fields, flux density and magnetization. Magnetic materials, magnetic measurements. Magnetic properties of materials. Domains, domain walls, domain processes, magnetization curves and hysteresis. Types of magnetic order, magnetic phases and critical phenomena. Magnetic moments of electrons, theory of electron magnetism. Technological application, soft magnetic materials for electromagnets, hard magnetic materials, permanent magnets, magnetic recording technology, magnetic measurements of properties for materials evaluation.

M S E 521. Mechanical Behavior and Manufacturing of Polymers and Composites. (Same as M E 521.) See Mechanical Engineering.

M S E 535. X-Ray, Electron and Neutron Diffraction. (3-0) Cr. 3. Prereq: Mat E 214. Introduction to theory of X-ray, electron and neutron diffraction, symmetry operations, space groups, and reciprocal lattice. Laue and powder diffraction methods and their application to precise lattice parameters, determination of simple crystal structures, phase identification, orientation, texture, grain size, strain, residual stress, and order-disorder.

M S E 539. Electronic Properties of Materials. (Same as E E 539.) (3-0) Cr. 3. Prereq: Mat E 331 or E E 332 or Phys 322. Review of quantum mechanics, band theory of solids, LCAO model, metallic conduction, lattice vibrations, semiconductors, semiconductor devices, dielectric polarization mechanisms, dielectric relaxation, crystal anisotropy, ferroelectricity, piezoelectricity, conducting oxides, magnetism.

Courses for Graduate Students

M S E 603. Mathematical Methods for Materials Research. (3-0) Cr. 3. Prereq: Math 266 and permission of instructor. Development of mathematical tools for problem solving and modeling in materials science and engineering, including crystallography, wave propagation, phase transformations, heat and mass transfer, diffraction and anisotropic properties.

M S E 690. Advanced Topics in Materials Science. Cr. var. Prereq: Permission of instructor.

Assistant Professors (Emeriti): D’Alessandro, Emanouilov, Sethuraman, Weiss

Assistant Professors (Adjunct): Colwell, Homer, Mathews, Peglar, Rudolph.

Professors (Emeriti): Alexander, Ashlock, Cain, Dahiya, Dickson, Du, Evans, Fink, Gautesen, Gunzburg, Hentzel, Hou, Johnston, Kliemann, Lieberman, Luecke, Maddux, Murdoch, Peters, Peterson, Piggozi, Rothmayer, Sacks, Smiley, Smith, Tesfatsion, Tondra, Willson, Wright

Distinguished Professors (Emeriti): Miller, Vinograde

University Professors (Emeriti): Cornette

Professors (Emeriti): Barnes, Carlson, Colwell, Horner, Mathews, Peglar, Rudolph, Sanderson, Seifert, A. Steiner, E. Steiner, Weiss

Associate Professors: Alexander, Ashlock, Bergman, Davidson, Gregorac, Hansen, Heimes, Hogben, Keinert, Keller, Pooh, Seppalainen, Song, Tidini, Wagner, Weerasinghe, Wilson, Wu

Associate Professors (Collaborators): Yan

Assistant Professors: Azenovich, Burstein, D’Alessandro, Emanouilov, Sethuraman, Wang

Assistant Professors (Adjunct): Mather

Assistant Professors (Emeriti): Peake

Undergraduate Study

For the undergraduate curriculum in liberal arts and sciences, major in mathematics, leading to the degree bachelor of science, see Liberal Arts and Sciences, Curriculum.

The program in mathematics offers training suitable for students planning to enter secondary school teaching, to work in mathematicics and computation for industry or government, or to continue their studies in graduate school. The requirements for an undergraduate major in mathematics are designed so that the student may have opportunity for appropriate specialization to meet one or more of the foregoing objectives and, at the same time, obtain a thorough introduction to the mathematics underlying all of them.

Graduates understand a broad range of mathematical topics and are familiar with a broad range of mathematical models. They have skills for solving problems in diverse situations. They can construct rigorous arguments to demonstrate mathematical facts. They can communicate their mathematical methods to others and can justify their assumptions.

The requirements for an undergraduate major include:
(a) The sequence 175, 176 or the sequence 165, 166, 201. Also 265, 301, 317, 414, and either 266 or 267.
(b) 15 additional credits chosen from math courses at the 300 level or above, 6 of which must be included in (341, 365, 471, 481).
(c) The courses used to satisfy a) and b) above must include one of the sequences 301, 302: 414, 415, 435, 436.
(d) At least one of 490, 491, 492, or 542.

(English proficiency requirement: The department requires a grade of C- or better in each of English 104 and 105 (or 105H) and an upper-level writing requirement that may be met by writing an acceptable undergraduate thesis (Math 491) or by taking at least one of Engl 302, 305, 314 or Jr MC 201. A grade of C- or better is required.

The department strongly recommends that each student majoring in mathematics include in the program substantial supporting work beyond the minimum general education requirement of the college in one or more areas of application of mathematics, such as other mathematical sciences, engineering, natural science, or social science. In particular, it recommends that each student take CS 207, 208, Stat 222, and Stat 341, 342 (or Math 304). It also strongly recommends two years of French, German, or Russian for students contemplating graduate study in mathematical sciences beyond calculus. Candidates for the M.S.M. degree must write an approved creative component and pass a comprehensive oral examination over their course work and their creative component.

Courses Primarily for Undergraduate Students

Math 10. High School Algebra. (4-0) Cr. 0. F.S.S.

For students who do not have adequate facility with topics from high school algebra or do not meet the algebra admission requirement. All students should initially enroll in Math 10. The course is divided into tracks of one- and two-semester lengths. For most students a diagnostic exam will determine which track must be taken. Students will receive a grade in Math 25 or 30 respectively depending on the level of material covered. Satisfactory completion of Math 30 is recommended for students planning to take Math 140 or 151, while Math 25 is sufficient for Math 104, 105, 150, 196, Stat 101 or 105. Students must complete Math 30 to remove a deficiency in the algebra admission requirement. Topics include signed numbers, polynomials, rational and radical expressions, exponential and logarithmic expressions, and equations. Offered on a satisfactory-fail grading basis only.

Math 20. High School Geometry. (4-0) Cr. 0. S.

For students who do not meet the geometry admission requirement. Elements of Euclidean geometry including congruence, parallel lines, circles, similar polygons, perimeters, areas, surface areas, and volumes. Offered on a satisfactory-fail grading basis only.

Math 25. High School Algebra. (4-0) Cr. 0. F.S.S.

For students who do not have adequate facility with topics from high school algebra or do not meet the algebra admission requirement. All students should initially enroll in Math 10. The course is divided into tracks of one- and two-semester lengths. For most students a diagnostic exam will determine which track must be taken. Students will receive a grade in Math 25 or 30 respectively depending on the level of material covered. Satisfactory completion of Math 30 is recommended for students planning to take Math 140 or 151, while Math 25 is sufficient for Math 104, 105, 150, 196, Stat 101 or 105. Students must complete Math 30 to remove a deficiency in the algebra admission requirement. Topics include signed numbers, polynomials, rational and radical expressions, exponential and logarithmic expressions, and equations. Offered on a satisfactory-fail grading basis only.

Graduate Study

The department offers programs leading to a master of science or doctor of philosophy degree in mathematics or applied mathematicics, as well as minor work for students whose major is in another department. The department also offers a program leading to the degree of master of school mathematics (M.S.M.). Students desiring to undertake graduate work leading to the M.S. or Ph.D. degree should have at least 12 semester credits of work in mathematics beyond calculus. It is desirable that these credits include advanced calculus and abstract algebra.

The M.S. degree requires at least 30 credit hours and students must write a creative component or thesis and pass a comprehensive oral examination over their coursework and their creative component or thesis. See the department handbook for specific requirements.

The Ph.D. degree requires a student to take 54 hours of coursework in addition to research hours, pass written qualifying examinations, pass an oral preliminary exam, and perform an original research project culminating in a dissertation which is defended by an oral exam. Ph.D. candidates must have at least one year of supervised teaching experience. See the department handbook for specific requirements. (Also see the website: www.math.iastate.edu/gradcomm/gradreq.html for details.)

The M.S.M. degree is primarily for inservice secondary mathematics teachers. Students desiring to pursue the M.S.M degree should present some undergraduate work in mathematics beyond calculus. Candidates for the M.S.M. degree must write an approved creative component and pass a comprehensive oral examination over their course work and their creative component.

Math 101. Orientation in Mathematics. (1-0) Cr. R. F. For new majors. Issues to consider in planning a program of study. Sources of general information and perspectives concerning mathematics. Discussion of possible placement study years. Offered on a satisfactory-fail grading basis only.

Math 104. Introduction to Probability and Matrices. (3-0) Cr. 3. F.S. Prereq: Satisfactory performance on placement exam, 2 years of high school algebra, 1 year of high school geometry. Prerequisites: Satisfactory performance on placement exam, 2 years of high school algebra, 1 year of high school geometry, 1 semester of trigonometry or enrollment in 141 or 142. Analytic geometry, differentiation and integration of elementary functions, applications of derivatives. Only one of 151, 165, 165H, or the sequence 181-182 may be counted towards graduation.

Math 165. Honors Calculus I. (4-0) Cr. 4. F.S. Prereq: Satisfactory performance on placement exam, 2 years of high school algebra, 1 year of high school geometry, 1 semester of trigonometry or enrollment in 141 or 142. Functions, limits, continuity, differentiation, derivatives of vector-valued functions, applications of derivatives. Only one of 151, 165, 165H, or the sequence 181-182 may be counted towards graduation.

Math 166H. Honors Calculus II. (4-0) Cr. 4. F.S. Prereq: Grade of C– or better in 165, 165H, or 175 or high math placement scores. Integration, applications of the integral, matrices, differentiation of functions of several variables. Only one of 151, 165H, or the sequence 165-166, the sequence 175-176, or the sequence 181-182 may be counted towards graduation.

Math 181. Calculus and Differential Equations for the Life Sciences. (3-2) Cr. 4. F.S. Prereq: Satisfactory performance on placement exam, 2 years of high school algebra, 1 year of high school geometry, 1 semester of trigonometry or enrollment in 141 or 142. Exponential and logarithmic functions, derivative, first order linear difference equations and differential algebra. Examination topics: laboratory experiments. Only one of 151, 165, the sequence 165-176, or the sequence 181-182 may be counted towards graduation.

Math 195. Mathematics for Elementary Education I. (2-2) Cr. 3. F.S. Prereq: Satisfactory performance on placement exam, 2 years of high school algebra, 1 year of high school geometry, 1 semester of trigonometry or enrollment in 141 or 142. Functions, limits, continuity, differentiation, derivatives of vector-valued functions, applications of derivatives. Additional material of a theoretical, conceptual, computational, or modeling nature.

Math 201. Introduction to Proofs. (2-0) Cr. 2. F.S. Prereq: 181. Writing proofs involving definitions of limit, derivative, and the definite integral. Proofs by mathematical induction. Only one of the sequence 175-176 or 201 may be counted towards graduation.

Math 205. Computer Programming in FORTRAN. (Same as Comp S 205.) See Computer Science.

Math 265. Calculus III. (4-0) Cr. 4. F.S. Prereq: Grade of C– or better in 166, 166H, or 176. Multiple integrals, vector fields and vector integrals, sequences and series.

Math 265H. Honors Calculus III. (4-0) Cr. 4. F.S. Prereq: Permission of the instructor and Math 165H or Math 265. Multiple integrals, vector fields and vector integrals, sequences and series. Additional material of a theoretical, conceptual, computational, or modeling nature. Some of the work may require more ingenuity than is required in Math 265. Preference will be given to students in the University Honors Program.

Math 267. Elementary Differential Equations and Laplace Transforms. (3-0) Cr. 4. F.S. Prereq: Grade of C– or better in 166, 166H, or 176. Same as 266 but also including Laplace transforms and series solutions to ordinary differential equations.
Math 268. Laplace Transforms. (1-0) Cr. 1. F. Prereq: 266. Laplace transforms and series solutions to ordinary differential equations. Together, 266 and 268 are the same as 267.

Math 272. Introduction to Scientific Computation. (3-0) Cr. 3. F. Prereq: Math 265 or enrollment in Math 266, Math 268 or Math 267; knowledge of Fortran or C, Vector. Matrix and graphics programming for scientific applications. Algorithms for interpolation, systems of linear equations, nonlinear equations and optimization in one and several variables, and ordinary differential equations. Emphasis on high quality mathematical software, its strengths and limitations.

Math 290. Special Problems. Cr. 1 to 3 each time taken. H. Honors

Math 297. Intermediate Topics in Elementary Mathematics. (2-2) Cr. 3. F.S. Prereq: Grade of C- or better in 196. Additional topics in geometry including coordinates, congruence similarity, and transformations. Pre-algebraic reasoning. Topics in mathematics of current importance to prospective elementary teachers.

Math 298. Cooperative Education. Cr. R. F.S.S. Prereq: Permission of the department cooperative education coordinator; sophomore classification. Required of all cooperative education students. Students must register for this course prior to commencing each work period. Of all cooperative education students. Students must register for this course prior to commencing each work period.

Math 301. Introduction to Abstract Algebra. (3-0) Cr. 3. S. Prereq: 166 or 166H or 176 and 307 or 317. Introduction to the theory of groups and rings. Emphasis on writing proofs. Nonmajor graduate credit.

Math 304. Introductory Combinatorics. (3-0) Cr. 3. F. Prereq: 166, 166H or 176. Permutations, combinations, bionomics, inclusion-exclusion principle, discrete probability, classical probability. Additional topics selected from recurrence relations, generating functions, random walks, and Markov chains. Nonmajor graduate credit.

Math 307. Theory of Matrices. (3-0) Cr. 3. F.S.S. Prereq: 2 semesters of calculus. The algebra of matrices including vector spaces, simultaneous linear equations, determinants, quadratic forms, eigenvalues, and diagonalization over the real and complex numbers. Only two of 306, 385, 395 may be counted toward graduation. Nonmajor graduate credit.

Math 308. Application of Linear Algebra to Discrete Optimization. (3-0) Cr. 3. S. Prereq. 307 or 317. Linear programming and topics chosen from game theory, transportation and assignment problems, discrete dynamic processes, and multiple objective linear programming. Nonmajor graduate credit.

Math 331. Topology. (3-0) Cr. 3. S. Prereq: 207 or 317. Topological properties of metric spaces, including R, sequences, continuous functions, completeness, compactness. Nonmajor graduate credit.

Math 365. Complex Variables with Applications. (3-0) Cr. 3. F.S. Prereq. 265. Functions of a complex variable, including differentiation, integration and series expansions, residues, evaluation of integrals, conformal mapping. Only two of 365, 385, 395 may be counted toward graduation. Nonmajor graduate credit.

Math 378. Optimization and Modeling with Artificial Life. (3-0) Cr. 3. S. S. Prereq. One of 301, 304, Com S 330 or other discrete math. Fundamental discrete math’s for programming. Introduction to the modeling and optimization techniques that together are called artificial life or afife. Biological paradigms from evolution and ecology are used to solve problems in biology, engineering and areas such as combinatorial or functional optimization. Evolutionary programming, genetic algorithms, genetic programming, evolutionary neural nets, and their uses in optimization and modeling. Nonmajor graduate credit.

Math 395. Intermediate Engineering Mathematics. (4-0) Cr. 4. F.S. Prereq. 267 or equivalent. Series and integrals, improper integrals. Other topics selected from recurrence relations, generating functions, random walks, and Markov chains. Nonmajor graduate credit.

Math 398. Cooperative Education. Cr. R. F.S.S. Prereq: Permission of the department cooperative education coordinator; junior classification. Required of all cooperative education students. Students must register for this course prior to commencing each work period.

Math 415. Advanced Calculus. (3-0) Cr. 3. S. Prereq: 414. Sequences and series of functions of a real variable, uniform convergence, power series and Taylor series. Stirling formula, elementary functions, Fourier series, introduction to measure theory and Lebesgue integration. Other topics at the discretion of the instructor. Nonmajor graduate credit.

Math 421. Logic for Mathematics and Computer Science. (Same as Comp S 421) (3-0) Cr. 3. S. Prereq: 301 or 307 or 317 or Com S 330. Propositional and predicate logic, Horn logic, equational logic, resolution and unification, foundations of logic programming, real-time algorithms, program specification and verification. Nonmajor graduate credit.

Math 435. Geometry. (3-0) Cr. 3. F. Prereq. 307 or 317. Euclidean geometry through properties invariant under similarity transformations. Use of both synthetic and analytic methods. Nonmajor graduate credit.

Math 436. Geometry. (3-0) Cr. 3. S. Prereq. 435. Non-Euclidean geometry through properties invariant under isometric transformations. Analytic methods applied to at least two of elliptic, projective, and hyperbolic geometries. Nonmajor graduate credit.

Math 439. Mathematics of Fractals. (3-0) Cr. 3. S. Prereq. 265; some knowledge of programming. Topology of metric spaces, iterated function systems; algorithms for generating fractals, fractal dimension; Julia sets and the Mandelbrot set; applications to chaotic systems. Nonmajor graduate credit.

Math 485. Advanced Calculus for Applied Mathematicians. (4-0) Cr. 4. F.S. Prereq. 265. Frequently applied concepts from multivariable calculus, presented with enough theory to promote understanding of applications. Topics may include derivatives, extrema, multiple integrals, line integrals, Green's theorem, divergence theorem, Stokes's theorem, uniform convergence, operations on series and integrals, improper integrals. Nonmajor graduate credit.

Math 471. Computational Linear Algebra and Fixed Point Iteration. (Same as Com S 471) (3-0) S. Prereq. 265 and either 266, or 267. Knowledge of FORTRAN or C. Computational error, solutions of linear systems, least square methods, similarity methods and eigenvalues, non-linear equations, fixed point iteration in one and several variables, Newton's method in several variables. Nonmajor graduate credit.

Math 481. Numerical Solution of Differential Equations and Interpolation. (3-0) Cr. 3. S. Prereq. 265 and either 266 or 267. Knowledge of FORTRAN or C. Orthogonal polynomials, least square and spline methods, numerical differentiation and integration, Euler, Taylor, Runge-Kutta, and predictor-corrector methods for solution of systems of ordinary differential equations. Nonmajor graduate credit.

Math 484. Computational Mathematics for Biologists. (Same as Comp S 484.) (3-0) Cr. 3. F. A survey of graph theory, linear algebra, discrete math, and algorithms used in computational biology with examples taken from genomics, phylogenetics, and systems biology. This course provides mathematical background for BCB/Gen/Comp S Math 594.

Math 489. History of Mathematics. (3-0) Cr. 3. S. Prereq. 6 credits in mathematics at the 300 level or above. History of mathematical ideas found in the undergraduate curriculum. It includes a discussion of the historical context in which these ideas arose, and the influence of the culture on the type of mathematical ideas that developed. Some of the particular cultures and their mathematics that are studied include: Babylonian and Ancient Egypt, Ancient Greek, Arabic, Indian, Western European and Chinese. Nonmajor graduate credit.

Math 490. Independent Study. Cr. 1 to 3 each time taken. Prereq. 301 or 317. 6 credits in mathematics. No more than 9 credits of Math 490 may be counted toward graduation. H. Honors

Math 491. Undergraduate Thesis. Cr. 2 or 3. Writing a formal mathematics paper. Upon approval by the department, the paper will satisfy the department's Advanced Experience requirement. Required of all cooperative education students. Students must register for this course prior to commencing each work period.

Math 497. Teaching Secondary School Mathematics. (Same as C I 497) See Curriculum and Instruction.

Math 498. Cooperative Education. Cr. R. F.S.S. Prereq: Permission of the department cooperative education coordinator; sophomore classification. Required of all cooperative education students. Students must register for this course prior to commencing each work period.
Courses Primarily for Graduate Students, Open to Qualified Undergraduate Students

Math 504. Abstract Algebra. (3-0) Cr. 3. F. Prereq: 302. First semester of full-year course. Algebraic systems and their morphisms, including groups, rings, modules, and fields.

Math 505. Abstract Algebra. (3-0) Cr. 3. S. Prereq: 504. Continuation of 504.

Math 507. Numerical Solution of Ordinary Differential Equations. (Same as Com S 507.) (3-0) Cr. 3. SS. Prereq: 481 or 465 or 415; knowledge of FORTRAN or C. One step methods for initial value problems, one-step methods for systems, multistep methods, boundary-value problems. Examples using university computers.

Math 510. Linear Algebra. (3-0) Cr. 3. S or SS. Prereq: 302 or 307 or 317. Advanced topics in linear algebra including canonical forms, inner product spaces, bilinear forms, tensor products, and applications to other branches of mathematics.

Math 511. Functions of a Single Complex Variable. (3-0) Cr. 3. F or SS. Prereq: 465 or 414. Theory of analytic functions, integration, topology of the extended complex plane, singularities and residue theory.

Math 518. Finite Element Methods. (3-0) Cr. 3. S. Prereq: 414. Elements of functional analysis; Sobolev spaces; variational principles and weak formulations; approximation theory in finite element spaces; analysis of finite element methods; implementation issues, applications.

Math 520. Methods of Applied Mathematics II. (3-0) Cr. 3. S. Prereq: 519. Continuation of 519.

Math 525. Numerical Analysis of High Performance Computing. (Same as Com S 525, Cp1 E 525.) (3-0) Cr. 3. S. Prereq: Cp1 E 308, or one of Math 471, 481. Experience in scientific programming; knowledge of FORTRAN or C. Development, analysis, and testing of efficient numerical methods for use on large-scale, high performance computers. Applications of the methods to the students' areas of research.

Math 533. Cryptography. (Same as CPR E 533.) (3-0) Cr. 3. S. Prereq: Math 301 or CPR E 310 or Com S 330. Basic concepts: secret communication, DES and IDEA, public key cryptography, elliptic curves, hash algorithms, digital signatures, social and political implications.

Math 534. Topology. (3-0) Cr. 3. F. Prereq: Permission of instructor. Introduction to general topology. Emphasizes topics useful in analysis.

Math 540. Seminar in Mathematics Education. (3-0) Cr. 3. S. Prereq: 266 or 287 or 317, 415 or 465. First semester of full-year course. The initial-value problem, existence and uniqueness theorems, continuous dependence on parameters, linear systems, stability and asymptotic behavior of solutions, topics from dynamical systems and two-point boundary-value problems.

Math 557. Ordinary Differential Equations. (3-0) Cr. 3. Alt. S., offered 2003. Prereq: 266 or 287 or 317, 415 or 465. Continuation of the initial-value problem, existence and uniqueness theorems, continuous dependence on parameters, linear systems, stability and asymptotic behavior of solutions, topics from dynamical systems and two-point boundary-value problems.

Math 552. Enumerative Combinatorics and Ordered Sets. (3-0) Cr. 3. S. Prereq: 301 or 304 or 307 or 317. Ordered sets and lattices. Generating functions. Möbius inversion and other enumeration methods.

Math 554. Introduction to Stochastic Processes. (Same as Stat 554.) (3-0) Cr. 3. S. Prereq: Stat 542. Markov chains on discrete spaces in discrete and continuous time (random walks, Poisson processes, birth and death processes) and their long-term behavior. Optional topics may include branching processes, renewal theory, introduction to Brownian motion.

Math 555. Theory of Stochastic Processes. (Same as Stat 555.) (3-0) Cr. 3. F. Prereq: 514 or 515, Stat 542. Markov processes on continuous spaces and their quenched behavior. Wiener processes. Optional topics may include elementary theory of Ito calculus and diffusions, linear stochastic systems, advanced topics in branching process.

Math 573. Random Signal Analysis and Kalman Filtering. (Same as AER E 573, E 573, M E 573.) (3-0) Cr. 3. F. Prereq: E E 321 or AER E 331 or M E 370 or M E 411 or Math 341 or 395. Elementary notions of probability, random processes, basic statistics, autocorrelation and spectral functions. Estimation of spectrum from finite data. Response of linear systems to random inputs. Discrete and continuous Kalman theory and applications. Smoothing and prediction. Linearization of nonlinear dynamics.
Mechanical Engineering

For the undergraduate curriculum in mechanical engineering leading to the degree of bachelor of science, see College of Engineering, Curricula. This curriculum is accredited by the Engineering Accreditation Commission of the Accreditation Board for Engineering and Technology.

Mechanical engineers are typically involved with such activities as

- generation, distribution, and use of energy
- development and application of manufacturing systems and processes
- automation and control of mechanical and thermal systems
- design of various products for consumer and commercial markets

About one-fourth of all engineers practicing today have been educated as mechanical engineers. Their activities include research, development, design, testing, production, technical sales, and technical management.

Mechanical engineers are characterized by personal creativity, breadth of knowledge, and versatility. For these reasons they are found to function and thrive as valuable members and leaders of multidisciplinary teams. Through effective use of analysis, modeling, design, synthesis, and interpersonal skills they solve important problems to improve our world.

The overall objective of the curriculum in mechanical engineering is to prepare students for lifelong learning and growth in careers as mechanical engineers in the rapidly-changing industrial world.

Upon successfully completing the mechanical engineering curriculum, students will be prepared for immediate entry into the field or for further study at the graduate level.

The mechanical engineering curriculum is organized to provide students with a broad foundation in mathematics and the sciences of physics and chemistry.

Through courses in these subjects, students will attain the basic knowledge required to understand and analyze mechanical engineering systems.

This background is extended and organized through studies in solid mechanics, fluid mechanics, thermodynamics, heat transfer, materials, and electrical applications.

Upon completion of courses in these areas of the curriculum, students will be able to apply engineering principles to create, analyze or improve processes, devices or systems to accomplish desired objectives.

A major focus throughout the mechanical engineering curriculum is a series of experiences that emphasize engineering design.

• Students will develop an engineering judgment through open-ended problems that require establishment of reasonable engineering assumptions and realistic constraints.

In addition, a sequence of courses emphasizing engineering design begins in the first year and culminates with a capstone design experience.

• Students will not only be able to apply their engineering knowledge to real-life design problems but also to critically evaluate the solutions.

Development of skills needed to be independent, creative thinkers, effective communicators, and contributing team members is emphasized throughout the curriculum.

• Students will learn to effectively work in teams to solve engineering problems involving a disciplined process of critical thinking that crosses content boundaries. They will be aware of social and environmental aspects of
engineering, as well as the ethical standards of the engineering profession.

The curriculum provides flexibility to allow students to broaden their perspectives or to focus in more depth in areas of particular interest. Organized sequences of technical electives can be chosen from areas which represent major concentrations in the field of mechanical engineering. Optional areas of specialization include energy conversion and utilization, thermal system design, mechanical system design, materials and manufacturing, nuclear engineering, thermal and environmental engineering, and aerospace propulsion.

Elective courses provide additional emphasis in terms of the student’s unique educational goals, whether they include immediate entry into industry or further study at the graduate level.

In addition, students elect courses in the humanities, social sciences, U.S. diversity and international perspectives.

Through these courses, students develop an understanding of the societal context in which they will practice engineering, including environmental, legal, aesthetic, and human aspects.

Students in mechanical engineering are encouraged to participate in the cooperative education program or to obtain engineering internships, both in the United States and abroad. Study abroad is also encouraged, and the department has exchange programs with several universities around the world. These experiences help students to round out their education and to better prepare for careers in the increasingly global practice of engineering.

Graduate Study

The department offers work for the degrees of master of science, and doctor of philosophy with major in mechanical engineering. The master of science degree may be earned with or without thesis. Although co-major and formal minor programs are not offered in mechanical engineering, courses may be used for minor work by students taking major work in other departments.

The graduate program offers advanced study in fluid mechanics, fluid power, controls, heat transfer, computer-aided design, machines and systems, materials and manufacturing processes, thermodynamics, energy utilization, virtual reality applications, micro-electromechanical systems, computational fluid dynamics, combustion, HVAC, ICE engines, and radioactive waste management.

The department offers students the opportunity to broaden their education by participating in minor programs in established departments, interdepartmental programs, or other experiences as approved by their program of study committees.

The requirements for advanced degrees are established by the student’s program of study committee within established guidelines of the Graduate College. Graduate students who have not completed an undergraduate program of study substantially equivalent to that required of undergraduate students in the department can expect that additional support for coursework will be required. A foreign language requirement exists for the degree doctor of philosophy only if the student’s program of study committee deems it appropriate to a specific program of study.

Courses open for nonmajor graduate credit: All 300 and 400 level courses except 330, 396, 397, 398, 440, 490, and 498.

Courses Primarily for Undergraduate Students

M 231. Engineering Thermodynamics I. (3-0) Cr. 3. F. S. Prereq: Math 265; Chem 167; Phys 222. Fundamental concepts based on zeroth, first and second laws of thermodynamics. Properties and processes for ideal gases and solid-liquid-vapor phases of pure substances to power cycles. Credit for only one course in each of the following groups of courses may be applied toward graduation: 330, 231, 440, 442. The following courses are for students who are not in the mechanical engineering program: 330, 440. Credit in these courses will not be counted toward a degree in mechanical engineering.

M 270. Introduction to Mechanical Engineering Design. (1-0) Cr. 3. F. S. Prereq: Engr 170, Phys 222. Introduction to fundamentals of mechanical engineering design with applications to thermal and mechanical systems. Examination of existing machines and systems, design of open-ended problems and prototyping. Application of engineering tools. Oral and written reports required.

M 298. Cooperative Education. Cr. R. F. S.S. Prereq: Permission of department. First professional work period in the cooperative education program. Students must register for this course before commencing work.

M 324. Manufacturing Engineering. (3-2) Cr. 4. F. S. Prereq: Mat E 272, E M 306. Plastic deformation and work hardening. Manufacturing processes including forming, machining, casting and welding with emphasis on manufacturing considerations in design. Quality control and computer integration issues. Laboratory exercises will be an integral component of the course. Nonmajor graduate credit.

M 330. Thermodynamics. (3-0) Cr. 3. F. S. Prereq: Phys 222. For students electing one course in engineering thermodynamics. First and second laws of thermodynamics. Properties and processes for pure substances. Selected applications including cycles for power and refrigeration. Psychrometrics. Credit for only one course in each of the following groups of courses may be applied toward graduation: 330, 231; 440, 442. The following courses are for students who are not in the mechanical engineering program: 330, 440. Credit in these courses will not be counted toward a degree in mechanical engineering.

M 335. Fluid Flow. (3-2) Cr. 4. F. S. Prereq: Credit or enrollment in 332, E M 345, Math 266 or 267, credit or enrollment in 370. Incompressible and compressible fluid flow fundamentals. Dimensional analysis and similarity. Internal and external flow applications. Lab demonstrations and experiments emphasizing concepts in thermodynamics and fluid flow. Written reports are required. Nonmajor graduate credit.

M 396. Summer Internship. Cr. R. S. S. Prereq: Permission of Department Chair. Summer professional work period.

M 397. Engineering Internship. Cr. R. F. S. Prereq: Permission of department chair. Professional work period, one semester maximum per academic year.

M 398. Cooperative Education. Cr. R. F. S. S. Prereq: 298, permission of department. Second professional work period in the cooperative education program. Students must register for this course before commencing work.

M 410. Mechanical Engineering Applications of Mechatronics. (2-2) Cr. 3. S. Prereq: EE 442, 448, credit or enrollment in 421. Fundamentals of sensor characteristics, signal processing, and control, coupled with concepts of embedded computer control. Digital and analog components used for interfacing with computer controlled systems. Mechanical system analysis combined with various control approaches. Focus on automation of hydraulic actuation processes. Laboratory experiences provide hands-on development of mechanical systems. Nonmajor graduate credit.

M 412. Legal and Environmental Considerations in Design. (3-0) Cr. 3. F. S. Prereq: Credit or enrollment in 325, senior classification in engineering. Failure modes associated with product environment. Interaction between the legal profession, legislative bodies, standards and the design engineer, using a case study approach in design applications. Litigation involving designs, standards, and laws applicable to specific designs surveyed. The influence of laws and standards upon design. Nonmajor graduate credit.

M 413. Practical Fluid Power Circuits. [Same as A E 413.] (3-0) Cr. 1. F. S. Prereq: Credit or enrollment in 414 or A E 447. Properties of fluids. Pump and motor efficiencies. Analysis and assembly of fluid power systems and experimental investigation of appropriate control systems. Application to hydrostatic transmissions. Nonmajor graduate credit.

M 415. Mechanical Systems Design. (0-4) Cr. 3. S. Prereq: 324, 325. Solution of a total design problem involving a mechanical system, documenting decisions concerning form and function, material specification, manufacturing methods, safety, cost, and conformance with codes and standards. Solution description includes oral and written reports. Nonmajor graduate credit.

Mechanical Engineering 2001-2003

M E 418. Mechanical Considerations in Robotics. (2-2) Cr. 3. S. Prereq: 421. Three dimensional kinematics, dynamics, and control of robot manipulators, hardware and sensors. Laboratory experiments using industrial robots. Nonmajor graduate credit.

M E 421. Mechanical Systems and Control. (3-2) Cr. 4. F.S. Prereq: E M 345, Math 267, F E 442, 448. Modeling and simulation of mechanical systems. Development of equations of motion and dynamic response characteristics. Fundamentals of classical control applied to mechanical systems. Laboratory analysis and design for closed loop control systems. Introduction to computer interfacing for data acquisition and control. Laboratory exercises for hands-on motion and control implementation. Nonmajor graduate credit.

M E 442. Heating and Air Conditioning Design. (1-1) Cr. 3. S. Prereq: 441. Design criteria and assessment of building environment and energy requirements. Design of heating, ventilating, and air conditioning systems. System control and economic analysis. Oral and written reports required. Credit for only one course in each of the following groups of courses may be applied toward graduation: 330, 231, 440, 442. The following courses are for students who are not in the mechanical engineering program: 330, 440. Credit in these courses will not be counted toward a degree in mechanical engineering. Nonmajor graduate credit.

M E 444. Elements and Performance of Power Plants. (3-0) Cr. 3. F. Prereq: 332, credit or enrollment in 436. Analysis of power supply systems and their components: turbines, steam generators, fans, pumps, heat exchangers and air pollution control equipment. Nonmajor graduate credit.

M E 446. Power Plant Design. (2-3) Cr. 3. S. Prereq: 444. Design of a power plant to meet a specified power (energy) demand. Selection and/or synthesis of principal components and pollution control equipment. Oral and written reports required. Nonmajor graduate credit.

M E 448. Fluid Dynamics of Turbomachinery. (3-0) Cr. 3. S. Prereq: 335. Applications of principles of fluid mechanics and thermodynamics in performance analysis and design of turbomachines and related fluid system components. Nonmajor graduate credit.

M E 449. Internal Combustion Engine Design. (3-0) Cr. 3. S. Prereq: 324, 325, 445. Thermodynamic and mechanical design of a spark ignition or compression ignition internal combustion engine to meet specified performance, fuel economy, and air pollution requirements. Oral and written reports required. Nonmajor graduate credit.

M E 466. Multidisciplinary Engineering Design. (Same as Cpr E 466, E E 466, E E 468, Sci 466, I E 468, Mat E 466.) I-III-IV 3. F. S. Prereq: Student must be within two semesters of graduation and permission of instructor. Application of team design concepts to projects of a multidisciplinary nature. Concurrent treatment of design, manufacturing and life cycle considerations. Application of design tools such as CAD, CAM and FEM. Design methodologies, project scheduling, costs, and materials. Nomenclature and manufacturing processes. Development of a prototype and appropriate documentation in the form of written reports, oral presentations, computer models and engineering drawings. Nonmajor graduate credit.

M E 475. Modeling and Simulation. (3-0) Cr. 3. F. Prereq: 421, credit or enrollment in 436. Introduction to computer solution techniques required to simulate flow, thermal, and mechanical systems. Methods of solving ordinary and partial differential equations and systems of algebraic equations; interpolation, numerical integration; finite difference and finite-element methods. Nonmajor graduate credit.

M E 498. Cooperative Education. Cr. R. F.S.S. Prereq: 298. permission of department. Third and subsequent professional work periods in the cooperative education program. Students must register for this course before commencing work.

Courses Primarily for Graduate Students, Open to Qualified Undergraduate Students

M E 511. Advanced Control Design. (3-0) Cr. 3. S. Prereq: 411. Application of control design methods using continuous, discrete, and frequency-based models. Approaches include classical, pole assignment, modern reference input following, and adaptive control methods. Mechanical design projects.

M E 515. Advanced Machine Design II. (3-0) Cr. 3. S. Prereq: 325. Experimental, empirical, and rational methods for analysis and synthesis in the solution of advanced machine design problems. Performance, design, and fatigue considerations.

M E 532. Thermodynamics of Compressible Flow (3-0) Cr. 3. F.
Prereq: 339. Thermodynamics of internal compressible flow. One dimensional steady flow; isentropic; terminal shock waves; constant area flow with friction and heat transfer. Generalized one dimensional flow.

M E 536. Advanced Heat Transfer, (3-0) Cr. 3. S.

M E 538. Advanced Fluid Flow, (3-0) Cr. 3. F.
PreReq: Credit or concurrent enrollment in CH E 352 or CH E 355. Detailed study of incompressible/compressible, viscous/inviscid, laminar/turbulent, and developing fluid flows on a particle/point control volume basis.

M E 539. Fluidized Bed Processes, (Same as CH E 539) (3-0) Cr. 3. F.

M E 547. Computational Fluid Mechanics and Heat Transfer II, (Same as Aer E 547) (3-0) Cr. 3. F.
Prereq: Credit or concurrent enrollment in E M 541 or E M 571. Introduction to computer architectures, computational methods, data structures and algorithms. Thermal conduction, convection, and radiation phenomena.

M E 548. Vehicle Dynamics, (3-0) Cr. 3. F.

M E 551. Signal Processing in Mechanics, (Same as E M 551) (3-0) Cr. 3. S.

M E 554. Fracture and Fatigue, (Same as E M 554, M E 564.) (3-0) Cr. 3. F.
Prereq: E M 324 and one of E E 336, E E 352, Math 211 or 271. Materials and mechanisms approach to fracture and fatigue. Fracture mechanics, brittle and ductile fracture, fracture and fatigue characteristics. Fracture and fatigue tests, thermal fracture, mechanics and materials designed to avoid fracture and fatigue.

M E 573. Random Signal Analysis and Kalman Filtering, (Same as Aer E 573, E E 573, Math 573.) (3-0) Cr. 3. F.

M E 574. Optimal Control, (Same as Aer E 574, E E 574, Math 574.) (3-0) Cr. 3.

M E 575. Introduction to Robust Control, (Same as Aer E 575, E E 575, Math 575.) (3-0) Cr.

M E 576. Digital Feedback Control Systems, (Same as Aer E 576, E E 576, Math 576.) (3-0) Cr. 3. F.

M E 577. Modern Control Systems I, (Same as Aer E 577, E E 577, Math 577.) (3-0) Cr. 3. F.

M E 578. Modern Control Systems II, (Same as Aer E 578, E E 578, Math 578.) (3-0) Cr. 3.
Prereq: 411 or 414 or Aer E 432 or Math 418. Advanced treatment of heat conduction and heat transfer. Linear systems. Stability of linear dynamical systems.

M E 579. Adaptive Control, (Same as Aer E 579, E E 579, Math 579.) (3-0) Cr. 3.

M E 585. Radioactive Waste Management, (3-0) Cr. 3.

M E 638. Radiation Heat Transfer, (3-0) Cr. 3.

M E 646. Computational Methods for Internal and Low Speed Flows, (Same as Aer E 646) (3-0) Cr. 3.
Prereq: Offered 2001. Prereq: 547. Emphasis is on algorithms suitable for low speed and internal flows at speeds up through transonic. Incompressible, ideal, pressure-based schemes, pseudo-compressibility methods, use of preconditioning to develop algorithms suitable for all speed regimes, large eddy simulation, algorithms for unstructured grids, and finite elements in fluids.

M E 647. Advanced High Speed Computational Fluid Dynamics, (Same as Aer E 647) (3-0) Cr. 3.

M E 690. Advanced Topics. Cr. var. Investigation of advanced topics of special interest to graduate students in mechanical engineering. Topic areas are those listed for M E 590.

M E 699. Research. Offered on a satisfactory-fail grading basis only.

Courses in History of Technology and Science

M E 280. Introduction to History of Science, (Same as Hist 280.) (3-0) Cr. 3. F. Ideas of nature from Babylonia to the Renaissance.

Courses and Programs Mechanical Engineering 295

Q. Independent Literature Investigation R. Nuclear Engineering S. CAD/CAM

M E 599. Creative Component. Cr. var.
Courses and Programs

Mechanical Engineering

M E 281. Introduction to History of Science. (Same as Hist 281.) (3-0) Cr. 3. S. Science from the seventeenth-century scientific revolution to Darwin and Einstein.

M E 284. Introduction to History of Technology and Engineering. (Same as Hist 284.) (3-0) Cr. 3. F. Technology in various civilizations including from Sumer and Egypt to early 18th century Europe.

M E 285. Introduction to History of Technology and Engineering. (Same as Hist 285.) (3-0) Cr. 3. S. Technology in the Western world in the nineteenth and twentieth centuries.

M E 387. Technology, Science, and Society in Modern Europe. (Same as Hist 387.) (3-0) Cr. 3. Wilson. From the late eighteenth-century beginnings of the industrial revolution in Britain to World War I. Examination of scientists’ and engineers’ influence on society and of society on them.

M E 488. History of American Technology. (Same as Hist 488.) (3-0) Cr. 3. Cravens, Bx. Technology in America from Industrial Revolution to present. Themes include social contexts of technological change, development of professional engineering, ideas about technology and American life. Nonmajor graduate credit.

M E 489. History of American Science. (Same as Hist 489.) (3-0) Cr. 3. Cravens. Science and its social relationships since the mid-nineteenth century; interaction of scientific discoveries and the development of society. Continuing impact of Darwinism and other scientific theories; science and social thought; modern medicine and public health; science and industry; science and agriculture; the social sciences; government and science; science and the consumer; the atomic age; big science and the environmental dilemma; the energy crisis; the role of science in democracy. Nonmajor graduate credit.

Meteorology

For description of courses, see Geological and Atmospheric Sciences.

Microbiology

www.micro.iastate.edu/index

James S. Dickson, Chair of Department

University Professors: Glatz

Professors: Atherly, Harris, Hill, Lounachan, Pometto

Professors (Emeritus): Durand, Kraft, Pattee, Quinn, Williams

Associate Professors: Andrews, Bazylinski, Bonning, Cunnick, Dickson, Dispirito, Phillips

Associate Professors (Collaborators): Moorman

Assistant Professors: Beattie, Halverson

Assistant Professors (Adjunct): Bouy

Assistant Professors (Collaborators): Parkin, Quinlisk, Stanton, Wesley

Undergraduate Study

The department offers undergraduate study for the bachelor of science degree with a major in microbiology. For the curriculum in microbiology, see Agriculture, Curricula. In this department, principal emphasis is placed on understanding microorganisms and their relationships with other organisms in nature, the application of microbiology in medicine, agriculture and industry, and the study of fundamental life processes as exemplified by microorganisms. The department of microbiology also participates in an interdepartmental undergraduate minor in emerging infectious diseases (see the department of entomology for details). Some fields of microbiology, especially advanced research, may require further training. Undergraduate work in the department is designed to provide sound preparation for graduate study, training for bachelor's-level employment, and admission to professional programs such as medicine, veterinary medicine and dentistry.

Graduates of the Department of Microbiology are able to recognize and appreciate the diversity and complexity of microbial life represented by procaryotes, eucaryotes, and viruses. In addition to understanding fundamental principles of microbial growth, physiology, genetics, biochemistry, and ecology, the program emphasizes the impact that the microbial world has on human, animal and plant health, as well as on industry and biotechnology. Graduates are able to design and implement experimental approaches to address specific questions. In addition, graduates are able to communicate scientifically, using a variety of media.

Graduate microbiologists find career opportunities in a wide variety of areas: in hospital and clinical laboratories; in federal, state, and local government agencies; in research and development; in dairy and food processing; in the pharmaceutical and fermentation industries.

Undergraduate programs for the major in microbiology usually include the following basic courses: 302, 310, 320, 341, 342, 343, 344, 345, 441, 442, 443, 444, 445, and 446. Aspects of these courses emphasize communication skills, environmental issues, problem solving, and laboratory techniques. Courses in the following areas are required as supporting work: biology, chemistry, biochemistry, genetics, mathematics and physics.

Preveterinary preparation may be accomplished through the curriculum major in this department (see College of Veterinary Medicine, Admission Requirements).

Students majoring in microbiology are eligible to apply for the Cooperative Education Program with the Agricultural Research Service. If selected, the student will obtain full-time, paid, work experience at either the National Animal Disease Center, the National Veterinary Services Laboratory, or the Soil Test Laboratory in Ames. Other internship opportunities also are available.

The department offers a minor in microbiology which may be earned by accumulating a minimum of 15 credits from the departmental offerings.

Majors in microbiology must take courses in written communication (Eng 104, 105), one course in oral communication (Sp Crn 212), and must meet the College of Agriculture English proficiency requirement of C or better in these courses. Students must also meet the College of Agriculture requirements for credit in courses in ethics, and the university diversity and multicultural requirements.

Graduate Study

The department offers the degrees master of science and doctor of philosophy, and a doctoral minor to students majoring in other departments. A non-thesis master’s option is available for the major in microbiology.

Graduates in the Microbiology program have a strong broad-based general knowledge of microbiology as well as advanced knowledge in a specific aspect of microbiology. Those students completing a thesis have the technical research, critical thinking, problem solving, and computer skills to design, implement, and conduct research experimentation using a variety of modern molecular tools and equipment. They are able to communicate research results effectively with scientific peer groups in both oral and written formats.

Prerequisite to graduate study is completion of coursework in general microbiology, biochemistry, mathematical sciences, and physics.

The department also participates in the interdepartmental majors and programs in genetics, immunobiology, MCDB (molecular, cellular, and developmental biology), neuroscience, technology and social change, toxicology, and water resources (see Index).

Each graduate student must demonstrate proficiency in English composition within two semesters in residence.

Courses open for nonmajor graduate credit: 310, 374, 406, 419, 420, 421, and 485.

Courses Primarily for Undergraduate Students

Micro 110. Orientation in Microbiology. (1-0) Cr. F. Orientation to the discipline of microbiology, the curriculum in microbiology, and educational research opportunities within the department. Offered on a satisfactory-fail basis only.

Micro 201. General Microbiology. (2-0) Cr. 2. F.S. Prereq: One semester of college-level biology. Selected topics in microbiology with emphasis on the relationship of microorganisms to human and animal health, agricultural technology, and the environment. With written petition, students who obtain a grade of B or better may substitute 201 for 302 in advanced courses.

Micro 201L. Introductory Microbiology Laboratory. (0-2) Cr. 1. F.S. Prereq: Credit or enrollment in 201 or 302.

Micro 302. Biology of Microorganisms. (3-0) Cr. 3. F.S. Prereq: Biol 201, credit or enrollment in Biol 202; 1 semester of chemistry. Basic cell biology, physiolo- gy, metabolism, genetics and ecology of microorganisms, with an emphasis on procaryotes and viruses, as well as the roles of microorganisms in the environment, disease, agriculture, and industry.

Micro 310. Fundamentals of Microbial Infection and Immunity. (4-0) Cr. 4. F.S. Prereq: 302. Study of pathogenic microbes, mechanisms of disease, and host resistance. Nonmajor graduate credit.

Micro 311. Introduction to Parasitology. (Same as Zool 311.) See Zoology.

Micro 320. Fundamentals of Microbial Physiology and Genetics. (4-0) Cr. 4. S. Prereq: 302, Biol 301, credit or enrollment in Chem 332. Introductory course in microbial physiology and genetics with emphasis on the structure, function, and assembly of bacterial cell components, metabolism, regulation of gene expression, genetic adaptation, and growth.
Micro 341. Bacterial Cultivation Techniques. (0-6) Cr. 1. F. Prereq: Credit or enrollment in 302. Techniques for the cultivation of bacteria in solid and liquid media and under diverse environmental conditions, including aerobic and anaerobic conditions; culture preservation techniques; and technique for determining culture purity.

Micro 342. Techniques for the Visualization and Fractionation of Bacterial Cells. (0-6) Cr. 1. F. Prereq: Credit or enrollment in 302. Light microscopy techniques, including phase, dark-field, and fluorescence microscopy; determinative and cytological light microscopy; spectrophotometry; and cell collection, purification and fractionation.

Micro 345. Techniques in Microbial Systematics. (0-6) Cr. 1. S. Prereq: Credit or enrollment in 302. Techniques for the identification and classification of microorganisms based on phenotypic, genotypic, and phylogenetic relatedness.

Micro 374. Insects and Our Health. (Same as Ent 374.) See Entomology. Nonmajor graduate credit.

Micro 402. Microbial Genetics. (Dual-listed with 502.) (3-0) Cr. 3. F. Prereq: 320. Focus on the review and discussion of original research literature to examine in-depth the design, methodology, and interpretation of experiments of both historical and contemporary relevance to microbial genetics.

Micro 404. Microbial Physiology. (Dual-listed with 504.) (3-0) Cr. 3. S. Prereq: 320. Topics in microbial physiology, including structure and function of cell components, bioenergetics, diversity, life in extreme environments, growth, adaptation and regulation.

Micro 407. Microbiological Safety of Foods of Animal Origins. (Dual-listed with 507., same as FS 407.) (3-0) Cr. 3. S. Prereq: 420. Focuses on the various factors in the production of foods of animal origin, from animal production through processing, distribution and final consumption which contribute to the overall microbiological safety of the food. The two modules of this course will be 1) the procedures and processes which can affect the overall microbiological safety of the food, and 2) the Hazard Analysis Critical Control Point (HACCP) system.

Micro 408. Virology. (Dual-listed with 508.) (3-0) Cr. 3. F. Prereq: 310. The biology of animal, plant, and insect viruses.

Micro 419. Foodborne Hazards. (Same as FS HH 419.) See Food Science and Human Nutrition. Nonmajor graduate credit.

Micro 420. Food Microbiology. (Same as FS HH 420, Tox 420) (3-0) Cr. 3. F. Prereq: 302. Effects of microbial growth in foods. Methods to control, detect, and enumerate microorganisms in food and water. Foodborne and under diverse environmental conditions and intoxications. Nonmajor graduate credit.

Micro 421. Food Microbiology Laboratory. (Same as FS HH 421. I (1-6) Cr. 3. F. Prereq: 201 or 302; 201L Credit or enrollment in 420 (FS HH 420). Standard microbiological techniques employed in the food industry, including microscopic examination of foods, plate counts, other enumeration methods, indicator organisms of food quality and safety, foodborne pathogens, and molds. Nonmajor graduate credit.

Micro 425. Food Biotechnology. (Dual-listed with 525; same as FS HH 425.) See Food Science and Human Nutrition.
Micro 599. Creative Component. Cr. art. Prereq: Nonthesis M.S. Option only. A written report based on laboratory research, library reading, or topics related to the student’s area of specialization and approved by the student’s advisory committee.

Courses for Graduate Students

Micro 604. Seminar. (1-0) Cr. 1 each time taken. F.S. Offered on a satisfactory-fail grading basis only.

Micro 615. Molecular Immunology. (Same as BBMB 615.) See Biochemistry, Biophysics, and Molecular Biology.

Micro 625. Mechanisms of Bacterial Pathogenesis. (Same as V MPM 625.) See Veterinary Microbiology and Preventive Medicine.

Micro 626. Advanced Food Microbiology. (Same as FS HN 626.) See Food Science and Human Nutrition.

Micro 641. General Micrology. (Same as Bot 641.) See Botany.

Micro 642. General Micrology. (Same as Bot 642.) See Botany.

Micro 679. Light Microscopy. (Same as Bot 679.) See Botany.

Micro 685. Advanced Soil Biochemistry. (Same as Agron 685.) See Agronomy.

Micro 690. Current Topics. Cr. 1 to 3 each time elected. F.S.S. Prereq: Permission of instructor. Colloquia or advanced study of specific topics in a specialized field.

A. Microbiology
B. Immunology
C. Infectious Diseases

Micro 698. Seminar in Molecular, Cellular, and Developmental Biology. (Same as MCD 698.) See Molecular, Cellular, and Developmental Biology.

Micro 699. Research.

Courses offered at the Gulf Coast Research Laboratory (GCRL), Ocean Springs, Mississippi

The Gulf Coast Research Laboratory is affiliated with the University of Southern Mississippi. Iowa State students may register for the following University of Southern Mississippi/GCRL courses and transfer them to their ISU degree programs. Written permission of the ISU coordinator for the GCRL, 201 Bessey, is required for this arrangement. Inquire at 201 Bessey for further information.

MAR 409. Marine Microbiology. Cr. 3. SS. Offered for undergraduate credit through a cooperative arrangement with Iowa State University. Prereq: B semester credits in microbiology. A general course designed to introduce the microbiology and advanced biology student to the role of microorganisms in the overall ecology of the oceans and estuaries.

MAR 409L. Marine Microbiology Laboratory, Cr. 2. SS. Accompanies 409.

Military Science

www.public.iastate.edu/~armyrotc/

Marvin Meeks, Chair of Department

Professors: Johnson, Meeks

Assistant Professors (Adjunct): Lang

Instructors (Adjunct): Mayner, Meyer, Rhoades, Runyon, Sartin, Showers, Taylor

The mission of the Reserve Officer Training Corps (ROTC) is to commission the future leaders of the United States Army. Since ROTC produces 65 percent of the Army’s Officer Corps, our task is one of the most important undertakings in the Army and our country today. We seek top quality college students. We train these potential leaders, assess their abilities, and challenge them with the highest standards of profession/professionalism. Those who successfully complete the program, receive a commission as a second lieutenant in the U.S. Army. A commission as an Army officer affords the opportunity to pursue a profession in one or several of the 300 different jobs held by Army officers. Students may request to serve as an officer in either the active army, or part time in the Army Reserve or National Guard. Regardless of the method of service, officers in today’s Army can be proud to know that they are doing their share in the defense of the United States of America.

The ISU military science program is divided into two segments, the basic program and the advanced program. The basic program (courses numbered 101-210) is designed primarily for freshmen and sophomores. No military obligation is incurred by a person participating in the basic program. The basic program is designed to be informative and to acquaint students with the military as a profession. The basic program or an allowed substitute is a prerequisite for the advanced program.

Financial assistance is available on a competitive basis.

Persons interested in military science should visit the department located upstairs in the Armory.

Basic Program

These courses are primarily for freshman and sophomore students and, except for veterans and basic training graduates, are required for entry into the advanced program. No more than 10 credits in 100- and 200-level courses may be applied toward graduation. The curriculum is designed to train freshmen and sophomores in individual and team skills. It also helps the Professor of Military Science identify individual leader developmental needs.

Advanced Program

These courses are for students who have completed the basic program (or received equivalent credit) and are mandatory for potential commissioning upon contracting at the beginning of their junior year. Each cadet receives a monthly $200.00 allowance for up to 10 months. This stipend is given during the junior and senior years. These courses are primarily taught to juniors and seniors.

Successful completion normally obligates the student to military service on active or reserve duty. In addition to the advanced program of study, a student (cadet) will be expected to pass the Army Physical Fitness Test (precondition for commissioning) each semester and continually maintain military appearance standards in both personal grooming and uniform. Physical fitness training is regularly conducted outside of class or laboratory hours. Students are expected to attend and participate in these exercise activities.

Professional Military Education (PME) coursework outside of the military science curriculum is also a precondition to commissioning. The PME component consists of two parts; completion of a bachelor’s degree and demonstrated proficiency in three areas: American Military History, Computer Literacy, and Communication. These standards are explained to prospective students as they consider enrollment in the advanced program.

Uniforms will be worn at least twice weekly. The 200-level courses will prepare cadets for advanced camp, which is a five-week summer internship/training program where cadets are trained to Army standards, develop leadership skills, and have their officer potential evaluated. The 400-level courses are the final preparation for commissioning as a second lieutenant in the U.S. Army. Students must meet academic alignment criteria and receive basic program credit before entering the advanced program.

The College of Liberal Arts and Science offers a minor in Military Studies. Requirements for the minor include taking a minimum of 15 credit hours of ROTC instruction, which may be taken from one or a number of the ROTC programs. At least 6 credit hours must be in courses numbered 300 or above.

Courses Primarily for Undergraduate Students

Basic Program

M S 101. Introduction to Military Science. (1-0) Cr. 1. F.S. This course offers an overview of the role of the United States Army officer, the U.S. Army organization, and the Army ROTC program of instruction. Students will learn about the various jobs that an officer may assume, officer traditions, differences in officer and enlisted rank, and etiquette. Also, students will be provided instruction on college scholarships (Army ROTC and others), in confidence building (hands-on rappelling and marksmanship classes), leadership abilities, and professional knowledge about general military topics.

M S 101L. Basic Leadership Laboratory. (0-2) Cr. 0.5. F.S. This Lab is designed to use basic military training skills and tasks to develop confidence, character, and leadership in students. The team approach, combined with hands-on instruction, is the teaching methodology for the Lab. Students will learn various military tasks such as marching, rifle/pistol firing, and tactical patrolling; gain confidence by rappelling and serving in leadership positions over other students; and increase professional knowledge in areas such as first aid, water survival, personal physical fitness, and land navigation. Teaching locations include the ISU Armory, Camp Dodge, Pammel Woods (ISU campus), and ISU fitness centers (Beyer Gym and Rec Center). Full participation in all events will be determined based on students’ physical and medical eligibility.
S 102. The United States Defense Establishment. (1-0) Cr. 1. S.S.S. This course introduces students to the U.S. Army’s Principles of Warfighting. Students learn an understanding of the applied skills, proven successful, required to defeat an opponent: militarily, athletically, or in the business world. Historical battles and significant military leaders will be analyzed to highlight dimensions of leadership that can be quantifiably assessed. Instruction will include programs to teach students the methodology used in ROTC to assess the leadership skills of both others and of self. Additional instruction will include time-management, decision-making, counseling, rappelling, marksmanship, and confidence-building tasks.

S 102L. Basic Leadership Laboratory. (0-2) Cr. 1. S.S.S. This lab is designed to use basic military training skills and tasks to develop confidence, character, and leadership in students. The team approach, combined with hands-on instruction, is the teaching methodology for the lab. Students will learn various military tasks such as marching, rifle/pistol firing, and tactical patrolling, gain confidence by rappelling and serving in leadership positions over other students; and increase professional knowledge in areas such as first aid, water survival, personal physical fitness, and land navigation. Teaching locations include the ISU Armoury, Camp Dodge, Pammel Woods (ISU campus), and ISU fitness centers (Beyer Gym and Rec Center). Full participation in all events will be determined based on students’ physical and medical eligibility.

S 201. Principles of Leadership. (2-0) Cr. 2. F.S.S. Development of leadership skills by study of principles and traits of leadership; time management, values, decision making, communicating, delegating, and counseling. Leadership assessment programs, role playing, skits, and films are used to enhance and reinforce the instruction.

S 201L. Basic Leadership Laboratory. (0-2) Cr. 1. F.S. This lab is designed to use basic military training skills and tasks to develop confidence, character, and leadership in students. The team approach, combined with hands-on instruction, is the teaching methodology for the lab. Students will learn various military tasks such as marching, rifle/pistol firing, and tactical patrolling, gain confidence by rappelling and serving in leadership positions over other students; and increase professional knowledge in areas such as first aid, water survival, personal physical fitness, and land navigation. Teaching locations include the ISU Armoury, Camp Dodge, Pammel Woods (ISU campus), and ISU fitness centers (Beyer Gym and Rec Center). Full participation in all events will be determined based on students’ physical and medical eligibility.

S 202. Map Reading and Land Navigation. (2-0) Cr. 2. S.S.S. Characteristics and features of the earth’s land mass and application of methods of conducting navigation on land by use of topographical maps, compasses, and aerial photographs, military map symbols and their practical application.

S 202L. Basic Leadership Laboratory. (0-2) Cr. 1. S.S.S. Basic military training related to developing confidence, character, and leadership. The team approach in task and mission accomplishment is taught with special emphasis on land navigation and orienteering. Locations include Camp Dodge, Holst State Forest, Pammel Woods, and the ISU Armoury. Certification of medical eligibility required for full participation.

S 210. Practicum in Basic Military Skills. Cr. 6. S. S. Prereq: Permission of the professor of military science. Basic military skills for students with no prior military or ROTC training. Involves attendance at the six-week Army ROTC Basic Camp, Fort Knox, Kentucky. Completion enables students to enroll in the Advanced Course and is taken in lieu of 101, 102, 201, and 202. Offered on a satisfactory-fail grading basis only.

Advanced Program

S 301. Methods of Instructing Military Skills. (3-0) Cr. 3. F.S. Prereq: Completion of the basic program. Development of military writing techniques, basic educational psychology, oral presentation, skills, use of training aids, and lesson planning. Students prepare presentations incorporating all phases of instruction. Students engage in a series of practical opportunities to lead small groups. Focus is on leadership dimensions; and the seven basic Army Values. Additionally the student is introduced to the Leadership Development Program and the Army Physical Fitness Program. The traditions and customs of the Army, as well as land navigation skills are reviewed.

S 301L. Advanced Leadership Laboratory. (0-4) Cr. 1. F.S. Prereq: Completion of the basic program. On-the-job training and evaluation provided by the ROTC cadre. Developing training programs, structuring laboratories, presenting classes, planning various events, and accepting responsibility for the leadership labs. The swim test, Army Physical Fitness Test and the diagnostic map test required of candidates for a commission.

S 302. Small Unit Tactics. (3-0) Cr. 3. F.S. Prereq: Completion of the basic program. Organization, composition, and missions of operational elements. Principles of offensive and defensive combat operations with emphasis on the attack, retrograde, patrolling, combat intelligence, tactical orders, troop leading procedures, and combat leadership.

S 302L. Advanced Leadership Laboratory. (0-4) Cr. 1. F.S. Prereq: Completion of the basic program. On-the-job training and evaluation provided by the ROTC cadre. Developing training programs, structuring laboratories, presenting classes, planning various events, and accepting responsibility for the leadership labs. The swim test, Army Physical Fitness Test and the diagnostic map test required of candidates for a commission.

S 310. Field Training Exercise. (0-3) Cr. 1. S. Prereq: Completion of the basic program. An annual military exercise that requires approximately 30 hours of planning, participation, and follow-up plus ROTC cadre evaluation. Designed primarily for the advanced ROTC cadets in preparation for being commissioned as officers in the U.S. Army. Actual military conditions are simulated; detailed instruction in weapons training and execution of a simulated Operation Order in accomplishing a specific military mission. Conducted as a weekend exercise at Camp Dodge. Offered on a satisfactory-fail grading basis only.

S 401. The Military Team. (3-0) Cr. 3. F.S. Prereq: Completion of the basic program. Organization and operational concepts of the military staff, military units, administration, logistics and organizational structures within the Army division. Combat operations and their various elements, with emphasis on planning and coordination; and an introduction to military justice.

S 401L. Advanced Leadership Laboratory. (0-4) Cr. 1. F.S. Prereq: Completion of the basic program. On-the-job training and evaluation provided by the ROTC cadre. Developing training programs, structuring laboratories, presenting classes, planning various events, and accepting responsibility for the leadership labs.

S 402. Seminar: The Professional Officer. (3-0) Cr. 3. F.S. Prereq: Completion of the basic program. Management, leadership, and professionalism; management tools, practices, theories, and principles; leadership principles, traits, and application.

S 402L. Advanced Leadership Laboratory. (0-4) Cr. 1. F.S. Prereq: Completion of the basic program. On-the-job training and evaluation provided by the ROTC cadre. Developing training programs, structuring laboratories, presenting classes, planning various events, and accepting responsibility for the leadership labs.

S 410. Field Training Exercise. (0-3) Cr. 1. S. Prereq: Completion of the basic program. An annual military exercise that requires approximately 30 hours of planning, participation, and follow-up plus ROTC cadre evaluation. Designed primarily for the advanced ROTC cadets in preparation for being commissioned as officers in the U.S. Army. Actual military conditions are simulated; detailed instruction in weapons training and execution of a simulated Operation Order in accomplishing a specific military mission. Conducted as a weekend exercise at Camp Dodge.

Courses and Programs

Military Studies (Interdepartmental Minor)

Advisory Committee: K. Schindele, Coordinator; G. Washburn, T. Johnson

The Military Studies program is designed for students interested in learning about military skills and careers. The mission of the Reserve Officers Training Corps (ROTC) programs is threefold. First, students are developed mentally, morally, and physically in order to make them strong leaders. Second, a desire for development in mind and character is instilled in students so they may assume the highest responsibilities of command, citizenship, and government. Finally, students are imbued with the highest ideals of duty, honor, and loyalty in order to graduate with a basic professional background and motivation toward their careers.

The Air Force Aerospace Studies, Military Science, and Naval Science departments accomplish this mission through detailed courses of instruction occurring throughout a typical student’s college career. All academic courses offered by these departments focus on the development of professional military skills and their application. Each department offers courses unique to its branch of the military. The Air Force Aerospace Studies curriculum familiarizes students with Air Force structure and doctrine. Students in Army ROTC classes gain an appreciation for ground warfare and doctrine, while the Naval Science program develops basic seamanship skills such as navigation and marine propulsion. On a broader scale, all three departments offer courses promoting leadership and sound management practices that investigate the military’s role in American domestic and foreign policy, and can be employed in any career path.

Air Force Aerospace Studies, Military Science, and Naval Science courses are offered in the interdepartmental Military Studies program in the following participating departments: Air Force Aerospace Studies, Military Science, and Naval Science.
Undergraduate Study

Undergraduate study in this program provides the student with an opportunity to develop a minor in Military Studies. The three Iowa State University ROTC programs offer over 64 credit hours of specialized coursework. The minor in Military Studies is open to any Iowa State University students.

Undergraduate students may minor in Military Studies by taking 15 credit hours of coursework from a combination of any of the three ROTC programs - regardless of whether or not a commission in the Armed Forces is tendered. At least 6 of the 15 credit hours must be in courses numbered 300 or above.

Courses Primarily for Undergraduate Students

AFAS 141. The United States Air Force Today I.
AFAS 142. The United States Air Force Today II.
AFAS 241. The Development of Air Power I.
AFAS 242. The Development of Air Power II.
AFAS 341. Air Force Management and Leadership I.
AFAS 342. Air Force Management and Leadership II.
AFAS 441. National Security Forces in Contemporary American Society I.
AFAS 442. National Security Forces in Contemporary American Society II.

Military Science - See Military Science.
M S 301. Methods of Instructing Military Skills.
M S 302. Small Unit Tactics.
M S 401. The Military Team.
M S 402. The Professional Officer.

Naval Science - See Naval Science.
N S 111. Introduction to Naval Science.
N S 211. Naval Ship Systems II.
N S 212. Seapower and Maritime Affairs.
N S 312. Navigation and Naval Operations II.
N S 321. Evolution of Warfare.
N S 411. Leadership and Management I.
N S 412. Leadership and Management II.

Molecular, Cellular, and Developmental Biology

(Interdepartmental Graduate Major)
Program Executive Committee: Janice Buss, Chair; L. Ambrosio, R. Robson

Undergraduate Study

A special program in molecular, cellular, and developmental biology is not offered for the baccalaureate. Undergraduates wishing to prepare for graduate study in molecular, cellular, and developmental biology should elect coursework in biochemistry, botany, genetics, microbiology, and zoology; mathematics through calculus; chemistry through organic; and one year of physics. Biol 301, 301L, 302, and 302L are recommended to undergraduates desiring an introduction to this area.

Graduate Study

Work is offered for the master of science and doctor of philosophy degrees with a major in molecular, cellular, and developmental biology in several cooperating departments: Agronomy; Animal Science; Biochemistry, Biophysics & Molecular Biology; Biomedical Sciences; Botany; Entomology; Food Science and Human Nutrition; Horticulture; Microbiology; Plant Pathology; Veterinary Microbiology & Preventive Medicine; and Veterinary Pathology, Zoology and Genetics.

Facilities and qualified faculty are available in these departments for conducting fundamental research in the various aspects of molecular, cellular, and developmental biology. Ongoing research projects include molecular and cellular studies of viral, prokaryotic, plant, and animal systems.

Students may enter the MCDB major in one of two ways: they may apply to and be accepted into the major directly or they may formally apply to the major after being accepted by a participating department. Students admitted into MCDB will take MCDB 697 in their first two semesters and choose a major professor from the participating faculty and a department by the end of their second semester.

Students admitted by a department will choose a major professor from the participating faculty in that department. All Ph.D. students take a core curriculum consisting of the following courses: one year of biochemistry (BBMB 404, 405 or BBMB 501, 502), molecular genetics (MCDB 502, 511, 545, or 676), cell biology (MCDB 528 or 529 or 540), developmental biology (MCDB 512, 533), and seminar in MCDB (MCDB 698). In seminar, students will make journal and research presentations and attend MCDB faculty seminars. M.S. students take the above core but may delete either the molecular genetics, cell biology, or developmental biology component. Additional coursework is selected to meet departmental requirements and to satisfy individual student research interests; courses may be chosen from those listed below. The foreign language requirement is determined by the student’s major department. All graduate students are required to teach as part of their training for an advanced degree.

Students minoring in molecular, cellular, and developmental biology at the Ph.D. level must meet the following requirements: one year of biochemistry (BBMB 404, 405, or BBMB 501, 502; one course in each of two of the following three areas: molecular genetics (MCDB 502, 511, 545, or 676), cell biology (MCDB 528 or 529 or 540), developmental biology (MCDB 512, 533); and enrollment in MCDB 698 (seminar in MCDB) each year.

Courses for Graduate Students

MCDB 502. Microbial Genetics. (Same as Micro 502.) See Microbiology.
MCDB 511. Molecular Genetics. (Same as Gen 511.) See Zoology and Genetics.
MCDB 512. Plant Growth and Development. (Same as Bot 512.) See Botany.
MCDB 520. Genetic Engineering. (Same as Gen 520.) See Zoology and Genetics.
MCDB 528. Cellular Growth and Regulation. (Same as Zool 528.) See Zoology and Genetics.
MCDB 529. Plant Cell Biology. (Same as Bot 529.) See Botany.
MCDB 540. Signal Transduction. (Same as Zool 540.) See Zoology and Genetics.
MCDB 545. Plant Molecular Biology. (Same as Bot 545.) See Botany.
MCDB 590. Special Topics. Cr. arr.
MCDB 676. Biochemistry of Gene Expression in Eucaryotes. (Same as BBMB 676.) See Biochemistry, Biophysics and Molecular Biology.
MCDB 697. Graduate Research Rotation. (0-3 to 0-18) Cr. 1 to 6 each time taken. F.S. Graduate research projects performed under the supervision of selected faculty members in the molecular, cellular, and developmental biology program.
MCDB 698. Seminar in Molecular, Cellular, and Developmental Biology. (Same as An S 698, BBMB 698, Bot 698E, Gen 698, Micro 698, V MPM 698, Zool 698.) (2-0) Cr. 1 to 2 each time taken. F.S. Student and faculty presentations.
MCDB 699. Research.
Candidates for the bachelor of music will complete the following requirements.

- **Cr.**
 - 46 General education
 - 0.5 Library
 - 47 Music core

 Area of Specialization: (Students must select one of the following options: music education, organ, piano, string instruments, composition, voice, and wind or percussion instruments.)

Bachelor of Arts—Music Major

For the undergraduate curriculum in Liberal Arts and Sciences, major in music, leading to the degree bachelor of arts, see Liberal Arts and Sciences, Curriculum.

Candidates for the degree bachelor of arts with a music major will normally complete 48 credits of music including the following required courses: 119, 120, 219, 230, 231, 232, 319, 331, 332, 337, 338, 383, 384.

Bachelor of arts students whose chief professional interest lies in research are encouraged to minor in foreign languages and literatures, history, literature, or philosophy.

Minor in Music. Candidates for the minor in music will complete 19 credits in music, including 6 credits in courses numbered 300 and above taken at ISU with a grade of C or better, and

1. a. one of the following: 101 or 230;
 b. one of the following: 102, 103, 104; or
 c. either

2. Two consecutive semesters of one of the following: 111, 112, 113, 115, 131, 141, 151, 161, 171, 181, 301

or

3. Two consecutive semesters of one applied music area (choose from 118, 318, 127, 128, 227, 228, 327 or 133).

General Requirements

Prior to being accepted as a music major, students are required to audition for applied faculty in their performance area (piano, organ, woodwinds, strings, percussion, brass, or voice), and must successfully demonstrate performance skills appropriate for college level instruction. Once accepted, a student must take a diagnostic examination in music theory and satisfactorily complete a placement examination in keyboard skills. These examinations will be given by members of the departmental faculty during summer orientation, the week preceding the opening of classes for fall semester, or by appointment. Students should request these examinations from the Department of Music office before deciding on a major in music.

Seminars and Recitals. All music majors enrolled for applied music courses will attend a weekly 1-hour seminar in their areas and departmental recitals each semester.

Ensemble Requirement. All bachelor of music students must register for one ensemble course every semester of residence (except during student teaching). Two semesters must be in a large ensemble; six semesters in a large ensemble for music education majors. See the Music Department Student Handbook for further information.

Continuation Examination. To be approved for continuation as a music major on the junior level, a student must pass a continuation examination taken normally at the end of the fourth semester. Before taking this examination, the student must fill out the requisite forms as well as prepare a statement of (1) his/her personal goals, (2) a self-assessment of his/her progress thus far, and (3) an assessment of what he/she expects to accomplish before graduation.

The student taking the Continuation Examination performs for a Continuous Examination Committee. Requirements include the performance of three works representing different periods or styles selected by and studied with the applied teacher, a self-prepared piece, and sight reading. The student must display acceptable solo ability and performance techniques in at least one of the applied areas. A written evaluation will be given each student following his/her performance. This evaluation will include a candid assessment of the student’s potential to achieve his/her goals. In addition, the student may arrange to meet with members of the Continuation Examination Committee at a later date to discuss the results of his/her Continuation Examination.

All music majors must demonstrate proficiency in piano as a part of the continuation examination. Proficiency will normally be demonstrated by completing Music 228 or, for keyboard majors, by completing Music 327. The student must pass all parts of the continuation examination in order to enroll in Music 319 or 419, Applied Music. See the Music Department Student Handbook for further information.

Graduation Proficiency. To be recommended for graduation, a music student should demonstrate to the music faculty mature acquaintance with performance styles, technique, and repertoire. All music majors will participate in departmental recitals to the satisfaction of the department. Candidates for the bachelor of music degree will present a graduation recital.

English proficiency requirement: The department requires a grade of C- or better in each of Engl 104 and 105 (or 105H), and completion of Music 383 or 384 to the department’s satisfaction; or Engl 302, or 305, or 314 with a grade of C- or better.

Graduate Study

Courses open for nonmajor graduate credit: 430, 440, 472, 473, 474, 475, 476.

Courses Primarily for Undergraduate Students

Music 101. Fundamentals of Music. (1-2) Cr. 2. F.S. Phrere: Ability to read elementary musical notation. Notation, recognition, execution and analysis of scales, intervals, triads, and rhythm; key signatures; time signatures; transposition. Intended for non-majors.
Music 102. Introduction to Music Literature I. (3-0) Cr. 3. F.S.SS. Expansion of the music listening experiences of the general student through greater awareness of differences in techniques of listening, performance media, and materials of the art. The course focuses on the elements of music: rhythm, melody, harmony, form, and style, and how these elements are used in musics of different cultures and time periods. Student need not be able to perform or read music. Open to non-majors only.

Music 103. Introduction to Music Literature II. (3-0) Cr. 3. S. Prereq: Music 102. Retraces the evolution of classical musical style over the course of Western History, relating to significant historical events and trends. Active listening developed to encourage aural participation in the compositional process and development of musical style. Student need not be able to perform or read music. Open to non-majors only.

Music 104. History of Rock ’n’ Roll. (3-0) Cr. 3. S. Prereq: 101 or 102 or 230. Rock ’n’ Roll from the mid 1950s through the 1990s, focusing on the development of rock styles from its roots in blues, folk, country, and pop. Expansion of listening experience through study of song forms, instrumentation, and the socio-political significance of song lyrics. Student need not be able to perform or read music.

Music 111. Wind Ensemble. (0-3) Cr. 1 each time taken. F.S. Prereq. Open to all students by audition. Emphasis on significant scored compositions for wind and percussion instruments. Performances include formal concerts on campus and the annual tour. Offered on a satisfactory-fail grading basis only.

Music 112. Concert Band. (0-2) Cr. 1 each time taken. F.S. Prereq. Open to all students who have performed on a wind or percussion instrument in high school band or orchestra. Repertoire includes the broad spectrum of band music. Two concerts are presented each semester. Offered on a satisfactory-fail grading basis only.

Music 113. Jazz Ensemble. (0-2) Cr. 1 each time taken. F.S. Prereq. Open to all students by audition. Designed to explore various styles and trends in contemporary jazz. Offered on a satisfactory-fail grading basis only.

Music 114. Marching and Pep Bands. (0-5) Cr. 1 each time taken.
A. Marching Band. F. Prereq. Open to all students who have performed on a wind or percussion instrument in high school band or orchestra. Membership determined by date of band application; audition required for percussion, flags, and twirlers. Presentation of pre-game and half time shows at each home and significant away football game. Offered on a satisfactory-fail grading basis only.
B. Pep Band. S. Prereq. Students selected by audition from current members of 114A. Performances at basketball games. Offered on a satisfactory-fail grading basis only.

Music 115. Symphonic Band. (0-3) Cr. 1 each time taken. F.S. Prereq. Open to all students by audition. Stresses high quality wind literature. Performances include formal concerts on campus. Offered on a satisfactory-fail grading basis only.

Music 118. Applied Music: Non-majors. (1-0) or (1-0) Cr. 1 or 2 each time taken. F.S.SS. Prereq: Audition, permission of instructor. Applied music for the general student. Will not satisfy applied music requirements for music majors.
A. Voice
B. Piano
C. Organ
D. Strings
E. Carillon
F. Woodwinds
G. Brass
H. Percussion
K. Harpsichord

Music 119. Applied Music: Majors. (1.5-2) or (1.5-2) Cr. 1 to 3 each time taken. F.S.SS. Prereq: Audition, permission of instructor; restricted to music majors. Minimum weekly practice of 5 hours per credit is expected. Weekly seminar required.
A. Voice
B. Piano
C. Organ

Music 120. Introduction to Music Listening. (3-0) Cr. 3. S. Prereq: Major classification. Directed studies via aural analysis for music majors with emphasis on the application of music form and aesthetic principles. Introduction to music style and literature of the major performance media in context of historical chronology. Fundamentals of score reading and performance.

Music 127. Class Study in Piano I. (0-2) Cr. 1. F.S. Prereq. 101 or audition, and permission of instructor. Beginning keyboard technique, repertory, and sightreading skills.

Music 128. Class Study in Piano II. (0-2) Cr. 1. F.S. Prereq. 127 or audition, and permission of instructor. Continuation of beginning keyboard technique, repertory, and sightreading skills.

Music 131. Vocal Jazz Ensemble. “Off the Record”. (0-2) Cr. 1 each time taken. F.S. Prereq. Open by audition and permission of instructor; concurrent enrollment (1 cr.) in 161, 171. Small mixed chorus specializing in advanced vocal jazz techniques. Performances on and off campus. Offered on a satisfactory-fail grading basis only.

Music 141. University Chorus. (0-3) Cr. 1 each time taken. F.S. Prereq. Open to all students by audition. Large chorus; emphasis on fundamental vocal and choral skills, wide variety of literature studied in format of men’s and women’s choirs separately and in combination. Campus concerts each semester. Offered on a satisfactory-fail grading basis only.

Music 146. Summer Band. (0-2) Cr. 5 each time taken. SS. Prereq. Open to all students who have performed on a wind or percussion instrument in band or orchestra. One concert presented in SS. Offered on a satisfactory-fail grading basis only.

Music 151. Oratorio Chorus. (0-3) Cr. 1 each time taken. F.S. Prereq. Open to all students by audition. Advanced skills required, high quality literature. Campus concerts each semester, some concerts in conjunction with orchestras. Offered on a satisfactory-fail grading basis only.

Music 156. Summer Chorus. (0-2) Cr. 5 each time taken. SS. Prereq. Open to students, staff, and community. Offered on a satisfactory-fail grading basis only.

Music 161. Iowa State Singers. (0-5) Cr. 1 each time taken. F.S. Prereq. Open to all students by audition. Concert choir specializing in performance of advanced music literature, Renaissance through contemporary. Campus concerts, annual spring tour. Offered on a satisfactory-fail grading basis only.

Music 171. Chamber Singers. (0-3) Cr. 1 each time taken. Prereq: Open to all students by audition. Several performances a term; select small group capable of advanced study, performing music literature appropriate for small vocal ensemble, Renaissance through contemporary. Offered on a satisfactory-fail grading basis only.

Music 181. Symphony Orchestra. (0-4) Cr. 1 each time taken. F.S. Prereq. Open to all students by audition. Reading, preparation, and performance of standard repertoire. Five or six concerts annually plus occasional off-campus appearances. Offered on a satisfactory-fail grading basis only.

Music 219. Applied Music: Majors. (1.5-2) or (1.5-2) Cr. 1 to 3 each time taken. F.S.SS. Prereq: Audition, permission of instructor; restricted to music majors. Minimum weekly practice of 5 hours per credit is expected. Weekly seminar required.
A. Voice
B. Piano
C. Organ
D. Strings
E. Carillon
F. Woodwinds
G. Brass
I. Percussion
K. Harpsichord

Music 227. Class Study in Piano II. (0-2) Cr. 1. F.S. Prereq: 128 or audition and permission of instructor. Intermediate keyboard technique, repertory, and sightreading skills. Introduction to score reading, hymn playing, and accompanying at the piano.

Music 228. Class Study in Piano II. (0-2) Cr. 1. F.S. Prereq: 227 or audition and permission of instructor. Continuation of intermediate keyboard technique, repertory, and sightreading skills. Introduction to score reading, hymn playing, and accompanying at the piano.

Music 230. Introduction to Music Theory. (3-4) Cr. 5. F. Prereq: Diagnostic examination. Fluent identification and application of the elements of music and music notation. The study of two-voice species counterpoint as an introduction to voice-leading principles in common practice period music. Aural discrimination of musical elements and patterns as demonstrated by proficiency in ear training, sight singing, and related musicianship skills. Introduction to technological equipment and software used in the study of music.

Music 248. Introduction to Music Technology. (2-1) Cr. 2. S. Prereq: 101 or 230, and permissions of instructor. Introduction to the history and current use of technology in music education and the music industry. Hands-on work with MIDI/computer music software, recording studio equipment.

Music 265. Music in Elementary Education. (3-0) Cr. 3. S. Prereq: HD FS 226 or Psych 230. Experiencing and understanding the fundamentals of music through singing, playing classroom instruments, body movement, reading notation, listening, and creative activities. Developing lesson plan strategies and sequence, exploring multicultural musics, integrating music with other subjects in the elementary classroom, and evaluating aspects of musical learning.

Music 266. Introduction to Music Education. (1-2) Cr. 2. F. Prereq: Concurrent enrollment (1 cr.) in LAS 480K. Required for second-year majors in music education. Historical, philosophical, and social foundations of music education; music curricula overview including goals of the music program, and contemporary and international curriculum development; psychology of teaching music including discipline techniques. Preparation for required observations in area schools.

Music 290. Special Problems. Cr. var. F.S.SS. Prereq: Permission of instructor; A through F: 12 credits in music, approval of department head; H: approval of department head.
A. Education
B. Theory
C. Composition
D. History
E. Literature
F. Applied Music
H. Honors

Music 301. Opera Studio. Cr. 1 to 3 each time taken. F.S. Prereq: Permission of instructor. Study of selected opera scenes and chamber operas. Basic stagecraft, role interpretation, production.
Music 319. Applied Music: Majors. (1-2) Cr. 1 to 3 each time taken. F.S.S. Prereq.: Audition, permission of instructor. Required of music majors. Minimum weekly practice of 5 hours per credit is expected. Weekly seminar required.

A. Voice
B. Piano
C. Organ
D. Strings
E. Carillon
F. Woodwinds
G. Brass
I. Percussion
K. Harpsichord

Music 321. Advanced Ensemble. (0-3) Cr. 1 each time taken. F.S.S. Prereq.: Advanced proficiency and performance ability, permission of director and department head. Performance in ensembles that demand high proficiency. Open to a limited number of undergraduate and graduate students.

A. Voice
B. Piano
C. Organ
D. Strings
E. Musica Antiqua
F. Woodwinds
G. Brass
I. Percussion
J. Mixed

Music 324. English and Italian Diction for Singing. (2-0) Cr. 2. Alt. F., offered 2002. Prereq.: Credit or enrollment in 118A or 119A. The international phonetic alphabet and its application to correct pronunciation of English and Italian in singing.

Music 325. French and German Diction for Singing. (2-0) Cr. 2. Alt. S., offered 2003. Prereq.: Credit or enrollment in 118A or 119A. The international phonetic alphabet and its application to correct pronunciation of French and German in singing.

Music 327. Functional Piano. (0-3) Cr. 2. S. Prereq.: 228 or audition and permission of instructor. Emphasis on sight reading, three- and four-part score reading, improvisation, accompanying, and advanced harmonization.

A. Keyboard majors.
B. Vocal/choral majors.

Music 331. Materials of Music II. (3-0) Cr. 3. F. Prereq.: 231. Harmonic, melodic, and rhythmical materials of the common practice period. Application of these materials in analysis and writing. Techniques of melodic construction, formal design, and harmonization.

Music 332. Aural Theory II. (0-2) Cr. 1. F. Prereq.: 232. Development of sight singing, ear training, and related musical skills with emphasis on melodic, harmonic, and rhythmic materials from the eighteenth and nineteenth centuries.

Music 337. Materials of Music III. (0-3) Cr. 3. S. Prereq.: 331. Writing and analysis based on musical styles since 1900.

Music 338. Aural Theory III. (0-2) Cr. 1. S. Prereq.: 332. Development of sight singing, ear training, and related musical skills with emphasis on melodic, harmonic, and rhythmical materials from the nineteenth and twentieth centuries.

Music 350. Instrumental Techniques: Strings. (0-2) Cr. 1. F. Prereq.: Concurrent enrollment in 358B. Techniques and skills required for teaching of instrumenst for school use. For the instrumental music specialist.

Music 351. Instrumental Techniques: Clarinet, Flute, Saxophone. (1-2) Cr. 2. S. Prereq.: Concurrent enrollment in 358B. Techniques and skills required for teaching of instruments. Examination of materials for school use. For the instrumental music specialist.

Music 352. Instrumental Techniques: Oboe, Bassoon. (0-2) Cr. 1. F. Prereq.: Concurrent enrollment in 358B. Techniques and skills required for teaching of instruments. Examination of materials for school use. For the instrumental music specialist.

Music 353. Instrumental Techniques: Trumpet, Horn. (0-2) Cr. 1. S. Prereq.: Concurrent enrollment in 358B. Techniques and skills required for teaching of instruments. Examination of materials for school use. For the instrumental music specialist.

Music 354. Instrumental Techniques: Trombone, Baritone, Tuba. (0-2) Cr. 1. F. Prereq.: Concurrent enrollment in 358B. Techniques and skills required for teaching of instruments. Examination of materials for school use. For the instrumental music specialist.

Music 355. Instrumental Techniques: Percussion. (0-2) Cr. 1. S. Prereq.: Concurrent enrollment in 358B. Techniques and skills required for teaching of instruments. Examination of materials for school use. For the instrumental music specialist.

Music 356. Instrument Maintenance and Repair. (0-2) Cr. 1. F. Prereq.: Permission of instructor. Techniques and skills required for basic maintenance and repair of wind and percussion instruments. Examination of commercial repair methods and facilities. For the instrumental music specialist.

Music 358. Lab Ensemble. (0-1) Cr. F. Review and selection of appropriate literature for ensembles of differing levels and abilities; conducting and rehearsal experience.

A. Choral.
B. Sight singing, conducting, and accompanying experience in conjunction with 362A. Required of all vocal music education majors in every semester offered.

B. Instrumental. F.S. Performance on secondary instruments. Required of all instrumental music education majors in the last two semesters when concurrently enrolled in 350, 351, 352, 353, 354, and 355.

Music 360. Vocal Pedagogy. (2-0) Cr. 2. S. Prereq.: 319A or vocal proficiency examination. Physical, acoustical, and musical properties of the vocal instrument, including a survey of important texts and articles on singing and voice production.

B. Instrumental techniques. Advanced baton technique. Score preparation. Specific problems of large instrumental ensembles. Concurrent enrollment in 358B.

Music 366. Methods of Music Education. (2-0) Cr. 2. F. Prereq.: Concurrent enrollment (1 cr.) in LAS 480K. 266 and admission into teacher education. Music education strategies and materials including development of appropriate objectives and plans for general music classes utilizing traditional and multicultural musics, evaluating musical learning; overview of Orff Schulwerk, Kodaly, and Dalcroze approaches; music in special education; required teaching in lab settings and observations in area schools.

Music 367. Vocal Jazz and Show Choir Techniques. (2-0) Cr. 2. S. Prereq.: 361. Emphasis on developing and teaching vocal jazz and show choir programs in secondary schools, including aspects of style, review of literature, choreography, costuming, and use of technology.

Music 368. Marching Band and Jazz Ensemble Techniques. (2-0) Cr. 2. S. Prereq.: Credit or enrollment in 362B. Techniques and materials for teaching marching band in the high school; philosophy, computer assisted drill design, music analysis, band set up, and other related skills. Jazz style, articulation, phrasing, materials and teaching techniques for secondary school jazz ensembles.

Music 383. History of Music. (3-0) Cr. 3. F. Prereq.: 102 or 120. History of the stylistic and cultural development of music: Middle Ages through Baroque.

Music 417. Literature and Pedagogy in Applied Music. Cr. 1 to 3 each time taken. F.S.S. Prereq.: Permission of instructor.

A. Voice
B. Piano
C. Organ
D. Strings
E. Carillon
F. Woodwinds
G. Brass
I. Percussion
J. Jazz Pedagogy and Performance

Music 419. Applied Music: Majors. (1-2 or 1) Cr. 1 to 3 each time taken. F.S.S. Prereq.: Audition, permission of instructor; restricted to music majors. Minimum weekly practice of 5 hours per credit is expected. Weekly seminar required.

A. Voice
B. Piano
C. Organ
D. Strings
E. Carillon
F. Woodwinds
G. Brass
I. Percussion
K. Harpsichord
Music 430. Seminar in Analysis for Performance. (3-0) Cr. 3 each time taken. S. Prereq: 337, 338. Analysis and performance of selected works appropriate to student’s performance medium. Examination of structural, rhythmic, harmonic, and textural aspects of the music selected. Literature will vary according to the needs of the class. Nonmajor graduate credit.

Music 440. Seminar in Music Theory. (3-0) Cr. 3 each time taken. F. Prereq: 337, 338 Various topics in music theory including counterpoint, arranging, pedagogy, and psychology of music. Content will vary. Contact the Department of Music for the current offering. Nonmajor graduate credit.

Music 464. Instrumental Administration, Materials, and Methods. (2-0) Cr. 2. S. Prereq: Credit or enrollment in 362B. Instructional materials and methods appropriate for teaching instrumental music in elementary, middle school, and high school music programs. Required observations in area schools.

Music 465. Choral Materials and Methods. (2-0) Cr. 2. F. Prereq: Credit or enrollment in 466. Instructional materials and methods appropriate for teaching choral music in the secondary school. Emphasis on methodology and rehearsal techniques. Required observations in area schools.

Music 466. Program Development and Evaluation in Music Education. (2-1) Cr. 2. F. Prereq: 362, 366. Successful completion of continuation exam. Developing a rationale for music education; music program development; evaluation of music curricula, programs and facilities; professional growth of the teacher; preparation for student teaching and the job market. Required observations in area schools.

Music 471. The Tones of Florence: A Study of Humanism. (Same as U St 471.) Cr. 3. SS. Prereq: Application through the Study Abroad Program; interview with instructor; sophomore classification. A survey of the masterpieces of music, literature, painting, sculpture, architecture, mathematics and theology that made Florence the major European center of humanism in the Renaissance.

Music 472. History of American Music. (3-0) Cr. 3. Alt. F., offered 2001. Prereq: 9 credits from music, American literature, American history, art history. Serious and popular currents that have influenced development in American music and its relation to transcendentalism, mass culture, and other intellectual, social, and political developments in the United States. Nonmajor graduate credit.

Music 490. Independent Study. Cr. var. F.S.S.S. Prereq: Permission of instructor; A through F. 12 credits in music, approval of department head. No more than 9 credits of Music 490 may be counted toward graduation. A. Education

B. Theory
C. Composition
D. History
E. Literature
F. Applied Music
H. Honors

Courses Primarily for Graduate Students, Open to Qualified Undergraduate Students

Music 590. Special Topics. Cr. var. F.S.S.S. Prereq: Permission of instructor, approval of department head.

A. Education
B. Theory
C. Composition
D. History
E. Literature
F. Applied Music
H. Honors

Music 593. Workshops. Cr. var. each time taken.

A. Foundations of Music Learning
B. Music in Early Childhood
C. Junior High School Music Programs
D. Instrumental Teaching Techniques
E. Research in Music Education
F. Vocal/Choral Teaching Techniques
G. General & Contemporary Music Methodologies
H. Music and Technology

Naval Science

www.iastate.edu/~navy
Gary E. Washburn, Chair of Department
Professors: Washburn
Instructors (Adjunct): Diemer, Freeborn, Leach, Slagle

The function of the Navy and Marine Corps officer education program is to provide, by a permanent system of education in essential naval science and other academic subjects at civil education institutions, a source from which qualified officers may be available for the Navy and the Marine Corps and their reserve components.

Students who enter the Navy and Marine Corps officer education program may apply for either of two programs: the NROTC scholarship program (full scholarship which includes books, tuition, laboratory fees, uniforms, and $200 per month), or the college program (non-scholarship, limited financial assistance). Applicants for the scholarship program are selected through comprehensive nationwide competitive procedures. Applicants for the college program are selected by the Professor of Naval Science from among students already in attendance at or selected for admission by the university. This program involves financial assistance of $1,500 for each of the last two academic years. NROTC students pursue their studies like other students except that they meet certain requirements that will prepare them to serve as naval officers after graduation. A scholarship program student incurs a minimum 4-year active duty military obligation as a commissioned officer after graduation; a college program student incurs a 3-year active duty obligation. If a scholarship student fails to earn a degree, or if a commission is not tendered (for other than physical reasons), the student may incur a 2-year obligation in an enlisted grade or may be required to reimburse the government for scholarship costs. This obligation is not incurred during the freshman year. Information is available from the Professor of Naval Science, Iowa State University.

Undergraduate Study

Naval science courses are primarily for those students in the NROTC program. However, other university students may also enroll in naval science courses.

All students enrolled in the NROTC program must fulfill the following requirements:

1. N S 111, 210, 211, 212, 311, 312, 411, 412. Marine option students will substitute N S 321 and 421 for the 300 and 400 series listed above. Hist 389 may be substituted for N S 212. Mgmt 370 may be substituted for N S 411.

2. All NROTC students must complete one course in American military history or national security policy. A computer science course is required of all Navy-option students.

3. All Navy option scholarship students must successfully complete Math 165 and 166, Math 165 and 176, or Math 181 and 182 by the end of the sophomore year; Phys 221 and 222, or Phys 111 and 112 by the end of the junior year.

4. In addition to the normal naval science courses, all NROTC students are required to participate in laboratory periods that supplement the various academic courses; emphasize human relations principles; teach basic military formations, movements, commands, courtesies, and honors; and provide practice in unit leadership.

5. Navy option scholarship students are encouraged to major in engineering and physical sciences to meet the technological requirements of the modern Navy; however Navy-option students and Marine Corps option students may pursue any major leading to a bachelor’s degree.

6. The College of Liberal Arts and Sciences offers a minor in military studies. Requirements for the minor include taking a minimum of 15 credit hours of ROTC instruction, which may be taken from one or a number of the ROTC programs. At least 6 credit hours must be in courses numbered 300 or above.

For basic undergraduate curriculum requirements, see Liberal Arts and Sciences, Curriculum; or Engineering, Curricula.
Courses Primarily for Undergraduate Students

N S 111. Introduction to Naval Science. (3-0) Cr. 3. F. Introduction to the organization, regulations, and capabilities of the Navy, with emphasis on mission and principal warfare components.

N S 210. Naval Ship Systems I (Engineering). (3-0) Cr. 3. S. An introduction to naval engineering with emphasis on the equipment and machinery involved in the conversion of energy for propulsion and other purposes aboard the major ship types of the U.S. Navy. Basic concepts of the theory and design of steam, gas turbine, diesel, and nuclear propulsion. Introduction to ship design, stability, hydrodynamic forces, compartmentation, electrical, and auxiliary systems, damage control.

N S 211. Naval Ship Systems II (Weapons). (3-0) Cr. 3. F. Introduction to the theory and principles of operation of naval weapon systems. Includes coverage of types of weapons: explosives, armament systems, capabilities and limitations; theory of target acquisition, identification and tracking; basics of Naval Ordnance.

N S 212. Seapower and Maritime Affairs. (3-0) Cr. 3. S. Development of command and control of seapower including the Merchant Marine, role of various warfare components of the Navy in supporting the Navy’s mission; implementation of seapower as an instrument of national policy; comparative study of U.S. and Soviet naval strategies.

N S 311. Navigation and Naval Operations I. (3-0) Cr. 3. F. Study of the fundamentals of marine navigation used by ships at sea; includes practical exercises in piloting using visual and electronic means. In-depth discussion of laws that govern the conduct of vessels in national/international waters. Course is supplemented with review of accident analysis involving actual navigation incidents.

N S 312. Navigation and Naval Operations II. (3-0) Cr. 3. S. Study of tactical naval operations; employs practical use of maneuvering boards together with shiphandling principles to arrive at tactical shipboard maneuvering solutions for single ship and formation operations. Study also of command and control, leadership, and ethics issues associated with surface naval operations.

N S 321. Evolution of Warfare. (3-0) Cr. 3. Alt. F., offered 2001. Evolution of warfare from 3500 B.C. to contemporary times; analysis of the impact of historical precedents on modern military thought and action; emphasis on the historical development of military tactics, strategy, and technology.

N S 411. Leadership and Management I. (3-0) Cr. 3. S. Study of tactical naval operations; employs practical use of maneuvering boards together with shiphandling principles to arrive at tactical shipboard maneuvering solutions for single ship and formation operations. Study also of command and control, leadership, and ethics issues associated with surface naval operations.

N S 412. Leadership and Management II. (3-0) Cr. 3. S. Prereq: Junior classification. Basic background concerning the duties and responsibilities of the junior naval officer and division officer in the areas of integrity and ethics, human resources management, personnel management, material management, and the administration of discipline. Preparation for responsibilities encountered immediately upon commissioning.

N S 421. Evolution of Amphibious Warfare. (3-0) Cr. 3. Alt. F., offered 2002. Defines the concept of amphibious operations, origins, development from 600 B.C.

N S 440. Senior Naval Science Seminar. (1-0) Cr. 1. F.S. Current leadership issues in the Navy which will challenge the newly commissioned officer. Opportunities to analyze, provide solutions, and discuss actions related to a variety of real world situations.

N S 490. Independent Study. Cr. 1 to 3 each time taken. Prereq: Senior classification, 6 credits in naval science. No more than 9 credits of N S 490 may be counted toward graduation.

Neuroscience

(Interdepartmental Graduate Program)

Supervisory Committee: D. S. Sakaguchi, Chair; L. Anderson, V. Honavar, R. Hughes, S. Jeffinjin

Graduate Study

Work is offered for the master of science and doctor of philosophy degrees with a major in neuroscience. Cooperating departments include Animal Science; Biochemistry, Biophysics, and Molecular Biology; Biomedical Sciences; Chemical Engineering, Computer Science; Entomology, Microbiology; Psychology; Veterinary Pathology; and Zoology and Genetics.

Facilities and faculty are committed to research in the following areas: neural membrane functions, signal transduction, neuroanatomy, neurodegenerative diseases, neuroendocrinology, neurotoxicology, neuropathology, developmental neurobiology, neurogenetics, computational neuroscience, neural networks, and behavioral neuroscience.

An undergraduate or advanced degree in the sciences is ordinarily a prerequisite for admission to the program. A student majoring in neuroscience will select a major professor from the faculty participating in the program.

All students take a core curriculum consisting of Neuro 556, 557, 660, 690, 696, BMBM 404, and Stat 401. All students are also expected to take elective neuroscience courses from the following: Comp S 474, E E 545, Psych 511, 517, 519; BMS 507, 511, 551, 551L, 559, 565; V Pth 555; V Pth 555; Zool 540.

Courses for Graduate Students

Neuro 556. Neurobiology. (Same as Zool 556.) (3-0) Cr. 3 to 4. F. Prereq: Zool 355 or Psych 310; physics recommended. Integration, coding, plasticity, and development in nervous systems.

Neuro 557. Advanced Neuroscience Techniques. (Same as Zool 557.) (0-0) Cr. 2. S. Prereq: Psych 556. Research methods and techniques, exercises and/or demonstrations representing individual faculty specialties.

Neuro 660. Current Topics in Neurobiology and Behavior. (Same as Zool 660.) Cr. 2 to 3 each time taken. Prereq: Permission of instructor. Topics may include communication, computational neuroscience, hormones and behavior, neural integration, development of neurobiology, neuroanatomy and ultrastructure, sensory biology, social behavior, techniques in neurobiology and behavior.

Neuro 690. Journal Club in Neuroscience. (1-0) Cr. 1 each time taken. F.S. Prereq: 556. Students are required to attend and make at least one presentation at a weekly journal club focusing on current topics.

Neuro 696. Neuroscience Seminar. (1-0) Cr. 1 each time taken. F.S. Prereq: 556. Presentations and discussion of research by students, faculty, and visiting scholars.

Neuro 699, Research.

Officer Education Programs

Iowa State University offers Reserve Officers Training Corps (ROTC) programs for the professional training of officers for the Army, Air Force, Navy, and Marines.

The purpose of these programs is to provide an avenue for interested students to become reserve or regular officers in one of the United States military services, and the university regards this training as the foundation for possible careers in the military. The Air Force and the Navy require a period of active duty service upon completion of the ROTC program. Graduates from Army ROTC serve in either active Army, the Army Reserve, or the National Guard.

All students enrolled in advanced ROTC programs receive financial allowances, which are described under Student Financial Aid. Scholarships are also available for all services as outlined in the section on financial aid.

For specific courses and programs see also Air Force Aerospace Studies, Military Science, and Naval Science.

Pest Management

(Interdepartmental Undergraduate Program)

Advisory Committee: Larry Pedigo, Chair, Hall, Gibson, McNabb, Minner, Pease

The pest management program is designed for students with a career interest in the science and technology of pest management. Students in the program conduct inter-disciplinary studies with plant diseases, insects, weeds, and other pests, emphasizing the development of management systems that are ecologically and economically sound, as well as sustainable. The interdisciplinary nature of the program is reflected in the departmental sponsors—Agronomy, Animal Ecology, Plant Pathology, Entomology, Forestry, and Horticulture.

Pest management is an undergraduate secondary major that may be taken only in conjunction with a primary major. For example, the student may wish to take a primary major in agronomy, forestry, entomology, or some other life science and use elective credits to satisfy the requirements of the pest management major. Graduates have a broad knowl-
edge of agricultural, horticultural, forest pests, as well as those of man and animals. Graduates can diagnose pest problems and recommend ecologically and economically sound systems to alleviate these problems. They are well versed on the pest concept, are able to identify pests and symptoms of pest injury, and understand the economics of decision making. Moreover, graduates are aware of Technologically advanced pest management tactics and are skilled in applying these. Students educated in pest management may find employment opportunities with governmental agencies (state and federal), agricultural chemical companies, food-processing firms, consulting agencies, urban pest control companies, timber companies, and other concerns that produce, process, and market the nation’s food and fiber.

Students wishing to enroll in the pest management curriculum must register with the chair of the advisory committee. After consultation with the chair, a pest management advisor will be assigned, depending on the interests of the student. The student should indicate interest in pest management as early as possible in order that requirements of the program be effectively integrated with those of the primary major.

A pest management minor may be earned by completion of at least 15 credits of pest management or related courses taken at ISU. The courses that must be taken for a minor are: Agron 317; Ent 376; PL P 407. The remainder of the 15 credits are to be selected from the following: Ent 374; PL P 416; PM 491, 498. Courses required in a student’s major may not be applied toward the pest management minor. Contact the pest management chair for more details.

Courses open for nonmajor graduate credit: 376, 407, 416.

Courses Primarily for Undergraduate Students

P M 283. Pesticide Applicator Certification. (Same as Ent 283.) See Entomology.

P M 376. Fundamentals of Entomology and Pest Management. (Same as Ent 376.) See Entomology. Nonmajor graduate credit.

P M 416. Forest Pest Management. (Same as PL P 416.) See Plant Pathology. Nonmajor graduate credit.

P M 490. Independent Study. Cr. 1 to 3 each time taken. Prereq. Junior or senior classification, 3 credits in pest management, permission of instructor, and written plan of study approved by pest management curriculum chair. A maximum of 6 credits of 490 may be used toward the total of 12 credits required for graduation.

P M 491. Pest Management Experience. Cr. 2. Prereq. 6 credits in pest management, permission of instructor. Practical experience (internship) in management of plant diseases, insect populations, weeds, and other pests. Diagnosis, problem assessment, and control procedures are emphasized. For majors and advanced students.

Philosophy

Undergraduate Study

The major in philosophy offers study in the important ideas, values, and ways of thinking that underlie cultural, social, and political processes, and that direct the specialized search for knowledge. Philosophical study broadens the student’s educational experience and facilitates more effective participation in the human community.

An undergraduate major in philosophy should have a broad background in the liberal arts and sciences. The major program includes both a core and electives to provide a thorough acquaintance with the history of philosophy and further concentration in historical and systematic issues. An undergraduate major in philosophy can prepare the student for graduate work in philosophy, and also for further study in law, history, theology, religion, political science, social and political theory, or literature.

The degree program in philosophy requires a minimum of 27 credits in the core program and 6 credits of electives chosen from the remaining courses listed in the 300 or 400 levels.

The following courses compose the basic core program of the department from which 27 credits shall be chosen.

a. Introduction: 201 (required).

b. Logic: 207 (required).

c. Ethical theory: one course required. Choose from 330, 335.

e. History: Three courses required, at least one each from group A and group B: A. 310, 314, 315; B. 316, 317, 318.

f. Two 400-level courses required.

The department offers a minor in philosophy which may be earned by completing a total of 15 credits in philosophy including 201 and at least 6 credits in courses numbered 300 or above. Students may want to emphasize specific areas by taking 15 hours of courses chosen from the following:

Philosophy of Science: 201, 206 or 207, 314, 315, 390, 391, 480

History of Philosophy: 201, 310, 314, 315, 316, 317, 318; 460 or 470

English proficiency requirement: The department requires a grade of C+ or better in each of Engl 104 and 105 (or 105H), and approval of writing by instructor of one history of philosophy course (310-318), to be designated by the student.

Graduate Study

The department offers a graduate minor in philosophy. For those taking the M.A. or M.S., the minor requirement is two courses above 300 (but not 490) taken in conjunction with 590. For those taking the Ph.D., the requirement is four courses above 300, at least one of which is above 400 (but not 490) all taken in conjunction with 590. Interested students should ask the chair to assign a minor adviser.

The department participates in the interdepartmental program in general graduate studies. (See Index.)

Courses open for nonmajor graduate credit: All courses numbered above 300 except 490.

Courses Primarily for Undergraduate Students

Phil 201. Introduction to Philosophy. (3-0) Cr. 3. F.S.SS. It has been rumored that the unexamined life is not worth living. Philosophy is an attempt to begin examining life by considering such questions as: What makes us human? What is the world ultimately like? How should we relate to other people? Is there a god? How can we know anything about these questions? Understanding questions of this kind and proposed answers to them is what this course is all about.

Phil 206. Introduction to Logic and Scientific Reasoning. (3-0) Cr. 3. F.S.SS. Basic principles of critical reasoning and argument evaluation. A consideration of formal arguments in science and everyday life. Application to contemporary issues and controversies. This course is not recommended for students majoring in math, science, or engineering.

Phil 207. Introduction to Symbolic Logic. (Same as Ling 207.) (3-0) Cr. 3. S. Introduction to fundamental logical concepts and logical symbolism. Development of natural deduction through first order predicate logic and identity. Applications to arguments in ordinary English and to philosophical issues. Majors should take 207 as early as possible.

Phil 230. Moral Theory and Practice. (3-0) Cr. 3. F.S.SS. Investigation of moral issues in the context of major ethical theories of value and obligation; e.g., punishment, abortion, economic justice, job discrimination, world hunger, and sexual morality. Emphasis on critical reasoning and argument analysis.

Phil 235. Ethical Issues in A Diverse Society. (3-0) Cr. 3. S. This course will examine a range of arguments on diversity issues. Topics will include: the status of women, the moral status of sexuality and homosexuality, the nature and role of racism in contemporary society, the relationship between biology, gender roles and social status, and various proposals for change in a variety of political perspectives.
Phil 298. Cooperative Education. Cr. R. F.S.SS. Prereq: Permission of the department cooperative education coordinator; sophomore classification. Required of all cooperative education students. Students must register for this course prior to commencing each work period.

Phil 310. Ancient Philosophy. (Same as Cl St 310.) (3-0) Cr. 3. F. Prereq: 201. Survey of the principal philosophers of the ancient world: the pre-Socratics, Plato, Aristotle. Focus on the Elements. Questions concerning being, knowledge, language, and the good life are dealt with. Nonmajor graduate credit.

Phil 314. 17th Century Philosophy. (3-0) Cr. 3. Alt. S., offered 2002. Readings from philosophers such as Hobbes, Descartes, Spinoza, Leibniz, and Locke. Changing conceptions of knowledge, self, and identity to Galileo’s new science and post-reformation challenges to ecclesiastical authority. Nonmajor graduate credit.

Phil 315. 18th Century Philosophy. (3-0) Cr. 3. Alt. S., offered 2002. Prereq: 201. Readings from philosophers such as Berkeley, Hume, and Kant. Development of Enlightenment thought. Issues include idealism, causation, freedom, and knowledge regarding science, ethics, and duties. Nonmajor graduate credit.

Phil 316. 19th Century Continental Philosophy. (3-0) Cr. 3. Alt. F., offered 2001. Prereq: 201. The thought of Hegel, Marx, Nietzsche, and their contemporaries. Various perspectives on the philosophy of history, the nature of reason and subjectivity, the contrast between dialectical and non-dialectical philosophy, and the relationships between philosophy and society. Nonmajor graduate credit.

Phil 317. 20th Century Continental Philosophy. (3-0) Cr. 3. Alt. F., offered 2002. Prereq: 201. An examination of 20th century continental philosophy against the backdrop of the 19th century continental tradition. Movements covered include: Phenomenology, Marxism, Postmodernism, Poststructuralism, Feminism. Focus on attempts to develop history, science, and other disciplines. Debates about the crisis of reason and culture; political issues surrounding such debates. Nonmajor graduate credit.

Phil 318. 20th Century Anglo-American Philosophy. (3-0) Cr. 3. S. Prereq: 201. Major movements in recent philosophy such as realism, logical positivism, ordinary language philosophy, and naturalism. Russell, Wittgenstein, Quine and other leading figures. Topics include knowledge of the material world, mind, language, values, and philosophical method. Nonmajor graduate credit.

Phil 330. Ethical Theory. (3-0) Cr. 3. F. Prereq: 201 or 230 or 235; or permission of instructor. In-depth study of some central moral issues in the life sciences, e.g., genetic screening and testing, genetically engineered plants and animals, risk analysis, biotechnology patents, research ethics, biodiversity, the impact of technology on society and the environment. Major moral theories will be discussed and applied. (Phil 336 contains almost no similarities to Phil 331.) Nonmajor graduate credit.

Phil 334. Environmental Ethics. (Same as Env S 334.) (3-0) Cr. 3. F. Prereq: 3 credits in philosophy or junior standing. Examination of some of the central moral issues arising in connection with human impact on the environment, e.g., human overpopulation, species extinction, forest and wilderness management, pollution, and the problem of relationships between human beings and nature will be explored. Nonmajor graduate credit.

Phil 335. Social and Political Philosophy. (3-0) Cr. 3. Alt. S., offered 2002. Prereq: 201 or 230. Foundations of social and political life. Metaphysical and epistemological grounds in classical and recent thinkers. The basis of political organization, the nature of social and political institutions, rights and authority, justice and the character of distinctly political action. Original texts. Nonmajor graduate credit.

Phil 336. Bioethics and Biotechnology. (3-0) Cr. 3. Alt. S., offered 2003. Prereq: Phil 201 or 230 or 235; or permission of instructor. In-depth study of some central moral issues in the life sciences, e.g., genetic screening and testing, genetically engineered plants and animals, risk analysis, biotechnology patents, research ethics, biodiversity, the impact of technology on society and the environment. Major moral theories will be discussed and applied. (Phil 336 contains almost no similarities to Phil 331.) Nonmajor graduate credit.

Phil 338. Feminism Philosophy. (3-0) Cr. 3. S. Prereq: 3 credits in philosophy recommended. This course critically examines the work of feminist philosophers such as sex/gender, self/other, subjectivity/objectionability, and nature/nurtue, does in philosophy and in our culture more generally. In particular we will consider historical and contemporary feminist engagements of issues sexual orientation, political equality, race, biology, violence and pornography, as it works toward the personal and political emancipation of women. Nonmajor graduate credit.

Phil 340. Aesthetics. (3-0) Cr. 3. F. Prereq: 201 or 230. Is liking all there is to appreciating works of art? We will examine our appreciative experiences, talk about such experiences (e.g., art criticism), and what makes them valuable. Do the different arts have common values? How are their differences important? Nonmajor graduate credit.

Phil 343. Philosophy of Technology. (Same as T SC 343.) (3-0) Cr. 3. F. S. Prereq: 6 credits of social science or T SC 341 and 3 credits of social science. Conditions under which technological innovations contribute to human emancipation, relationship of technology and democracy, utility and limits of technical rationality, and problems of ensuring that benefits of technological advance are communally shared. Issues discussed with reference to contemporary developments in microelectronics, technology transfer to the Third World, etc. Nonmajor graduate credit.

Phil 350. Philosophy of Religion. (Same as Relig 350.) (3-0) Cr. 3. F. Prereq: 201. The value and truth of religious life and belief. Mystical experience; religious faith and language; arguments for God’s existence; the problem of evil; miracles; and religion and morality. Historical and contemporary readings from both the western and eastern traditions. Nonmajor graduate credit.

Phil 380. Philosophy of Science. (3-0) Cr. 3. F. Prereq: 201 or 6 credits in a science. Introduction to the philosophy of basic physical problems common to the natural and social sciences; the nature of explanation, the structure of theories, the unity of science, and the distinction between science and nonscience. Nonmajor graduate credit.

Phil 381. Philosophy of the Social and Behavioral Sciences. (3-0) Cr. 3. F. Prereq: 6 credits in the social sciences. Methodological, ideological, and doctrinal issues about the social and behavioral sciences. Focus is on the historical and cultural background of 19th and 20th century western thought. Nonmajor graduate credit.

Phil 388. Cooperative Education. Cr. R. F.S.SS. Prereq: Permission of the department cooperative education coordinator, junior classification. Required of all cooperative education students. Students must register for this course prior to commencing each work period. Nonmajor graduate credit.

Phil 430. Value Theory. (3-0) Cr. 3. Each time taken, maximum of 6 credits. S. Prereq: 230. Theoretical and normative issues in ethics, aesthetics, religious thought, or political philosophy. Topics vary each time offered. Nonmajor graduate credit.

Phil 450. Free Will, Fate, and Moral Responsibility. (3-0) Cr. 3. F. Prereq: 3 credits in philosophy; 201 strongly encouraged. Are we free if all our actions are inevitable consequences of our past and the laws of nature, or if God exists and is omniscient? Examines what sorts of facts constitute threats to human free will; issues of time, truth, causation, and agency are treated in depth. Nonmajor graduate credit.

Phil 460. Epistemology and Metaphysics. (3-0) Cr. 3 each time taken, maximum of 6 credits. Alt. S., offered 2002. Prereq: 201 and at least one course in the history of philosophy. Issues in epistemology and metaphysics. Topics vary each time offered. Nonmajor graduate credit.

Phil 465. Brains, Minds, and Computers. (3-0) Cr. 3. F. Prereq: 201. Examination of concepts such as computability, intelligence, programming, and free will; and of arguments about whether any human capacity is forever beyond realization in a machine. Nonmajor graduate credit.

Phil 480. Controversies in Science. (3-0) Cr. 3 each time taken. S. Prereq: 3 credits in philosophy or 6 credits in a natural or social science. Possible topics include: the IQ debate, implications of Darwinism, the Gaileo affair, the role of values in science, critical analysis of current scientific policy (e.g., the Human Genome Project). Topics will be arranged to meet the needs of interested students. Often taught by a philosopher and a scientist from the relevant discipline. Nonmajor graduate credit.

Phil 490. Independent Study. Cr. 1 to 4 each time taken. Prereq: 6 credits in philosophy; permission of instructor; approval of chair. No more than 9 credits of Phil 490 may be counted toward graduation. Guided reading and research on special topics selected to meet needs of advanced students. H. Honors

Phil 498. Cooperative Education. Cr. R. F.S.SS. Prereq: Permission of the department cooperative education coordinator; senior classification. Required of all cooperative education students. Students must register for this course prior to commencing each work period. Nonmajor graduate credit.

Courses Primarily for Graduate Students. A minimum credit, open to qualified undergraduates

Phil 535. Contemporary Political Philosophy. (Same as Pol S 535.) (3-0) Cr. 3. Alt. S., offered 2003. Prereq: 6 credits of philosophy or political science. Examination of theories of justice proposed by contemporary political philosophers. Focus is on the philosophical foundations of perspectives such as liberalism, libertarianism, communitarianism, socialism, feminism. Normative assessments of socio-political institutions.

Phil 590. Special Topics in Philosophy. Cr. 2 to 4 each time taken. Prereq. Permission of instructor; 9 credits in philosophy. A. History of Philosophy B. Epistemology and Metaphysics C. Value Theory D. Logic and Philosophy of Science

Courses and Programs Philosophy and Religious Studies

307

2001-2003
Religious Studies (Relig) Undergraduate Study

Religious studies gives students the opportunity to investigate and reflect on the world’s religions in an objective, critical, and appreciative manner. Though there is emphasis in religious studies on the wide variety of religious phenomena as well as on the various methods in the study of religion, the aim is to help students develop their own integrated understanding of the nature of religion and its role in individual and social life.

Graduates of the religious studies program have knowledge of the religious diversity in the United States and the world. They have the ability to interpret religion empathetically and critically and to compare and contrast historical and contemporary differences and similarities of religious systems. They understand ways in which religion influences and is influenced by the historical, social, and cultural contexts in which religious systems function.

Graduates often pursue careers in non-profit, community organizations; apply to professional schools or graduate programs; or enter seminaries to prepare for ministry.

The program provides students with the following opportunities: to major or minor in religious studies, to fulfill group requirements, to take religious studies courses that are integrat-ed into another major, to take religious studies courses as electives, and to develop an interdisciplinary studies major. (See the professor in charge of the religious studies program for advice.)

The major in religious studies seeks to provide both breadth and depth. Breadth is provided through the exploration of the world’s various religious traditions and through exposure to a variety of theoretical approaches and methodologies in the academic study of religion.

Depth is achieved through specialized courses in particular religious traditions; apply to professional schools or graduate programs; or enter seminaries to prepare for ministry.

The program offers a minor which may be earned by completing a total of 15 credits in religious studies including course work in three of the four areas that have been previously described. Nine hours must be in courses at the 300 level or above (no more than 3 hours of seminar and no more than 3 hours of independent study).

English proficiency requirement: The department requires a grade of C or better in each of English 104 and 105 (or 105H), and requires one 300 level course in religious studies in which writing is evaluated as acceptable.

Students may choose to do a senior thesis under the supervision of a religious studies faculty adviser. This option may earn 3-6 credits toward the completion of the major.

Graduate Study

The program offers courses for graduate minor work in religious studies as supporting work for other fields. Religious studies may also be one of the three areas required for the general graduate studies master’s degree.

Courses open for nonmajor graduate credit:

Courses Primarily for Undergraduate Students

Relig 105. Introduction to World Religions. (3-0) Cr. 3. F.S.SS. An introduction to the academic study of religions, including myths, beliefs, rituals, values, social forms. Examples chosen from oral cultures and major religions of the world.

Relig 210. Religion in America. (3-0) Cr. 3. F.S.SS. Introductory study of the major beliefs, practices, and institutions of American Judaism, Catholicism, Protestantism, and Islam with emphasis on the diversity of religion in America, and attention to issues of gender, race, and class.

Relig 220. Introduction to the Bible. (3-0) Cr. 3. F.S. Basic overview of the contents of the Old and New Testament in light of their ancient socio-historical background, and with attention to a variety of interpretations and relevance to modern American society.

Relig 233. Introduction to Judaism. (3-0) Cr. 3. An introduction to basic Judaism. Special attention is given to Jewish sacred texts, rituals, social practices, and modern forms.

Relig 242. History of Christianity. (3-0) Cr. 3. F.S.SS. An introduction to Christian thought and practice from an historical point of view, stressing the development of belief, spirituality, and organization, and the contemporary questions that involve these developments.

Relig 260. Religious Ethics. (3-0) Cr. 3. An examination of different religious ethical theories and traditions of reasoning about practical moral issues (e.g., abortion, the just distribution of wealth, environmental ethics). Explores in detail the relationship between religious beliefs and moral practice.

Relig 280. Introduction to Catholicism. (3-0) Cr. 3. F. An introduction to Catholic belief and practice. The Catholic ethos will be located in the context of other world religions, and special stress will be placed on the central beliefs of the Creed as understood by Catholics, and on sacramentality as the distinguishing mark of the Catholic worldview.

Relig 321. Old Testament. (3-0) Cr. 3. F. An in-depth study of the literature and religion of ancient Israel in light of recent archaeological discoveries, research about the ancient Near East, and a variety of interpretations. Nonmajor graduate credit.

Relig 322. New Testament. (3-0) Cr. 3. A detailed survey of the sacred scriptures of Christianity in light of recent archaeological discoveries and historical research about their Greek-Roman and Jewish background. Nonmajor graduate credit.

Relig 323. Science and Religion. (Same as Hist 323.) See History.

Relig 328. American Indian Religions. (Same as Am In 328.) (3-0) Cr. 3. An introduction to the beliefs and rituals of Native American religious traditions, with attention to cultural and historical contexts and implications. Nonmajor graduate credit.

Relig 334. African American Religious Experience. (Same as Afr Am 334.) (3-0) Cr. 3. Alt. F., offered 2002. Examination of the African American experience from the perspective of the black religion and the black church, with attention to political, economic, and social, as well as spiritual, concerns. Nonmajor graduate credit.

Relig 336. Women and Religion. (Same as W S 336.) (3-0) Cr. 3. F. Prereq: 106, 210 or W S 201 recommended. Examines the status of women in various religions, feminist critiques of religious structures and belief systems, and contemporary women’s spirituality movements. Nonmajor graduate credit.

Relig 338. Latino/a Religious Experience. (3-0) Cr. 3. A survey of Latino/a religious experience, including religious traditions as they are reflected in the literature of Mexican Americans, Puerto Ricans, Cubans, and other groups of Latinos living in the United States. Nonmajor graduate credit.

Relig 350. Philosophy of Religion. (Same as Phil 350.) See Philosophy. Nonmajor graduate credit.

Relig 352. Religious Traditions of India. (3-0) Cr. 3. F. Examines the religious traditions of India, including Hinduism, Jainism, and Sikhism, through text, ritual, and contemporary practice. Nonmajor graduate credit.

Relig 353. Buddhism. (3-0) Cr. 3. S. The various Buddhist paths to realize enlightenment and freedom. Special attention to meditation and yoga and their relationship to altered states of consciousness and to social contexts. Nonmajor graduate credit.

Relig 354. Islamic Civilization. (3-0) Cr. 3. S. An introduction to Islamic religion, culture, and society from 700 to the present. Nonmajor graduate credit.

Relig 356. African Religions. (3-0) Cr. 3. An introduction to the teachings, practices, and history of the religions that originated in Africa and other religions which have gained substantial followings among African peoples. Nonmajor graduate credit.

Relig 367. Christianity in the Roman Empire. (Same as Cl St 367.) (3-0) Cr. 3. An historical introduction to the rise of Christianity in the Roman empire, with special attention to the impact of Greco-Roman culture on the thought and practice of Christians and the interaction of early Christians with their contemporaries. Nonmajor graduate credit.

Relig 370. Religion and Politics. (Same as Pol S 370.) (3-0) Cr. 3. Alt. S., offered 2002. Prereq: 105 or 210 recommended. The interaction of religion and politics in the U.S. from both an historical and contemporary perspective, as well as the role of religion in politics internationally. Nonmajor graduate credit.

Relig 376. The Archaeology of Greek and Roman Religions. (Same as Cl St 376.) See Classical Studies.

Relig 377. Social Dimensions of Religion. (Same as Soc 377.) (3-0) Cr. 3. Alt. S., offered 2003. Prereq: 210, or Soc 130 or 134 recommended. The influence of religion in society, both as a conservator of values and as a force for social change. Nonmajor graduate credit.

Relig 385. Theory and Method in Religious Studies. (3-0) Cr. 3. Prereq: 105. Examines the variety of theories and methods employed in the study of religion. Application of these methods to various religions of the world. Nonmajor graduate credit.

Relig 475. Seminar: Issues in the Study of Religion. (3-0) Cr. 3 each time taken, maximum of 6 credits. Prereq: 6 credits in religious studies. Topic changes each time offered. Closed to freshmen. Sophomores must have approval of instructor. Nonmajor graduate credit.

Relig 490. Independent Study. Cr. 1 to 3 each time taken. Prereq: 6 credits in religious studies, and permission of instructor, or charge of program. No more than 9 credits of Relig 490 may be counted toward graduation. Guided reading and research on special topics selected to meet the needs of advanced students. Honors

Relig 491. Senior Thesis. Cr. 3. Written under the supervision of a Religious Studies faculty advisor.

Relig 494. Special Studies in Religious Research Languages. Cr. 2 to 3 each time taken. Prereq: 6 credits in Religious Studies and permission of instructor.

Relig 499. Peace and Justice Internship. Cr. var., maximum of 6. Prereq: 3 credits in religious studies, permission of faculty internship coordinator. Supervised placement with a peace and justice agency; structured reflection on the relation of religion and practical social issues. Offered on a satisfactory-fail grading basis only.

Relig 590. Special Topics in Religious Studies. Cr. 1 to 3 each time taken. Prereq: Permission of instructor, 9 credits in religious studies.
The department offers a minor in astronomy which may be earned by completing 15 credits chosen as follows: a total of 12 or more credits in Astro courses (must include Astro 344L and may include one of the courses Astro 120, Astro 150 or Astro 250), with the remaining 3 credits (if applicable) chosen from among Physics 304, 321, 324, 351, 362, 364, 365, 480, 481, or 496; 12 or more credits must be at the 300 level or higher. Note that the same course may not be used to satisfy both the requirements of a physics major and an astronomy minor.

English proficiency requirement: The department requires a grade of C or better in each of Engl 104 and 105 (or 105H), and a C– or better in Engl 305 or 314. Students are also encouraged to study at least one foreign language.

Graduate Study

The department offers studies for the degrees of master of science and doctor of philosophy with majors at both levels in applied physics, astrophysics, condensed matter physics, high energy physics, nuclear physics, and physics; and minor credit courses for students majoring in other departments.

Facilities of various research groups of the department, the Ames Laboratory, and the Applied Science Center, including the Microelectronics Research Center, are available for research.

Students with bachelor’s degrees in physics or astronomy from other institutions ordinarily will qualify for graduate study at Iowa State provided they have satisfactorily completed a course work similar to that suggested for undergraduate majors here intending to go on to graduate school. In some cases additional instruction at the intermediate level may be required.

Students must complete not less than 6 credits from outside their major area, with 3 credits being required from outside the department, and 3 credits from a 500 or 600 level course in another area of specialization.

Students choosing a degree with thesis may apply up to 8 credits of 699 but no credits of 599 toward the minimum 30 credits. Students choosing a degree without thesis should apply 2 credits of 599, but may not apply any credits of 699 toward the minimum 30 credits.

Students whose major area is applied physics must complete at least 30 credits of acceptable graduate work and not less than 19 credits of these must be in the required courses listed above; the remaining 11 credits of the 30 credit minimum may be chosen freely either from within the students major area or from without and either from the department or outside, but it should be noted that not more than 3 credits of Phys 699 may be applied toward the 30 credit minimum.

In addition to the list of basic courses above, all candidates for the doctor of philosophy degree, except those in astrophysics, must also complete Phys 592. Individual areas may impose additional requirements. In addition to course work in the major area of study a candidate must complete 12 credits from outside this area. Of these 6 must be taken from other departments and 6 must be taken from the department with the additional constraint that this latter 6 must include at least one 500 or 600 level introductory course in another area of specialization. Each candidate for the doctor of philosophy degree is required to teach one year of elementary physics or astronomy.

Graduate students interested in a physics minor should contact the department for requirements.

Courses open for nonmajor graduate credit: Phys 304, 310, 311, 324, 321, 322, 361, 362, 364, 365, 480, 481, 496, and Astro 342, 344L, 346.

Astronomy and Astrophysics (Astro)

Courses Primarily for Undergraduate Students

Astro 120. The Sky and the Solar System. (3-0) Cr. 3. F.S.S. For the nonscientist. The sky: constellations; motions of the sun, moon, and planets; seasons and the calendar; eclipses. The solar system: origin and evolution; characteristics of the sun, planets, satellites, comets, meteors, and asteroids. Extensive use of the planetarium is included.

Astro 125L. The Sky and the Solar System Laboratory. (2-0) Cr. 1. F.S. Prereq: Concurrent or previous enrollment in Astro 120. Laboratory course to accompany Astro 120. Students carry out practical exercises involving naked eye and telescopic observing to explore and reinforce ideas covered in Astro 120. Activities based on a sky-simulation computer program and other computer-based exercises are also included.

Astro 150. Stars, Galaxies, and Cosmology. (3-0) Cr. 3. F.S. For the nonscientist. Observational aspects of stellar astronomy: motions, distances, sizes, spectra, types of stars; variability; binary systems. Stellar evolution: the birth, life, and death of stars, including supernovae, neutron stars, and black holes. The Milky Way Galaxy: clouds of matter in space, the structure and evolution of our galaxy. Other galaxies, quasars, cosmology. Theories of the origin of the universe.

Astro 250. Astronomy Bizzare. (3-0) Cr. 3. F. Prereq: 120 or 150. For the nonscientist. New and exciting topics in modern astronomy. Galaxy and star formation. Black holes and quasars. Cosmology, the Big Bang and the future of the universe. Prospects and searches for extraterrestrial life.

Astro 290. Independent Study. Cr. 1 to 4 each time taken. Prereq: Permission of instructor.

Astro 344L. Astronomy Laboratory. (1-0) Cr. 3. F. Prereq: Phys 222. Experiments in optical astronomy. Observational techniques, ranging from stellar photometry to astrophotography. Available instruments include 8” Meade, 14” Celestron and Schmidt cameras. Class meets at Fick Observatory south of Boone. Nonmajor graduate credit.

Astro 346. Introduction to Astrophysics. (3-0) Cr. 3. S. Prereq: Phys 222. Basic radiation theory; spectra. Observational determination of stellar properties; spectral classification. Binary systems. Stellar structure and evolution. White dwarfs, neutron stars, black holes. The Galaxy: structure and composition; the interstellar medium. Other galaxies; active galaxies; cosmology. Nonmajor graduate credit.

Astro 450. Undergraduate Research. Cr. 1 to 6 each time taken. F.S.SS. Prereq: Permission of instructor. Research under supervision of astronomy faculty.

Astro 450L. Undergraduate Research. Cr. 1 to 6 each time taken. F.S.SS. Prereq: 344L and permission of instructor. Laboratory or observational project under supervision of astronomy faculty.

Astro 490. Independent Study. Cr. 1 to 4. Prereq: 6 credits in astronomy, permission of instructor: No more than 9 credits of Astro 490 may be counted toward graduation. H. Honors

Courses Primarily for Graduate Students, Open to Qualified Undergraduate Students

Astro 505. Astrophysics. (Dual-listed with 505.) (3-0) Cr. 3. F. Prereq: 342 or 346; Math 266, permission of instructor. Survey of astrophysics at an advanced level. Physics of stars, galaxies, and the universe. Stellar spectra, structure and evolution. Origin of the elements. Black holes, neutron stars and white dwarfs. Large scale structure of the universe, dark matter, Big Bang Cosmology.

Astro 510. Observational Astrophysics. (2-3) Cr. 3. Alt. F., offered 2002. Prereq: 405 or 505. Techniques in optical and near-IR astronomy, including spectroscopy and photometry with both single channel and 2-dimensional array detectors. Emphasis on projects involving proficiency in the use of research telescopes and modern instrumentation. Project topics range from spectroscopic and photometric studies of pulsating and binary star systems to deep photographic and CCD imaging of faint nebulae and galaxies.
Astro 518. Radio Astronomy and Astrophysics (3-0) Cr. 3 Alt. F., offered 2001. Prereq: Phys 365 or E E 313. Radio astronomy fundamentals; wave polarization; human eye; radio telescope receivers and antennas; wave propagation in plasmas; synchrotron emission; continuum and line spectra; physical conditions in radio sources.

Astro 590. Special topics. Cr. var.

Astro 599. Creative Component. Cr. var. Prereq: Permission of instructor. A largely nonmathematical but intellectually challenging exploration of physics which assumes no previous work in the field. Selected material from classical and modern physics establishes the concept of temperature, entropy, and other characteristic thermodynamic functions, with application to macroscopic properties of matter. The laws of thermodynamics. Introduction to statistical mechanics, information theory. Application to black body radiation, crystalline vibrations, magnetic ions in solids, electronic heat capacity of metals. Phase transformations and chemical reactions. Nonmajor graduate credit.

Astro 660. Advanced Topics in Astronomy and Astrophysics. Cr. 1 to 3 each time taken. F.S. Topics in stellar, galactic, and extragalactic astronomy, including stellar evolution, solar physics, variable stars, compact objects, the interstellar medium, active galaxies and quasars, formation and evolution of galaxies, cosmology, high energy astrophysics, advanced observational techniques, and astrophysical applications of hydrodynamics.

Astro 699. Research.

Physics Courses (Phys)

Physics Courses Primarily for Undergraduate Students

Phys 101. Physics for the Nonscientist. (3-0) Cr. 3. F.S. Survey of the principal areas of both classical and modern physics. Emphasis on the nature of the physical universe and the application of physical principles to life in the modern world.

Phys 106. The Physics of Common Experience. (4-2) Cr. 4. F.S. Elementary topics from mechanics, heat, electricity, sound, and light, emphasizing the use of basic concepts in everyday experience. Includes practical problem exercises and a coordinated laboratory.

Phys 111. General Physics. (4-2) Cr. 4. F.S.SS. Prereq: 11 levels of high school algebra, 1 year of geometry, 1 semester of trigonometry. General background in physical concepts, principles, and methods for those who do not plan advanced study in physics or engineering. Mechanics, fluids, heat and thermodynamics, vibrations, waves, sound.

Phys 112. General Physics. (4-2) Cr. 4. F.S.SS. Prereq: 111. General background in physical concepts, principles, and methods for those who do not plan advanced study in physics or engineering. Electricity and magnetism, ray and wave optics, topics in modern physics.

Phys 198. Physics of Music. (2-2) Cr. 3. F. Introductory level course on sound for nonphysics majors. Properties of pure tones and harmonics; human ear; acoustics; microphones; studies of sound; reproduction, and analysis of musical by voice, string, woodwind, brass, and percussion instruments.

Phys 199. Introductory Seminar. (1-1) Cr. F. Survey of recent scientific breakthroughs and current research of physics and astronomy faculty. Discussion of career opportunities in physics. Offered on a satisfactory-fail grading basis only.

Phys 221. Introduction to Classical Physics I. (4-51) Cr. 5. F.S.SS. Prereq: Credit or enrollment in Math 186. For engineering and science majors. 3 hours of lecture each week plus 1 recitation and 1 laboratory every 2 weeks. Elementary mechanics including kinematics and dynamics of particles, work and energy, linear and angular momentum, conservation laws, rotational motion, oscillations, gravitation. Electric forces and fields. Elementary circuits; DC circuits. H. Honors. F.S.

Phys 222. Introduction to Classical Physics II. (4-2) Cr. 5. F.S.SS. Prereq: 221. Math 186. 3 hours of lecture each week plus 1 recitation and 1 laboratory each week. Magnetic forces and fields: LR, LC, LCR circuits; Maxwell’s equations; waves and sound; ray optics and image formation; wave optics: heat, thermodynamics, kinetic theory of gases; topics in modern physics. H. Honors. F.S.

Phys 232. Computational Skills of Physics. (0-2) Cr. 1. S. Prereq: 222. Development of skills in the use of software and equipment essential to physicists and other scientists. Students work at their own pace. Programming experience is helpful but not necessary.

Phys 290. Independent Study. Cr. 1 to 4 each time taken. Prereq: Permission of instructor.

Phys 298. Cooperative Education. Cr. R. F.S.SS. Prereq: Permission of cooperative education coordinator; sophomore classification. Required of all cooperative education students. Students must register for this course prior to commencing each work period.

Phys 302. The Challenge of Contemporary Physics. (3-0) Cr. 3. S. Prereq: Sophomore classification. A largely nonmathematical but intellectually challenging exploration of physics which assumes no previous work in the field. Selected material from classical and modern physics establishes the conceptual framework for the study of a major area of contemporary physics, culminating in the discussion of topics at the frontier of present knowledge. Research topics may vary from year to year and may include new particles, quarks, superconductivity, lasers, nuclear fusion, liquid crystals, solid state devices, gravitational waves.

Phys 306. Physics of Wave Motion. (3-0) Cr. 3. S. Prereq: 222, credit or enrollment in Math 267. Oscillating systems including damped and forced oscillations; fluids, geometric optics, water waves, the wave equation; Laplace transforms, nonuniform media, cylindrical and spherical waves, polarization, interference and diffraction, transmission lines, non-linear waves.

Phys 310. Electronic Instrumentation for Experimental Physics. (2-2) Cr. 4. F. Prereq: 222; Math 266. Computer electronic instruments, meter supplies; transducers; passive and active devices, analog integrated circuits, including filters and amplifiers; digital integrated circuits, signal transmission and enhancement. Nonmajor graduate credit.

Phys 311. Intermediate Laboratory. (0-3) Cr. 1 or (0-6) Cr. 2 each time taken. S. Prereq: 322 or 324. Experiments in classical and modern physics performed independently by each student. Nonmajor graduate credit.

Phys 311T. Intermediate Laboratory, (0-6) Cr. 3 each time taken. S. Prereq: 112 or 222. Experiments in classical and modern physics performed independently by each student. For students preparing for a career in high school teaching. Nonmajor graduate credit.

Phys 321. Introduction to Modern Physics I. (3-0) Cr. 3. S. Prereq: 222, credit or enrollment in Math 266. Quantum nature of matter: photons, Bohr model of hydrogen, deBroglie wavelength of matter. Schrödinger wave equation in one dimension; energy quantization; detailed solutions for potential steps, barriers and wells. One-electron atoms, spin, and transition rates; x-ray and optical excitations of multi-electron atoms. Nonmajor graduate credit.

Phys 321L. Introductory Laboratory in Modern Physics. (0-2) Cr. 1. S. Prereq: Credit or enrollment in 321 and credit or enrollment in 322 or equivalent experience. Experiments related to the foundations of modern physics. The dual wave and particle character of electrons and photons, statistics, interferometry and x-ray spectroscopy.

Phys 322. Introduction to Modern Physics II. (3-0) Cr. 3. F. Prereq: 321. Quantum statistics; lasers; physics of molecules. Properties of solids, including electron band structure, atomic force microscopy, and magnetic nuclei. Nuclear physics, including nuclear sizes and masses, stability, decay modes, reactions, fission and fusion. Elementary particles, including strange, charm, and quark fundamental forces of nature. Nonmajor graduate credit.

Phys 322L. Introductory Laboratory in Modern Physics II (0-2) Cr. 1. F. Prereq: Credit or enrollment in 322. Experiments related to the foundations of modern physics. Radioactive decay, elementary particles, Half effect, spectroscopy and instrumentation.

Phys 324. Elementary Modern Physics. (3-0) Cr. 3. F. Prereq: 222, credit or enrollment in Math 266. For students desiring a one-semester introduction to modern physics following Phys 222; students desiring a more comprehensive treatment should consider Phys 321-322. Quantization of light and energy, Schrödinger equation, atomic physics, molecular structure and spectra, properties of solids, the nuclear atom, nuclear fission and fusion. Nonmajor graduate credit.

Phys 362. Intermediate Mechanics. (3-0) Cr. 3. S. Prereq: 361. Rigid body motion; small oscillations, normal modes. Special relativity including length contraction, time dilation, simultaneity, Lorentz transformation, 4-vector covariant formalism, relativistic mechanics. Nonmajor graduate credit.

Phys 364. Electricity and Magnetism I. (3-0) Cr. 3. S. Prereq: 222, Math 368 or Math 395. Static electric and magnetic fields, polarization, Maxwell’s equations. Nonmajor graduate credit.

Phys 365. Electricity and Magnetism II. (2-0) Cr. 2. F. Prereq: 364. Relativistic electromagnetic theory; radiation and propagation of electromagnetic waves; interaction with matter. Nonmajor graduate credit.

Phys 389. Seminar (1-0) Cr. S. Required of all junior physics majors. Open enrollment. Designed to inform students about school programs and application, job placement, alternative careers, basic skills needed for the job market competition. Offered on a satisfactory-fail grading basis only.

Phys 398. Cooperative Education. Cr. R. F.S.SS. Prereq: permission of the department cooperative education coordinator; junior classification. Required of all cooperative education students. Students must register for this course prior to commencing each work period.
Phys 480. Quantum Mechanics I. (3-0) Cr. 3. F.
Prereq: 322, Math 385. First semester of a full-year course. A systematic development of the formalism and applications of quantum mechanics. Solutions to the time independent Schrödinger equation for various one-dimensional potentials including the harmonic oscillator, optical potential, Heisenberg picture; angular momentum; the hydrogen atom; spin; symmetry properties. Nonmajor graduate credit.

Phys 481. Quantum Mechanics II. (3-0) Cr. 3. S.
Prereq: 480. Continuation of 480. Addition of angular momentum; solutions in electromagnetic fields; time-independent perturbation theory; variational principles; WKB approximation; interaction picture; time-dependent perturbation theory; adiabatic approximation; scattering; selected topics in radiation theory; quantum paradoxes. Nonmajor graduate credit.

Phys 489. Tutorial Seminar. (1-0) Cr. 1 each time taken. F.S. S.S. Prereq: Permission of instructor. Discussion by research staff of their research areas, expected thesis research work, and grand theoretical problems for students electing the nonthesis M.S. degree option.

Courses for Graduate Students

Phys 511. Solid State Physics. (3-0) Cr. 3. S. Prereq: 304, 322. First semester of a full-year course. Free electron model; crystal symmetry; band theory of solids; transport properties; Fermi surface; phonons; semiconductors; crystal surfaces; magnetism; superconductivity.

Phys 512. Solid State Physics. (3-0) Cr. 3. S. Prereq: 511. Continuation of 511. Free electron model; crystal symmetry; band theory of solids; transport properties; Fermi surface; phonons; semiconductors; crystal surfaces; magnetism; superconductivity.

Phys 515. Physical Processes in Plasma. (Same as E E 515.) See Electrical Engineering.

Phys 524. Nuclear Physics. (3-0) Cr. 3. S. Prereq: 480. Basic properties and structure of atomic nuclei, introduction to nuclear models, nuclear reactions, decay and stability, interaction of beams of particles with nuclei; reaction mechanisms in relativistic collisions.

Phys 528. Atmospheric Physics. (Same as Mteor 528.) (3-0) Cr. Alt. S., offered 2002. Prereq: 304, 322, 381, and 384. Physics of fluids as applied to the atmosphere: equations of motion, conservation laws; atmospheric waves, small to planetary scale; remote sensing by satellites.

Phys 531. Statistical Mechanics. (3-0) Cr. 3. S. Prereq: 304, Math 465, credit or enrollment in Math 426. Thermodynamic properties of systems of many particles obeying Boltzmann-Gibbs, Fermi-Dirac, and Bose-Einstein statistics; microcanonical, canonical, and grand canonical ensembles and their application to physical problems; density matrices; introduction to phase transitions; renormalization group theory; kinetic theory and fluctuations.

Phys 537. High Energy Physics. (3-0) Cr. 3. S.
Prereq: 480. Survey of particle physics, covariant kinematics and Lagrangian formulation of Standard Model and the Higgs mechanism, W± and Z0 production and decay; hadron spectroscopy, structure functions; running coupling constants; the CKM matrix; selected topics beyond the Standard Model such as supersymmetry and grand unification.

Phys 541. General Relativity. (3-0) Cr. 3. S. Alt., offered 2002. Prereq: 362 or Math 465. Tensor analysis and differential geometry developed and used to formulate Einstein’s equations. Ashtekar and Kerr solutions. Other advanced topics may include gravitational radiation, particle production by gravitational fields, alternate gravitational theories, attempts at unified field theories, cosmology.

Phys 551. Computational Physics. (4-0) Cr. 2. S.
Prereq: 325, 385, 465. A comprehensive introduction to modern computational techniques to analyze topics in classical and modern physics. Offered on a satisfactory-fail grading basis only.

Phys 564. Advanced Classical Mechanics. (3-0) Cr. 3. S.
Prereq: 361, Math 426, 465. Variational principles; Lagrange’s equations, Hamilton’s canonical equations, canonical transformations, Hamilton-Jacobi theory, infinitesimal transformations, classical field theory.

Phys 571. Advanced Electricity and Magnetism. (3-0) Cr. 3. S. Prereq: 365, Math 426. Electrostatics, magnetostatics, boundary value problems, Maxwell’s equations, wave phenomena in macroscopic media, wave guides.

Phys 572. Advanced Electricity and Magnetism. (3-0) Cr. 3. S.
Prereq: 571. Modern theory of relativity, least action and motion of charged particles in electromagnetic fields, radiation, collisions between charged particles, multipole fields, radiation damping.

Phys 590. Special Topics. Cr. var. Prereq: Permission of instructor: Topics of current interest.

Courses and Programs

Courses and Programs

Phys 591. Quantum Physics I. (4-0) Cr. 4. F.
Prereq: 481. First semester of a full-year course. Postulates of quantum mechanics; time-dependent and time-independent Schrödinger equations for one-, two-, and three-dimensional systems; theory of angular momentum; Rayleigh-Schrödinger time-independent perturbation theory.

Phys 592. Quantum Physics II. (4-0) Cr. 4. S.
Prereq: 591. Continuation of 591. Variational theorem and WKB method; time-dependent perturbation theory; method of partial waves and Born approximation for scattering by central potentials; identical particles and symmetry; Dirac and Klein-Gordon equation for free particles; path integral formalism.

Phys 595. Creative Component. Cr. var. Prereq: Permission of instructor. Individually directed study of research-level problems for students electing the nonthesis M.S. degree option.

Courses for Graduate Students

Phys 611. Quantum Theory of Condensed Matter. (3-0) Cr. 3. S.

Phys 624. Advanced Nuclear Physics. (3-0) Cr. 3. Alt. F.
Prereq: 365, 312. Theoretical and experimental techniques. Nonmajor graduate credit.

Phys 625. Physics of Strong Interactions. (3-0) Cr.
Alt. S., offered 2002. Prereq: 480, 481, 511. Band structure; statistical mechanics of electrons and holes; galvanic-magnetic effects, magnetooptics, cyclotron motion, magnetochemistry, magnetic ordering, magnetic moments of Fermi-Dirac and Bose-Einstein gases, magnetic properties; amorphous semiconductors; quantum well structures.

Phys 638. Elementary Particle Physics. (3-0) Cr.

Phys 650. Advanced Seminar. (1-0) Cr. 1 each time taken. F. Topics of current interest. Offered on a satisfactory-fail grading basis only.

Courses and Programs

Phys 660. Advanced Topics in Physics. Cr. 1 to 3 each time taken. F. S. Courses on advanced topics and recent developments.

Courses and Programs

Phys 674. Applications of Group Theory to Physics: Condensed Matter Physics. (3-0) Cr. 3. Alt.
F., offered 2001. Prereq: 592. Theory of groups and group representation; topics in space, and rotation groups; applications to molecular and crystal structures, crystal field and spin-orbit interactions, energy bands and phonon dispersion relations. Applications to modern materials.

Courses and Programs

Physics and Astronomy

Phys 681. Quantum Field Theory I: (3-0) Cr. 3. F. Prereq: 592. Quantization of fields (canonical and path integral); Feynman rules; introduction to gauge theories; Quantum Electrodynamics; radiative corrections; renormalization and renormalization group.

Plant Health and Protection

www.plantpath.iastate.edu

Interdepartmental Undergraduate Program)

Advisory Committee: Ed Braun, Chair; Burras, Hart, Martinson, Taber, Wray

Undergraduate Study

For undergraduate major in plant health and protection leading to the degree bachelor of science, see Agriculture, Curricula.

Plant Health and Protection is an interdepartmental major administered by the departments of Plant Pathology, Entomology, Agronomy, Horticulture, and Forestry. The program emphasizes a holistic approach to plant health maintenance encompassing soil fertility and plant nutrition, genetics and plant breeding, cultural practices, and protection from pests such as insects, weeds, and the microorganisms that cause plant diseases. Graduates understand the principles of plant structure and function and the ways in which plants are affected by biotic and abiotic stress factors. They are skilled in diagnosing plant health problems and in developing and implementing plant health management strategies to reduce plant stress with minimal environmental impact. Graduates are able to communicate clearly and work effectively with others on complex plant health problems. They understand the ethical and environmental dimensions of problems and issues facing agricultural and natural resource professionals.

Plant Health and Protection is a broad-based curriculum in biological and agricultural sciences. Students take courses in the basic biological and physical sciences, plant fertility management, entomology, weed science, plant pathology, and plant production systems (agronomy, horticulture, and forestry).

Cooperative practical work experience/internships with industry and governmental agencies are available to qualified students. Students also have a large number of free elective credits for courses that they can use to individualize their degree program.

Plant health professionals are employed by agribusiness firms such as seed companies, agricultural chemical companies, farm management and crop consulting businesses, producer cooperatives, food processors, greenhouses, nurseries, and landscape businesses. Graduates are also employed by governmental agencies like the EPA, USDA, Extension Service, and state departments of agriculture. The curriculum in plant health and protection provides an excellent preparation for graduate study in the crop protection disciplines and related fields such as agronomy, horticulture, plant breeding, genetics, microbiology, molecular biology, botany, and environmental science.

A minor in plant health and protection may be earned with 15 or more credits in 206, 391 and additional courses selected from an approved list available from the chair of the Plant Health and Protection advisory committee. At least 9 of the 15 credits may not be used to satisfy other department, college, or university requirements.

Courses open for nonmajor graduate credit: 301, 320, 354, 376, 407, 416.

Courses Primarily for Undergraduate Students

PI HP 206. Plant Health Biology. (3-0) Cr. 3. S. Prereq: Biol 109 or 201. Introduction to issues in plant health biology: plant productivity and food supply, soils and plant health, plant biotechnology, integrated pest management, plant health and sustainable agriculture.

PI HP 283. Pesticide Application Certification. (Same as Ent 283.) See Entomology.

PI HP 301. Forest Ecology and Soils. (Same as For 475.) See Forestry. Nonmajor graduate credit.

PI HP 317. Principles of Weed Science. (Same as Agron 317.) See Agronomy.

PI HP 320. Plant Nutrition. (Same as Hort 320.) See Horticulture. Nonmajor graduate credit.

PI HP 354. Soils and Plant Growth. (Same as Agron 354.) See Agronomy. Nonmajor graduate credit.

PI HP 354L. Soils and Plant Growth Laboratory. (Same as Agron 354L.) See Agronomy.

PI HP 376. Fundamentals of Entomology and Pest Management. (Same as Ent 376.) See Entomology. Nonmajor graduate credit.

PI HP 391. Practical Plant Health. (Same as PI P 391.) (0-4) Cr. 2. F. Prereq: 6 credits in biological sciences. Diagnosis of all types of plant health problems caused by diseases, insects, weeds, nutrient deficiencies and toxicities, herbicide injury, and environmental stress. Emphasis is on acquiring practical skills. Students will gain experience in written and oral communications. Field trips.

PI HP 416. Forest Pest Management. (Same as PI P 416.) See Plant Pathology. Nonmajor graduate credit.

PI HP 475. Community Tree Management. (Same as For 475.) See Forestry.

Courses and Programs

Plant Pathology 313

PI HP 490. Independent Study. Cr. 1 to 3. F.S.S.S. Prereq: Junior or senior classification, 6 credits in plant health and protection, permission of instructor. A maximum of 6 credits of 490 may be used toward the total of 128 credits required for graduation.

A. Plant Health and Protection

H. Honors

PI HP 498. Plant Health Management. (2-3) Cr. 3. S. Prereq: 391. Exploration of issues in plant health management from multiple perspectives. Technical and socioeconomic dimensions of problems will be analyzed through case studies, guest speakers, field trips, and other resources. Problem-solving and communications skills will be emphasized.

Plant Pathology

www.plantpath.iastate.edu

Edward J. Braun, Chair of Department

Distinguished Professors: Tiffany

Professors: Braun, Bronson, Gleason, Harrington, Hill, McGee, Miller, Nutter, Tylka

Professors (Collaborators): Stuckey, Wise

University Professors (Emeritus): McNabb

Professors (Emeritus): Durand, Epstein, Everson, Hodges, Norton, Stewart

Associate Professors: Baum, Martinson, Munkvold, Yang

Assistant Professors: Beattie, Bogdanove, Whitham

Undergraduate Study

The department participates in the undergraduate major and minor in plant health and protection; see Agriculture, Curricula.

For a second major in pest management see Agriculture, Curricula.

Graduate Study

The department offers studies for the degrees master of science and doctor of philosophy with a major in plant pathology, and minor work for students majoring in other departments or programs. A master of science non-thesis option is available. The department also participates in the inter-departmental majors in toxicology; genetics; plant physiology; molecular, cellular, and developmental biology, ecology and evolutionary biology, and sustainable agriculture.

Students entering graduate programs in the department need a sound background in the physical, biological, and mathematical sciences as well as adequate preparation in English.

Graduates have a broad understanding of the biology and management of plant pathogenic microorganisms and the interactions of pathogens with their host plants. They understand the relationship between plant pathology and allied disciplines and are able to communicate effectively with scientific colleagues and the general public in both formal and informal settings. Graduates are able to address complex plant disease problems facing agricultural and bioscience professionals, taking into account the related ethical, social, legal, and environmental issues. They are skilled in research procedures, communicating research
Courses open for nonmajor graduate credit: 407, 416, 483, 493.

Courses Primarily for Undergraduate Students

Pl P 391. Practical Plant Health. (Same as Pl HP 391.) See Plant Health.

Pl P 416. Forest Pest Management. (Same as Ent 416, For 416, Pl HP 416, P M 416) (3-3) Cr. 4. S. Prereq: 8 credits in biological sciences, including Biol 201. Harrington. Hart. Nature of forest, shade tree, and wood pests; physical agents of tree damage; concepts of forest health; integrated case studies in the evaluation and economic analysis of protection and pest management problems; weekend field trip. Nonmajor graduate credit.

Pl P 477. Bacterial-Plant Interactions. (Dual-listed with 577, same as Micro 477) (3-0) Cr. 3. Alt. S., offered 2002. Prereq: 3 credits in microbiology or plant pathology. Focuses on plant-associated bacteria in terms of their ecology, diversity, and the physiological and molecular mechanisms involved in their interactions with plants.

Pl P 483. Wood Deterioration and Preservation. (Same as For 483.) See Forestry. Nonmajor graduate credit.

Pl P 490. Independent Study. Cr. 1 to 3. F.S.SS. Prereq. Junior or senior classification, 7 credits in biological sciences, permission of instructor. A maximum of 6 credits of 490 may be used toward the total of 128 credits required for graduation.

A. Plant Pathology

H. Honors

Pl P 493. Practical Plant Pathology. Cr. 1. 140-hour workshop course. 6 credits in biological sciences. Team-taught. Introduction to the characteristics and ecology of plant diseases caused by fungi, bacteria, nematodes, and viruses. Emphasis is on practical knowledge and hands-on experiences geared to the interests of agribusiness, horticultural, and extension professionals. Offered on a satisfactory-fail grading basis only. Nonmajor graduate credit.

Courses Primarily for Graduate Students, Open to Qualified Undergraduate Students

Pl P 507. Epidemiology and Disease Management. (2-0) Cr. 2. S. Prereq: 407 or 416 or 503. Martenson. Nutter. Principles of pathogen population dynamics as affected by environment and host/pathogen genetics; modeling biotic plant stress on crop productivity. Principles and practices employed for disease control and their utilization for management; applications of disease management and epidemiological principles to specific diseases through case studies.

Pl P 511. Integrated Management of Tropical Crops. (2-0) Cr. 2. Alt. S., offered 2003. Prereq: 407 or 416 or 503 or Ent 370 or 376 or Hort 221. Gleason, Lewis, Delate. Applications of Integrated Crop Management principles (including plant pathology, entomology, and horticulture) to pest control. Risk assessment with a variety of tropical agroecosystems and Costa Rican agriculture is followed by 10-day tour of Costa Rican agriculture during spring break, then writing of individual projects. Tour expenses paid by students.

Pl P 530. Ecologically Based Pest Management Strategies. (Same as Agron 530, Ent 530, SusAg 530) (3-0) Cr. 3. Alt. F., offered 2002. Prereq: SusAg 509. Durable, least-toxic strategies for managing weed, pest, and pathogen populations. Caenorhabditis elegans with emphasis on underlying ecological processes.

Pl P 577. Bacterial-Plant Interactions. (Dual-listed with 477, same as Micro 577) (3-1) Cr. 3. Alt. S., offered 2002. Prereq: 3 credits in microbiology or plant pathology. Focuses on plant-associated bacteria in terms of their ecology, diversity, and the physiological and molecular mechanisms involved in their interactions with plants.

Pl P 590. Special Topics. Cr. 1 to 3 each time taken. F.S.SS. Prereq: 10 credits in biological sciences. Permission of instructor.

Pl P 694. Colloquium in Plant Pathology. (2-0) Cr. 2 each time taken. F.S. Prereq: 407 or 416 or 503. Permission of instructor. Advanced topics in plant pathology, including biological control, cultural control, and pesticides. Emphasis on resistance gene deployment, genetic engineering for disease resistance, chemical control, tropical diseases, fungal genetics, and professional communications.

Pl P 698. Seminar. Cr. 1 each time taken. F.S.

Plant Physiology

(Interdepartmental Graduate Major)

Supervisory Committee: D. Hannapel, Chair. M. James, M. Spalding, M. Westgate, E. Wurtele

Work is offered for the degrees master of science (thesis option only) and doctor of philosophy with a major in plant physiology in the following participating departments: Agronomy; Biochemistry, Biophysics and Molecular Biology; Botany, Forestry, Horticulture; Plant Pathology; and Zoology and Genetics. In the Interdepartmental Plant Physiology Major at Iowa State University, students use modern, interdisciplinary approaches to understand plant processes at the molecular, cellular and whole-plant levels. Graduates have a broad understanding of basic, functional plant biology with emphases on fundamental biology, biochemistry, and molecular biology. They are able to address complex research and policy problems in agriculture, biotechnology, and basic plant biology.

All M.S. students must meet the following minimum requirements: (1) make two seminar presentations and enroll each term in the interdepartmental plant physiology seminar (Bot 696 or its cross-listed equivalent); (2) complete two courses chosen from the following: Agron 516, Bot 512, Bot 513, and (3) complete the following courses: BBMB 404 and 405 or 501 and 502, and Stat 401. A higher level course in biochemistry is recommended.

All Ph.D. students must complete the following requirements, in addition to those for the M.S.: (1) two more seminar presentations in Bot 696 (for a total of four); (2) Agron 516, Bot 512, Bot 513; (3) one course chosen from Bot 545, Gen 520 or 620, BBMB 675 or 676; and (4) one biochemistry course beyond the level of BBMB 404/405 or 501/502. Suggested courses include BBMB 451, 607, 622, 632, 642, or 660, Stat 402 or Agron 526 or a comparable, related biochemistry course are strongly recommended.

In consultation with his or her major professor and the POS committee, a student may select additional courses from an approved list available...
able from the chair of the supervisory committee of the interdepartmental major.

Courses for Graduate Students
P Phy 512. Plant Growth and Development. (Same as Bot 512.) See Botany.
P Phy 513. Plant Metabolism. (Same as Bot 513.) See Botany.
P Phy 545. Plant Molecular Biology. (Same as Bot 545.) See Botany.
P Phy 696. Seminar in Plant Physiology and Molecular Biology. (Same as Bot 696.) See Botany.

Political Science
www.iastate.edu/~polsci/

James M. McCormick, Chair of Department
University Professor: Schmidt

Professors: Dearin, Dobratz, James, Kihl, Lee, Maney, Mansbach, McCormick, Moses, Shelley, Smith, Snow

Distinguished Professor (Emeritus): Rasmussen

Professors (Emeritus): Boles, Parks, Talbot

Associate Professors: Coates, Hutter, Lowry

Associate Professor (Emeritus): Whitmer

Assistant Professors: Clark-Daniels, Ho, Kaelberer, Nemacheck, Potoski, Tuckness, Weibust

Assistant Professors (Adjunct): Bystrom, Waggoner

Undergraduate Study
For the undergraduate curriculum in Liberal Arts and Sciences, with major in political science, leading to the degree of Bachelor of Arts, see Liberal Arts and Sciences, Curriculum.

The study of political science is designed to enable students to become familiar with theories of public values and patterns of national, regional, and international political systems. A political science major should complete a broad liberal arts program, which would maximize opportunities for study in related social science disciplines, as well as in various areas of the humanities. Students will understand the interrelationships of the subfields of political science, develop skills in analysis and critical thinking, and be able to apply research methods relevant to the discipline.

The political science major is often chosen by students preparing for a career in law. Students with this goal should consult with the department in selecting courses. See also Preprofessional Study.

Several internship options are available to the political science major, offering students the opportunity to experience practical application of the knowledge learned in academic courses.

Requirements for the Major:
For the purpose of defining undergraduate requirements in the Department of Political Science, the Department employs four subfields within the discipline, with the following courses in each:

To complete the major in Political Science a student must earn 33 semester credits of courses in Political Science subject to the following conditions:

a. Students must satisfactorily complete Pol S 101.

b. Students must complete at least two courses in each of the four subfields listed above. Students may apply only one half semester mini-course (Pol S 312, 313, 314, 315) in each group.

c. At least 18 credits of Political Science courses must be numbered 300 or above.

d. Students must pass one statistics course from among Stat 101, 104, 227 or 231.

e. Students must develop a research tool by following one of the following options: (1) two years (four semesters) of a single college-level foreign language as demonstrated by successful completion of a foreign language class numbered 202, (2) successful completion of Pol S 301, or (3) passing a national-level examination demonstrating an intermediate level of proficiency in a language other than English. Students whose first language is not English may fulfill the research tool requirement via the options described above or by providing documentation of at least 3 years full-time course work in a secondary school, or one year of course work in a college or university, in which the language of instruction is other than English.

f. No more than six credits of Pol S 490 or 499 (alone or in combination) can be used to fulfill any of these requirements. A maximum of three credits of Pol S 490 can be applied to meet any of the four subfield requirements.

g. A maximum of six credits from half semester mini-courses (Pol S 312, 313, 314, 315) can be applied to satisfy the above requirements.

h. At least 15 credits of Political Science coursework must be earned at Iowa State University.

English Proficiency: Majors must earn at least a C+ in both Engl 104 and 105. Those who do not must complete Engl 309 or 314 with a grade of C or higher.

The department offers a minor in political science that may be earned by completing 15 credits beyond the 100-level of coursework in political science, nine of which must be at the 300 level or above. A student minoring in Political Science normally will be expected to take at least 9 credits in Political Science coursework at Iowa State University. Only 3 credits of Pol S 490 or Pol S 499, alone or in combination, and only 2 credits of Pol S 312-315 may be included in the total of 15 credits required for the minor. All minors in the College of Liberal Arts and Science required a minimum of 6 credits in courses numbered 300 and above taken at ISU with a grade of C or higher. Credits earned in Pol S 499, offered on a satisfactory/fail basis only, will not fulfill this requirement.

Graduate Study
The department offers work for a Master of Arts degree (M.A.), with a major in political science, and minor for students in other departments. The department also offers work for a Master of Public Administration (M.P.A) degree or a Certificate of Public Management (C.P.M) for those interested in an educational certificate program that requires less work than a full masters program. Brochures with detailed requirements for all graduate degrees may be obtained from the department office or at the department’s web page at www.iastate.edu/~polsci/graduate.html.

The M.A. program is designed to enable its graduates to engage in governmental research, enter public service or private industry, teach, or pursue further graduate study. Graduate students may also wish to work for certification for high school or junior college teaching. A thesis is required for this degree. A specialization in public administration is possible. The department also has a joint Master of Arts/Juris Doctor (M.A.J.D.) program with the Law School of Drake University. Detailed information for the M.A.J.D. can be found at the ISU Political Science webpage as well as the Drake Law School website (under Joint Degree): www.law.drake.edu/admissions/specprograms.html. Students wishing to pursue this joint degree must submit separate applications to both Drake University and Iowa State University and be accepted by both institutions.

M.A. graduates have a broad substantive understanding of the political process and the academic study of politics. They also have in-depth knowledge of one or more subfields in political science. Graduates are skilled at conducting research and preparing thorough research summaries. They are able to identify and address complex political questions, taking into account related ethical, legal, economic, and social issues.

The usual prerequisites for major graduate work in the M.A. program normally are completion of at least 15 credits in political science, the GRE (Graduate Record Examination), one year of a foreign language (equivalent to 8 semester hours) and a course in basic statistics (equivalent to Stat 101). If the basic statistics requirement has not been met, the student may remedy the deficiency by passing equivalent courses, for which no graduate credit will be received. During their program of study, all students are expected to complete Stat 401, a core class of Pol S 502 or Pol S 503, and a thesis. Students normally do concentrated course work in at least one of the following three areas: international relations, comparative politics, or American politics. The student’s program of study committee may require additional work.

The M.P.A. program is designed for current or aspiring administrators in city, county, state, federal, or international government work as well as those who work in nonprofit organiz-
Courses Primarily for Undergraduate Students

Pol S 101. Orientation to Political Science. (2-0) Cr. 1. 8 weeks. F.S. Prereq: Political Science and Open Option majors only or permission of the instructor. Introduction to subfields of Political Science, including an introduction to analytical thinking, and research skills relevant to political science. Orientation to university, college, and departmental policies. Designated repeat not permitted. Use of credit in Pol S major and minor is limited. See Undergraduate Study for information.

Pol S 220. Introduction to Law and Politics. (3-0) Cr. 3. F.S. An introduction to the basic concepts and theories of the state and of law, including such philosophic issues as authority, power, legitimacy, freedom, and political obligation. Readings from theories in political philosophy, jurisprudence, constitutionalism, and related areas of thought.

Pol S 224. Introduction to Comparative Government and Politics. (3-0) Cr. 3. F.S. Basic concepts and major theories; application to selected political systems, including non-western political systems.

Pol S 244. Comparative Political Systems. (3-0) Cr. 3. F.S. Basic concepts and major theories; application to selected political systems, including non-western political systems.

Pol S 251. Introduction to International Politics. (3-0) Cr. 3. F.S. Dynamics of interstate relations pertaining to nationalism, the nation state, peace and war; foreign policy making; the national interest; military capability and strategy; case studies of transnational issues, such as population, food, energy, and terrorism.

Pol S 298. Cooperative Education. Cr. R. F.S.S.S. Prereq: Permission of the cooperating educational coordinator; Sophomore classification. Required of all cooperative education students. Students must register for this course prior to commencing each work period.

Pol S 301. Introduction to Empirical Political Research. (3-2) Cr. 4. F.S. Prereq: 3 credits in political science; one statistics course required. Techniques of empirical political research and analysis; surveys, methods of data collection, applications of statistics and computer techniques.

Pol S 305. Political Behavior. (3-0) Cr. 3. F.S. Prereq: Sophomore classification. Empirical theories and descriptions of political behavior, including decision-making, opinion, and attitudes, with an emphasis on groups and political elites.

Pol S 306. Political Decision-Making and Conflict Resolution. (3-3) Cr. 3. F.S. Prereq: 3 credits in political science. Study of domestic and international political conflict. Simulation and games will be used to illustrate the process through which conflict is resolved.

Pol S 310. State and Local Government. (3-0) Cr. 3. S. Prereq: 3 credits in political science. Role of state and local governments in the American federal system. Structures of participation: political parties, elections, interest groups, local governmental institutions: legislative, executive, and judicial. Structure and functions of local governments.

Pol S 311. Municipal Government and Politics. (3-0) Cr. 3. Alt. F., offered 2001. Prereq: 215. Legal position of municipal corporation; forms of organization; administration of municipal services; problem-solving in municipal government; urban and metropolitan political processes; implications of federal urban policies.

Pol S 312. Minicourse in American Government and Politics. (3-0) Cr. 3. 8 weeks. S. F.S. Prereq: Sophomore classification. Half-semester course on selected topics in American government and politics. Designated repeat not permitted. Use of credit in Pol S major and minor is limited. See Undergraduate Study for information.

Pol S 313. Minicourse in Theory and Methods. (3-0) Cr. 2. 8 weeks. F.S. Prereq: Sophomore classification. Half-semester course on selected topics in theory and methods in political science. Designated repeat not permitted. Use of credit in Pol S major and minor is limited. See Undergraduate Study for information.

Pol S 314. Minicourse in Comparative Politics. (3-0) Cr. 3. 8 weeks. F.S. Prereq: Sophomore classification. Half-semester course on selected topics in international relations. Designated repeat not permitted. Use of credit in Pol S major and minor is limited. See Undergraduate Study for information.

Pol S 315. Minicourse in International Relations. (3-0) Cr. 3. 8 weeks. F.S. Prereq: Sophomore classification. Half-semester course on selected topics in international relations. Designated repeat not permitted. Use of credit in Pol S major and minor is limited. See Undergraduate Study for information.

Pol S 320. American Judicial Process. (Same as C.J. S. St.320.) (3-0) Cr. 3. S. Prereq: 215. The genesis, structure, processes, and personnel of American courts; basic juridical concepts; restraints on exercise of the judicial power; major eras of American constitutional history; an overview of civil liberties; impact of court decisions on public policy.

Pol S 340. Politics of Developing Areas. (3-0) Cr. 3. Alt. S., offered 2002. Examination of economic and political development as they relate to the political process of developing states. Impact of social and technological change on political systems of developing areas. Some case studies.

Pol S 343. Latin American Government and Politics. (3-0) Cr. 3. Political institutions, processes, and contemporary issues. Selected countries examined intensively to illustrate generalizations. Role of parties, military, church, human rights, women, environmental issues, interest groups, ideology, and globalization.

Pol S 344. Public Policy. (3-0) Cr. 3. S. How agendas come to be set in public policy, theories describing the policy-making process, forces molding policy choices and the impact of such choices.

Pol S 346. European Politics. (3-0) Cr. 3. S. Comparative study of political institutions of Europe and the European Union; emphasis on parties, elections, and governmental structures. Substance and process of public policies in selected problem areas.

Pol S 348. Israeli Government and Politics. (3-0) Cr. 3. Alt. S. Prereq: 241 or comparable background in Middle East/Israel history. Major factors that have shaped and continue to influence the distinctive nature of Israeli society and politics. Patterns and determinants of Mideast international relations, as reflected in Arab-Israeli conflict, foreign policymaking in Israel, and American involvement since 1948.

Pol S 350. Introduction to the Middle East. (3-0) Cr. 3. S. Introduction to the Middle East as a region and to issues of political influence on the Middle East and its place in the world. Topics covered include Islam, regional conflicts and alliances, local leaders, economic issues, and gender and social relations. Nonmajor graduate credit.

Pol S 356. Theories of International Politics. (3-0) Cr. 3. Introduction to essential theoretical concepts and approaches, both classical and contemporary on world politics including realism, empiricism, liberal- ism, and postpositivism; for example, war and conflict, peace and cooperation, political economy, crisis decision-making, systemic theory, dependence and interdependence.

Pol S 357. International Security Policy. (3-0) Cr. 3. Alt. F., offered 2002. The major theoretical approaches in security, power strategies and game theory, bargaining theory, compellence, and coercive diplomacy, and crisis diplomacy. Illustration of these various approaches through historical and contemporary cases.

Pol S 358. United States Foreign Policy. (3-0) Cr. 3. F. Prerq: 215 or 251, or Hist 467 or 470 or 471. U.S. foreign policy since World War II with emphasis on changing American values in foreign policy, the role of the President, Congress, and the bureaucracy in policy making, and a survey of current foreign policy issues and problems.

Pol S 359. Current Issues in American Foreign Policy. (3-0) Cr. 3. S. Prerq: 215, 251, or 358. Examination of contemporary U.S. foreign policy issues (e.g., Middle East and nuclear arms control), and leadership roles of the United States Congress and state legislatures.

Pol S 361. The President and the State Governors. (3-0) Cr. 3. Alt. F., offered 2002. Prereq: 215. Creation and historical development of the office of chief executive; character and behavior of past chief executives; selection and control; powers, roles, functions; executive staff; relations with Congress, press, public opinion.

Pol S 370. Religion and Politics. (Same as Relig 370.) See Religious Studies. Nonmajor graduate credit.

Pol S 381. Introduction to Political Economy. (3-0) Cr. 3. S. Introduction to the theoretical perspectives on international political economy. Exploration of specific issues such as the changing international trade regime, international monetary and financial relations, and the Third World development under conditions of globalization.

Pol S 385. Women in Politics. (Same as W S 385.) (3-0) Cr. 3. S. Examination of the entry and participation of women in the United States and other countries including a focus on contemporary issues and strategies for change through the political process.

Pol S 406. Public Opinion and Voting Behavior. (3-0) Cr. 3. S. Prerq: 2 credits in political science or junior classification. The formation of political opinions and attitudes, political participation, and voting behavior of the general public, and their influences on American politics, polling as a means of assessing public opinions and behaviors. Nonmajor graduate credit.

Pol S 413. Intergovernmental Relations. (Dual-listed with Hist 313.) (3-0) Cr. 3. S. Prerq: 6 credits in American government. Theories and practices of the American federal system. Politics and policy making among federal, state, and local governments. Nonmajor graduate credit.

Pol S 417. Campaign Rhetoric. (Same as Sp Cm 417.) See Speech Communication. Nonmajor graduate credit.

Pol S 421. Constitutional Freedoms. (3-0) Cr. 3. S. Prerq: 320 or 420. Leading Supreme Court cases interpreting the Constitution and Bill of Rights. Emphasis on religion, speech, privacy, due process, and equal protection. Nonmajor graduate credit.

Pol S 422. International Law. (3-0) Cr. 3. Alt. S. Prerq: 215 or 251, junior classification. Development of the principles of international law of war and peace; analysis of theories concerning its nature and fundamental concepts; its relation to national laws; problems of international legislation and codification. Nonmajor graduate credit.

Pol S 430. Western Political Thought: Plato to Machiavelli. (Same as CI S 430.) (3-0) Cr. 3. Prerq: 6 credits in political science, philosophy, or European history. Major concepts in original texts of classical, medieval, and renaissance authors: justice, community, man's basic nature; natural law; force; society outside the political order. Nonmajor graduate credit.

Pol S 431. Modern Political Thought. (Dual-listed with Hist 331.) (3-0) Cr. 3. Prerq: 6 credits in political science, philosophy, or European history. Texts of political thinkers beginning with Thomas Hobbes. Human nature and its influence on contract theory; private rights; differing conceptions of liberty; sovereignty; constitutionalism; bureaucracy; law and democratic theory. Nonmajor graduate credit.

Pol S 432. American Political Thought. (3-0) Cr. 3. S. Prerq: 6 credits in political science or in American history. Review of major political concepts and theorists in American political history. Analysis of current concepts in U.S. political thought, and their possible impacts on our political institutions. Nonmajor graduate credit.

Pol S 433. American Political Philosophy. (3-0) Cr. 3. Prerq: 6 credits in political science or in American history. Analysis of major political concepts and theorems in American political history. Review of major political concepts and theorems in American political thought, and their possible impacts on our political institutions. Nonmajor graduate credit.

Pol S 440. Comparative Politics of the Middle East. (3-0) Cr. 3. Prerq: 241 and coursework on the Middle East. Applies comparative methodology to the analysis of problems and issues affecting the Middle East as a region. Focus on democratization and economic liberalization. Nonmajor graduate credit.

Pol S 450. International Politics of Asia. (3-0) Cr. 3. F. Prerq: 241 or 251. International politics of Asia; emphasis on shifting power balance, role of major powers, security dilemma, foreign policies of small nations, prospect for regional integration. Nonmajor graduate credit.

Pol S 452. Comparative Foreign Policy. (Dual-listed with Hist 552.) (3-0) Cr. 3. S. Prerq: 251. Various theoretical approaches to explain foreign policy making and behavior through the use of case studies of selected nations. Nonmajor graduate credit.

Pol S 453. International Organizations. (3-0) Cr. 3. S. Prerq: 251. Private and public organizations such as the United Nations, other specialized agencies, and multinational organizations, and their influence on our daily lives. Nonmajor graduate credit.

Courses and Programs

Political Science

Pol S 464. Political Parties and Interest Groups. (3-0) Cr. 3. F. Prerq: 215, junior classification. Interest groups and American political parties, their principles, organizations and activities.

Pol S 470. Public Choice. (Same as Econ 470.) See Economics. Nonmajor graduate credit.

Pol S 475. Management in the Public Sector. (Dual-listed with 575.) (3-0) Cr. 3. F. Prerq: 371. Literature and research on organizational behavior and management theory with emphasis on applied aspects of management in public and private organizations. Topics include distinctions between public and private organizations, leadership, productivity, employee motivation, organizational structure, and politics in the public-sector environment. Nonmajor graduate credit.

Pol S 477. Government, Business, and Society. (Dual-listed with 577.) (3-0) Cr. 3. Alt. F., offered 2001. Prerq: 215, junior classification. Diverse perspectives on the changing roles and relationships of business, government and society as the world has opened the way for more effective policy decisions on corporate-government affairs. Topics may include the changing economy, transformation of workplace and community conditions, consumerism, responsibilities of businesses; economic policies and regulations; and politics in the business-government relationship. Nonmajor graduate credit.

Pol S 478. Politics of the Bureaucracy. (Dual-listed with 581.) (3-0) F. Prerq: Senior classification and 371, or 6 credits of political science. Examination of the interaction between government and politics. Emphasis placed on public administration theorists, and current behavior in the bureaucracy, Congress, and the executive branches of government. Nonmajor graduate credit.

Pol S 480. Ethics and Public Policy. (Dual-listed with 580.) (3-0) Cr. 3. Prerq: 6 credits in political science. Major ethical concepts in U.S. political philosophy. The controversy over public versus private morality in political policy making. Analysis of public decision-making case studies, with emphasis on ethical considerations. Major proposals and legislation related to improving the quality of ethical criteria and decisions in public policy making. Nonmajor graduate credit.

Pol S 482. Environmental Politics and Policies. (Dual-listed with 582; same as Env S 482.) (3-0) Cr. 3. F. Prerq: 3 credits in political science or 3 credits in Environmental Studies; junior classification. Major ideologies relation to conservation and ecology. Processes, participants, and institutions involved in state, national, and global environmental policymaking. Case studies of environmental issues and proposals for policy reform. Nonmajor graduate credit.

Pol S 490. Independent Study. Cr. var. F.S. Prereq: 6 credits in political science. No more than 9 credits of Pol S 490 may be counted toward graduation. Special studies in the political institutions, processes and policies of American, foreign, and international governments. Also, studies in traditional and behavioral political theory. Use of credit in Pol S major and minor is limited. See Undergraduate Study for information.

Pol S 513. Intergovernmental Relations. (Dual-listed with 413.) Cr. 3. S. Prereq: 6 credits of American government. Theories and practices of the American federal system; politics and policy making among federal, state, and local governments.

Pol S 531. Modern Political Thought. (Dual-listed with 431.) Cr. 3. S. Prereq: 6 credits in political science, philosophy, or European history. Texts of political thinkers beginning with Thomas Hobbes. Human nature and its influence on contract theory; private rights; differing conceptions of liberty; sovereignty; constitutionalism; bureaucracy; law and democratic theory.

Pol S 535. Contemporary Political Philosophy. (Same as Phil 535.) Cr. 3. Prereq: 6 credits in political science. Selected theoretical writings, both classical and contemporary, on the nature of political systems and ethical issues in political systems.

Pol S 544. Comparative Public Policy. (3-0) Cr. 3. Prereq: 6 credits in political science. Examines how, why, and to what extent governments deal with substantive policy problems differently. Environmental factors, ideological, cultural, domestic policy making processes, and interest groups.

Pol S 547. Political Leadership and Elites. (3-0) Cr. 3. Prereq: 6 credits in political science. Various forms of leadership and leader-follower relations. Obligations, exchanges, incentives, coercion, corruption, and ideology in both the U.S. and foreign experience.

Pol S 549. Comparative Political Behavior. (3-0) Cr. 3. Prereq: 305 or 405. Empirical analysis of political behavior in cross-national perspective, including activist participation, level of political sophistication, cleavage structures and voting, role of partisan identification.

Pol S 552. Comparative Foreign Policy. (Dual-listed with 452.) (3-0) Cr. 3. S. Prereq: 211. Various theoretical approaches to explain foreign policy making and behavior through the use of case studies of selected nations.

Pol S 559. International Relations Theory. (3-0) Cr. 3. F. Prereq: 6 credits in international studies. Selected theoretical writings, both classical and contemporary, on world politics. Realism, war and conflict, peace and cooperation, political economy, crisis decision making, and transnational relations.

Pol S 560. Legislative Behavior. (3-0) Cr. 3. S. Prereq: 306 or equivalent. Principles, procedures, and problems of the legislative process. Policy-making in state legislatures and the U.S. Congress.

Pol S 561. The Chief Executive. (3-0) Cr. 3. S. Prereq: 6 credits of American government. Legal and political forces influencing the U.S. president, governors, and other governmental executives in decision making, developing and administering programs of government, leading public opinion, and influencing legislation.

Pol S 571. Organizational Theory in the Public Sector. (3-0) Cr. 3. F. Prereq: 6 credits in political science. Major theories of administrative organization, including motivations of administrators and organizations, comparisons of organizational arrangements, factors affecting organizational arrangements, and formal and informal decision-making structures.

Pol S 572. Public Budgeting and Financial Management. (3-0) Cr. 3. F. Prereq: 6 credits in political science. The budget as a major political tool. Strategic budgeting and policy-making. Alternative budget systems including taxation, the appropriation process, program evaluation, and debt and risk management at federal, state, and local levels.

Pol S 573. Public Personnel Administration. (3-0) Cr. 3. S. Prereq: 6 credits in political science. Recruitment, retention, and development of employees; merit systems, collective bargaining, and grievance procedures.

Pol S 574. Policy and Program Evaluation. (3-0) Cr. 3. S. Prereq: 9 credits in political science. Integration, application, and utilization of public administration and public policy concepts in the interpretation of results and effectiveness of public programs and the prediction of consequences for policy-makers and administrators.

Pol S 575. Management in the Public Sector. (Dual-listed with 475.) (3-0) Cr. 3. F. Prereq: 6 credits in political science. Literature and research on organizational behavior and management. Theory with emphasis on applied aspects of managing contemporary public sector organizations. Topics include distinctions between public and private organizations, leadership, productivity, motivation, organizational structure, and organizational change.

Pol S 577. Government, Business, and Society. (Dual-listed with 477.) (3-0) Cr. 3. Alt. F., offered 2001. Prereq: Graduate classification. Diverse perspectives on the changing roles and relationships of business, government and society so as to open the way for more effective policy decisions on corporate-government affairs. Topics may include the changing economic, political, social, and cultural conditions; consumerism; social responsibilities of businesses; economic policies and regulations; and politics in the business-government relationship.

Pol S 578. Politics of the Bureaucracy. (Dual-listed with 478.) (3-0) Cr. 3. Prereq: Graduate classification and 3 credits of political science. Examination of the interaction between government and politics. Emphasis placed on public administration theorists, and on current behavior of the Senate, Congress, and the executive branches of government.

Pol S 580. Ethics and Public Policy. (Dual-listed with 480.) (3-0) Cr. 3. Prereq: 6 credits in political science. Major ethical concepts in U.S. political philosophy. The controversy over public versus private morality in political policy making. Analysis of public decision-making case studies, emphasis on ethical considerations. Major proposals and legislation related to improving the quality of ethical criteria and decisions in public policy making.

Pol S 581. International Political Economy. (3-0) Cr. 3. S. Prereq: 6 credits in political science. An overview of the international political economy since the end of World War II. Special emphasis on national (primarily U.S.) development assistance and agricultural food policies and policies, and those of the international food organizations, the World Bank, and the regional development banks.

Pol S 582. Environmental Politics and Policies. (Dual-listed with 482.) (3-0) Cr. 3. F. Prereq: 3 credits in political science or 3 credits in Environmental Studies; graduate classification. Major ideologies relating to conservation and ecology. Processes, participants, and institutions involved in state, national, and global environmental policymaking. Case studies of environmental controversies and proposals for policy reform.

Pol S 586. Science, Technology and Public Policy. (Dual-listed with 486.) (3-0) Cr. 3. Alt. S., offered 2003. Prereq: 6 credits in Political Science. Investigates the dynamics of interaction between science and politics at the national and international level and how this interaction shapes policy for science, human welfare, and global concerns. The topics include the evolutionary relationship between science and government; the old and new social contract for science, national innovation policy, and global economic and environmental concerns.

Pol S 590. Special Topics. Cr. 2 to 5 each time taken. F.S. Prereq: 15 credits in political science, written permission of instructor.

A. Political Administration Institutions
B. Public Law
C. Political Theory and Methodology
D. Comparative Government
E. International Relations
F. Political Parties and Policy Formation
G. Public Administration and Public Policy
I. Internship
T. Teaching Preparation

Courses and Programs

Political Science
Preprofessional Study

Requirements for admission to most professional academic programs can be met by study at Iowa State University. These requirements may be met in the course of obtaining a bachelor’s degree from Iowa State or at a level below that of a degree, depending on the intended field of study. The specific courses taken in a preprofessional program will depend primarily upon the admission requirements of the professional schools to which a student wishes to apply. In some programs requiring three years of preprofessional work, a student may, by careful planning, complete requirements for the bachelor’s degree upon transferring to Iowa State up to 32 semester credits of professional coursework. Generally these credits will be counted as electives, but a maximum of 24 may be used as major credits in interdisciplinary studies and a smaller number as major credits in appropriate departments.

Students who have not declared a major upon entry should enter as preprofessional students, i.e., premedical, prelaw, PHP (preprofessional health programs), or GENPV (General Undergraduate Studies Pre-Voc) until they choose a major and transfer to a professional school. All students, whether they have selected a major or not, are encouraged to identify their interest in a professional career by designing it on their application or by completing a preprofessional interest form during registration.

Information about preprofessional program admissions requirements and career opportunities in human health or law may be obtained in the Liberal Arts and Sciences Advising Center. Information about veterinary medicine admissions requirements and career opportunities may be obtained from the coordinator of the pre-veterinary program in the Office of the Dean of the College of Veterinary Medicine.

Clinical Laboratory Science/Medical Technology

Clinical laboratory scientists, still commonly referred to as medical technologists, are important members of health-care teams. They perform the chemical, microscopic, radioassay, and microbiological tests that are necessary in disease diagnosis, and they type and cross-match blood samples to facilitate blood transfusions. They usually work under the supervision of a physician in a hospital or clinic laboratory, but may also be employed by a pharmaceutical company or by manufacturers of analytical instruments. The professional training requires 12 months in a hospital-based CLS/MT program following at least 3 years of college study that emphasizes chemistry and the biological sciences. Students may earn a bachelor’s degree by completing the admissions requirements of the CLS/MT program and most of the degree requirements in 3 years on campus, then spending their fourth year in one of the hospital programs that are affiliated with Iowa State University. Before beginning the off-campus studies, students must earn at least 94.5 credits; the 32 most recent credits must have been earned in residence at ISU. A maximum of 32 semester credits earned in professional CLS/MT school can be used to partially fulfill the requirements for the bachelor’s degree. Students who complete all degree requirements in residence at the university may apply to any school of medical technology for which the admission requirements have been met.

The following CLS/MT programs are affiliated with Iowa State University:
- Mercy Hospital Medical Center, Des Moines, Iowa. Program Director: Stacy Sime. Medical Director: Vijaya L. Dhanavada
- University of Iowa Hospitals, Iowa City, Iowa. Program Director: Mark Bowman. Medical Director: Robert D. Tucker.

Cytotechnology

A cytotechnologist works in a medical laboratory preparing, staining, mounting, and evaluating specimens of human body tissues in order to find those cells that are abnormal. The abnormal specimens are then submitted to the pathologist supervising the laboratory for confirmation and interpretation. The training requires 12 months in a school of cytotecnology after at least 3 years of college study that includes a minimum of 20 semester credits in biological sciences, 8 semester credits in chemistry, and 3 semester credits in math. Certification as a cytotechnologist requires a baccalaureate degree. Students may enter the professional school after earning a bachelor’s degree in a related field. Alternatively, they may use up to 32 semester credits from an affiliated cytotechnology school in partial fulfillment of requirements for a B.S. degree.

An Interdisciplinary Studies major must earn 94.5 credits before off-campus study; the most recent 32 credits must have been earned in residence at ISU.

Iowa State University is affiliated with the cytotechnology programs of the State Laboratory of Hygiene at the University of Wisconsin-Madison and Mercy Hospital Medical Center in Des Moines.

Dental Hygiene

A dental hygienist screens dental patients for oral defects, performs clinical procedures such as cleaning teeth, and may participate in oral health education programs. Most work with dentists in private practice, but some have positions in public health centers and schools. Certification as a dental hygienist requires 2 years in a professional program of study. Admissions requirements for these programs vary. A student may study for 2 years at Iowa State University and then transfer to an institution that grants the bachelor’s degree in dental hygiene. Alternatively, a student may earn a bachelor’s degree in another field at Iowa State before entering a professional program.

Dentistry

Dentists diagnose, treat, and try to prevent diseases and injuries of the teeth, jaws, and mouth. Usually a general practitioner will have spent 3 or 4 years taking preprofessional courses at the undergraduate level and 4 years in dental school earning the degree of doctor of dental surgery (D.D.S.) or doctor of dental medicine (D.M.D.). Learning a specialty requires at least 2 more years. The courses necessary for admission to most dental schools include English, biology, general and organic chemistry, and physics. Students may earn a degree in any major that Iowa State University offers as they meet the admission requirements; they should choose their major to reflect their own interests and abilities. Highly qualified students may be accepted into dental school after 3 years of preprofessional study without earning a baccalaureate degree.

Health Information Management

Health information managers serve as supervisors of medical records departments in hospitals, clinics, nursing homes, and other health-care institutions. To be certified as registered record administrators (R.R.A.) they must have completed a program leading to a bachelor’s degree in medical record administration. Most professional programs are 2 years in length and follow 2 years of college study in chemistry, biology, the humanities, social sciences, languages, and philosophy. Students may take the preprofessional courses at Iowa State University and then transfer to a university offering the professional program or they may earn a bachelor’s degree at Iowa State University before entering a health information management program.

Hospital and Health Administration

Administrators of health care organizations manage and guide the varied activities in hospitals, clinics, nursing homes, and mental health facilities. The professional requirement may be for a master’s degree or a bachelor’s degree, depending upon the size of the institution and whether an upper or middle entry-level position is desired. Students at Iowa State may take general education courses for two or more years and then transfer to a university offering a bachelor’s degree in health administration, or they may spend four years earning a bachelor’s degree in any department before entering a master’s degree program at the University of Iowa or other university. Courses required for admission to master’s degree programs in hospital and health admin-
iation vary, but may include introductory accounting, management, statistics, and economics.

Human Medicine
Physicians study, diagnose, and treat illness and injury. They may work in offices, clinics, hospitals, or laboratories, in private practice or for government or industry. Their professional training usually consists of 4 years of study in a college of medicine to earn the doctor of medicine (M.D.) degree, and then 3 or more years in hospital residency learning a specialty such as family medicine, pediatrics, surgery, obstetrics, or psychiatry. A degree of doctor of osteopathy (D.O.) is awarded to those students who complete 4 years in a college of osteopathic medicine before their residency. All medical schools recommend a broad pre-professional education that includes courses in biology, chemistry, physics, mathematics, English, the social sciences, arts and humanities. Although many medical schools admit a small number of exceptionally well-qualified applicants after 3 years of preprofessional study, most students earn a bachelor’s degree while taking the courses required for admission to medical school. This degree can be from any college and in any curriculum or major offered by the university. The major should reflect the student’s interests and provide appropriate preparation for an alternative career.

Law
A lawyer assists the legal, peaceful resolution of conflicts in many different ways. Most lawyers are engaged in private practice, but many are employed by government agencies and private business. At least 3 years are needed to complete a law school program leading to a doctor of jurisprudence (J.D.) or a bachelor of laws (LL.B.) degree, and a bachelor’s degree is required for admission to nearly all law schools. A student planning to enter law school may major in any field. The courses taken should develop skill in critical thinking, comprehension and expression of ideas, and understanding of human institutions and values. Perhaps most valuable are courses in English language and literature, government, economics, history, mathematics, Latin, logic and scientific method, and philosophy.

Library and Information Science
Librarians are essential in educational institutions, medical facilities, government agencies, industries, and public information centers. The professional preparation for library administration is provided by master’s degree programs. Admission requirements for the University of Iowa’s program, for example, include a bachelor’s degree with at least 85 semester credits in the arts and humanities and the natural and social sciences. Iowa State students may choose majors that reflect their own interests and that may provide a foundation for working in medical, law, or other specialized libraries.

Nuclear Medicine Technology
The use of radioactive chemicals in the diagnosis and treatment of disease is the distinguishing feature of nuclear medicine. Under the supervision of a physician in a hospital or clinic, the technologist prepares and administers these radiochemical tracers, uses sophisticated detectors and computers to trace the movement and localization of the tracers in the human body, and analyzes biological specimens to determine levels of hormones, drugs, and other chemicals in the body. One year in a training program such as that at the University of Iowa College of Medicine is required to become a certified nuclear medicine technician (C.N.M.T.). This program requires at least 94 semester credits of preprofessional coursework in chemistry, physics, zoology, English, mathematics, computer science, statistics, the social sciences, and humanities. Students at Iowa State University can transfer to a university offering a nuclear medicine technology program after 2 or 3 years of preprofessional courses, and then receive the bachelor’s degree at that institution. Alternatively, the student may earn a bachelor’s degree before entering the 1-year professional program or may spend 3 years at Iowa State University meeting the admissions requirements of the program and completing requirements for a B.S. degree using a maximum of 32 semester credits that may be transferred to Iowa State University from the professional school.

Nursing
A professional nurse may do clinical nursing, teaching, or research, in hospitals, private practice, public health centers, schools, or industry. Although becoming a registered nurse (R.N.) does not require a bachelor’s degree, the student who completes the bachelor of science degree in nursing (B.S.N.) has college-level preparation for clinical nursing and an essential base for graduate study. Iowa State University does not offer a nursing degree but does participate in a transfer program with the University of Iowa and Grand View College in Des Moines. Students take specified courses for 2 years at Iowa State University and, if accepted in the University of Iowa College of Nursing, complete the B.S.N. requirements and the R.N. examination in another 2 years. If accepted at Grand View College, they may complete the B.S.N. requirements and take the R.N. examinations in 2 years. Students may also elect to transfer to a B.S.N. program at another college or university. Most of these programs require a minimum of 3 years of residency study, but their requirements vary, so early planning for transfer is essential.

Occupational Therapy
Occupational therapists provide purposeful activities to help those who have been disabled by injury, illness, or birth defects. They assist in evaluating the physical problems and administer therapeutic agents such as massage and exercise, heat, baths, ultrasonics, and electricity; they work in hospitals, clinics, nursing homes, schools, rehabilitation centers, and private practice. Students have several options in planning their education. They may transfer after two years at Iowa State University to a college or university offering physical therapy as a bachelor’s degree program. They may complete three years of undergraduate courses including prerequisites before transferring to a three-year professional curriculum such as the master’s degree program at St. Ambrose University or the doctoral degree program at Creighton University. Usually, students earn a bachelor’s degree in a related field at ISU before spending two years in a professional school to earn a master’s degree or certificate. Admission to the master’s degree program at the University of Iowa requires a bachelor’s degree. The bachelor’s degree from ISU may be earned in any department, provided that the physical therapy prerequisites are completed. Earning a bachelor’s degree prior to entering professional school allows a student to apply to a range of graduate level programs and builds a strong liberal arts foundation. Courses required for admission to a professional program include biology, chemistry, physics, psychology, mathematics, and statistics.

Physician Assistant
A physician assistant provides medical services under the supervision of a licensed physician, frequently in a rural or inner-city clinic. The responsibilities may include taking patients’ histories, physical examinations, prescription of laboratory studies, diagnosis and treatment, follow-up care, and counseling. Certification as a physician assistant requires 2 years in a professional program at the master’s or bachelor’s degree level. Students applying English, art, biology, chemistry, physics, psychology, sociology, anthropology, and statistics, but vary from one school to another.
to a bachelor’s degree program must have completed at least 60 semester credits of college work including general and organic chemistry, zoology, behavioral science, and humanities. Mathematics and physics courses are recommended, and applicants who have had health-care experience with direct patient contact are preferred. Admission to a master’s degree program requires similar coursework and experience in addition to a bachelor’s degree.

Podiatry

Podiatrists diagnose, treat, and try to prevent diseases and disorders of the human foot and ankle. They treat patients in private and group practice, hospitals, and, increasingly, in industrial and sports-related positions. Professional training requires 4 years in a college of podiatric medicine and leads to the degree of doctor of podiatric medicine (D.P.M.). This is usually followed by 1 to 3 years in a hospital residency. All podiatric colleges require at least 3 years of preprofessional study, including courses in biology, general and organic chemistry, physics, and English. Most entrants have a bachelor’s degree, which may be in any major. A few students may complete the admission requirements and most of the bachelor’s degree requirements in 3 years. If so, a maximum of 32 semester credits may be transferred to Iowa State University from the first year in an accredited podiatric college in order to complete the requirements for the bachelor’s degree.

Theology or Religious Studies

The professional education of a student of religion can follow one of two paths. The path to a profession as a pastor, priest, rabbi or other leadership position in a religious tradition usually requires 3 years in a program leading to the master of divinity (M.Div.) offered at a school of divinity or of theology. The path to a profession as a teacher of religious studies at the college level requires 4-7 years in a program leading to the Ph.D. at a graduate school of Religious Studies. Both seminars and graduate schools require a bachelor’s degree for admission. The American Association of Theological Schools recommends the following areas of study as the best preparation for theological studies: English language and literature; history, including non-Western culture; philosophy; natural sciences, social sciences, especially psychology, sociology and anthropology; the fine arts; Biblical and modern languages; and religion, both Western and Eastern. Although students in a variety of major fields may qualify for admission to a theological school, interested persons are advised to review their proposed programs with a representative of the Religious Studies Program in the Department of Philosophy and Religious Studies.

Veterinary Medicine

About 75% of all veterinarians are engaged in private practice. In a mixed practice, they diagnose and treat health problems among a variety of animals. Others specialize in one species (e.g., feline, pet bird) and still others specialize in a specific discipline within veterinary medicine (e.g., cardiology, ophthalmology). Veterinarians may also choose public and corporate practice (e.g., public health, education, research, food safety, industry, laboratory animal medicine, aquatic animal medicine, poultry medicine, and military veterinary medicine). The professional program requires four years at a college of veterinary medicine and leads to the doctor of veterinary medicine degree (D.V.M.). Admission to a veterinary college involves at least two years of preprofessional college education. Candidates must take courses in biology, chemistry, genetics, physics, English, humanities, social sciences, speech, anatomy and physiology, and biochemistry. (For Iowa State University see Veterinary Medicine, Admission Requirements; for most recent information, consult the College of Veterinary Medicine Web site: www.vetmed.iastate.edu.) Students may pursue their preprofessional preparation in any college at Iowa State University. A major (pre-veterinary medicine is not a major) should be selected that is allied to each student’s vocational interests in veterinary medicine or that otherwise offers vocational satisfaction in the event that plans for entry into the College of Veterinary Medicine change. Students are encouraged to pursue a bachelor’s degree; the most effective progress toward a bachelor’s degree is made when a major is selected upon entry and no change occurs before graduation. However, students who have not even considered a career other than veterinary medicine may need some time to explore possibilities before selection of a major.

To assist students who have indicated interest in the pre-veterinary program for the College of Veterinary Medicine and are undecided about a major, an advising category is available known as GENPV (General Undergraduate Studies Pre Vet). Orientation and advising services for these students are designed to help students fulfill preprofessional course requirements, to introduce available majors and careers allied to veterinary medicine, and to introduce career options in veterinary medicine. GENPV students must select a major by the end of their second semester. Some Iowa State University majors allow, by careful planning, the opportunity for a student to earn the bachelor’s degree by combining credits from three years of pre-professional study and one year of professional study in the College of Veterinary Medicine.
of the 48 credit hours are core courses and the remaining 24 are graduate electives.

Students can obtain a manufacturing and quality specialization in the MBA program by taking 12 credit hours of graduate courses from a selected set of courses.

Courses open for nonmajor graduate credit: POM 420, 422, 424, 428.

Courses Primarily for Undergraduate Students

POM 320. Production/Operations Management. (3-0) Cr. 3. Prereq: Stat 227. Introduction and analysis of the basic concepts in production/operations management. Topics include: application forecasting, aggregate planning, scheduling, shop floor control, total quality management, inventory management, facility layout, and project management.

POM 420. Decision Models for Business. (3-0) Cr. 3. Prereq: Stat 227. Topics include: Business applications of decision theory, inventory theory, business forecasting, optimization models, the transportation algorithm, assignment, and decision support systems, and network models. Nonmajor graduate credit.

POM 422. Manufacturing Planning and Control. (3-0) Cr. 3. Prereq: 320. In-depth analysis of integrated operating and management systems with emphasis on operations planning and control, material requirements planning, master scheduling, forecasting, capacity planning, and related topics. Nonmajor graduate credit.

POM 424. Competitive Manufacturing Management. (3-0) Cr. 3. Prereq: 320. Advanced topics in operations management focused on concepts, techniques, and systems used to improve a company’s competitive advantage in manufacturing, with an emphasis on lean manufacturing, continuous improvement, time-based competition, bar coding, electronic data interchange (EDI), and theory of constraints. Nonmajor graduate credit.

POM 428. Special Topics in Operations Management. (3-0) Cr. 3. Prereq: 320. Topics in operations management selected for nonmajor graduate credit. Topics may vary from semester to semester.

Course listings, off-campus course catalog, or your college catalog may be obtained from the departmental offices.

Courses Primarily for Graduate Students. Open to Qualified Undergraduate Students

POM 502. Operations Management and Strategy. (2-0) Cr. 2. Prereq: Graduate classification, Stat 328. This course examines the design, analysis, planning, and control of business processes to achieve desired performance objectives. Topics include: the fit between operations strategy, competitive priorities, and process structure; the impact of process structure on process performance; process performance measures and their relationships; process performance evaluation; and managerial levers for improving and controlling process performance.

POM 521. Strategic Quality Management. (3-0) Cr. 3. Prereq: Stat 328 or equivalent. Graduate classification. Management and technical issues related to quality problem solving, including the strategic importance and economic impacts of quality, managerial issues in planning and designing quality assurance systems, control of quality systems, employee involvement, statistical concepts relevant to designing for quality, inspection and measurement, process control, and acceptance sampling. Uses projects to experience diagnosing and solving real quality problems.

POM 525. Manufacturing Strategy. (3-0) Cr. 3. Prereq: 502 or equivalent. Formulation, implementation, and evaluation of manufacturing strategies for achieving competitive advantage. Topics include strategic issues related to global competitiveness, quality, productivity, delivery performance, manufacturing flexibility, inventory, information technology, and performance measurement.

POM 528. Intelligent Systems for Business. (3-0) Cr. 3. Prereq: Graduate classification or permission of instructor. Design of intelligent systems such as neural networks, genetic algorithms, and fuzzy logic for manufacturing and business applications. Hands-on practice on bankruptcy prediction, credit approval, and data mining for marketing, manufacturing cell formation, automated inspection, and scheduling.

POM 590. Special Topics. Cr. 1 to 3 each time taken. Prereq: Permission of instructor. For students wishing to do individual research in a particular area of POM.
Graduates function as academic psychologists in applied settings. They have an extensive knowledge of psychological principles and the conceptual and quantitative skills to conduct psychological research, communicating the results to the scientific community, students in the classroom, and the general public. Graduates in applied programs have specialized knowledge in counseling and program development. They are skilled in delivering such programs and services to diverse clientele in a variety of settings.

The department also participates in the interdepartmental program in industrial relations and neuroscience, and in the interdepartmental minor in gerontology (see Index).

A formal class and a supervised practicum in the teaching of psychology is recommended for all doctoral students whose future plans may include teaching at the college level. A 12-month internship in a training site or agency approved by the faculty is required of all doctoral students in counseling psychology.

The department also offers a B.S./M.S. program in psychology that allows the student to obtain both the B.S. and M.S. degrees in five years. Students interested in this program should contact the chair of the department’s Graduate Program Committee. Application for admission to the Graduate College and department should be made near the end of the junior year of undergraduate study.

Courses open for nonmajor graduate credit:

Psych 302, 413, 422, 436, 440, 450, 460, 484, 485, 488. CmDis 471.

Courses Primarily for Undergraduate Students

Psych 101. Introduction to Psychology. (3-0) Cr. 3. F.S.SS. Fundamental psychological concepts derived from the application of the scientific method to the study of behavior and mental processes. Applications of psychology. 101H: (2-2) F. Honors section. (For students in the University Honors Program only.)

Psych 102. Laboratory in Introductory Psychology. (2-0) Cr. 1. F.S. Prereq: Credit or enrollment in 101. Laboratory to accompany 101.

Psych 111. Orientation to Psychology. (1-0) Cr. F.S. Program requirements and degree/career options. Required of psychology majors. Offered on a satisfactory-fail grading basis only.

Psych 131. Academic Learning Skills. (2-0) Cr. 1. F.S. Efficient methods of study and reading. Offered on a satisfactory-fail grading basis only.

Psych 201. Exploring Psychology at ISU. (2-0) Cr. 1. F.S. Survey of psychological research and practice. Psychology majors only. Offered on a satisfactory-fail grading basis only.

Psych 230. Developmental Psychology. (3-0) Cr. 3. F.S.SS. Life-span development of physical traits, cognition, intelligence, social and emotional behavior, personality, and adjustment.

Psych 280. Social Psychology. (3-0) Cr. 3. F.S.SS. Individual human behavior in social contexts. Emphasis on social judgments and decisions, attitudes, perceptions of others, social influence, attraction, aggression, and group pressure.

Psych 298. Cooperative Education. Cr. F.R. Prereq: Permission of the department cooperative education coordinator; sophomore classification. Required of all cooperative education students. Students must register for this course prior to commencing each work period.

Courses and Programs

Psych 301. Research Design and Methodology. (3-0) Cr. 3. F.S.SS. Prereq: Stat 101; 1 course in psychology. Survey of the principal research techniques used in psychology with an emphasis on the statistical analysis of psychological data.

Psych 302. Research Methods in Psychology. (2-2) Cr. 3. F.S. Prereq: 301. Discussion of and experience in designing research studies, collecting and analyzing data, and preparing research reports in psychology.

Psych 310. Brain and Behavior. (Same as Zool 310.) (3-0) Cr. 3. F.S. Prereq: 101; Biol 109 or 201 or Zool 155; Chem 163. Survey of basic concepts in the neurosciences with emphasis on brain mechanisms mediating sensory processing, perception, motivation, learning, and abnormal behavior.

Psych 312. Sensation and Perception. (3-0) Cr. 3. F.S. Prereq: 101. Survey of the psychology and psycholinguistics of human sensory systems including vision, audition, smell, taste, the skin senses, and the vestibular senses.

Psych 313. Learning and Memory. (3-0) Cr. 3. F.S. Prereq: 101. Fundamental concepts and theories of learning and memory derived from human and animal research.

Psych 314. Motivation. (3-0) Cr. 3. F.S. Prereq: 101. Concepts and topics of motivation including curiosity, pain, emotion, sex, aggression, love, play, addiction, sleep, fatigue, and work.

Psych 315. Drugs and Behavior. (3-0) Cr. 3. F.S. Prereq: 101; Biol 109 or 201 or Zool 155. A biological perspective on fundamentals of psychoactive drugs and their use in experimental, therapeutic, and social settings.

Psych 333. Educational Psychology. (Same as C I 333.) See Curriculum and Instruction.

Psych 346. Psychology of Women. (Same as W S 346.) (3-0) Cr. 3. S. Prereq: 2 courses in psychology including 101. Survey of psychological literature relating to biological, developmental, interpersonal, and societal determinants of the behavior of women.

Psych 360. Psychology of Normal Personality. (3-0) Cr. 3. F.S. Prereq: 101. Theories and research in the study of development and functioning of normal personality.

Psych 381. Social Psychology of Small Group Behavior. (Same as Soc 381.) (3-0) Cr. 3. S. Prereq: 280 or Soc 305. A survey of small group research and theories from a social psychological perspective. Major theories of interpersonal behavior such as exchange theory, equity theory, and status consistency theory, and major areas of research such as leadership, power, conformity, bargaining, status, norms, and roles.

Psych 398. Cooperative Education. Cr. F. F.R. S.S. Prereq: Permission of the department cooperative education coordinator; junior classification. Required of all cooperative education students. Students must register for this course prior to commencing each work period.

Psych 401. History of Psychology. (3-0) Cr. 3. F.S. Prereq: 4 courses in psychology. Philosophy and science backgrounds of psychology. Development of theories and causes of events in academic and applied psychology. Nonmajor graduate credit.

Psych 413. Psychology of Language. (Same as Ling 413.) (3-0) Cr. 3. Alt. S., offered 2002. Prereq: 101. Psychological and linguistic processes involved in language related activities like speaking, listening, reading, and writing. Nonmajor graduate credit.
Psych 422. Counseling Theories and Techniques. (2-2) Cr. 3. F. Prereq: 3 courses in psychology. Survey of major theoretical approaches in counseling and related assessment and intervention techniques. Supervised practice in basic counseling skills. Nonmajor graduate credit.

Psych 434. Applied Behavior Analysis. (Dual-listed with 534.) (3-0) Cr. 3. Prereq: 9 credits in human development and family studies or psychology. Design and evaluation of behavioral interventions in applied settings such as classrooms, institutions, and families. Design of single subject experiments.

Psych 436. Individual Differences and Exceptional Patterns of Development. (3-0) Cr. 3. Prereq: 230. Behavior and development of retarded, gifted, handicapped, and other atypical persons; differences associated with race, sex, and socio-economic status. Nonmajor graduate credit.

Psych 437. Characteristics of Giftedness. (Dual-listed with 537; same as HD FS 437.) (3-0) Cr. 3. Prereq: 9 credits in human development and family studies or psychology, including Psycho 230 or HD FS 102; junior classification. Understanding of giftedness and talent from cognitive, developmental, and social perspectives using a life-span approach. Current conceptualizations and research regarding gifted children and adults. Implications for education and guidance.

Psych 450. Industrial Psychology. (3-0) Cr. 3. F.S.SS. Prereq: 2 courses in psychology including 101, Stat 101. Content and methods of industrial psychology. Selection and placement techniques, performance appraisal, training, testing in industry, techniques of interviewing, human error, accidents, and job analysis. Statistics including regression and correlation are used throughout the course. Nonmajor graduate credit.

Psych 460. Abnormal Psychology. (3-0) Cr. 3. F.S.SS. Prereq: 3 courses in psychology including 101. Description of major forms of maladaptation including anxiety, mood disorders, personality disorders, substance abuse, and schizophrenia. Factors in the development of behavior deviations. Research pertinent to the description, development, and maintenance of abnormal behavior. Nonmajor graduate credit.

Psych 470. Seminar in Psychology. (1-0) to 3-0 Cr. 3. to 1 each time taken. Prereq: 12 credits in psychology. Current topics in psychological research and practice.
 A. Counseling
 B. Experimental
 C. Individual Differences
 D. Social

Psych 484. Psychology of Close Relationships. (3-0) Cr. 3. Prereq: 9 credits in psychology including 280. Theories and research concerning the functions, development, and resolution of close relationships. Influence of psychological processes on friendship, romantic, marital, and family relationships. Topics include mate selection, interdependence, trust and commitment, power and dominance in relationships, sexuality, divorce, gender roles, and family interaction. Nonmajor graduate credit.

Psych 485. Health Psychology. (3-0) Cr. 3. F. Prereq: Junior classification, 6 credits in psychology. Application of psychological theory and research methods to issues in physical health. Psychological factors in illness prevention, health maintenance, treatment of illness, recovery from injury and illness, and adjustment to illness. Nonmajor graduate credit.

Psych 488. Cultural Psychology. (3-0) Cr. 3. S. Prereq: 280 and 301; junior classification. Examination of psychological differences among people living in different parts of the world with a focus on cross-cultural research related to social, developmental, and personality psychology. Nonmajor graduate credit.

Psych 490. Independent Study. Cr. var., maximum 3 per semester. F.S.SS. Prereq: Junior classification, 6 credits in psychology, and permission of instructor. No more than 9 credits may be counted toward a degree in psychology. Supervised reading in an area of psychology. Writing requirement.

Psych 491. Research Practicum. Cr. var. F.S.SS. Prereq: Junior classification, permission of instructor, and credit or enrollment in Psych 319. No more than 9 credits of 491 may be counted toward a degree in psychology. Supervised research in an area of psychology. Primarily for students intending to pursue graduate study.

Psych 492. Fieldwork Practicum. Cr. var. F.S.SS. Prereq: Junior classification, 12 credits in psychology, and permission of instructor. No more than 9 credits of 492 may be counted toward a degree in psychology. Supervised fieldwork in human service agency or other appropriate setting. Offered on a satisfactory-failing grade basis only.

Psych 498. Cooperative Education. Cr. R. F.S.SS. Prereq: Permission of the department cooperative education coordinator; senior classification. Required of all cooperative education students. Students must register for this course prior to commencing each work period.

Courses Primarily for Graduate Students, Open to Qualified Undergraduate Students

Psych 507. Applications of Multivariate Methods in Psychology. (3-0) Cr. 3. Prereq: Stat 401, Stat 402. Training in the application of multivariate methods in the analysis of psychological data using standard statistical packages. Techniques that are covered include exploratory and confirmatory factor analysis, MANOVA, multiple regression, survival analysis, path analysis, and structural equation analysis with latent variables.

Psych 512. Advanced Perception. (3-0) Cr. 3. Prereq: Survey of current theory and research in perception with an emphasis on vision.

Psych 514. Advanced Human Learning and Memory. (3-0) Cr. 3. Prereq: 313 or 316 or 9 hours in psychology. Historical and contemporary survey of human learning and memory.

Psych 516. Advanced Cognition. (3-0) Cr. 3. Prereq: 316. Theoretical and empirical research in human cognition, including pattern recognition, attention, visual imagery, text processing, short-and long-term memory, problem solving, decision making, language, and hemispheric specialization.

Psych 517. Psychopharmacology. (3-0) Cr. 3. Prereq: 310, 312, and permission of instructor. Fundamentals of drug-behavior interactions with emphasis on psychoactive drugs and their use in experimental, therapeutic, and social settings.

Psych 519. Cognitive Neuropsychology. (3-0) Cr. 3. Prereq: 310, 312. Theoretical and empirical studies of psychological models and related neurological substrates underlying cognition in normals and brain-damaged patients. Topics of investigation include spatial perception, object and face recognition, voluntary motor control, language processing, memory, and problem solving.

Psych 533. Psychology of Learning, Cognition, and Motivation in Educational Settings. (Same as C 533.) See Curriculum and Instruction.

Psych 534. Applied Behavior Analysis. (Dual-listed with 434.) (3-0) Cr. 3. Prereq: 9 credits in human development and family studies or psychology. Design and evaluation of behavioral interventions in applied settings such as classrooms, institutions, and families. Design of single subject experiments.

Psych 537. Characteristics of Giftedness. (Dual-listed with 437; same as HD FS 537.) (3-0) Cr. 3. Prereq: 3 credits in human development and family studies or psychology, including Psycho 230 or HD FS 102; junior classification. Understanding of giftedness and talent from cognitive, developmental, and social perspectives using a life-span approach. Current conceptualizations and research regarding gifted children and adults. Implications for education and guidance.

Psych 540. Psychological Measurement II. (3-0) Cr. 3. A. General research design and evaluation of observational systems and in administering, scoring, interpreting, and reporting individual tests.
 B. Behavioral Assessment (2-1) Cr. 2.
 C. Individual Tests (2-1) Cr. 2.
 C. Testing: Adult Ages (1-2) Cr. 2.

Psych 545. Individual Differences. (3-0) Cr. 3. Prereq: 540. Psychometric assessment of human attributes (abilities, personality, and vocational interests) and their role as behavioral determinants in school, work, and interpersonal settings. Methodological issues encountered in the assessment of psychological traits (construct validity) and the developmental etiology of these attributes (intraindividual change).

Psych 560. Advanced Personality Psychology. (3-0) Cr. 3. Prereq: 4 courses in psychology, including 360. Analysis of theories of personality, concepts, methods, and current research issues.

Psych 561. Psychopathology and Behavior Deviations. (3-0) Cr. 3. Prereq: 460. Critical review of theoretical perspectives and current research on the development and maintenance of the major forms of maladaptation including schizophrenic, anxiety, affective, drug use, personality, psychosomatic, and childhood disorders.

Psych 562. Personality Assessment. (3-0) Cr. 3. Prereq: 360, 440, Stat 401. Principles, concepts, and methods of personality assessment. Though not a practicum course, exposure given to a variety of objective, projective, and situational tests.

Psych 563. Developmental Psychopathology. (3-0) Cr. 3. Prereq: 230 and 460 or graduate classification. Theory and research related to major disorders of childhood and adolescence with an emphasis on assessment, etiology, and developmental processes, and multimodal interventions.

Psych 580. Advanced Social Psychology: Psychological Perspectives. (3-0) Cr. 3. Prereq: 4 courses in psychology, including 280. Current theories, methods, and research in social psychology with an emphasis on cognitive and interpersonal process-
Psych 581. Applications of Social Psychology Theories. (3-0) Cr. 3. Prereq: Credits in psychology, including 280. Application of social psychological theory to various applied topics, including physical and mental health, stress, and coping.

Psych 586. Research Methods in Social Psychology. (3-0) Cr. 3. Prereq: Stat 402 and permission of instructor. Development and evaluation of testable hypotheses, operationalizing independent and dependent variables, sampling and design issues, laboratory procedures, and interpretation of results in experimental research. Issues in analysis of variance, Bayesian reasoning, and effect size estimation will be emphasized, as will writing and publication strategies.

Psych 588. The Meta-Analytic Review. (3-0) Cr. 3. Prereq: Stat 401. Presentation of and hands-on experience with all stages of meta-analytic reviews, including problem formulation, data collection, data evaluation, data analysis and interpretation, and public presentation.

Psych 590. Special Topics. Cr. var. Prereq: 12 credits in psychology and permission of instructor. Guided reading on special topics or individual research projects.

Psych 592. Seminar in Psychology. (1-0 to 3-0) Cr. 1 to 3 each time taken. Prereq: 12 hours in psychology.

Psych 597. Internship in Psychology. Cr. R. Prereq: M.S. degree candidacy, permission of instructor. Full-time, non-clinical, supervised experience in a setting relevant to psychology. Intended for master's degree level internships.

Psych 599. Creative Component. Cr. Var. Offered on a satisfactory-fail grading basis only.

Courses for Graduate Students

Psych 601. History of Philosophy of Psychology. (3-0) Cr. 3. Prereq: 4 courses in philosophy. Origins of psychology in philosophical, medical, and related thought. Development as an independent discipline in the nineteenth and twentieth centuries as a science and as a practice including traditional and contemporary theory and philosophy.

Psych 621. Psychological Counseling; Theory and Process. (2-0) Cr. 2. F. Prereq: 4 courses in psychology including 440 and 480, and permission of instructor. Combined survey of theoretical issues and approaches. Didactic coverage of theoretical viewpoints at an introductory level.

Psych 621L. Techniques in Counseling. (0-0) Cr. 3. F. Prereq: 621 or concurrent enrollment in 621 and permission of instructor. Development of basic counseling skills and techniques through observation, role-playing, case studies, and supervised counseling sessions.

Psych 623. Vocational Behavior. (3-0) Cr. 3. Prereq: 3 courses in psychology. Theoretical views, research, and issues in career development through the life span. Methods of career counseling, including appraisal interviewing, assessment, test interpretation, and use of information sources.

Psych 626. Group Counseling. (2-2) Cr. 3. Prereq: 621L, 691A. Theory, research, ethical issues, and therapeutic considerations relevant to group counseling. Participation in lab exercises for development of group counseling skills and observation of ongoing groups.

Psych 628. Advanced Counseling Theory. (2-0) Cr. 2. Prereq: Practicum in counseling psychology. In-depth coverage of major theoretical positions, including comparative analyses of major contemporary theories. Coverage and evaluation of research on counseling interventions.

Psych 633. Teaching of Psychology. (2-0) Cr. 2. Prereq: Enrollment in degree program in psychology, completion of at least 1 year of graduate study, permission of instructor. Orientation to teaching of psychology at college level: academic issues and problems, instructional and evaluative techniques.

Psych 635. Interventions with Children and Adolescents. (3-0) Cr. 3. Prereq: Graduate classification and permission of the instructor. Research and theory underlying application of behavioral and cognitive psychology to the treatment of childhood and adolescent psychopathology with an emphasis on internalizing disorders, developmental processes, and multimodal interventions.

Psych 691. Practicum in Psychology. Cr. var. Prereq: Permission of instructor. Supervised practice and experience in the following fields of specialization in applied psychology:

A. Counseling
B. Clinical
C. Industrial-Organizational
D. Personality
E. Group Counseling
F. Advanced Counseling
G. Teaching, Practicum, Internship
H. Consultation

Psych 692. Research Seminar. (1-0 to 3-0) Cr. 1 to 3 each time taken. Prereq: Permission of instructor.

Psych 696. Internship in Counseling Psychology. Cr. R. Prereq: Ph.D. candidacy in the Counseling Psychology program, approved dissertation proposal, and permission of instructor. Full-time supervised, predoctoral internship experience in a setting relevant to counseling psychology.

Psych 699. Research. Offered on a satisfactory-fail grading basis only.

Communication Disorders (CmDis)

(Clinical component of Psychology) (Administered by the Department of Psychology)

The following courses are part of the Speech Communication program. For more information refer to that section. CmDis 170, 275, 286, 371, 471.

Courses Primarily for Undergraduate Students

CmDis 170. Speech Improvement for Nonnative Speakers. (2-0) Cr. 2. For nonnative speakers of English only. Development of effective English vowel and consonant productions, accommodation processes that occur in context, intelligibility in conversational English, and appropriate stress patterns. Offered on a satisfactory-fail grading basis only.

CmDis 275. Introduction to Communication Disorders. (Same as Ling 275.) (3-0) Cr. 3. Survey of nature, causes, and types of major communication disorders including phonological, adult and child language, voice, cleft palate, fluency, and hearing disorders.

CmDis 286. Basic Sign Language. (Same as Ling 286.) (3-0) Cr. 3. Development of full-time skills in the use and understanding of signed English, a modification of American Sign Language. Overview of the types, causes and consequences of hearing impairment, deaf culture and the education of hearing-impaired children.

CmDis 371. Phonetics and Phonology. (Same as Ling 371. (3-0) Cr. 3. Prereq: 275 or Engli 219. Analysis of speech through study of individual sounds, their variations, and relationships in contexts; English phonology; practice in auditory discrimination and transcription of sounds of American English; description of speech sounds in terms of their production, transmission, and perception.

CmDis 471. Language Development. (Same as Ling 471.) (3-0) Cr. 3. Prereq: 275 or Psych 230 or Engli 219. Definition of components of language. Overview of theories and developmental processes related to each component of linguistic skill (semantics, lexicon, syntax, morphology, phonology, pragmatics). Overview of normative information available for infants, children, adolescents, and adults. Attention to metalinguistic skills and the complementary nonlinguistic and paralinguistic skills. Nonmajor graduate credit.

Sociology

www.soc.iastate.edu

Robert S. Schafer, Chair of Department

University Professors: Goudy

Distinguished Professors (Emeritus): Beal

Professors (Emeritus): Bultena, Chang, Cohen, Lee, Miller, Mulford, Tait

Associate Professors: Aigner, Bell, Besser, Harrod, Mazur, Roberts, Sapp, Sawyer

Assistant Professors: Allen, Anderson, Bird, Cast, Delisi, Hinrichs, Hochstetler, Litt, Morton, Munoz, Schweingruber

Assistant Professors (Adjunct): Wagner

Assistant Professors (Collaborators): Schor

Undergraduate Study

The department offers course work leading to either a bachelor of arts or bachelor of science in sociology. Additionally, a bachelor of science in Public Service and Administration in Agriculture is offered. The department offers course work for a minor in Criminal Justice Studies. Programs of study in sociology offered in both the College of Agriculture and the College of Liberal Arts and Sciences are outlined in this section. For the undergraduate curriculum in Liberal Arts and Sciences, with a major in sociology leading to the degrees of bachelor of arts and bachelor of science, see Liberal Arts and Sciences, Curricula. For the undergraduate curriculum in agriculture, with major in public service and administration in agriculture, leading to the degree bachelor of science, see Agriculture, Curriculum in Public Service and Administration in Agriculture. For the undergraduate curriculum in Liberal Arts and Sciences, with a minor in criminal justice studies, see Liberal Arts and Sciences, Curriculum.

Graduates understand how social institutions, communities, and organizations work and change; they can examine the causes and consequences of conformity, deviance, and inequality. They can apply sociological understanding of human behavior to practical work situations and everyday life. Graduates can
Departmental requirements for all majors include the following supporting course: Philosophy including 230 and one upper level Philosophy course, English 302 or 309 or 314; One of the following courses: Statistics 101 or 104; At least three additional credits with a Mathematics designator.

A program of study that meets the needs and interests of the student and department requirements will be developed in consultation with the major adviser. Programs of study will include 115, 130 or 134, 202, three credits from 310, 380 or 420, 302, 305, three credits from 327, 330, 331 or 332, 401, 9 credits from upper level electives. Majors must receive grades of C or better in English 104 and 105, and a grade of C or better in English 302 or 309 or 314. Programs leading to a bachelor of arts degree will emphasize additional coursework in groups I, II and IV of the general education requirements. Programs leading to a bachelor of science degree will emphasize additional coursework in groups III and IV of the general education requirements. Some of the possible fields of concentration are criminal justice systems, community (urban and rural) sociology, family sociology, sociology of work, social science teaching, research methods and statistics, social change and development, complex organizations, human population and ecology, social inequality, social psychology, and sociological theory.

In consultation with their advisers, students may gain work experience and develop their skills in their field of concentration through the field observation and practice options of 454 and 460.

The department offers a minor in sociology which may be earned by completing 15 credits in sociology including: Sociology 130 or 134; 3 credits from 310, 380 or 420; 3 credits from 264, 305 or 381; an additional 6 credits in sociology courses. At least 9 of the 15 credits must be at the 300 level or higher, 6 of these credits must be taken at ISU with a minimal grade of C.

Course 1. Sociology 110. Orientation to Public Service and Administration in Agriculture. (1-0) Cr. R. F. Survey of public service and administration in agriculture. Exploration of career tracks and career planning. Recommended during first semester of freshman year or as soon as possible after transfer into the department.

Course 2. Sociology 115. Orientation to Sociology. (1-0) Cr. R. F. Orientation to sociology. A familiarization with University of ISU College requirements and procedures. Occupational tracks and career options open to sociology; introduction to career planning. Recommended during second semester of freshman year or as soon as possible after transfer into the department. Offered on a satisfactory-fail grading basis only.

Soc 130. Rural Institutions and Organizations. (3-0) Cr. 3. F.S. An introductory analysis of sociological concepts and theories as they relate to rural institutions and organizations. Emphasis on the static structure and function of these institutions and organizations and on their dynamic adaptation to changing societal, environmental, and economic conditions. General sociological principles and perspectives. Credit for only 130 or 134 may be applied toward graduation.

Soc 134. Introduction to Sociology. (3-0) Cr. 3. F.S.SS. Social interaction and group behavior with emphasis on contemporary U.S. society, including issues relating to socialization, inequality, and changing rural and urban communities. Analysis of relationships among the institutions of family, religion, political participation, work, and leisure. Credit for only 130 or 134 may be applied toward graduation.

Soc 219. Sociology of Pre-Marital and Marital Relationships. (3-0) Cr. 3. F.S.SS. Prereq: 130 or 134. Sociological analysis of courtship and marriage relationships across the life cycle. Attention also given to alternative and single lifestyles, to parenting, and to family life.

Soc 235. Social Problems. (3-0) Cr. 3. F.S. Prereq: 130 or 134. Sociological concepts and methods employed in the analysis of various social problems, including crime, substance abuse, problems with institutions, rural and urban problems, and international concerns. Consideration of various solutions.

Soc 241. Youth and Crime. (Same as CJ St 241.) (3-0) Cr. 3. F.S. Prereq: 130 or 134. An examination of delinquency that focuses on the relationship between youth as victims and as offenders, social and etiological features of delinquency, the role of the criminal justice system, delinquents' rights, and traditional and alternative ways of dealing with juvenile crime.

Soc 264. Small Group Dynamics. (3-0) Cr. 3. F.S. Prereq: 130 or 134. An introduction to intra- and inter-group dynamics in small groups. Group decision-making, coalitions, conformity, intergroup relations, status and role effects, leadership, group development and group conflict. Includes student participation in small group processes.

Soc 298. Cooperative Education. Cr. R. F.S.SS. Prereq: Permission of the department cooperative education coordinator; sophomore classification. Required of all cooperative education students. Students must register for this course prior to commencing the work period.

Soc 305. Social Psychology: A Sociological Perspective. (3-0) Cr. 3. F.S.SS. Prereq: 130 or 134. Examination of human behavior in a social environment with emphasis on development of the self, interpersonal relations, attitudes, and small groups.

Soc 310. Community. (3-0) Cr. 3. F.S. Prereq: 130 or 134. Comparative analysis of the institutional structure of rural, urban, and suburban communities; community as an ecological and social system; power relationships; analysis of planned and unplanned processes of social change.

Soc 325. Agriculture in Transition. (3-0) Cr. 3. F.S. The impacts of agricultural changes on farm families, rural communities, and consumers. Past, present, and future trends in family farms and their social implications.
Soc 327. Sex and Gender in Society. (Same as W S 327) (3-0) Cr. 3. F.S.S.S. Prereq: 130 or 134. How the biological fact of sex is transformed into a system of gender stratification. The demographics and social positions of women and men in the family, education, media, politics, and the economy. Theories of the social-psychological and sociological bases for behaviors of both men and women. The relationship between gender, class, and race.

Soc 328. Sociology of Masculinities and Manhood. (Same as W S 328) (3-0) Cr. 3. S. Prereq: Soc 130, 134, or W S 201. Examination of socially constructed and idealized images of manhood, the nature of social hierarchies and relations constructed on the basis of imagery, ideologies, and norms of masculinity. Theories on gender (sociological, psychological, and biological). Particular attention given to theory and research on gender variations among men by race, class, ethnicity, sexual orientation, physical ability and age.

Soc 330. Ethnic and Race Relations. (Same as Af Am 330) (3-0) Cr. 3. F.S.S.S. Prereq: 130 or 134. Analysis of ethnic and race relations, particularly in America; emphasis on the sociology and psychology of race and ethnic relations.

Soc 331. Social Class and Inequality. (3-0) Cr. 3. F.S.S.S. Prereq: 130 or 134. Social stratification and processes resulting in poverty, implications of status, class, and poverty for people of different races, ethnicities, and gender.

Soc 332. The Latino/Latina Experience in U.S. Society. (3-0) Cr. 3. F. Prereq: 130 or 134. Examination of the social, historical, economic, and political experience of U.S. and Latino ethnic groups in the U.S.—primarily focusing on Mexican, Puerto Ricans, and Cubans.

Soc 340. Deviant and Criminal Behavior. (Same as CJ St 340) (3-0) Cr. 3. S. S.S. Prereq: 130 or 134. Theory and psychology of deviant and criminal behavior and social policies designed to control deviant behavior.

Soc 341. Criminology. (Same as CJ St 341.) (3-0) Cr. 3. F. Prereq: 130 or 134. The nature of crime and criminality, deviance and crime; statistics and theories of criminality; major forms of crime; official responses to crime and control of crime.

Soc 345. Population Problems and Society. (Same as Env S 345) (3-0) Cr. 3. F. Prereq: 130 or 134. Human overpopulation; impact on food, resources, and services; population growth and development; trends of births, deaths, and geographic movement; projecting future population; population control and family planning; migration policies and laws; comparison of the United States with other societies throughout the world.

Soc 371. High Risk Children and Adolescents. (3-0) Cr. 3. S. Prereq: 130 or 134. This class traces life course developmental risk and resiliency through early adulthood. Its focus is on contextual factors that contribute to or impede prosocial outcomes in young people with special emphasis on the origins and processes of prosocial accumulative risk. It reviews the literature on children and adolescents in high risk social contexts such as runaway and homeless adolescents, inner city adolescents, and gangs.

Soc 380. Sociology of Work. (3-0) Cr. 3. F.S. Prereq: 130 or 134. Inequalities (gender, race, class) related to jobs, occupations, firms, and industries. Satisfaction, rewards, alienation, discrimination, and other topics of importance to workers are examined.

Soc 381. Social Psychology of Small Group Behavior. (Same as Env S 381) (3-0) Cr. 3. S. Prereq: Soc 305 or Psych 280. A survey of small group theory and research from an interdisciplinary, social psychological perspective.

Soc 382. Environmental Sociology. (Same as Env S 382) (3-0) Cr. 3. F.S. Prereq: Soc 130, 134 or Env S 201. Environment-society relations; social construction of nature and the environment; social and environmental impacts of resource extraction, production, and consumption; environmental inequality; environmental mobilization and movements; U.S. and international examples.

Soc 388. Cooperative Education. Cr. R. F.S.S.S. Prereq: Permission of the department cooperative education coordinator. Required of all cooperative education students. Students must register for this course prior to commencing the work period.

Soc 401. Contemporary Sociological Theories (3-0) Cr. 3. F.S.S.S. Prereq: 9 credits in sociology. Both historical and modern social theories as applied to understanding and researching the social world. Nonmajor graduate credit.

Soc 411. Social Change in Developing Countries. (3-0) Cr. 3. S. Prereq: 130 or 134 plus 3 credits in sociology. An examination of structural change in developing countries; international interdependence; causes and consequences of persistent problems in agriculture, city, labor, employment, gender equality, basic needs; local and worldwide efforts to foster social change and international development. Nonmajor graduate credit.

Soc 415. Sociology of Technology. (3-0) Cr. 3. F. Prereq: 130 or 134 plus 3 credits in social sciences. Review of physical, biological, and social approaches to technology evaluation. Examination of public responses to complex and controversial technology. Strategies for gaining adoption/rejection of technology. Applications to topics in agriculture, development, and marketing. Nonmajor graduate credit.

Soc 420. Complex Organizations. (3-0) Cr. 3. F.S. Prereq: 130 or 134 plus 3 credits in social sciences. Study of bureaucracies and other large organizations as social systems through the perspective of social processes and structural variables. Incorporates topics of organizational effectiveness, power and change. Nonmajor graduate credit.

Soc 425. Social Movements and Revolution. (3-0) Cr. 3. S. Prereq: 6 credits in sociology. Theoretical and methodological approaches to the origins, development, and impact of social movements including social-psychological, organizational, and structural dimensions. Nonmajor graduate credit.

Soc 431. Chicano/Chicana in Contemporary Society. (3-0) Cr. 3. S. Prereq: 130 or 134. An interdisciplinary examination of Chicano/a, the largest U.S. Latino ethnic group. Special attention will be given to social conflict and social transformation as it relates to contemporary Chicana/o issues, particularly in the Midwest.

Soc 435. Urban Society. (3-0) Cr. 3. Alt. S., offered 2002. Prereq: 130 or 134 plus 3 credits in social sciences. Development of cities and urban systems; human and spatial ecology; urban transformation, decline, and revitalization; housing issues and homelessness; residential segregation; poverty, immigration and subcultures; urban social movements; local governance; alternative solutions and planning for cities. Internship and an on-campus internship site; research by faculty. Nonmajor graduate credit.

Soc 450. Demographic Analysis, Projections, and Modeling. (3-0) Cr. 3. Alt. S., 2003. Prereq: 6 credits in sociology. Methods and techniques for analyzing, projecting, and modeling demographic behavior and change. Focus on fertility, migration, and mortality, including sex, age, race, education, labor force, housing, service utilization, resource consumption, and consumer markets. Integrating population variables into models. Applications using surveys, census data, and other indicators. Nonmajor graduate credit.

Soc 454. Field Observation and Practice. Cr. var., maximum of 12. F.S.S.S. Prereq: Junior or senior classification; permission of faculty internship coordinator. This course provides practice in social theory and methodology gained in previous courses. Nonmajor graduate credit.

Courses and Programs Sociology 327

Soc 460. Criminal and Juvenile Justice Practicum. (Same as CJ St 460) (3-0) Cr., maximum of 12. F.S.S.S. Prereq: Junior or senior classification; permission of criminal justice studies coordinator; major or minor in sociology, criminal justice studies minor, or PSA, 241 or 340. Study of the criminal and juvenile justice systems and social control processes. Supervised course consists of formal court and experience small town and farm life. B. General Sociology

Soc 461. Life Course Sociology. (3-0) Cr. 3. F. Prereq: 6 credits in sociology. Theoretical and empirical perspectives on life course processes and tasks, age related norms, values, and subcultures. Decisions and issues faced by individuals as they progress through stages of the life cycle.

Soc 476. The Aged in American Society. (Same as Geron 476) (3-0) Cr. 3. S. Prereq: 6 credits in sociology. A survey of sociological problems of the aging and the social implications for a sizable aged population. Nonmajor graduate credit.

Soc 485. Sociology of the Family. (3-0) Cr. 3. S. Prereq: 6 credits in sociology. The contemporary family in developing, industrial, and post-industrial societies. Effects of modernization and family policies on family structures and functions.

Soc 490. Independent Study. Cr. 1 to 3 each time taken. Prereq: 6 credits in sociology and permission of instructor. Students in the College of Agriculture must be of junior or senior classification and may use no more than 6 credits of Soc 490 toward the total of 128 credits required for graduation. Students in the College of Liberal Arts and Sciences may count no more than 9 credits of 490 toward graduation. A. General Sociology

Soc 496. Agriculture and Rural Development in Ireland. (3-0) Cr. 3. S. Comparative analysis of the agricultural and rural development needs of Ireland and the U.S. Course involves a 2 week tour of the Irish countryside where students can observe and experience small town and farm life.
Soc 498. Cooperative Education. Cr. R. F.S.SS. Prereq: Permission of the department cooperative education coordinator; senior classification. Required of all cooperative education students. Students must register for this course prior to completing the work period.

Courses Primarily for Graduate Students, Open to Qualified Undergraduate Students

Soc 509. Agroecosystem Analysis. (Co-listed with Agron 509, SusAg 509, Anthr 509) (3-0) Cr. 3. SS. Prereq: 6 credits in social sciences, 6 credits in natural, biological or engineering sciences and senior or above classification. Field study of commercial farming systems within the context of global energy flows and biogeochemical cycles, including ecological, agronomic, and social perspectives.

Soc 513. Qualitative Research Methods. (2-2) Cr. 3. Alt. F., offered 2001. Prereq: 511. Applied qualitative research methods in sociology. Design and implementation of a course-based research project including data collection and presentation of results. Qualitative data gathering techniques using observational, historical, in-depth interviewing or content analysis approaches. Laboratory emphasis on completion of data gathering, analysis, and report writing.

Soc 522. Attitude and Attitude Change. (3-0) Cr. 3. Alt. S., offered 2003. Prereq: 305 or Psych 280. Analysis of theories of attitude and attitude change; current controversies between the theories examined, as well as supporting research.

Soc 528. Sociology of Gender. (Same as W S 528.) (3-0) Cr. 3. Alt. F., offered 2001. Prereq: 6 credits in sociology. Examination of the social construction of gender and the social organization of gender inequality. Analysis of gender identity in socialization, interpersonal behavior, the media, and the economy. Investigation of the intersection of gender, race, and class.

Soc 529. Racial and Ethnic Inequality. (3-0) Cr. 3. Alt. S., offered 2003. Prereq: 6 credits in sociology. Analysis of racial and ethnic inequality. From the United States and the world, focus on the implications of the changing world social and economic order for differences in racial and ethnic groups relative to wealth, status, and power; a critical examination of majority-group domination of minority groups in various societies.

Soc 533. Models of Community. (3-0) Cr. 3. Alt. F., offered 2001. Prereq: 6 credits in sociology. Emphasis on different models or frames of reference used in community analysis. Theoretical and methodological tools, current views of community problems, and explanation of social and cultural change are presented for each model.

Soc 541. Technological Innovation, Social Change, and Development. (Same as TC 541, U St 541.) (3-0) Cr. 3. Alt. F. Prereq: 6 credits in social sciences. Sources, theories and models of technological innovation, social, institutional, cultural, economic and political contexts of technology transfer; issues and methods of assessing impacts of technological change; planning technology related social change; local and international case studies.

Soc 544. Sociology of Food and Agricultural Systems. (3-0) Cr. 3. Alt. F., offered 2001. Prereq: 6 credits in sociology. Social organization of food and fiber production, processing, and distribution systems. Sociological comparison of conventional and alternative production systems; gender roles in agriculture and food systems; local, national and global food systems; perspectives on food and agricultural research and policy.

Soc 546. Organizational Strategies for Diversified Farming Systems. (Co-listed with SusAg 546, Hort 546, Agron 546.) (3-0) Cr. 3. Alt. S., offered 2002. Prereq: SusAg 546. Understanding day-to-day operation and social relations of the complex, diversified farm. Alternative organizational strategies for the diversified and sustainable farm. Farm family dynamics and goal setting. Cooperation between farmers. The social relations of alternative marketing, including green labeling, community supported agriculture, farmers’ markets, and relationship marketing.

Soc 556. Political Sociology. (3-0) Cr. 3. Alt. S., offered 2003. Prereq: 6 credits in sociology and/or political science. The relationship between state and society with emphasis on American society. Analysis of theoretical frameworks, political participation, political economy, social movements, elites, democracy, and capitalist society.

Soc 584. Current Issues in Crime and Justice. (3-0) Cr. 3. Alt. S., offered 2003. Prereq: 6 credits in sociology. Discussion of current research and theory in crime and delinquency; topics include the purpose and role of law in social life; emerging theoretical directions in criminology; recent work on specific forms of criminality; controversies in the criminal justice system.

Soc 590. Special Topics. Cr. 1 to 3 each time taken. Prereq: 6 credits in sociology; senior or graduate classification.

Soc 591. Orientation to Sociology. (1-0) Cr. R. F. Prereq: Formal admission into the sociology graduate program. Introduction to the department, current graduate student policies at department and university levels, departmental administrative procedures. Required of graduate students. Offered on a satisfactory-fail grading basis only.

Soc 592. Teaching Sociology. (3-0) Cr. 3. Alt. F. offered 2001. Prereq: Graduate classification in sociology. Pedagogical and substantive issues in the teaching of sociology at the college level focusing on course organization, instructional objectives, techniques of presentation, and instruments for evaluation of learning and instruction.

Soc 595. Internship. Arr. Cr. Var. F.S.SS. Prereq: 12 graduate credits in sociology, approval of major professor and internship coordinator. Supervised practice for students to apply sociological knowledge and skills to work with client groups.

Soc 599. Research for Master’s Thesis. A. General Sociology B. Rural Sociology
Courses for Graduate Students

Sec 607. Contemporary Sociological Theory. (3-0) Cr. 3. S. Prereq: 6 graduate credits in sociology. Survey of theoretical developments since 1925, including the rise of structural-functionalism, symbolic interactionism, conflict theories, phenomenology, exchange theory, and others.

Sec 610. Society and Technology in Sustainable Food System. (Co-listed asSusAg 610, A E 610, cross-listed as Agron 610.) (3-0) Cr. 3. Alt. S., offered 2003. Prereq: SusAg 509. Social and technological dimensions of sustainability in food systems. Emphasis on strategies and ethics for evaluating existing and emerging options.

Sec 611. Advanced Theory Construction for Categorical Outcomes. (3-0) Cr. 3. Alt. S., offered 2003. Prereq: Stat 404. Rationale for and interpretation of various quantitative methods of analyzing categorical and ordered categorical variables, including log-linear, logit, logistic models, and event history analysis, models for censored data.

Sec 640. Comparative Social Change. (3-0) Cr. 3. Alt. F., offered 2001. Prereq: 6 graduate credits in sociology. Contemporary theories of social change, modernization, dependency, and development are critically examined; methodological issues identified; supporting research explored; applicability of theoretical models, concepts, and strategies to current national and international needs are evaluated.

Sec 698. Seminars in Sociology. (3-0) Cr. 3 each. A. Family and Life Course B. Methodology C. Community Studies and Development D. Social Change and Development E. Social Deviance and Mental Health G. Social Organization H. Social Psychology I. Social Inequality J. General K. Food Systems, Agriculture and Environment

Sec 699. Dissertation Research. A. General Sociology B. Rural Sociology

Speech Communication

(Administered by the College of Liberal Arts and Sciences)

Undergraduate Study

The cross-disciplinary program in speech communication offers introductory courses designed for all students as part of their general education, as a complement to professional training, and as an introduction to further study within the discipline.

Students who major or minor in speech communication can prepare themselves for a wide variety of future employment opportunities, depending upon individual interests, background, and abilities. Present curricula can prepare students for the study of law or theology; for positions in business and industry or education; and for graduate level work in speech communication, or related disciplines.

A student electing to major in speech communication must meet the particular requirements of one of the following options: interpersonal and rhetorical communication, or speech education (bachelor of arts).

The general requirement for majors in speech communication is that no credits in 290, 493, 499, and 590 may be applied toward the minimum required credits within any prescribed option. (IRC: 33 credits; SpEd: 47 credits.) Specific requirements for the major in speech communication with its various options are listed under their respective descriptions.

The English proficiency requirement may be met by (1) completion of Eng 104, 105 (or 105H), or its equivalent, with a grade in each of 2.0 or better; (2) one additional writing course beyond Eng 105 with a grade of 2.0 or better from the following approved list: Engl 302, 305, 309, 314, 415; JI MC 201.

The requirements for minors in speech communication may be fulfilled by credit in Sp Cm 212 plus at least 15 additional hours, of which 9 credits are in courses numbered 300 or above. All 15 credits must be taken within interpersonal and rhetorical communication. No credits in 290, 490, 493, 499, and 590 may apply toward the minor.

The program participates in the following interdisciplinary undergraduate minor programs: the interdisciplinary program in linguistics, and the interdisciplinary program in technology and social change, and the undergraduate program in gerontology.

Speech Communication Education

Students fulfilling the requirements for teacher licensure prepare to teach speech communication, dramatic arts, and media at the secondary school level. In addition, they prepare to direct co-curricular and extracurricular activities.

Each student seeking teacher licensure in speech communication must fulfill the requirements outlined in the Teacher Education section of this bulletin. In addition, each student must maintain a 2.5 grade point average in all courses taken to be admitted to the College of Education.

Communication Studies (ComSt)

The communication studies major is administered by the Greenlee School of Journalism and Communication, (See Index).

Interpersonal and Rhetorical Communication (Sp Cm)

The interpersonal and rhetorical communication area provides a thorough understanding of communication theories, principles, and applications. Students will be required to complete courses which provide a solid grounding in the theories of communication, the nature of rhetorical principles in communication, and the role of communication in creating, maintaining, and changing human relationships. The following courses are required for an emphasis in interpersonal and rhetorical communication: ComSt 101; Sp Cm 212, 305, 327, 412, and 497 (Capstone Seminar) plus an additional 15 credits from courses in interpersonal and rhetorical communication (Sp Cm).

Courses and Programs

Speech Communication 329

Emphasis in the area prepares students for graduate study, the study of law or theology, to teach speech communication in high school, or enter a variety of communication-related careers and occupations in business and professional organizations. Communication internships in business and professional settings are available for qualified students. The area’s courses also provide a minor concentration for students in business, English, journalism, foreign languages and literatures, and the social sciences.

Theatre

The theatre program is administered by the Department of Music, (see Index).

Graduate Study

The program offers courses for a graduate minor in speech communication as well as supporting work for other disciplines. The Program of Speech Communication also participates in the interdepartmental program leading to a master’s degree in Interdisciplinary Graduate Studies.

Courses open for nonmajor graduate credit: Sp Cm 305, 321, 323, 327, 410, 412, and 417.

Communication Studies (ComSt)

(For those interested in the study of mass communication, see Index, Journalism and Mass Communication.)

Interpersonal and Rhetorical Communication (Sp Cm)

Courses Primarily for Undergraduate Students

Sp Cm 110. Listening. (3-0) Cr. 3. F.S.SS. Theory, principles, and competency development in comprehensive, therapeutic, critical, consumer, and appreciative listening. The impact of listening in relationships and partnerships.

Sp Cm 212. Fundamentals of Public Speaking. (3-0) Cr. 3. F.S.SS. Theory and practice of basic speech communication principles applied to public speaking. Practice in the preparation and delivery of extemporaneous speeches.

Sp Cm 223. Intercollegiate Debate and Forensics. Cr. 1 each time taken, maximum of 6 credits. F. S. Prereq: Permission of instructor. Participation in intramural and intercollegiate debate and other forensic events.

Sp Cm 290. Special Projects. Cr. 1 to 2 each time taken, maximum of 6 credits. F.S.S. Prereq: 3 credits in speech communication; permission of department chair.

Sp Cm 305. Semantics. (3-0) Cr. 3. F.S.SS. Prereq: Eng 105. The study of symbolic processes and how meaning is encoded in words, phrases, sentences, and utterances; discussion of modern theories of meaning; and an exploration of relationships among language, thought and action. Nonmajor graduate credit.

Sp Cm 312. Business and Professional Speaking. (3-0) Cr. 3. F.S.SS. Prereq: 212. Theory, principles, and competency development in the creation of coherent, articulate business and professional oral presentations.
Sp Cm 313. Communication for the Classroom Teacher. (3-0) Cr. 3. S.S.S. Prereq: 212. Communication in the teaching profession; training in classroom-oriented communication activities; use of video recorder for analysis of presentation.

Sp Cm 321. Communication with the Elderly. (Same as Geron 321.) (3-0) Cr. 3. S. Communication theory and practice presented with applications and strategies for interactions with elderly persons. Interpersonal competencies in social conversations and interviewing developed. Nonmajor graduate credit.

Sp Cm 322. Argumentation, Debate, and Critical Thinking. (3-0) Cr. 3. F.S.S. Prereq: 212. Practice in preparing and presenting argumentative and debate speeches; emphasis on critical thinking and ethical and logical duties of the advocate; analysis, evidence, reasoning, attack, defense, research, case construction, and judging.

Sp Cm 323. Gender and Communication. (Same as W S 323.) (3-0) Cr. 3. F. Prereq: 212. The rhetorical strategies women and men use to succeed in oral communication; the theory, principles, and practice of effective gender communication in a variety of settings. Nonmajor graduate credit.

Sp Cm 325. Nonverbal Communication. (Same as ComSt 325.) See Communication Studies.

Sp Cm 327. Persuasion. (3-0) Cr. 3. F.S.S. Prereq: 212. Examination of persuasive theories, strategies and research in persuasion. Emphasis on application and analysis; logical, emotional, and ethical proofs. Nonmajor graduate credit.

Sp Cm 404. Seminar. (Dual-listed with 504.) Cr. 3. each time taken, maximum of 9. Prereq: 18 credits in speech communication. A. Interpersonal and Rhetorical Communication. B. Speech Education.

Sp Cm 410. Classical Rhetoric. (3-0) Cr. 3. S. Prereq: 12 hours in speech communication, Greek and Roman tradition in rhetorical theory, practice, criticism, and pedagogy. Nonmajor graduate credit.

Sp Cm 412. Rhetorical Criticism. (3-0) Cr. 3. S. Prereq: 212 and 6 credits in speech communication. Development of rhetorical theory and practice from Corax to modern times. Application of principles of criticism to current public speaking practices. Nonmajor graduate credit.

Sp Cm 416. American Public Address. (3-0) Cr. 3. S. Relationship between public persuasions and leaders; the theory, principles, and practice of effective public speaking in a variety of settings. Nonmajor graduate credit.

Sp Cm 490. Independent Study. Cr. 1 to 3 each time taken, maximum of 9. F.S.S. Prereq: 18 credits in speech communication, junior or senior classification. Only one independent study enrollment is permitted within the department per semester.

Sp Cm 495A. Directed Speech Activities. (1-0) Cr. 1. S. Prereq: C I 301; 9 credits in speech communication; minimum grade point of 2.5 in speech communication courses. Problems, methods, and materials related to directing speech activities in secondary schools.

Sp Cm 495B. Teaching Speech. (Same as C I 495B.) (3-0) Cr. 3. F. Prereq: Sp Cm 313; 9 credits in speech communication; minimum grade point average of 2.5 in speech communication courses. Problems, methods, and materials related to teaching speech, the art, and media in secondary schools.

Sp Cm 497. Capstone Seminar. (3-0) Cr. 3. S. Prereq: 15 credits in speech communication; junior or senior classification. Students synthesize relevant theory and research culminating in a capstone project/paper.

Sp Cm 499. Communication Internship. Cr. var. 1 to 3 each time taken, maximum of 6. F.S.S. Prereq: 18 credits in speech communication courses, other courses deemed appropriate by faculty advisor; 2nd semester junior or senior standing; cumulative GPA of at least 2.5 overall and 3.0 in speech communication; and permission of the internship committee. Applications should be submitted in the term prior to the term in which the internship is desired. Supervised application of interpersonal and rhetorical communication in professional settings.

Courses Primarily for Graduate Students, open to qualified undergraduates

Sp Cm 504. Seminar. (Dual-listed with 404.) Cr. 3. each time taken, maximum of 9. F.S.S. Prereq: 9 credits in speech communication. Topics may include the following: A. Interpersonal and Rhetorical Communication B. Speech Education

Sp Cm 590. Special Topics. Cr. 1 to 4 each time taken, maximum of 12 credits. Prereq: Permission of department chair.

Statistics

www.public.iastate.edu/~stat/

Dean L. Isaacson, Chair of Department

Distinguished Professors: Athreya, Fuller, Meeker

University Professors: Koehler, Stephenson

Professors: Ameniya, Bailey, Bonett, Isaacson, Kennedy, Lahiri, Lorenz, Morris, Shelley, Stern, Stufken, Vardeman

Professor (Collaborator): Themau

Distinguished Professor (Emeritus): H. A. David

University Professors (Emeritus): D. Cox, H. T. David, Groeneweld, Hinz

Professors (Emeritus): C. Cox, Harville, Hickman, Hotchkiss, Pollak, Strahan, Wolins

Associate Professors: Carriquiry, Cook, Dixon, Kaiser, Marasinghe, Nusser, Roberts, Rollins, Sherman

Associate Professor (Emeritus): Sukhatme

Assistant Professors: Daniels, Duckworth, Froelich, Nettleton, Opsomer, Wu, Yang

Assitant Professors (Collaborators): Sloan

Undergraduate Study

For the undergraduate curriculum in liberal arts and sciences, major in statistics, leading to the degree bachelor of science, see Liberal Arts and Sciences, Curriculum.

The curriculum in liberal arts and sciences with a major in statistics is designed to prepare students for (1) entry level statistics positions requiring the B.S. degree in statistics in business or commerce, nonprofit institutions, and in state or federal government; (2) graduate study in statistics. Entry-level positions include the following types of work: statistical design, analysis and interpretation of experiments and surveys; data processing and analysis using modern computation facilities and statistical computing systems; application of statistical principles and methods in commercial areas such as finance, insurance, industrial research, marketing, manufacturing, and quality control. Nonprofit organizations such as large health study institutions have entry-level positions for B.S. graduates in statistics. Also, there are opportunities for work in statistics that require a major in a subject-matter field and a minor in statistics.

Students completing the undergraduate degree in statistics should have a broad understanding of the discipline of statistics. They should have a clear comprehension of the theoretical basis of statistical reasoning and should be proficient in the use of modern statistical methods and computing. Such graduates should have an ability to apply and convey statistical concepts and knowledge in oral and written form. They should be aware of ethical issues associated with polling and surveys and in the summarization of the outcomes of statistical studies.

Undergraduate majors in this department usually include in their programs: a) Statistics 101 or an alternative introductory course (104 or 227), b) Mathematics 165, 166, 265 (or 165H, 166H, 265H), 307 (or 317) and Computer Science 103, and (c) Statistics 341, 342, 401, 402, 421, 479, 480.

These courses plus at least two additional courses in statistics at the 400 level or above constitute the major. With the permission of the department, I E/Stat 361 may be substitut-ed for one of these 400 level courses. It is advisable to have a minor in a field of application.

The department offers a minor in statistics which may be earned by completing one of three options. Option I: one of 101, 104 or 106, 231 or 401. Option II: 341, 342, 231 or 401. Option III: 227, 228. Additional courses in statistics at the 300 level or above are required for each option to yield a total of at least 15 credits in statistics courses.

English and Speech proficiency requirement: The department requires a grade of C- or better in each of Engl 104 and 105 (or 105H), and completion of one of Engl 302 or 314 with a grade of C- or better. The department requires a passing grade in ComSt 102 or Sp Cm 212.

Students intending to do graduate work in statistics normally will take additional courses in mathematics.

Graduate Study

The department offers the degrees master of science and doctor of philosophy with a major in statistics, and minor work for students majoring in other departments. Within the statistics major the student may select areas of specialization in experimental design, probability, statistical methods, statistical theory, statistical computing, survey sampling, quality control, spatial statistics, time series, reliability, or applied statistics e.g., biometrics, econometric- nics, environmental statistics, psychometrics,
Courses and Programs

Statistics 331

Stat 330. Probability and Statistics for Computer Science. (3-0) Cr. 3. F. S. Prereq: Math 166. Topics from probability and statistics applicable to computer science. Basic probability; Random variables and their distributions; Elementary probabilistic simulation; Queuing models; Basic statistical inference; Introduction to regression. Nonmajor graduate credit.

Stat 341. Introduction to the Theory of Probability and Statistics. (Same as Math 341) (3-0) Cr. 3. F. S. Prereq: Math 295 (or 295H). Probability; distribution functions and their properties; classical discrete and continuous distributions; moment generating functions. Credit for both 341 and 447 may not be applied toward graduation.

Stat 342. Introduction to the Theory of Probability and Statistics. (Same as Math 342) (3-0) Cr. 3. S. Prereq: Math 307 or 317. Theory of estimation and tests of hypotheses; regression and correlation; linear model theory and applications. Credit for both 341 and 447 may not be applied toward graduation.

Stat 361. Quality Control. (Same as E E 261.) See Industrial Engineering. Nonmajor graduate credit.

Stat 401. Statistical Methods for Research Workers. (3-2) Cr. 4. F. S. S. Prereq: Stat 104 or 105 or 201 or 227. Graduate students without an equivalent course should contact the department. Methods of analyzing and interpreting experimental and survey data. Statistical concepts and models; estimation; hypothesis tests with continuous and discrete data; simple and multiple linear regression and correlation; introduction to analysis of variance. Nonmajor graduate credit.

Stat 402. Statistical Methods for Field Biologists. (Same as La LL 401.) See Animal Science Laboratory.

Stat 402. Statistical Design and the Analysis of Experiments. (3-0) Cr. 3. F. S. Prereq: 401. The role of statistics in research and the principles of experimental design. Experimental units, randomization, replication, randomized block designs; analysis of variance, the general linear model, multiple range tests. Credit for both 401 and 402 may not be applied toward graduation.

Stat 403. Nonparametric Statistical Methods. (2-0) Cr. 2. Alt. F., offered 2002. Prereq: 231 or 328 or 401. Analysis of data when the dependent variable has ordinal or nominal properties; statistical inference for ranked data; Mann-Whitney and Kruskal-Wallis procedures; rank correlation; efficiency of nonparametric procedures and robustness of comparable parametric procedures. Nonmajor graduate credit.

Courses for Undergraduate Students

Stat 100. Orientation in Statistics. (1-0) Cr. R. F. Opportunities, challenges, and the scope of the curriculum in statistics. For students planning or considering a career in this area.

Stat 101. Principles of Statistics. (3-2) Cr. 4. F. S. S. Prereq: 1 1/2 years of high school algebra. Statistical concepts in modern society; descriptive statistics and graphical displays of data; the normal distribution; data collection; elementary probability; elements of statistical inference; estimation and hypothesis testing; linear regression and correlation; contingency tables. Credit for only one of the following courses may be applied toward graduation: 101, 104, 105, 227.

Stat 104. Introduction to Statistics. (2-2) Cr. 3. F. S. S. Prereq: 1 1/2 years of high school algebra. Statistical concepts and their use in science; collecting, organizing and summarizing data; elementary probability; binomial and normal distributions; regression; estimation and hypothesis testing. For students in the agricultural and biological sciences. Credit for only one of the following courses may be applied toward graduation: 101, 104, 105, 227.

Stat 105. Introduction to Statistics for Engineers. (3-0) Cr. 3. F. S. Prereq: Math 165 or 168H. Statistical concepts with emphasis on engineering applications. Data collection; descriptive statistics; probability distributions and their properties; elements of statistical inference; regression; statistical quality control charts; use of statistical software; team project involving data collection, description and analysis. Credit for only one of the following courses may be applied toward graduation: 101, 104, 105, 227. Credit for both 105 and 305 may not be applied for graduation.

Stat 201. Applied Regression Analysis for Business. (2-0) Cr. 2. F. S. S. Prereq: 101 or 104 or 105. Math 150 or 165. Brief review of required descriptive and inferential statistics; statistical process monitoring and applications in quality control; use of computers to analyze data; simple linear regression analysis; diagnostic checking and model building; application of regression techniques to analysis of variance and time series analysis. Credit for both 201 and 227 may not be applied toward graduation.

Stat 227. Introduction to Business Statistics. (4-2) Cr. 5. F. S. S. Prereq: Math 150 or 165. Obtaining, presenting, and organizing statistical data; measures of location and dispersion; probability concepts; the normal distribution; sampling and sampling distributions; estimation and confidence intervals; statistical process monitoring and applications in quality control; use of computers to analyze data; simple linear regression analysis; multiple regression analysis. Credit for only one of the following courses may be applied toward graduation: 101, 104, 105, 227. Credit for both 201 and 227 may not be applied toward graduation.

Stat 231. Probability and Statistical Inference for Engineers. (4-0) Cr. 4. F. S. Prereq: Credit or enrollment in Math 265. Emphasis on engineering applications. Basic probability; random variables and probability distributions; joint and sampling distributions; propagation of error. Descriptive statistics; confidence intervals; hypothesis testing; simple linear regression; multiple linear regression; one way analysis of variance; use of Mann-Whitney and Kruskal-Wallis procedures; rank correlation; efficiency of nonparametric procedures and robustness of comparable parametric procedures. Nonmajor graduate credit.

Stat 305. Engineering Statistics. (3-0) Cr. 3. F. S. Prereq: Math 165 (or 165H). Statistics for engineering problem solving. Principles of engineering data collection; descriptive statistics; elementary probability distributions; confidence intervals and significance tests; one-, two-, and multi-sample studies; regression analysis; use of statistical software; team project involving engineering experimentation and data analysis. Credit for both 105 and 305 may not be applied for graduation.

Stat 322. Probabilistic Methods for Electrical Engineers. (Same as E E 322) (3-0) Cr. 3. F. S. Prereq: E E 221. Introduction to probability with applications to electromagnetics and electric circuits. Theory of probability, reliability of systems. Discrete and continuous random variables, associated probability models, extensions to multivariate random vectors. Expectation, moments, correlation, functions of random variables. Random processes, including Poisson, Gaussian, and Markov.

Stat 328. Applied Business Statistics. (2-2) Cr. 3. F. S. Prereq: 201 or 227. Application of statistical methods to problems in business and economics; review of multiple regression; residual analysis, model building; analysis of variance; introduction to experimental design concepts; time series analysis and forecasting. Nonmajor graduate credit.

Sociometrics, etc.). A major in operations research leading to a master of science degree is offered in cooperation with the Department of Industrial and Manufacturing Systems Engineering. The doctor of philosophy degree is offered as a co-major with other departments. Such departments have included Animal Science, Botany, Economics, Educational Leadership and Policy Studies, Genetics, Industrial and Manufacturing Systems Engineering, Mathematics, Meteorology, and Psychology. M.S. graduates have a basic understanding of statistical theory and methods. Elective courses in statistics provide areas of specialization based on the student’s career goals. Communication skills are developed through course projects, assistantship duties and creative components. Ph.D. graduates study advanced theory and methods and are able to do independent research in statistics and collaboratory research outside of statistics.

Prerequisite to major graduate work is the completion of an undergraduate curriculum essentially equivalent to the curriculum in liberal arts and sciences at this institution including at least a year of calculus.

The degree master of science may be earned on either a thesis or nonthesis basis. The nonthesis option requires the completion of at least 34 credits of acceptable graduate work, including the completion of a creative component and satisfactory performance on a written examination. The thesis option requires the completion of 34 credits of acceptable graduate work, including the completion of a thesis and satisfactory performance on a written examination.

The department encourages students to prepare themselves in foreign languages and in computer languages, but specific requirements for the degrees of master of science and doctor of philosophy are at the discretion of the student’s advisory committee.

The department participates in the interdisciplinary program in business administrative sciences and in the interdepartmental major in genetics.

Courses open for nonmajor graduate credit: 328, 330, 361, 401, 402, 403, 404, 407, 415, 421, 432, 447, 451, 479, 480, 493, 495, 496.

Courses Primarily for Undergraduate Students

Stat 100. Orientation in Statistics. (1-0) Cr. R. F. Opportunities, challenges, and the scope of the curriculum in statistics. For students planning or considering a career in this area.

Stat 101. Principles of Statistics. (3-2) Cr. 4. F. S. S. Prereq: 1 1/2 years of high school algebra. Statistical concepts in modern society; descriptive statistics and graphical displays of data; the normal distribution; data collection; elementary probability; elements of statistical inference; estimation and hypothesis testing; linear regression and correlation; contingency tables. Credit for only one of the following courses may be applied toward graduation: 101, 104, 105, 227.
Courses and Programs

Statistics

Stat 421. Survey Sampling Techniques. (2-2) Cr. 3. S. Prereq: 231 or 328 or 401. Methods of designing and analyzing survey investigations; simple random, stratified, and multistage sampling designs; methods of estimation including ratio and regression; construction and use of sample frames. Nonmajor graduate credit.

Stat 432. Applied Probability Models. (3-0) Cr. 3. Alt. F. offered 2001. Prereq: 231 or 341 or 447. Probabilistic modeling of engineering and the physical sciences; probability; Markov chains; Poisson and renewal processes; applications to queuing, scheduling, control, and other quantitative problems. Nonmajor graduate credit.

Stat 490. Independent Study. Cr. var. Prereq: 10 credits in statistics. No more than 9 credits in Stat 490 may be counted toward graduation. H. Honors.

Stat 493. Workshop in Statistics. (1-0 or 2-0) Cr. 1 or 2. Off-campus, offered as demand warrants. Prereq: 101 or 104 or 227. Planning, executing, and interpretating experiments by understanding experimental design and utilizing statistical methods. Data collection and analysis. Nonmajor graduate credit.

Stat 495. Applied Statistics for Industry. (3-0) Cr. 3. Alt. F., offered 2002. Prereq: 101 or 104 or 105 or 201 or 207; Math 186 or 186H. Graduate students without an equivalent course should consult the department. Statistical thinking applied to industrial processes. Assessing, monitoring and improving processes using statistical methods. Analytic/exploratory techniques, graphical displays of data; process monitoring, control charts; capability analysis. Nonmajor graduate credit.

Courses Primarily for Graduate Students, Open to Qualified Undergraduate Students

Stat 511. Statistical Methods. (3-0) Cr. 3. S. Prereq: 500 or 402 or 447 or 542 and current enrollment in 543; knowledge of matrix algebra. Introduction to the theoretical ideas of linear models, projections and distributions of quadratic forms; Linear models with both fixed and random factors, variance components, dealing with missing data and unbalanced designs. Introduction to non-linear and generalized linear models, maximum likelihood estimation, local smoothing methods. Requires use of S-Plus statistical software.

Stat 512. Design of Experiments. (3-0) Cr. 3. F. Prereq: 511. Stuken. Basic ideas of experimental design and analysis; completely randomized, randomized complete block, Latin square designs, factorial analysis; fractional experiments, confounding, fractional replication; split-plot and incomplete block designs; crossover designs.

Stat 531. Quality Control and Engineering Statistics. (Same as I E 531) (3-0) Cr. 3. Alt. S., offered 2003. Prereq: 401, 342 or 447. Vardeman. Statistical methods and theory applicable to problems of industrial process monitoring and improvement. Statistical issues in industrial measurement; Shewhart, CUSUM, and other control charts; feedback control systems; parameter estimation; evaluation of product and process characteristics; acceptance sampling, continuous sampling and sequential sampling; economic and decision theoretic arguments in industrial statistics; experimentation for process improvement.

Stat 533. Reliability. (Same as I E 533) (3-0) Cr. 3. Alt. S., offered 2002. Prereq: 342 or 432 or 447. Meeker. Probabilistic modeling and inference in reliability analysis of systems; Bayesian aspects; product limit estimator, probability plots, maximum likelihood estimation for censored data, accelerated failure time and proportional hazards regression models with applications to accelerated life testing of repairable system data; planning studies to obtain reliability data.

Stat 535. Methods in Biostatistics. (3-0) Cr. 3. Alt. F., 2001. Prereq: 500; 543 or 447. Daniels. Statistical methods useful for biostatistical problems. Topics include analysis of categorical data and randomized clinical trials, techniques in the analysis of survival and longitudinal data, approaches to handling missing data, and meta-analysis. Examples will come from recent studies in AIDS, heart disease and psychiatry and from studies to evaluate health care in the U.S. (Health services research).

Stat 536. Genetic Statistics. (Same as Gen 536) (3-0) Cr. 3. Alt. F., 2001. Prereq: 401, 447; Gen 320 or Biol 301 or permission of instructor. Probability applied to genetic systems; random mating; selection, mutation and migration; theory of inbreeding; effects of finite population size; basic concepts in quantitative genetics; prediction of progress from artificial selection.

Stat 537. Statistics for Molecular Genetics. (Same as Gen 537) (3-0) Cr. 3. Alt. F., 2002. Prereq: 536 or permission of instructor. Sampling designs and experimental designs to obtain information from markers for detecting major genes; linkage analysis and segregation analysis; finding alignments and similarities between DNA sequences; constructing phylogenetic trees.

Stat 538. Econometric Statistics. (Same as Econ 538) (3-0) Cr. 3. Prereq: 447 or 542. Generalized linear regression, nonlinear regression, measurement error models. Simultaneous equation systems, regression equations with autoregressive disturbance terms, conditional random parameter models, beta-binomial and gamma-Poisson mixtures. Requires use of instructor-supplied and student-written S-Plus functions.

Stat 539. Game Theory. (Same as Econ 539) (3-0) Cr. 3. F. Prereq: 341 or 432 or 447. Zero-sum and bi-matrix non-cooperative two person games; games of timing; relation to mathematical programming; cooperative n-person games.

Stat 542. Theory of Probability and Statistics. (4-0) Cr. 4. F. Prereq: 341, Math 414 or 465. Sample spaces, probability; conditional probability; Random variables, expectation, inequalities; Common theoretical distributions; Joint distributions, conditional distribution; introduction to point estimation including maximum likelihood estimation, method of moments, and Bayesian estimation; Introduction to stochastic processes with applications to Poisson Process, Markov motion; Moment generating functions; Probability laws of transformations, sampling distributions, order statistics.
Courses for Graduate Students

Stat 601. Advanced Statistical Methods. (3-0) Cr. 3. Alt. S., offered 2003. Prereq: 511; Math 514. Kaiser. This course is designed to provide students with in-depth coverage of topics from current and recent developments in statistical modeling and applications. Recent topics have included Markov Chain Monte Carlo methods for Bayesian analysis of hierarchical models, conditionally specified statistical models, complex random parameter models, and Bayesian dynamic models. Applications have included problems of monitoring air and water quality, spatial modeling of organism abundance and disease rates, and population pharmacokinetics. Requires some programming ability to deal with computationally intensive methods.

Stat 606. Spatial Statistics. (3-0) Cr. 3. Alt. S., offered 2003. Prereq: 511, 543. General spatial models; spatial data analysis; continuous spatial variation, geostatistics, kriging; lattice data, conditional models; joint models; image analysis; point patterns, randomness, clustering, random sets.

Stat 611. Theory and Applications of Linear Models. (3-0) Cr. 3. F. Prereq: 500 or 402 or 404, 542 or 447, a course in matrix algebra. Koehler. Statistical methods for analyzing simple random samples when outcomes are counts or proportions; measures of association and relative risk, chi-squared tests, loglinear models; logistic regression and other generalized linear models, extensions to longitudinal studies, nested designs, models with fixed and random effects. Use of statistical software: SAS or S-Plus.

Stat 642. Advanced Probability Theory. (3-0) Cr. 3. S. Prereq: 542, Math 514. Athreya, Lahiri, Yang. Probability spaces; Kolmogorov’s existence theorem for stochastic processes; expectation; Jensen’s inequality and applications; Borel-Cantelli lemmas; Weak and strong laws of large numbers; convergence of moments; weak convergence of probability distributions; characteristic functions; Lindeberg-Feller central limit theorem and its ramifications; conditional expectation and probability; discrete time martingales, discrete parameter Markov chains, Brownian motion.

Stat 643. Advanced Theory of Statistical Inference. (3-0) Cr. 3. F. Prereq: 543, 642. Lahiri, Vardeman. Sufficiency, completeness; Elements of decision theory; Bayesian paradigm of inference and theory of Markov Chain Monte Carlo; Invariance; Neyman-Pearson theory of testing hypotheses. Uniformly most powerful tests, introduction to unbiased tests, likelihood ratio tests, Wald’s tests, Rao’s tests; Asymptotic theory of maximum likelihood estimation and likelihood ratio tests; Asymptotic efficiency; Resampling methods.

area is developed via consultation with the student’s Program of Study committee.

Graduates of the program will be qualified to work in a variety of settings, including university research, education, extension, agribusiness, governmental and non-governmental organizations, and farming.

Information on applications procedures, research interests of the faculty, and specific requirements of the major can be obtained from the office of Dr. Lorna Michael Butler, Henry A. Wallace Chair for Sustainable Agriculture, 110 Curtiss Hall, or from the following Internet address: http://www.sust.ag.iastate.edu/gosa.

Courses for Graduate Students

SusAg 509. Agroecosystem Analysis. (Same as Agron 509, Anthr 509, Soc 509.) (3-0) Cr. 3. SS. Prereq: 8 credits in social sciences, 6 credits in natural, biological or engineering sciences and senior or above classification. Field study of commercial farming systems within the context of global energy flows and biogeochemical cycles, including ecological, agronomic, and social perspectives.

SusAg 530. Ecologically Based Pest Management Strategies. (Same as Agron 530, Ent 530, Pi P 530.) (3-0) Cr. 3. Alt. F., offered 2002. Prereq: 509. Durable, least-toxic strategies for managing weeds, pathogens, and insect pests, with emphasis on underlying ecological processes.

SusAg 546. Organizational Strategies for Diversified Farming Systems. (Same as Agron 546, Hort 546, Soc 546.) (3-0) Cr. 3. Alt. S., offered 2002. Prereq: 509. The day-to-day operation and social relations of the complex, diversified farm. Alternative organizational strategies for the diversified and sustainable farm. Farm family dynamics and goal setting. Cooperation between farmers. The social relations of alternative marketing, including green labeling, community supported agriculture, farmers’ markets, and relationships marketing.

SusAg 600. Sustainable Agriculture Colloquium. (1-0) Cr. 1. F.S. Weekly seminar for graduate students in the Sustainable Agriculture program.

Systems Engineering

(Interdepartmental Graduate Major)

Supervisory Committee: D. Gemmill (Chair), D. Flugrad, E. Jones, A. Mann, G. Sheble.

Work is offered for the master of engineering with a major in systems engineering. The graduate major in Systems Engineering is both an on- and off-campus program. It is an interdisciplinary program that allows students to take courses across a variety of departments. Graduates of the program will possess the analytical abilities needed to design, evaluate, and build complex systems involving many components and demanding specifications. They will have the ability to work across disciplinary boundaries, as the practice of modern engineering often requires. Graduates will have developed management capabilities and extended their disciplinary knowledge.

The program is broadly based and uses courses in the various departments of the College of Engineering and courses in other departments of the university. The 30 credits necessary for graduation includes 27 semester credits of formal coursework and 3 credits for a creative component. Completion of the program requires two courses in systems engineering, two courses in the major discipline of the student, three engineering courses with a systems engineering emphasis, two courses outside of the college, and a creative component. Courses are delivered to off-campus students both with the instructor present and through various distance education systems, including the Iowa Communications Network (ICN), satellite transmission, and videotape.

The program of study committee, in consultation with the student, determines the courses to be taken and the acceptability of transfer credits. The major professor should be selected from the discipline where a concentration of coursework will be taken.

Admission to the program requires a baccalaureate degree in engineering and admission to the graduate college. Students with degrees in other areas will be considered on an individual basis. The degree awarded is a Master of Engineering in Systems Engineering.

For additional information students should contact the Chair of the Supervisory Committee, 2019 Black Engineering Building, ISU, Ames, Iowa 50011.

Teacher Education

Walter H. Gmelch, Director, Teacher Education and Dean, College of Education

All students who are recommended by Iowa State University for teacher licensure must meet the requirements of the teacher education program and be recommended by the College of Education. An undergraduate seeking a bachelor’s degree must be enrolled in the department in which he or she plans to major and must meet the graduation requirements of that department and the college in which it is located. Students already holding a bachelor’s degree should consult with the coordinator of the area in which they plan to specialize so that an individualized program of study can be developed.

Admission to Undergraduate Teacher Education Program

A student seeking admission to a teacher education program must be accepted by a selection committee for the specific program which the student seeks to enter. Factors considered in evaluating applications include scholarship, interest in teaching, character, and physical and mental health. Recommendations by selection committees must be confirmed by the University Teacher Education Committee before admission to the program in teacher education is granted.

Students may apply as early as four semesters before the one in which they plan to enroll for student teaching; however, they must be fully admitted into the Teacher Education Program by mid-semester prior to their planned student teaching semester. Requirements for full admission to the Teacher Education Program are:

1. A minimum 2.5 cumulative grade point average that must be maintained through graduation to be recommended for licensure.
2. One of the following:
 —Minimum ACT composite of 19.
 —Minimum SAT I composite score of 910.
 —PPST subtest scores in reading, writing and mathematics of 172, 172, and 170 respectively.
 —Details regarding the dates and fees for any of these tests are available in the Testing Office in Student Counseling Services.
3. Documented completion of 10 hours of pre-student teaching field experience.

Student Teaching

Student teaching is the culminating experience to the teacher preparation program at Iowa State University. To ensure that students are prepared for this experience, the following requirements must be met prior to student teaching:

1. Full admission to the teacher education program by mid-point of the semester prior to the semester when student teaching is planned.
2. A passing grade must have been earned in all required professional teacher education
Courses and Programs

Teacher Education 33

Teacher Licensure

The Iowa Provisional License may be recommended for those who hold the bachelor's degree from Iowa State and who have completed the following:

1. All requirements of an approved teacher education program, including the human relations requirement of C I 406.

2. A minimum of 42 semester hours in courses designed to serve the general needs of college students. This total will include Eng 104 and 105, one course appropriate for developing interpersonal or group presentation skills (see college or department for appropriate courses), Psych 230 or HD FS 102, Lib 160, one course in each area of physical sciences, biological sciences and mathematics, and one course in American history or American government.

3. Additional requirements as designated by the State of Iowa that include, but are not limited to, a special education component and 50 hours of pre-student teaching field experience, 40 of which are to be taken after admission to the Teacher Education Program.

4. A minimum ISU cumulative grade point average of 2.50 or higher was maintained through graduation (or completion of the Teacher Education Program).

5. Documentation from the student teaching supervisor that the student has successfully completed the final assessment of his/her program portfolio.

Note: Specific courses taken to be used for licensure may not be taken pass/not pass.

Complete details of the State of Iowa requirements for licensure are outlined in the University Teacher Education Handbook that may be purchased at the University Bookstore.

Approval for the early childhood education license requires successful completion of the licensure curriculum through either the Department of Curriculum and Instruction or the Department of Human Development and Family Studies.

Graduate programs are available for those who seek approval as elementary and secondary school principals, superintendents, counselors, instructional media specialists, or teachers in community colleges (applied science and technology, vocational-technical or arts and sciences). Students also may pursue a program for approval to teach in the area of special education, art, agriculture, talented and gifted and reading.

Information concerning licenses not described above, as well as more detailed requirements for any license, may be obtained from the Education Student Services Office in the College of Education.

The General Education Requirement

All prospective teachers are required to complete a program in general education which is integrated with their professional preparation and extends through the undergraduate curriculum.

The student is expected to complete studies in five groups in general education. Usually, courses relating to a given area may be found in several different departments. Credits listed are minimum requirements.

<table>
<thead>
<tr>
<th>Cr.</th>
<th>I. Biological sciences, physical sciences, and mathematics (one course required in each area)</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>II. Social sciences</td>
</tr>
<tr>
<td></td>
<td>III. Humanities</td>
</tr>
<tr>
<td>6</td>
<td>IV. Communication skills</td>
</tr>
<tr>
<td>8</td>
<td>V. Health, dance, exercise and sport science, safety</td>
</tr>
<tr>
<td>34</td>
<td>Additional credits in above areas</td>
</tr>
<tr>
<td>42</td>
<td>Total</td>
</tr>
</tbody>
</table>

This total will include Eng 104 and 105, one course appropriate for developing interpersonal or group presentation skills (see college or department for appropriate course), Psych 230 or HD FS 102, and Lib 160, and one course in American history or government. Additional credits in general education may be required by departments preparing teachers.

The Professional Teacher Education Requirement

As part of a total educational program, the prospective teacher must complete certain studies related directly to the profession of teaching. All students in teacher education must take the following courses prior to student teaching: (See college department for appropriate course)

<table>
<thead>
<tr>
<th>Cr.</th>
<th>I. Instructional Technology</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>C I 201—Instructional Technology</td>
</tr>
<tr>
<td></td>
<td>C I 204—Social Foundations of American Education</td>
</tr>
<tr>
<td>3</td>
<td>C I 333—Educational Psychology</td>
</tr>
<tr>
<td>3</td>
<td>C I 406—Multicultural Awareness and Non-sexism in the Classroom</td>
</tr>
<tr>
<td>12-16</td>
<td>Student teaching (minimum—12 weeks)</td>
</tr>
</tbody>
</table>

Secondary education students must also complete the following courses:

R C I 415—Senior Seminar
3 C I 426—Principles of Secondary Education

All students must satisfactorily complete at least one credit of pre-student teaching laboratory experience. This requirement may be met through a pre-student teaching course (e.g. C I 280) or, in certain subject areas, a course designated to provide an equivalent experience.

Professional Courses in Areas of Specialization

AgEds—AgEds 211, 310, 410, 411, 417

Biology—C I 280M, 347, 392, 468J, 468K, 492, C I/LAS 417D

Chemistry—LAS 417B, 492

Earth Sciences—C I 280M, 347, 392, 468J, 468K, 492, C I/LAS 417J

English—C I 395, Eng 392, 394, 494; LAS 417E

Foreign Languages—F Lng 487, LAS 417G

General Science—C I 280M, 347, 392, 468J, 468K, 492, C I/LAS 417B

Health Education—H S 375, 417

Mathematics—LAS 417C, 480C, Math 497, 542

Physical Education—Ex Sp 375, 417, 418, 475

Physical Sciences—C I 280M, 347, 392, 468J, 468K, 492, C I/LAS 417B

Physics—C I 280M, 347, 392, 468J, 468K, 492, C I/LAS 417B

History and Social Sciences—LAS 417A, 480A, 493

Speech Communication—LAS 417F, Sp Cm 495A, 495B

The Requirements for Areas of Specialization in Teacher Education

A teacher must also be competent in the area of a teaching specialization. For instance, certain competencies are required of those who would teach at the prekindergarten–kindergarten or the elementary level. Those preparing to teach at the secondary level must develop a depth of understanding in one or more subject matter areas.

For full-time teaching in secondary schools an approved subject matter concentration of at least 30 semester hours is required. Additional subject matter areas, usually consisting of 24 semester hours each, are possible but not required. Students interested in adding a second subject area should consult with the coordinator of the area.

The additional courses required by specific teaching areas are:

Agricultural Sciences and Agribusiness

See Curriculum, Agricultural Education.

Art

See Curriculum, Art Education, Department of Art and Design, B.F.A.
Courses and Programs Teacher Education

Biology
Coordinator: Warren Dolphin

Students seeking approval to teach biology must earn 13 credits in chemistry, 8 in physics, and at least 6 in mathematics, and take the following biological courses: Biol 201, 201L, 202, 202L, 301, 301L, 302, 303, 302L, and 312.

Bot 306
Micro 202
Zool 355

Seven additional credits at the 300 level or above in a basic biological science. A course emphasizing concepts in biotechnology is recommended, but not required.

Students who have begun their biological science program under earlier catalogs need to see the science teaching adviser if they have questions.

Chemistry
Coordinator: Thomas Greenbowe

Students seeking approval to teach chemistry must earn credits in the following courses:

- General chemistry 177, 177L, 178, 210, 211, 211L, 316, and 316L
- Organic chemistry 331, 331L, 332, 332L
- Inorganic chemistry 301
- Physical chemistry 321, 321L, 322
- Math 165, 166
- Phys 221 and 222 or 111 and 112

A minimum of one course in biology is required. The recommended course is Biol 201, 201L.

Students with an endorsement in a natural science who seek approval to teach chemistry as an additional area must earn credits in the courses below (15 minimum credits):

- Chem 177, 177L, 178, 178L
- Phys 111, 112, or 221, 222
- Math 151 or 160 or 165
- Corn S 107

and one course in biology.

Students with an endorsement in a natural science who seek approval to teach earth sciences as an additional area must earn credits in the following courses:

- Geol 100, 100L, 102, 102L, 302, 305, 311, 356, 365, 368, 480
- Mteor 206
- Astro 120, 150
- Chem 177, 177L, 178, 178L
- Phys 111, 112, or 221, 222
- Math 151 or 160 or 165
- Corn S 107

and one course in biology.

Students with a natural science endorsement, but who seek endorsement in this area, must take the listed courses plus additional credits in this area to give a total of 24. See area coordinator for approval prior to taking courses.

English
Coordinator: Robert Tremmel

Students seeking endorsement to teach English (7-12) must earn 58 credits in the following courses:

- 12 English Studies: 199 (required, but no credit); 219, 260; 310; 339 or 350
- 3 Classical Studies: CI St 353
- 6 British literature (selected from 370, 373, 374, 375, 376, 377, 378, 379)
- 6 American literature (selected from 360, 361, 362, 363, 364)
- 3 Any literature course
- 3 Women’s and/or minority literature (selected from 340, 345, 346, 347, 348, 349, 460) or 301, 366, 389, 461, 489 when appropriate)
- 22 English Education: 220, 394; 420, 392 (C I 280 for 2 cr. must be taken concurrently with 392); 494 (C I 280 for 2 cr. must be taken concurrently with 494); C I 395

Students seeking to add English as an additional endorsement area must earn 43 credits in the following courses:

- 9 English Studies: 220, 260, and 310
- 3 British literature (selected from 370, 373, 374, 375, 376, 377, 378, 379)
- 6 American literature (selected from 360, 361, 362, 363, 364)
- 3 Any literature course
- 3 World, women’s, or minority literature (selected from 340, 345, 346, 347, 348, 349, 353, 354)
- 16 English education 394; 392 (C I 280 for 2 cr. must be taken concurrently with 392), 494 (C I 280 for 2 crs. must be taken concurrently with 494); C I 395

Foreign Languages and Literatures
Coordinator: Linda Quinn Allen

Students seeking approval to teach a foreign language must earn at least 34 credits in that one foreign language which must include the courses indicated below for that language.

Licensure, full or restricted, also requires Foreign Language 487.

French: 301, 302, 305, 321 or 331, 322 or 332, 401.

German: 301, 302, 305, 330, 340, 4 credits from 471 or 472.

Spanish: 301, 303, 314, 320 or 326, 401, 403; 6 credits from 321, 322, 330, 331, 332.

See Curriculum, Family and Consumer Sciences Education, Teacher Licensure option.
Courses applicable in specific areas

Anthropology
Anthr 201, 202, 306 or 309, 307 or 308, and any other Anthr course.

Economics
Econ 101 and 102, and credits as needed from 301 or 302, 312, 320, 321, 344, 353, 355, 370, 376, 415.

Geography
Select one course from each group: 1) Intro to Geog* or Anthr 306; 2) Political Geog* or Anthr 201; 3) Anthr 202; 4) Urban Geog* or Anthr 311 or 323 or 325 or 326; 5) EnSci 101 or 330 (*Geography courses are not available at ISU - see history/social science coordinator for available options).

Political Science

Psychology
101, 301, 440 and six additional credits except Psych 230 and 333.

Sociology

United States History Credits as needed with at least two courses from groups 1 and 2 and one course from group 3.

World History Credits as needed with at least one course from each group.

Human Development and Family Studies
See Curriculum, Human Development and Family Studies or Curriculum and Instruction.

Mathematics
Coordinator: Janet Sharp
Students majoring in mathematics and seeking approval to teach mathematics as a primary endorsement must take the following:

- One of the following sequences: Math 165, 166, 201; or 175, 176.
- Math 265, 266 or 267, 301, 302 or 307 or 317, 304 or 341, 365, 414, 435, 436, 489, 497.
- Com S 107 or 207 or 227.

Students wishing to add mathematics as an additional endorsement area or as a non-mathematics major seeking a license to teach mathematics must take the following:

Courses and Programs Teacher Education

One of the following sequences: Math 165, 166, 201; or 175, 176.

- Math 266 or 267, 301, 304 or 341, 302 or 307 or 317, 414, 435, 436, 498, 497.
- Com S 107 or 207 or 227.

Music
Coordinator: Sylvia Munsen
Students seeking approval to teach music must earn credits in the following courses:

- Music 327, 359A, 360, 367 and 465, and 3 credits of music theater or opera studio are required for students planning to teach vocal music.

- Music 350, 351, 352, 353, 354, 356, 356B, 464, and either 368 or 369 are required for students planning to teach instrumental music.

Physical Education
See Curriculum, Exercise and Sport Science, Physical Education Licensure.

Physical Sciences
Coordinators: Thomas Greenbowe, David Meltzer
Students seeking approval to teach physical sciences must earn credits in the following courses:

- Astro 120, 150; or 342, 346
- Chem 163, 163L, 231, 231L
- Geol 100, 100L
- Mteor 206
- Phys 111, 112; or 221, 222

- Biology: one course
- Math 151 or 160 or 165

- Three credits from courses numbered 300 and above in astronomy and astrophysics, chemistry, meteorology, physics, and geology.

Students with an endorsement in a natural science who seek approval to teach physical sciences as an additional area must earn credits in the courses listed below. Students with no other science endorsement, but who seek an endorsement in this area, must take the listed courses plus additional credits in the area to yield a total of at least 24. See area coordinator for approval prior to taking additional courses.

- Astro 120 or 150 or 342 or 346
- Chem 163, 163L
- Geol 100, 100L
- Mteor 206
- Phys 111, 112; or 221, 222

Physics
Coordinator: David Meltzer
Students seeking approval to teach physics must earn credits in the following courses:

- Phys 221, 222, 311T, 399 (2 cr), 321 or 324, and at least 12 credits from Phys 302, 304, 306, 310, 321L, 322, 322L, 361, 364, 365, 396; Astro 342, 344L, 346, Chem 321, 322; E E 205, 235, 441; E M 274, 301, 348, 378; M E 330, 331.
Students with an endorsement in a natural science who seek approval to teach physics as an additional area must complete one of the following sets of courses:

Phys 221, 222, 311T, 321, 321L, 399 (2 cr.); or Phys 111, 112, 302, 311T, 399 (2 cr.)

Students with no other natural science endorsement who seek approval to teach physics as an additional area must complete one of the two sets of courses listed above plus sufficient additional credits from the following list of courses to total 24 credits:

Reading (K-6; 7-12)
Coordinator: Donna Merkley

Students seeking endorsement to teach reading (7-12) as an additional area must earn credits in the following courses: Engl 219, 394; Engl 302 or 304 or 305 or 306 or 404 or 405; C I 378, 395, 396, 478. Students seeking reading approval for grades K-6, see elementary education adviser.

Speech Communication

Students seeking approval to teach speech must earn credits in the following courses: CmDis 275; ComSt 102, Sp Cm 110, 212, 305, 313, 322, 412, 495A, 495B; Thtr 255 or 360, 385, 455; JI MC 101.

Advisers for Areas of Specialization in Teacher Education

Persons interested in teaching in one of the following areas should consult with the appropriate individual. Details of each area will be found in the appropriate departmental section.

Community College—Larry Ebbers (Arts and Sciences), John Van Ast (Applied Science and Technology/Vocational-Technical)
Elementary Education—Al Campbell, Kate Shaffer, Denise Zumbach
Early Childhood Education—Al Campbell (College of Education), Patricia Walsh (College of Family and Consumer Sciences)
Special Education—Geoffrey Abelson
Talented and Gifted—Gary Phye

Secondary Education

Agricultural Sciences/Agrbusiness Education—Gregory S. Miller
Art—Dennis Dake
Biology—Warren Dolphin, Mike Clough
Chemistry—Thomas Greenbowe
Coaching Interscholastic Athletics—Rich Engelhorn
Earth Sciences—David Meltzer, Mike Clough
English—Robert Tremmel
English as a Second Language—Roberta Vann
Family and Consumer Sciences Education and Studies—Mary Gregoire
Foreign Languages—Linda Quinn Allen
General Science—Michael Clough, Thomas Greenbowe
Health Education—Frank Schabel
History and Social Sciences (economics, sociology, government, geography, and history)—Clair Keller
Mathematics—Janet Sharp, Richard Tondra
Music—Sylvia Munsen
Physical Education—Katherine Thomas
Physical Sciences—Mike Clough, Thomas Greenbowe, David Meltzer
Physics—David Meltzer
Reading—Donna Merkley
Speech Communication—

Technology and Social Change

Advisory Committee: Eric Abbott, coordinator; Karl Gwiasda, undergraduate coordinator; Robert Mazur, graduate coordinator.

Undergraduate Study

Technology and social change is a cross-disciplinary program examining the relationships between technologies and the social and cultural environments in which they operate. The program has a national and international perspective, with courses addressing the interrelationships, policies, and impacts created by the international exchange of technologies. Through T SC, students will better understand the institutional and sociocultural consequences of technological change from differing perspectives and will become sensitive to the issues attending the use of technology to improve people’s lives. Work in the program can also serve as preparation for advanced study in this field.

The program requirement for a minor in technology and social change is a minimum of 15 credit hours. One of the courses must be T SC 341. An additional 3 credits must be taken from T SC cross-listed courses. The remaining 9 may be selected from T SC cross-listed courses or from the list of T SC approved courses. At least 9 of the 15 credits must be in courses numbered 300 or above. Because technology and social change is an interdisciplinary study, minor programs must include coursework in at least two departments. Students seeking a minor should develop a specific program of courses either with the T SC faculty representative in their department or with the T SC undergraduate coordinator. The student’s minor program must be approved by the T SC program coordinator.

Courses open for nonmajor graduate credit:
342, 343.

Courses Primarily for Undergraduate Students

T SC 342. World Food Issues: Past and Present. (Same as Agron 342.) See Agronomy. Nonmajor graduate credit.
T SC 343. Philosophy of Technology. (Same as Phil 343.) See Philosophy. Nonmajor graduate credit.
T SC 474. Communication Technology and Social Change. (Same as JI MC 474.) See Journalism and Mass Communication.
T SC 490. Independent Study. Cr. var. Prereq: 341, permission of instructor and of T SC coordinator.

Courses Primarily for Graduate Students, Open To Qualified Undergraduate Students

T SC 541. Technological Innovation, Social Change, and Development. (Same as Soc 541.) See Sociology.
T SC 574. Communication Technologies and Societies. (Same as JI MC 574.) See Journalism and Mass Communication.
T SC 590F. Special Topics: Technology and Social Change. (Same as U St 590F.) Cr. var. Prereq: 541, permission of instructor and of T SC coordinator. Individual study of topics concerning global and local implications of technological change.
Courses for Graduate Students

T SC 640. Seminar in Technology and Social Change. (Same as U St 640.) Cr. var. Prereq: 541. Consideration of global issues and consequences arising from technological change. Specific topics vary each time offered.

Textiles and Clothing

Mary Gregoire, Chair of Department

University Professors: Farrelli-Beck
Professors: Gregoire, Littrell, Stone

Distinguished Professors (Emeritus): Winakor

Professors (Emeritus): Burnet, Danielson
Associate Professors: Damhorst, Fiore, Kadolph, Kunz, Miller

Associate Professors (Emeritus): Brackelsberg, Kundel

Assistant Professors: Campbell, Parsons

Assistant Professors (Adjunct): Glock

Instructors (Adjunct): Fratzke

Undergraduate Study

The department offers study for the degree bachelor of science with a major in apparel merchandising, design, and production. The program offers students a broad understanding of textile and apparel products, merchandising and marketing strategies, design and production processes, and business practices leading to a wide range of careers at state, national, and international levels in business and industry. Courses in the department provide scientific, technical, and humanistic knowledge about textiles, apparel, and related products basic to career preparation. Courses also provide knowledge applicable to the development and use of apparel and textile products by individuals, families, and institutions. The program can be used as a foundation for graduate study. Graduates understand the production, distribution, and use of textiles and apparel, with special attention to human concerns for protection and comfort, health and safety, aesthetic expression, and communication. They are prepared to plan, develop, and present textile and apparel products to meet the needs of consumers. They understand the issues involved in textile and apparel production and marketing, both nationally and internationally. Graduates appreciate the interdependence of nations and cultures as producers and consumers of textile products.

The major in apparel merchandising, design, and production (AMDP) provides a broad-based program of study with flexibility in creating an individualized program option. Courses are required in the following groups: general education, family and consumer sciences core, and the AMDP core. To complete the program, a student combines structured clusters of courses to form an option in merchandising, design, or production.

An option in merchandising prepares students for the planning, development, and presenta-

tion of market-oriented product lines. Career opportunities are in product development, buy-
ing, promotion, and management in both manufac-
turing and retailing sectors of the textile and apparel industry.

An option in apparel design is appropriate for those interested in the aesthetic, creative, and technical aspects of design, product or line development, or promotion of textiles and apparel.

An option in production prepares students for positions related to apparel engineering, plant management, quality assurance, costing, product development, sourcing, and buying piece goods or trim for apparel manufacturing or retailing firms.

In addition, a student selects a secondary option from the other primary options or from business, consumer behavior/marketing, creative design, history/theatre costume, human relations/communications, international trade, quality assurance, or technical design. The combinations of primary and secondary options allow students to individualize their programs.

The department offers a minor in apparel merchandising, design, and production. The minor can be earned by taking T C 131 or 165; 204; 225, 231, or 245; 6 credits at the 300-400 level; for a total of 15 to 17 credits. Also available is an apparel merchandising, design, and production designated area of concentration combined with a major in journalism and mass communication in the College of Liberal Arts and Sciences; see department for details.

Graduate Study

The department offers the degrees master of science and doctor of philosophy with a major in textiles and clothing. The department also participates in the Master of Family and Consumer Sciences degree by offering a specialization within that program. For all programs the field of study is highly interdisciplinary; programs of study are tailored to students’ background and interests.

Graduates understand how textiles and apparel are essential in meeting individual and societal needs and understand the interdependence of nations and cultures as producers and consumers. Graduates understand diverse philosophies of scholarship and apply multiple methods to research and teaching. Strong writing and oral communication skills help graduates disseminate scholarship and compete successfully for awards and grants.

Graduates accept positions relevant to their academic experience. All doctoral graduates have teaching experience. Masters and doctoral graduates have experience working in team-oriented and interactive environments. Graduates are prepared to adapt to future changes in their professions and to provide leadership in professional and public practice. They bring a strong sense of ethics to research, teaching, and business endeavors.

Program emphases for graduate study include consumer behavior; entrepreneurship; craft marketing; merchandising and marketing aspects of textiles and clothing; acquisition and use of textiles and apparel within cultures; U.S. costume and textiles of the 19th and 20th centuries; textiles; social/psychological aspects of dress; aesthetics; product quality and development; textile conservation; and computer-aided design.

The department participates in the interdepartmental minor programs of gerontology and housing.

Courses open for nonmajor graduate credit: 354.

Courses Primarily for Undergraduate Students

T C 121. Apparel Assembly Processes. (1-4) Cr. 3. F.S. Principles of garment assembly. Use of mass production equipment and methods to develop and assemble garments.

T C 135. Appearance in Society. (3-0) Cr. 3. F.S. Social science approaches to understanding clothing and appearance in contemporary U.S. society. Examination of diversity among consumers and forecasting future trends in consumer behavior.

T C 225. Patternmaking I. (2-4) Cr. 4. F.S. Prereq: 121, 131, 204 recommended. Basic flat pattern and draping methods for women’s, men’s and children’s wear. Pattern drafting; pattern making by computer.

T C 245L. Aesthetics of Apparel Laboratory. (0-2) Cr. 1. F.S. Prereq: 121, 131, 245 or concurrent enrollment. Computer-aided design applied to analysis, development, and presentation of textiles and apparel.

T C 278. Fashion Illustration. (0-6) Cr. 3. F.S. Prereq: 131, 245, Art 108 or 130. Drawing the fashion figure and apparel using mixed media and computer-aided design. Studies and compositions appropriate to advertising, fashion presentation, and portfolio development. Survey of historical and contemporary fashion artists.

C 331. Apparel Engineering and Management. (2-3) Cr. S. Prereq: 231; Com S 103; T C 121 recommended. Procedures and exercises related to method analysis, work measurement, costing, and production planning; resource management, technology applications, and quality assurance.

C 342. Aesthetics of Everyday Experience. (3-0) Cr. S. 3 credits of art can be applied toward a minor in fashion design. Prerequisites: Design concepts, and philosophies applied to everyday living. Influence of individual differences and cultural patterns on aesthetic preferences.

C 355. History of Asian Costume. (Dual-listed with 555.) (3-0) Cr. S. Alt. F., offered 2002. Prereq: 204; 3 credits from Hist or Art H. Clothing and adornment of men, women, and children in selected countries of Asia, from antiquity to the early 20th century; includes Turkey, Iran, China, Japan, Korea, and Indonesia.

C 362. Cultural Perspectives in Clothing and Textiles. (3-0) Cr. S. 3. Prereq: 165 or 3 credits in anthropology, psychology, or sociology. Analysis of multiple factors related to clothing and textiles in selected societies, including technology, aesthetics, social organization, ritual, stability and change. Application to apparel studies.

C 375. Merchandising. (Dual-listed with 575.) (3-0) Cr. S. F. Prereq: 165; Com S 103, 3 credits in Math; junior classification. Principles of merchandising as applied in manufacturing and retailing business organizations. Study of planning and development of primary apparel and related product lines.

C 375L. Merchandising Analysis. (1-0) Cr. 1. F. S. Prereq: Credit or concurrent enrollment in 375. Interpretation of financial results of merchandising decisions based on computer simulation.

C 376. Merchandise Planning and Control. (3-0) Cr. S. 3 credits of Hist or Art H. Theories and procedures in planning, sourcing, and controlling retail inventories for the profitable management and operation of apparel and related product lines. Computer applications in strategic retail management.

C 380. Field Study. Cr. 2. May be repeated. F.S.S.S. Prereq: 9 credits in textiles and clothing, junior classification. Permission by application. Study of and tours to textile mills, apparel manufacturers, design studios, showrooms, markets, retailers, museums, testing laboratories, trade seminars and exhibitions, and other areas of interest within the textile and apparel industry.

C 398. Cooperative Education. Cr. R. F. S. S. Prereq: Permission of department executive officer; junior classification. Required of all cooperative education students. Students must register for this course prior to commencing each work period.

C 404. Textile Science II. (Dual-listed with 504.) (3-0) Cr. S. Alt. S., offered 2003. Prereq: 204, 245; one course in natural sciences select from group. Theories and principles of textile science; emphasis on fiber, dye, and durability chemistry. Examination of product failure, current research, and environmental impact.

C 411. Seminar on Current Issues. Cr. 1 to 3 each taken. Prereq: Senior classification, 12 credits in textiles and clothing. Trends and issues in textiles and apparel.

C 467. Consumer Behavior and Apparel. (DUAL-listed with 567.) (2-2) Cr. S. F. Prereq: Stat 101 or 222; C 165 or 3 credits in marketing, psychology, or sociology. Application of concepts and theories from the social sciences to the study of consumer behavior toward apparel and adornment. Experience in conducting research.

C 470. Supervised Experience. Cr. 2 to 6. F.S.S.S. Prereq: Minimum 2.0 GPA; permission by application; junior or senior classification. Supervised work experience with a cooperating firm in merchandising, design, manufacturing, product development or quality assurance.

C 472. Global Issues in Textiles and Apparel. (Dual-listed with 572.) (3-0) Cr. S. F. F. Prereq: 375, Econ 101. Examination of key issues facing textiles and apparel businesses in global markets considering ethical, economic, political, social, and professional implications.

C 474. Entrepreneurship in Family and Consumer Sciences. (Dual-listed with 574; same as HD FS 474.) (3-0) Cr. S. S. Prereq: 6 credits in T C at 200-level or above. Explores entrepreneurship for family and consumer sciences related businesses. Includes family, home-based, rural, and women-owned businesses. Development of a feasibility analysis. Guest speakers.

C 498. Cooperative Education. Cr. R. F.S.S.S. Prereq: Permission of department executive officer; senior classification. Required of all cooperative education students. Students must register for this course prior to commencing each work period.

C 499. Undergraduate Research. Cr. 1 to 3 each taken. F.S.S.S. Prereq: Senior classification, 15 credits in textiles and clothing, permission of instructor, adviser, and department executive officer. Research experience in textiles and clothing with application to a selected problem.

Courses Primarily for Graduate Students, Open to Qualified Undergraduate Students

C 504. Textile Science II. (Dual-listed with 404.) (3-0) Cr. S. Alt. S., offered 2003. Prereq: 204, 245; one course in natural sciences select from group. Theories and principles of textile science; emphasis on fiber, dye, and durability chemistry. Examination of product failure, current research, and environmental impact.

C 510. Foundation of Scholarship in Textiles and Clothing. (2-2) Cr. S. F. Prereq: Graduate classification. Overview of research in textiles and clothing with emphasis on current and future directions and interdisciplinary nature of the field. Introduction to theory and model building.

C 545. Interdisciplinary Approach to Aesthetics of Textiles and Clothing. (3-0) Cr. S. Alt. F., offered 2001. Prereq: Undergraduate course in design elements and principles. Examination of aesthetics theory from an interdisciplinary perspective. Emphasis on theory from disciplines outside textiles and clothing. Discussion of implications for development and promotion of apparel products and promotional settings.

C 555. History of Asian Costume. (Dual-listed with 355.) (3-0) Cr. S. Alt. F., offered 2002. Prereq: 204, 3 credits from Hist or Art H. Clothing and adornment of men, women, and children, in selected countries of Asia, from antiquity to the early 20th century; includes Turkey, Iran, China, Japan, Korea, and Indonesia.

Courses and Programs Theatre and Performing Arts 341

Theatre and Performing Arts

www.theatre.iastate.edu

(Administered by the Department of Music)

Undergraduate Study

Students interested in theatre as a major area of concentration declare a major in Performing Arts and select an emphasis in Theatrical Design or Acting/Directing. Students implement the theories and principles explored in the classroom by participating in production work. During the academic year, Iowa State University Theatre presents up to ten mainstage and second stage productions in Fisher University Theatre, and works in close collaboration with ISU Music and Dance.

The major in Performing Arts offers the undergraduate student a cross-disciplinary concentration in Music, Dance and Theatre. The core curriculum consists of 25 credit hours in the three areas. Students elect a 24 credit hour emphasis in either Dance, Theatrical Design or Acting/Directing. In addition to coursework, all Performing Arts majors and minors participate in concert (Orchesis, Footfalls), workshop (Opera Studio, Minority Theatre Workshop) and production (Barchje, Stars Over Veishea, ISU Theatre/Music Theatre/Second Stage and Studio) experiences.

Performing Arts students, in addition to a solid theoretical and experiential background in the areas of performance, theatrical design, dance and music, are prepared to meet the challenges of the work force or graduate school with their strengths in collaboration, creative problem solving, meeting deadlines and processing diverse input to yield cohesive output. Two required professional internships prior to graduation are vital to the student’s appreciation and practical understanding of the rigors of the field.

The theatre area offers a wide variety of courses. Students may select from a core of courses in acting, design (costume, scenic, lighting/sound), make-up, stage direction, stage management, and theatre history. Independent study and special topics courses supplement formal course offerings to provide opportunities to intensify study in a particular aspect of theatre.

Auditions for ISU Theatre productions are open to all students irrespective of academic major. Similarly, participation in areas of production other than acting is open to both majors and nonmajors. Qualified students also present experimental, laboratory, and Minority Theatre Workshop productions. Student actors, directors, designers, and technical crew heads are required to maintain a grade point average of at least 2.0 to participate in productions.

Theatre scholarships are awarded on a yearly basis to students who make significant contributions to Iowa State University Theatre.

Bachelor of Arts - Performing Arts Major (Perf)

The Core for the Performing Arts Major (25 cr)

(For individual Dance and Music course descriptions, see Index for individual department listing.)

Music 100, 102, 127
Dance 120–Modern Dance I, 130–Ballet I, 220–Modern Dance Composition
Dance 270–Dance Appreciation

Perf 255, 263, 365
Perf 105–six semesters, Perf 310 (2), Perf 401

Emphasis in Theatrical Design (24 cr)

Perf 250 (2 cr), 360, 366, 455, 461, 465, 466

Music 133

Emphasis in Dance (24 cr)

Art 292, Music 133, Ex Sp 355

Dance 222, 224 (2 cr), 232, 360, 370

Select 2 credits from: Dance 140, 150, 160, 170, 211 (instead of 160, 170)

Select 2 credits from: Dance 223, 233, 242, 243, 262

Select 3 credits from: Dance 320, 384, 385, 386

All students enrolled in the Dance Emphasis must register for one dance technique course every semester of residence up to a total of 8 credits and must complete one computer course (Comp S 103, 107, 207, C 1201).

Emphasis in Acting/Directing (24 cr)

Perf 151, 250 (2 cr), 251, 351, 451, 455, 465, 466

Music 133

Minor in Performing Arts (21 cr)

Perf 105 (three semesters)

Music 100, 102

Dance 120 or 130, 270

Perf 255, 263 or 251

Graduate Study

The department offers graduate courses as supporting work in other fields.

Courses open for nonmajor graduate credit:

Perf 401.
Performing Arts

Courses Primarily for Undergraduate Students

Perf 310. Performing Arts Internship. Cr. R. F.S.SS. Required of performing arts majors. A job or internship with a professional or semi-professional performing arts organization.

Theatre

Courses Primarily for Undergraduate Students

Theatre 106. Introduction to the Performing Arts. (3-0) Cr. F.S.SS. An audience oriented, broad-based, team-taught survey of the performing arts which emphasizes theatre and includes segments on television, radio, film, dance, and music.

Theatre 110. Theatre and Society. (3-0) Cr. F.S.SS. An introduction to Theatre focusing on its impact on society from the Greeks to modern times. Particular emphasis on the contemporary world theatre.

Theatre 151. The Actor’s Voice. (3-0) Cr. S. Study and practice of fundamentals of vocal production: breathing, quality, articulation, projection, and expressiveness for the performing artist.

Theatre 224. Concert and Theatre Dance. (Same as Dance 224.) See Health and Human Performance, Dance.

Theatre 250. Theatre Practicum. Cr. 1 or 2 each time taken, maximum of 6 credits. F.S. Prereq: Permission of instructor. Practice in various aspects of technical theatre production. Offered on a satisfactory-fail grading basis only.

Theatre 252. African American Theatre Production. (Same as Af Am 252.) (3-0) Cr. F.S. An exploration of African American Theatre in production; aesthetic foundations, history and contributions to American Theatre.

Theatre 255. Introduction to Theatrical Production. (3-3) Cr. F. F.S. Standard structure and procedures, historical overview of performing arts production including the design and creation of scenery, costumes and lighting.

Theatre 263. Script Analysis. (3-0) Cr. F.S. Theory and analysis of scripts for production.

Theatre 290. Special Projects. Cr. 1 to 3 each time taken, maximum of 6 credits. F.S.SS. Prereq: 3 credits in theatre; permission of instructor; approval of written proposal.

Theatre 316. Creative Writing—Playwriting. (Same as Eng 316.) (3-0) Cr. S. Prereq: Engl 108, not open to freshmen. Progresses from production of scenes to fully developed one-act plays. Emphasis on action, staging, writing, analytical reading, workshop criticism, and individual conferences. Nonmajor graduate credit.

Theatre 351. Acting II. (3-0) Cr. S. Prereq: 251, Dance 120 recommended. Theory and practice of techniques of acting with emphasis on character and scene analysis.

Theatre 354. Musical Theatre I. (2-1) Cr. 3. Prereq: 251 or Music 236 or 3 credits in Dance. Theory, history and practice of musical theatre techniques. Designed to develop the musical theatre performance skills of singers, dancers, and actors.

Theatre 357. Stage Make-up, (1-2) Cr. F. Theory and practice of make-up and hair-styling techniques for the performing arts: Theatre, Opera, Dance, Television and Film. Lab required.

Theatre 358. Oral Interpretation. (3-0) Cr. 3. F. Principles of oral interpretation: practice in analysis, in reading aloud of literary selections, and in reader’s theatre.

Theatre 359. Theatre for Children and Youth. (3-0) Cr. 3. S. Study and practice of directing, acting, and the production of theatre for children and youth.

Theatre 366. Theatrical Design II. (2-2) Cr. 3. S. Prereq: 265. Intensive application of the principles introduced in 365. In-depth study and practice of the graphic skills of rendering and drafting.

Theatre 367. Stage Management. (3-0) Cr. 3. F. Prereq: 255. The responsibilities and techniques of stage management for the performing arts.

Theatre 393. Workshop. Cr. 3 each time taken, maximum of 9. F.S. Prereq: 3 credits in theatre. Offered to explore special topics.

Theatre 451. Acting III. (3-0) Cr. 3. F. Prereq: 351 and permission of instructor. Analysis and practice of period scenes.

Theatre 455. Directing I. (3-0) Cr. 3. F. Prereq: 255; 263, 261 recommended. Theory, techniques, and practice of directing.

Theatre 456. Directing II. (2-2) Cr. S. S. Prereq: 455. Practical and theoretical experience in directing the stage play.

Theatre 461. Theatrical Design Studio. (3-2) Cr. 4 each time taken, maximum of 12. F.S. Prereq: Permission of instructor. Focuses on the art and craft of specific areas of theatrical design. Each semester the student will focus on one or two of the following: scenic, costume, or lighting design.

Theatre 465. History of Theatre I. (3-0) Cr. 3. F. Prereq: Hist 201 or equivalent. History theatre from ancient times to 1900. Nonmajor graduate credit.

Theatre 466. History of Theatre II. (3-0) Cr. S. S. Prereq: 465. Theatre history from 1800 to present. Nonmajor graduate credit.

Theatre 469. Advanced Theatre Practicum. Cr. 1 to 3 each time taken, maximum of 3 credits per semester, maximum of 6 credits total. F.S.SS. Prereq: 9 credits in theatre courses; junior classification. Practicum in production with ISU Theatre, with opportunities for specialization within various areas. Required: Approval of written proposal.

Theatre 490. Independent Study. Cr. 1 to 3 each time taken. F.S.SS. Prereq: 9 credits in theatre, approved written proposal, junior classification. Only one independent study enrollment within the department is permitted per semester; no more than 9 credits in Theatre 490 may be counted toward graduation.
Facilities and faculty are available in these departments for fundamental research in such areas as aquatic toxicology, environmental fate and effects of chemicals, food safety, neurotoxicology, nutritional toxicology, pesticides, and veterinary toxicology.

Students majoring in toxicology will be affiliated with a cooperating department and choose a major professor from the participating faculty in that department. All Ph.D. students take a core curriculum consisting of Tox 501 and 502, 2 credits of Tox 500 (Toxicology Seminar), 7 additional credits in toxicology, 8 credits in biochemistry (from BBMB 404, 405, 420, 451, 511, 542), 3 graduate credits in physiology, histology, or pathology; Stat 401 and 402. M.S. students take a core of Toxicology 501 and 502, 1 credit of Toxicology 500 Seminar, 3 additional credits in toxicology, BBMB 404 and 405, Stat 401. Additional coursework is selected to meet departmental requirements and to satisfy individual student research interests; toxicology courses may be chosen from those listed below. The foreign language requirement is determined by the student’s major department.

Graduates of the Toxicology major will be able to carefully design, execute and analyze experiments that extend the knowledge of toxicology and closely related sciences. They will be able to clearly communicate research findings, and thoroughly evaluate the literature of toxicology, contributing significantly to the advancement of the field.

A graduate minor in toxicology is available for students enrolled in other majors. A minor for an M.S. degree includes Tox 500 and 501 and 6 credits in other toxicology courses. A minor at the Ph.D. level includes Tox 500, 501, and 9 credits in other toxicology course work. One member of the student’s program of study committee will be a member of the toxicology faculty.

Courses open for nonmajor graduate credit: 419, 420.

Courses Primarily for Undergraduate Students

Tox 419. Foodborne Hazards. (Same as FS HN 419.) See Food Science and Human Nutrition. Nonmajor graduate credit.

Tox 420. Food Microbiology. (Same as Micro 420.) See Microbiology. Nonmajor graduate credit.

Courses Primarily for Graduate Students, Open to Qualified Undergraduate Students

Tox 501. Principles of Toxicology. (Same as VDPAM 501, Zool 501.) (3-0) Cr. 3. S. Prereq: VDPAM 404 or equivalent. Principles of toxicology governing exposure, fate, and effects of toxicants on living systems. Includes toxicokinetics and foreign compound metabolism relative to toxification or detoxification. Fundamentals of foreign compound effects on metabolism, physiology, and morphology of different cell types, tissues, and organ systems.

Tox 504. Toxicology Seminar. (Same as VDPAM 504.) (1-0) Cr. 1 each time taken. F.S. Prereq: Permission of instructor. Presentation of a seminar or a current topic in toxicology as part of a weekly series of seminars by graduate students, faculty, and guest lecturers from off campus.

Tox 513. Ecological Toxicology. (Same as A Ecl 513.) See Animal Ecology.

Tox 519. Food Toxicology. (Same as FS HN 519.) See Food Science and Human Nutrition.

Tox 526. Veterinary Toxicology. (Same as VDPAM 526.) (3-0) Cr. 3. S. Prereq: Permission of instructor. A study of disease processes in animals caused by toxicants and the use of differential diagnostic and therapeutic procedures.

Tox 544. Aquatic Toxicology. (Same as A Ecl 544.) See Animal Ecology.

Tox 546. Clinical and Diagnostic Toxicology. (Same as VDPAM 546.) (3-0) Cr. 1 to 3 each time taken. F.S.S.S. Prereq: VDPAM 526 or DVM degree. Advanced study of current problems and issues in toxicology. Emphasis on problem solving utilizing clinical, epidemiological, and laboratory resources.

Tox 554. General Pharmacology. (Same as B M S 554.) See Biomedical Sciences.

Tox 590. Special Topics.

Courses for Graduate Students

Tox 626. Advanced Food Microbiology. (Same as FS HN 626.) See Food Science and Human Nutrition.

Tox 643. Natural Toxins. (Same as VDPAM 643.) (1-6) Cr. 3. Alt. F., offered 2002. Prereq: Courses in biochemistry and physiology. Naturally occurring toxins in foods and feeds, poisonous plants and venoms.

Tox 645. Agricultural and Environmental Analytical Toxicology. (Same as VDPAM 645.) (1-3) Cr. 2. F. Prereq: Chem 211, 322, Analysis and interpretation of toxicant residues in animal tissues, foods, water, soil, and other environmental specimens.

Transportation

(Interdepartmental Graduate Major)

Supervisory Committee: R. R. Souleyrrette, Chair, M. R. Crum, R. G. Mahayani

Work is offered for the degree master of science (thesis option only) with a major in transportation under a cooperative arrangement with various departments including Civil and Construction Engineering (CCE), Community and Regional Planning (CRP), and Logistics, Operations and Management Information Systems (LOMIS). Opportunities are afforded for research in such areas as modeling and performance of transportation systems, techniques for urban and regional transportation system planning, environmental and social policy analysis of transportation systems, transportation policy analysis, analysis of transportation technologies, commodity distribution, public administration of the transportation planning process, regional development and transportation system interrelationships, transportation economics and finance, and planning for logistics management.

Students majoring in transportation will develop a program of study under the guidance of a committee nominated by the administrative department head, approved by the departmental transportation supervisory committee representative, and appointed by the dean of the Graduate College. For administrative purposes, the student’s home department will be the department originally admitting the student. A major professor may be selected from any of the three participating departments. A student must designate at least one member of the POS committee from his or her home department, and at least one member from outside the home department.

A student must complete at least 36 credit hours of acceptable work including preparation of a thesis. A structured minor requires 12 credits of approved transportation courses and a thesis on a transportation related topic.

A required core includes C E 651, Trans 691, Stat 401 and at least one course from all three cooperating departments (CRP, CCE and LOMIS). Detailed requirements are available from the chair of the supervisory committee.

Graduate students pursuing a major in any of the cooperating departments who have an interest in transportation are encouraged to consider a formal declared minor in transportation. Students considering a declared minor should consult with the chair of the supervisory committee about the requirements for it.

Students typically focus their program of study to support a career in one of four areas: regional and statewide transportation planning, transportation service operations and transportation management, transportation policy and economic analysis, and transportation planning and operation for local and state governments. Graduates will have specific knowledge in one or more of these focus areas and the skills to conduct research and analysis of transportation issues. These skills allow graduates to be productive immediately in positions related to a focus area or to continue in more advanced transportation graduate work.

Courses Primarily for Graduate Students

Trans 555. Economic Analysis of Transportation Investments. (3-0) Cr. 3. Alt. S., offered 2002. Prereq: C E 350 or 353 or 354 or 355. Application of economic analysis methodologies to evaluate transportation projects. Multi-modal approaches to evaluating impacts of transportation investments and maximizing economic efficiency while considering equity and other social issues related to investment options.

Trans 691. Seminar in Transportation Planning. Cr. 1 to 3. S. Provide an overview of current transportation issues; lecture or provide seminars of a variety of timely transportation topics.

Trans 699. Research.
Transporation and Logistics

(Administered by the Department of Logistics, Operations, and Management Information Systems)

Michael R. Crum, Chair of Department

Distinguished Professors: Allen, Baumel

Professors: Crum, Poist, Wacker

Professors (Emeritus): Thompson, Voorhees

Associate Professors: Hendrickson, Lumnus, Mennecke, Nilakanta, Nonis, Premkumar, Walter

Assistant Professors: Hackbart, Johnson, Montabon, Ruben, Strader, Suzuki, Zhu

Instructors (Adjunct): Blashan, Chooбине, Clayton

Undergraduate Study

For the undergraduate curriculum in business, major in transportation and logistics, see College of Business, Curricula.

Transportation and logistics management is a discipline concerned with the efficient flow of materials through our industrial and economic system. Transportation management deals with the management of the domestic and international modes of transportation in today's rapidly changing economic environment. Logistics management assumes the systems approach to the management of a wide variety of activities such as inventory control, warehousing, traffic management, location analysis, packaging, materials handling, and customer service.

The study of transportation and logistics serves as a specialized program for those who plan careers in transportation or logistics with shippers, carriers, and government agencies. It is a broad-based educational program which emphasizes the managerial aspects of transportation and logistics systems and concepts.

The requirements for the transportation and logistics major are met by completion of the following courses: TRLog 480, 481, plus four of the following courses, two of which must be TRLog courses: TRLog 462, 463, 466, 468, 469, 490, POM 420, 422, 424, or MIS 439.

The department also offers a minor for College of Business students with a different major. They are required to take 15 credits from a list of approved courses, 9 credits of which may not be used to satisfy any other requirement.

Graduate Study

The department participates in two graduate degree programs: the M.S. in Business and the M.B.A. full-time day and part-time weekend programs. The M.S. degree in Business is a 30-credit curriculum culminating in a thesis. The M.B.A. program is a 48-credit, nonthesis, noncreative component curriculum. Twenty-four of the 48 credit hours are core courses and the remaining 24 are graduate electives. The department also participates in the interdepartmental transportation major.

Courses open for nonmajor graduate credit: 461, 462, 463, 466, 468, and 469.

Courses Primarily for Undergraduate Students

TRLog 360. Business Logistics. (3-0) Cr. 3. Prereq: Econ 101. Introduction and analysis of the logistics concept to include the management of transportation, inventory, packaging, warehousing, materials handling, order processing, facility location, and customer service.

TRLog 461. Transport Economics. (3-0) Cr. 3. Prereq: Stat 227, Econ 101. The role of transportation in the economy. The economic characteristics of the various modes of transportation, including the nature of transport demand and cost functions; economic dimensions of transport service; transport market structures; and transport pricing theory and practice. Emphasis on managerial implications of transport economic principles. Nonmajor graduate credit.

TRLog 462. Transportation Carrier Management. (3-0) Cr. 3. Prereq: Credit or enrollment in 461. Analysis of transport users' requirements. Carrier management problems involving ownership and mergers, routes, competition, labor, and other decision areas. Nonmajor graduate credit.

TRLog 463. Purchasing Management. (3-0) Cr. 3. Prereq: 360. Principles and policies in acquiring goods and services for the firm. Emphasis on purchasing as it relates to materials management. Nonmajor graduate credit.

TRLog 466. International Transportation and Logistics. (3-0) Cr. 3. Prereq: 360. Logistics systems and legal framework for the international movement of goods. Operational characteristics of providers of exporting and importing services. The effects of government trade policies on global logistics. Nonmajor graduate credit.

TRLog 468. Transportation and Public Policy. (3-0) Cr. 3. Prereq: Credit or enrollment in 461. Analysis of current policies affecting transportation providers and users. The roles of carrier and shipper organizations, government agencies, and other interest groups in policy development. Evaluation of impact of programs, policies, and legislation on various transportation constituencies. Nonmajor graduate credit.

TRLog 469. Transportation and Logistics Issues. (3-0) Cr. 3. Prereq: 460, 461. An integrative course designed to study contemporary problems and issues in transportation and logistics. Nonmajor graduate credit.

TRLog 490. Independent Study. Cr. 1-3 each time taken. Prereq: 360, senior classification, permission of instructor.

Courses Primarily for Graduate Students

TRLog 560. Business Logistics Strategies. (3-0) Cr. 3. Prereq: Graduate classification. Management of the logistics functions in the firm: including transportation, inventory control, warehousing, packaging, facility location, materials handling, and customer service. Includes both theoretical aspects and practical applications in logistics.

TRLog 561. Transportation Management and Policy. (3-0) Cr. 3. Prereq: Graduate classification. Analysis of contemporary issues and strategies in transportation management and policy. Emphasis on evaluation of the impacts of transportation policies, new technologies, and strategic carrier and shipper management practices on the freight transportation industry and logistics systems.

TRLog 590. Special Topics. Cr. 1 to 5 each time taken. Prereq: Graduate classification and permission of instructor. For students who wish to do individual research in a particular area of transportation or logistics.

University Studies

Howard Shapiro, Vice Provost for Undergraduate Programs

Certain interdisciplinary courses are offered through university studies, at the discretion of the vice provost for undergraduate programs upon the advice of the Faculty Senate Curriculum Committee. No major is available in university studies, but credit obtained through university studies offerings may be applied toward a degree in any of the colleges, consistent with the stipulations of the student's curriculum.

Requests to make use of U St 101, 290, 301, and 490 should be directed to the vice provost for undergraduate programs and should be accompanied by a positive recommendation from the department heads and deans of the instructors making the request. The vice provost will refer requests to the Faculty Senate Curriculum Committee which will make recommendations to the vice provost regarding their disposition after consultation with appropriate college and university committees.

The Graduate College sponsors U St 180 and 511 to help graduate students carry out instructional tasks as teaching assistants. Placement in 180 is determined by examination (SPEAK/TEACH tests).

Courses open for nonmajor graduate credit: 342.

Courses Primarily for Undergraduate Students

U St 101. Interdisciplinary Studies. Cr. var. Yr. Offered when demand warrants. Experimental interdisciplinary courses offered by an interdepartmental group. Intended primarily for freshman and sophomore offerings.

U St 105. Carver Academy Seminar. Cr. 1. F.S. Prereq: Acceptance in Carver Academy Program. Orientation to the university for Carver Academy students. Offered on a satisfactory-fail grading basis only.

U St 111. Hixson Scholars Seminar. (1-0) Cr. 1. F. Prereq: Recipient of the Hixson Opportunity Award. Orientation to Iowa State University and the Hixson Opportunity Awards Program. Offered on a satisfactory-fail grading basis only.

U St 120. Study Abroad Credit. (Same as IntSt 120.) See International Studies.

U St 131, 132. Early Success Seminar. (0-2) Cr. 1. F.S. Orientation to the university for students in the Early Success Program. Offered on a satisfactory-fail grading basis only.

U St 150. Dialogues on Diversity. Cr. 1. F.S. An exploration of diversity within the context of the Iowa State University community through understanding human relations issues.

U St 180. Communication Skills for International Teaching Assistants. (Same as Engl 180.) F.S. Placement based upon SPEAK/TEACH test results. Persons whose native language is English cannot take 180 for credit. No more than one section of 180 may be taken per semester; up to two sections total. Credit does not apply toward graduation. Offered on a satisfactory-fail grading basis only.

A. Speaking Skills. Cr. 2. Emphasis on pronunciation improvement and greater fluency in spoken English for teaching purposes.

B. Intermediate Spoken English. Cr. 3. Interactive speaking and response to questions is emphasized.
reached the passing level on the SPEAK/TEACH test.
D. Presentation Skills. Cr. 3. Developing explanations, leading discussions and handling questions in a teaching environment.
E. Supervised Independent Study. Cr. 1. Seminar with individual observation and consultation.
U St 220. Study Abroad Credit. (Same as IntSt 220.) See International Studies.
U St 240. Preparatory Orientation for China Study Abroad. Cr. 1. An examination of the culture, language, history, economics, and agriculture of China in preparation for participating in the ISU Study Abroad Program. Offered on a satisfactory-fail grading basis only.
U St 290. Special Problems. Cr. var. Prereq: Permission of the vice provost for undergraduate programs. Independent study on topics of an interdisciplinary nature. Intended primarily for freshmen and sophomores.
U St 298. Federal Cooperative Education Program. Cr. R. F.S.S.S. Prereq: Permission of director, ISU Career Planning and Placement Services; sophomore classification. Required of all Federal Cooperative Education students. Students must register for this course prior to commencing each work period with the Federal Government.

Courses Primarily for Graduate Students, Open To Qualified Undergraduate Students
U St 541. Technological Innovation, Social Change, and Development. (Same as Soc 541.) See Sociology.
U St 590. Special Topics. Independent study on topics of an interdisciplinary nature. Intended primarily for graduate students.
F. Technology and Social Change. (Same as T SC 590.)

Courses for Graduate Students

Veterinary Clinical Sciences
Christopher M. Brown, Chair of Department
Professors: Betts, Brown, Evans, Grier, Hoefle, Hopkins, Jackson, Markley, Naxon, D. Riedesel, Ware
Professors (Collaborators): Carpenter
Professors (Emeritus): Canthors, Clark, Eness, Pearson
Associate Professors: Baldwin, Booth, Jergens, Miles, Nieves, Obrien, Reinertson, E. Riedesel, Wagner
Assistant Professors: Consenzius, Hopper, Kline, McClure, Whelan
Instructors (Adjunct): Aquino, Grewal, Hunter, Langer, Lauer, Little, Loenser, Morrison, Pendry, Ridgway, Schreiner, Sponseller, Wilke

Professional Program of Study
For the professional curriculum in veterinary medicine leading to the degree doctor of veterinary medicine, see Veterinary Medicine, Curriculum.

The study of medicine and surgery expands the training previously received in anatomy, physiology, pharmacology, pathology, and microbiology.

The department presents coursework in animal reproduction concerning interferences with parturition, diseases of the newborn, and infertility.

The teaching of radiology emphasizes the production and interpretation of radiographs and the dangers of ionizing radiation to humans and animals. Alternate imaging modalities, including ultrasonography and nuclear medicine are also taught.

Hospital assignments during the fourth year provide the student an opportunity to participate in the application of clinical skills and knowledge.

Graduate Study
The department offers work for the degree master of science with major in veterinary clinical sciences, and minor work for students majoring in other departments. Within the veterinary clinical sciences major, the student may specialize in veterinary medicine, swine production medicine, surgery, or theriogenology. The D.V.M. degree or equivalent is prerequisite to a major graduate work.

Both thesis and nonthesis options are available and require the completion of a minimum of 30 graduate credits and a final examination.

Foreign language requirements may be established by the student’s program of study committee.

Courses Primarily for Professional Curriculum Students
V C S 385. Seminar. (Same as VDPAM 385.) (1-0) Cr. subject time taken. F.S. Prereq. Classification in veterinary medicine. Seminars and case discussions on selected clinical subjects by staff and fourth-year students of the College of Veterinary Medicine. Offered on a satisfactory-fail grading basis only.

V C S 398. Anesthesiology. (1-0) Cr. 1. S. Prereq. Second-year classification in veterinary medicine. Anesthetic equipment, agents, and procedures for domestic animals.

Courses and Programs

Veterinary Clinical Sciences

2001-2003

V C S 440. Introduction to Clinics. (Same as VDPAM 440.) (0-4) Cr. R. F. 8 weeks. Prereq: Third-year classification in veterinary medicine.

V C S 445. Clinical Medicine II. (Same as VDPAM 445.) (5-0) Cr. 5. S. Prereq: Third-year classification in veterinary medicine. Clinical diagnosis and treatment of diseases of equine, swine, beef, dairy, and sheep.

V C S 448. Radiology. (2-0) Cr. 2. S. Prereq: Third-year classification in veterinary medicine. Essentials of diagnostic imaging and radiobiology with emphasis on diagnostic interpretation and protection from radiation.

V C S 449. Surgery Laboratory. (1-4) Cr. 3. F. Prereq: Third-year classification in veterinary medicine. Pre-laboratory presentations and laboratories introducing the student to appropriate companion animal surgical methods and techniques.

V C S 450. Disturbances of Reproduction. (Same as VDPAM 450.) (4-0) Cr. 4. F. Prereq: Third-year classification in veterinary medicine. General principles of diseases causing disturbances in reproduction.

V C S 451. Advanced Small Animal Soft Tissue Surgical Laboratory. (1-6) Cr. 2. Prereq: VCS 397, 398, 399, 448. Advanced small animal soft tissue surgical procedures involving the abdominal cavity. Less emphasis will be placed on the thoracic cavity and head and neck injury.

V C S 452. Clinical Dermatology. Cr. 2. Prereq: Fourth-year classification in veterinary medicine, small animal option. Study of clinical dermatological problems via computer-aided instruction, case simulations, and/or lectures. Clinical management of cases presented to Veterinary Teaching Hospital.

V C S 468. Intensive Care. Cr. 4. Prereq: Fourth-year classification in veterinary medicine. Clinical assignment to provide supervision of hospital cases requiring intensive care and including emergency cases.

V C S 476. Anesthesiology. Cr. var each time taken. Prereq: Fourth-year classification in veterinary medicine. Elective clinical assignment in small and large animal anesthesiology.

V C S 490. Independent Study. Cr. 1 to 5. Prereq: Permission of instructor and department chair.

V C S 495. Seminar. (Same as VDPAM 495.) Cr. R. S. Prereq: Fourth-year classification in veterinary medicine. Seminars and case discussions on selected subjects by staff of the College of Veterinary Medicine and others, including student presentations. Offered on a satisfactory-fail grading basis only.

Courses Primarily for Graduate Students, Open to Qualified Undergraduate Students

V C S 590. Special Topics. Cr. 1 to 3. Prereq: Permission of instructor. A. Medicine B. Surgery C. Theriogenology D. Radiology E. Anesthesiology

V C S 599. Creative Component. Cr. var. Prereq: Enrollment in nonthesis master’s degree program.

Courses for Graduate Students

V C S 604. Seminar. Cr. 1 each time taken. F.S.

V C S 699. Research. A. Medicine B. Surgery C. Theriogenology E. Anesthesiology

Veterinary Diagnostic and Production Animal Medicine

Robert E. Holland, Chair of Department

University Professors: McKean

Professors: Carson, Evans, Harris, Hartvig, Hoffmann, Holland, Hopkins, Hopper, Hyde, Kunesh, Osweiler, Trampel

Professors (Emeritus): Kunesh, Stahr, Wass

Associate Professors: Halbur, Janke, Kersting, Larson, Thacker, Thompson, Uhlenhopp, Yaeger, Zimmerman

Assistant Professors: Apley, Carr, O’Connor, Sorden, Yoon, Zhou

Assistant Professors (Adjunct): Harmon, Imemer, Kinyon, Koak, Schwartz

Instructors (Adjunct): Ensley, Harms, Meyer, Pograichny, Robbe, Swalla, Villar, Wagner

Professional Program of Study

For the professional curriculum in veterinary medicine leading to the degree doctor of veterinary medicine, see Veterinary Medicine, Curriculum.
The study of veterinary diagnostic and production animal medicine provides the student with basic and advanced skills in diagnostics, reproduction, medicine, surgery, production, and health management of the major livestock species. Students in the fourth year of the curriculum in veterinary medicine may elect to take advanced courses in beef, dairy, swine, poultry or other livestock medicine. Elective courses may include preceptorships in private practices, other veterinary schools, research and disease control laboratories.

Production animal medicine emphasizes the integration of veterinary medicine with nutrition, genetics, economics, food safety, and other disciplines, enabling graduates to use a broad knowledge base to support the health and production of food and fiber animals.

Graduate Study

The department offers graduate courses for students pursuing graduate work in other departments. The D.V.M. degree or equivalent is prerequisite to enrollment in these courses.

Courses Primarily for Professional Curriculum Students

VDPAM 385. Seminar. (Same as V C S 383) (1-0) Cr. R each time taken. Prereq: Classification in veterinary medicine. Seminars and case discussions on selected clinical subjects by staff and fourth-year students of the College of Veterinary Medicine. Offered on a satisfactory-fail grading basis only.

VDPAM 408. Porcine Medicine and Disease Prevention. (Dual-listed with VDPAM 508.) Cr. 2. S. Prereq: Enrollment in College of Veterinary Medicine. Bacterial, viral, parasitic, and nutritional diseases of domestic poultry and gamebirds: biosecurity, immunization, and management procedures to prevent poultry diseases.

VDPAM 411. Production Animal Medicine. Cr. 4 each time taken. F.S.S. Prereq: Fourth-year classification in veterinary medicine. Seasonal enrollment limit. Clinical assignment in food animal production medicine and service. Emphasis on diagnosis, medicine, surgery, theriogenology, and treatment skills.

VDPAM 416. Bovine Reproduction Evaluation Laboratory. (0-3) Cr. 1. F.S. Prereq: Third year classification in veterinary medicine. 10 students per section. Bovine rectal palpation techniques will be repetitively taught in three-hour sessions. Students will learn techniques of epidural anesthesia, artificial insemination, and ultrasonic imaging. University-owned cattle will be used.

VDPAM 420. Preceptorship in Veterinary Medical Practice. Cr. 1 to 6 each time taken. F.S.S. Prereq: Fourth-year classification in veterinary medicine, permission of department chair. Elective course in veterinary practice under the guidance of veterinarians in approved practice settings.

VDPAM 426. Veterinary Toxicology. (Dual-listed with S 526.) Cr. 3. S. Prereq: Third-year classification in veterinary medicine. A study of the disease processes in animals caused by toxicants and the use of differential diagnostic and therapeutic procedures.

VDPAM 436. Beef Records Analysis. Cr. 1 per semester. S. Prereq: Classification in Veterinary Medicine. Students will learn to conduct and critically assess production and financial data using Standardized Performance Analysis (SPA) in beef herds. Students will be matched with individual herds and work with producers to identify areas for improving profitability, health, and sustainability. Enrolling in the class for multiple semesters will be encouraged.

VDPAM 437. Investigational Techniques in Dairy Production Medicine: Dairy Herd Problem Identification. (7-33) Cr. 2. F.S.S.S. Prereq: Fourth-year classification in veterinary medicine. Seven hours recitation/discussion and 33 hours clinical experience per week. Course taken for two weeks at University of Wisconsin, Madison on a space-available basis. Identify equipment, facilities and management characteristics of dairy farms. Understand dairy herd records and use to examine health and productivity. Prioritize herd health and production problems and evaluate adequacy of ventilation and housing systems.

VDPAM 440. Introduction to Clinics. (Same as V C S 440.) (0-4) Cr. R. F. 8 weeks. Prereq: Third-year classification in veterinary medicine.

VDPAM 445. Clinical Medicine. (Same as V C S 445.) (3-0) Cr. S. Prereq: Third-year classification in veterinary medicine. Clinical diagnosis and treatment of diseases of equine, swine, beef, dairy, and sheep.

VDPAM 450. Disturbances of Reproduction. (Same as V C S 450.) (4-0) Cr. 1. F. Prereq: Third-year classification in veterinary medicine. General principles of diseases causing disturbance in reproduction.

VDPAM 455. Diagnostic Laboratory Practicum. Cr. 2 each time taken. F.S. Prereq: Fourth-year classification in veterinary medicine. Practical experience in diagnosis of field cases.

VDPAM 478. Introduction to Swine Production Medicine. (15-20) Cr. 2. F.S.S.S. Prereq: Fourth-year classification in veterinary medicine. Two week introductory topics in small ruminant production medicine with emphasis on monitoring disease, disease prevention, and production economics. Fifteen hours recitation/discussion and 20 hours clinical experience per week.

VDPAM 479. Swine Production Medicine Preceptorship. (0-40) Cr. 1-6 each time taken. F.S.S. Prereq: Fourth-year classification in veterinary medicine. Preceptorship with the department chair. Two week advanced course in swine production medicine with emphasis on herd management, production analysis, and problem solving. Forty hours clinical experience per week. Assignments will include preceptorships with a practicing veterinarian and/or a production unit.

VDPAM 480. Advanced Swine Production Medicine. (15-20) Cr. 2. F.S.S.S. Prereq: Fourth-year classification in veterinary medicine. Two week advanced clinical rotation in swine production medicine. Fifteen hours recitation/discussion and 20 hours clinical experience per week. The instructor will lead field trips as well as problem solving exercises where the student will apply concepts of herd management, production analysis, and disease prevention.

VDPAM 481. Introduction to Beef Production Medicine. (15-28) Cr. 2-3. F.S. Prereq: Fourth-year classification in veterinary medicine. Two week introductory topics in beef production medicine with emphasis on monitoring disease, disease prevention, and production economics. Fifteen hours recitation/discussion and 20 hours clinical experience per week.

VDPAM 482. Beef Production Medicine Preceptorship. (0-40) Cr. 1-6 each time taken. F.S.S. Prereq: Fourth-year classification in veterinary medicine. Two week advanced course in beef production medicine with emphasis on herd management, production analysis, and problem solving. Forty hours clinical experience per week. Assignments will include preceptorships with a practicing veterinarian and/or a production unit.

VDPAM 483. Advanced Beef Production Medicine. (15-20) Cr. 2. F.S. Prereq: Fourth-year classification in veterinary medicine. Two week advanced clinical rotation in beef production medicine. Fifteen hours recitation/discussion and 20 hours clinical experience per week. The instructor will lead field trips as well as problem solving exercises where the student will apply concepts of herd management, production analysis, and disease prevention.

VDPAM 484. Introduction to Dairy Production Medicine. (15-20) Cr. 2. F.S. Prereq: Fourth-year classification in veterinary medicine. Two week introductory topics in dairy production medicine with emphasis on monitoring disease, disease prevention, and production economics. Fifteen hours recitation/discussion and 20 hours clinical experience per week.

VDPAM 485. Dairy Production Medicine Preceptorship. (0-40) Cr. 1-6 each time taken. F.S.S. Prereq: VDPAM 484. Two week advanced course in dairy production medicine with emphasis on herd management, production analysis, and problem solving. Forty hours clinical experience per week. Assignments will include preceptorships with a practicing veterinarian and/or a production unit.

VDPAM 486. Introduction to Small Ruminant Production Medicine. (15-20) Cr. 2. F.S.S. Prereq: Fourth-year classification in veterinary medicine. Two week introductory topics in small ruminant production medicine with emphasis on monitoring disease, disease prevention, and production economics. Fifteen hours recitation/discussion and 20 hours clinical experience per week.

VDPAM 487. Livestock Disease Prevention. (3-0) Cr. 3. F. A survey of diseases of large domestic animals, including discussion of causes, transmission, and control. Designed for students majoring in agricultural sciences.

VDPAM 488. Laboratory in Clinical Microbiology. Cr. 1 each time taken. F.S.S. Prereq: Fourth-year classification in veterinary medicine. Application of microbiological and immunological procedures to the diagnosis of infectious and immunologically mediated diseases.

VDPAM 490. Independent Study. Cr. 1 to 5. F.S.S. Prereq: Permission of department chair.

VDPAM 495. Seminar. (Same as V C S 495.) Cr. 2. S. Prereq: Fourth-year classification in veterinary medicine. Seminar and case discussions on selected subjects by staff of the College of Veterinary Medicine and others, including student presentations. Offered on a satisfactory-fail grading basis only.

Courses Primarily for Graduate Students, Open to Qualified Undergraduate Students

VDPAM 501. Principles of Toxicology. (Same as Toy 501, Zool 501) (3-0) Cr. R. B. M. offers: 504. Prereq: 501 or equivalent. Principles of toxicology governing entry, fate, and effects of toxicants on living systems. Includes toxicokinetics and foreign compound metabolism relative to toxification or detoxification. Fundamentals of foreign compound effects on metabolism, physiology, and morphology of different cell types, tissues, and organ systems.

VDPAM 502. Toxicology Methods. (Same as Toy 502, Zool 502) (2-6) Cr. 3. Prereq: 501. Provides demonstrations or laboratory experience in the applications of methods used in toxicology, including safety procedures, calculation and data analysis, mutagenicity tests, cell culture, residue analysis, teratologic and morphologic evaluation, electrophysiologic measures, in vitro enzyme induction/biotransformation, neural and behavioral toxicology testing.

Courses for Graduate Students

VDPM 504. Toxicology Seminar. (Same as Tox 504.) (1-0) Cr. 1 each time taken. F.S. Prereq: Permission of instructor. Presentation of a seminar about a current topic in toxicology as part of a weekly series of seminars by graduate students, faculty, and guest lecturers from off campus.

VDPM 522. Principles of Epidemiology. (Same as VPM 522.) (3-0) Cr. 3. S. Prereq: Micro 310. Epidemiology and ecology of disease in populations. Disease causality and epidemiologic investigation. Issues in disease prevention, control, and eradication.

VDPM 526. Veterinary Toxicology. (Dual-listed with 426. Same as Tox 526.) (3-0) Cr. 3. S. Prereq: Permission of instructor. A study of the disease processes in animals caused by toxicants and the use of differential diagnostic and therapeutic procedures.

VDPM 546. Clinical and Diagnostic Toxicology. (Same as Tox 546.) (1-0) Cr. 1 to 3 each time taken. F.S. Prereq: D.V.M. degree or 526. Advanced study of current problems and issues in toxicology. Emphasis on problem solving utilizing clinical, epidemiological, and laboratory resources.

VDPM 590. Special Topics. Cr. 1 to 3. Prereq: Permission of instructor. Topics in medicine, surgery, theriogenology; beef, swine, dairy, or sheep production medicine.

VDPAM 655. Advanced Swine Production Medicine. Cr. 1-4. S. Prereq: DVM degree and permission of instructor. Detailed overview of applied techniques used in production medicine, process modeling and record analysis, production economics and financial analysis, therapeutic and vaccination strategies, quality control procedures and food safety.
The Department of Veterinary Microbiology and Preventive Medicine provides instruction on pathogenic bacteria, fungi, and viruses and their interaction with host animal species. Principles and applications of infectious diseases, immunity to disease, diagnostic methods for infectious diseases, and vaccinology are covered. Principles and applications of epidemiology, public health, preventive veterinary medicine, regulatory veterinary medicine and food safety are also emphasized.

Graduate Study

The department offers opportunities for the degree doctor of philosophy with a major in veterinary microbiology. A specialization in preventive medicine or an option for this degree. Graduates in the Veterinary Microbiology and Preventive Medicine programs have a broad understanding of the fundamental processes involved in infectious diseases, pathogenesis and immunology. They are able to effectively establish research programs, which involve complex biological systems and disease syndromes. They are also prepared to address microbial-based social, ethical and environmental problems. Graduates acquire effective written and oral communication skills which lead to successful research and teaching careers in the medical and veterinary sciences. The department also offers work towards the master of science with majors in veterinary microbiology, or veterinary preventive medicine. A non-thesis master’s option is available for majors in preventive medicine. Courses are open for students majoring in other graduate programs. Prerequisite to graduate study is completion of coursework in general microbiology, biology, biochemistry, mathematical sciences, and physics. Candidates for the majors in veterinary microbiology should possess an undergraduate degree in biomedical science with emphasis in medical microbiology or the D.V.M. degree. Candidates for the major in preventive medicine should possess the D.V.M. degree.

The department also participates in the interdepartmental majors and programs in genetics, immunobiology, and MCDB (molecular, cellular, and developmental biology; see Index). Each graduate student must demonstrate proficiency in English composition within two semesters in residence.

Courses Primarily for Professional Curriculum Students

V MPM 378. Case Study V. (0-4) Cr. 2. S. Prereq: Second-year classification in veterinary medicine. Clinical applications of basic sciences taught concurrently in the spring semester of the second year curriculum in veterinary medicine.

V MPM 380. Veterinary Immunology. (3-3) Cr. 2. S. 8 weeks. Prereq: First-year classification in veterinary medicine. Structure and function of the immune system in animals.

V MPM 386. Veterinary Microbiology. (3-5) Cr. 5. F. Prereq: Second-year classification in veterinary medicine. Bacteria and fungi of veterinary importance with emphasis on mechanisms of disease production and laboratory diagnostic procedures.

Courses and Programs

V MPM 388. Public Health. (3-0) Cr. 3. S. Prereq: Second-year classification in veterinary medicine. Principles and practice of epidemiology. Relationships of animals to human health and well-being including zoonotic diseases, safety of food products of animal origin, water safety, and handling of animal wastes.

V MPM 389. Clinical Mycology. (1-2) Cr. 2. F. Prereq: Second-year classification in veterinary medicine or Micro 310. Fungal pathogens, common mycotoxins and the associated diseases in animals and humans with emphasis on clinical laboratory diagnosis.

V MPM 390. Topics in Veterinary History. (2-0) Cr. 1. S. 8 weeks. Significant persons, noteworthy events, and pivotal scientific discoveries in the course of the development and advancement of veterinary medicine from ancient times to the present.

V MPM 403. The Human-Animal Bond. (1-0) Cr. 1. F. Prereq: Enrollment in veterinary medicine. Concepts of the human-animal bond including history, philosophy, and effects on individuals and society.

V MPM 409. Infectious Diseases of Captive Wild Animals. (1-0) Cr. 1. F. Prereq: Third-year classification in veterinary medicine. Infectious diseases (bacterial, viral, and mycotic) of non-human primates, birds, ruminants, colorblooded animals, marine mammals, and carnivores.

V MPM 436. Infectious Diseases and Preventive Medicine. (2-0) Cr. 2. F. Prereq: Third-year classification in veterinary medicine. Etiology, epidemiology, laboratory diagnosis, regulatory control and preventive medicine aspects of the infectious diseases of small domestic animals.

V MPM 437. Infectious Diseases and Preventive Medicine. (3-0) Cr. 3. S. Prereq: Third-year classification in veterinary medicine. Etiology, epidemiology, laboratory diagnosis, regulatory control and preventive medicine aspects of the infectious diseases of swine, sheep, goats, cattle and horses.

V MPM 486. Laboratory in Public Health. Cr. 1 each time taken. F.S. Prereq: Fourth-year classification in veterinary medicine. Laboratory exercises and field trips related to veterinary public health practices.

Courses Primarily for Graduate Students, Open to Qualified Undergraduate Students

V MPM 502. Microbial Genetics. (Same as Micro 502.) See Microbiology.

V MPM 504. Microbial Physiology. (Same as Micro 504.) See Microbiology.

V MPM 520. Medical Immunology I. (4-0) Cr. 4. F. Prereq: Micro 310 or V MPM 388, 3 credits in biochemistry. Nature of the immune system and its role in health and disease. Credit for either 520 or 575, but not both may be applied toward graduation.

V MPM 537. Infectious Diseases and Preventive Medicine. (3-3) Cr. 4. S. Prereq: Permission of instructor. In-depth study of the etiology, epidemiology, laboratory diagnosis, regulatory control and preventive medicine aspects of the infectious diseases of large domestic animals.

V MPM 540. Livestock Immunogenetics. (Same as An S 540.) See Animal Science.

V MPM 575. Immunology. (Same as Micro 575.) See Microbiology.

V MPM 586. Medical Bacteriology. (Same as Micro 586.) (4-0) Cr. 4. F. Prereq: Permission of instructor. Bacteria associated with diseases of vertebrates including virulence factors and interaction of host responses.

V MPM 586L. Medical Bacteriology Laboratory. (0-6) Cr. 2. F. Prereq: credit or enrollment in 586 or 625. Procedures used in isolation and identification of pathogenic bacteria including molecular and genetic techniques used in research.

V MPM 587. Animal Virology. (4-0) Cr. 4. Prereq: Permission of instructor. The biology of animal viruses and pathogenic mechanisms in viral diseases.

V MPM 587L. Laboratory in Animal Virology. (3-3) Cr. 1. Prereq: Permission of the instructor. Basic laboratory techniques in virology.

V MPM 599. Creative Component. Cr. arr. Prereq: Nonthesis M.S. Option only. A written report based on laboratory research, library reading, or topics related to the student’s area of specialization and approved by the student’s advisory committee.

Courses for Graduate Students

V MPM 604. Seminar. (1-0) Cr. 1 each time taken. F.S. Offered on a satisfactory-fail grading basis only.

V MPM 615. Molecular Immunology. (Same as BBMB 615.) See Biochemistry, Biophysics, and Molecular Biology.

V MPM 629. Medical Immunology II. (3-0) Cr. 3. S. Prereq: 520 or 575. Current concepts of the role of native and acquired immunity in health and disease.

V MPM 690. Current Topics. Cr. 1 to 3 each time elected. F.S.S. Prereq: Permission of instructor. Colloquia or advanced study of specific topics in a specialized field. A. Immunology. B. Infectious Diseases

V MPM 698. Seminar in Molecular, Cellular, and Developmental Biology. (Same as MCDB 698.) See Molecular, Cellular, and Developmental Biology.

V MPM 699. Research.
V Pth 304. Introduction to Clinical Problem Solving. (0-4) Cr. 2. F. Prereq: First year classification in veterinary medicine. Application of knowledge in basic biomedical sciences to clinical problems using a small group, problem-based learning format.

V Pth 342. General Pathology. (Dual-listed with 542.) (3-2) Cr. 2. S.8 weeks. Offered second half semester only. Prereq: First year classification in veterinary medicine. Basic pathology with emphasis on disease in animals.

V Pth 376. Veterinary Parasitology. (Dual-listed with 576.) (3-3) Cr. 4. S. Prereq: Second year classification in veterinary medicine. Parasitic diseases of domestic animals and their control.

V Pth 377. Case Study III. (0-4) Cr. 2. F. Prereq: Second year classification in veterinary medicine. Clinical applications of the basic sciences taught concurrently in the fall semester of the second year curriculum in veterinary medicine.

V Pth 401. Basics of Medical Terminology. (1-0) Cr. 1. F. 8 weeks, offered second half semester only. Discussion of prefixes, suffixes, and roots (mostly from Latin and Greek) that comprise medical terms.

V Pth 408. Surgical Pathology. (1-0) Cr. 1. S. Prereq: 372. Biopsies and associated cases reviewed with students in a seminar format. Interpretation of histopathologic findings as an adjunct to diagnosis, prognosis, and management of clinical cases.

V Pth 407. Parasites of Laboratory and Exotic Animals. (1-0) Cr. 1. S. Prereq: Third or fourth year classification in veterinary medicine. Discussion of important parasitisms occurring as natural infections in laboratory animals and exotic pet animals. Rodents, primates, reptiles, and caged birds are examples of hosts discussed.

V Pth 408. Clinical Pathology Interpretation. (1-0) Cr. 1. S. Prereq: 425. Interpretation of laboratory data on a series of clinical cases supplemented by current literature review.

V Pth 409. Clinical Pathology. (3-0) Cr. 3. S. Prereq: 408. Study of the pathogenesis of disease in laboratory animals. Emphasis on understanding the role of clinical pathology in disease diagnosis.

V Pth 410. Clinical Pharmacology. (2-0) Cr. 2. S. Prereq: 400. Study of the pharmacology of drugs commonly used in veterinary practice.

V Pth 412. Veterinary Ethics. (1-2) Cr. 1. S. Prereq: 400. Study of the ethical principles and issues in veterinary medicine.

V Pth 414. Veterinary Biostatistics. (1-2) Cr. 1. S. Prereq: 400. Study of the statistical methods used in veterinary research.

V Pth 418. Veterinary Marketing. (1-2) Cr. 1. S. Prereq: 400. Study of the marketing principles and issues in veterinary medicine.

V Pth 421. Veterinary Communication. (1-2) Cr. 1. S. Prereq: 400. Study of the communication principles and issues in veterinary medicine.
V Pth 409. Introduction to Veterinary Cytology. (1-0) Cr. 1. F.S.S. Prereq: Second or third-year classification in veterinary medicine. Description and interpretation of cellular preparations from tissues and body fluids.

V Pth 422. Special Pathology. (3-3) Cr. 4. S. Prereq: 372. Pathogenesis of diseases in domestic animals.

V Pth 478. Global Protozoology - Molecular Biology of Protozoa. (Dual-listed with 578, same as Ent 478) (2-1) Cr. 3. F. Prereq: Permission of instructor. Analysis of cellular systems, molecules, and organelles of pathogenic protozoan parasites. Emphasis is placed on processes and systems that are unique to protozoa, are important to understanding vector-parasite-host biology/ecology, or are targets of disease prevention/treatment programs for international disease control. Nonmajor graduate credit.

Courses Primarily for Graduate Students, Open to Qualified Undergraduate Students

V Pth 542. General Pathology. (Dual-listed with 342.) (3-2) Cr. 2. S. 8 weeks, offered second half semester only. Prereq: Graduate classification and BMS 330, 332, or Zool 322; for graduate credit. Basic pathology with emphasis on disease in animals.

V Pth 548. Diagnostic Parasitology Laboratory. (0-3 to 0-9) Cr. 1 to 3. F. S.S.S. Prereq: 376 or 578. A laboratory experience in the technical and applied aspects of veterinary parasitology.

V Pth 549. Clinical Pathology Laboratory. (0-3) Cr. 1 each time taken. F.S.S.S. Prereq: 457. Laboratory procedures and clinical interpretations with emphasis on hematology, cytology, and clinical chemistry. Offered on a satisfactory-fail grading basis only.

V Pth 550. Surgical Pathology Laboratory. (0-3 to 0-9) Cr. 1 to 3 each time taken. F.S.S.S. Prereq: 422, 570 or 571. Diagnosis of lesions in biopsy specimens; classification of neoplasms. Course includes rotation through departmental biopsy service and review of selected cases from departmental archives. Offered on a satisfactory-fail grading basis only.

V Pth 551. Postmortem Pathology Laboratory. (0-3 to 0-9) Cr. 1 to 3 each time taken. F.S.S.S. Prereq: 542 or 422. Necropsy techniques of animals with emphasis on gross and microscopic lesions and diagnosis. Offered on a satisfactory-fail grading basis only.

A. Veterinary Pathology

V Pth 576. Veterinary Parasitology. (Dual-listed with 376.) (3-3) Cr. 4. F. Prereq: Graduate classification and 542. Parasitic diseases of domestic animals and their control.

V Pth 578. Global Protozoology - Molecular Biology of Protozoa. (Dual-listed with 478, same as Ent 578) (2-1) Cr. 3. F. Prereq: Permission of instructor. Analysis of cellular systems, molecules, and organelles of pathogenic protozoan parasites. Emphasis is placed on processes and systems that are unique to protozoa, are important to understanding vector-parasite-host biology/ecology, or are targets of disease prevention/treatment programs for international disease control.

V Pth 590. Special Topics. Cr. 1 to 4. F.S.S.S. Prereq: Permission of instructor. A. Veterinary Pathology

B. Veterinary Parasitology

C. Veterinary Toxicology

D. Veterinary Clinical Pathology

Courses for Graduate Students

V Pth 604. Pathology Case Seminar. Cr. 1 to 2 each time taken. F.S. Description and interpretation of microscopic lesions and clinical pathology data collected from cases of natural and experimental disease. Offered on a satisfactory-fail grading basis only.

V Pth 605. Current Topics Seminar. Cr. 1 each time taken. F.S.

A. Veterinary Pathology

B. Veterinary Parasitology

C. Veterinary Toxicology

D. Veterinary Clinical Pathology

V Pth 656. Cellular and Molecular Pathology II. (3-0) Cr. 3. Alt. S., offered 2002. Prereq: Graduate course in biochemistry, genetics, or cell biology. Cellular and molecular mechanisms of neoplasia and toxicologic pathology.

V Pth 699. Research. A. Veterinary Pathology

B. Veterinary Parasitology

C. Veterinary Toxicology

D. Veterinary Clinical Pathology

Water Resources (Interdepartmental Graduate Major)

Supervisory Committee: R. Horton, Chair; T. Al Austin, J. L. Baker, J. A. Herriges, W. W. Simpkins

Water resources is a university-wide, interdisciplinary program involving biological, chemical, physical, and social sciences. Faculty from departments in the colleges of Agriculture, Engineering, and Liberal Arts and Sciences cooperate to offer courses and research opportunities leading to the M.S. and Ph.D. degrees with a major in water resources.

Although broadly trained, water resources majors specialize in some technical aspect of water resources, and applicants should have completed the equivalent of an undergraduate or masters degree in one of the biological, chemical, physical, or engineering sciences.

The water resources program emphasizes fundamental concepts and research, which at the same time address water resources issues having regional and national significance. The curriculum is designed to provide the interdisciplinary approach needed in water resources education and research. In addition to work in their chosen area of specialization, students may obtain a broad background in water resources encompassing physical, chemical, and biological aspects of water resources.

Cooperating departments offer courses covering surface water and groundwater hydrology, meteorology, climatology, water quality, aquatic and wetland ecology, water resources engineering, and sociological, political, and economic aspects of water resources planning and management.

Courses Primarily for Graduate Students, Open to Qualified Undergraduate Students

W Res 583. Water Resources. (Same as Econ 583.) (3-0) Cr. 3. F. Prereq: Graduate classification; not for economics majors. Analysis of water resource management issues from economic, legal, political, and sociological perspectives. Topics include rational water allocation systems, market failure, investment, pollution control strategies, and resource management. Administered by Economics in cooperation with Political Science and Sociology.

W Res 590. Special Topics. Cr. var. Prereq: Permission of major professor in water resources faculty. Literature reviews and conference in accordance with needs and interest of the student.

Courses and Programs

Women's Resources 351

W. W. Simpkins
Women’s Studies

www.public.iastate.edu/~womenstu/wsprogram.htm

(Interdepartmental Undergraduate Major)
Program Director: J. Bystydzienski

Undergraduate Study

Women’s Studies in the College of Liberal Arts and Sciences is a cross-disciplinary program in which students may elect a minor or a major. Women’s Studies provides an opportunity for students to examine women’s roles, contributions, and status in social and cultural context and to investigate a variety of disciplines from feminist perspectives. Women’s Studies creates an understanding that interrelated factors — e.g., race, ethnicity, class, age, disability, religions, national origin, and sexual orientation — inform knowledge of women’s history, culture, and social roles. Women’s Studies seeks to improve critical thinking and to provide students with the intellectual means to question prevailing assumptions. It encourages students to explore the contexts and ideological origins of knowledge and to examine the relationship between knowledge and power in society. It promotes social responsibility by examining the connections between personal experiences and political activity, and validates student contributions and voices. Women’s Studies graduates are skilled in critical thinking, research methods, and effective communication. Because they have developed a thorough understanding of gender, race, and class, they can understand and work effectively with employers, colleagues, and clients to analyze and address complex social problems.

Women’s Studies graduates acquire strong backgrounds for careers in such areas as counseling, education, human resources, public policy, politics, business, or law. The program includes at various times core courses in Women’s Studies and cross-listed courses in anthropology, art history, classical studies, economics, English, foreign languages and literatures, history, health and human performance, political science, psychology, religious studies, sociology, speech communication, and zoology.

An undergraduate major requires 33 credits of core, cross-listed, and independent study courses. Women’s Studies majors must satisfy the following requirements:

1. 18 credits selected from women’s studies core courses (W S).

 A. Required core courses: W S 201, 301, and 401 or 402. Students must also choose between a thesis, W S 499 (3 cr.) or an internship, W S 491 (3 cr.).

 B. The remaining 6 credits should be chosen from the Women’s Studies core courses (W S 450 and 301 may be taken more than once).

 C. No more than 6 credits of W S 490 may be counted toward the W S major.

 D. 15 credits selected from W S cross-listed courses or W S core courses.

Women’s Studies majors may also declare either a minor or a second major in a different program or department.

English proficiency requirement: The Women’s Studies major requires an average grade of C- or better in English 104 and 105 (or 105H) and successful completion of either English 305, English 314 or a foreign language 370 course (literature and culture in English translation).

Undergraduate students may minor in Women’s Studies by taking 15 semester hours of Women’s Studies classes, including W S 201, 301 and one 400 level core Women’s Studies course, plus 6 additional credits of core or cross-listed courses.

Because course listings vary from year to year, any student interested in a minor or major in Women’s Studies should contact the chair of the program committee for advising. (See Index, Cross-Disciplinary Programs.)

Graduate Study

Courses open for nonmajor graduate credit: 301, 321, 323, 336, 340, 345, 350, 394, 401, 402, 422, and 450.

Courses Primarily for Undergraduate Students

W S 201. Introduction to Women’s Studies. (3-0) Cr. 3. F.S. Introduction to the interdisciplinary field of Women’s Studies. Contemporary status of women mainly in the United States from social, economic, historical, political, philosophical and literary perspectives. Analysis of intersection of gender, race, class, and sexuality. Topics include work, health, sexuality, violence, and sport. Background for the other courses in the program.

W S 202. Lesbian Cultures and Communities. (3-0) Cr. 3. S. An exploration of contemporary and historically significant cultures and communities in the United States, examining their roots, politics, populations, and conflicts from multiple perspectives.

W S 301. International Perspectives on Women and Gender. (3-0) Cr. 3. May be repeated for up to 6 credits. F. Prereq: 201 or 3 credits in Women’s Studies at the 300 level or above. Study of women in a range of cultures, depending on faculty expertise. Special emphasis on women in development seen in postcolonial context. Nonmajor graduate credit.

W S 321. Economics of Discrimination. (Same as Econ 321.) See Economics. Nonmajor graduate credit.

W S 322. Gender and Communication. (Same as Sp Cm 323.) See Speech Communication. Nonmajor graduate credit.

W S 327. Sex and Gender in Society. (Same as Soc 327.) See Sociology.

W S 328. Sociology of Masculinities and Manhood. (Same as Soc 328.) See Sociology.

W S 340. Survey of Women’s Literature. (Same as Engl 340.) See English. Nonmajor graduate credit.

W S 345. Women and Literature: Selected Topics. (Same as Engl 345.) See English. Nonmajor graduate credit.

W S 346. Psychology of Women. (Same as Psych 346.) See Psychology.

W S 350. African American Women. (Same as Af Am 350.) (3-0) Cr. 3. S. Prereq: 201 or Afr Am 201 or 3 credits in Women’s Studies or African American Studies at the 300 level or above. Ecological, social, political and cultural roles of African American women in the U.S. Includes literary, philosophical, and artistic expressions. Myths and realities explored. Nonmajor graduate credit.

W S 374. Women in Classical Antiquity. (Same as Cl St 374.) See Classical Studies.

W S 385. Women in Politics. (Same as Pol S 385.) See Political Science.

W S 386. History of Women in America. (Same as Hist 386.) See History.

W S 394. Women in Art. (Same as Art H 394.) See Art History. Nonmajor graduate credit.

W S 401. Feminist Theories. (3-0) Cr. 3. F. Prereq: 201 or 3 credits in Women’s Studies at the 300 level or above. Current theories of feminism, the feminine and sexual difference. Problems in race, class, sexuality, ethnicity as they are developed in diverse feminisms. May include readings in lesbian, Black, post-colonial, psychoanalytic, and postmodern thought. Nonmajor graduate credit.

W S 402. Feminist Research Methodologies and Scholarship. (3-0) Cr. 3. S. Prereq: 201 and 301. Introduction to feminist research methods and the history and influence of feminist research. Examination of scholarly works by U.S. and international feminists. Nonmajor graduate credit.

W S 422. Women, Men, and the English Language. (Same as Engl 422.) See English. Nonmajor graduate credit.

W S 450. Topics in Women’s Studies. (3-0) Cr. 3 each time taken, maximum of 6. F. Prereq: 201 or 3 credits in Women’s Studies at the 300 level or above. Special and/or experimental topics in a specific discipline, e.g., women and education, women and religion, women and the law, women and science. Nonmajor graduate credit.

W S 490. Independent Study. Cr. 1 to 3 each time taken, maximum of 6. Prereq: Any two courses in Women’s Studies, permission of instructor. The director of the Women’s Studies Program Committee must be consulted in advance.

W S 491. Senior Internship. (3-0) Cr. 3. F.S.S.S. Prereq: Senior classification. Internship designed to provide an application of Women’s Studies principles and methods in a workplace. To be arranged with an internal or external employer and conducted under the supervision of a member of the Women’s Studies faculty.

W S 499. Senior Thesis. (3-0) Cr. 3. F.S.S.S. Prereq: Senior classification. Senior thesis is to be independently researched and written under the supervision of a member of the Women’s Studies faculty.

Courses for Graduate Students, Open To Qualified Undergraduate Students

W S 523. Gender Roles and Sport. (Same as Ex Sp 523.) See Health and Human Performance.

W S 528. Sociology of Gender. (Same as Soc 528.) See Sociology.

W S 545. Women’s Literature. (Same as Engl 545.) See English.

W S 590. Special Topics. Cr. var. Prereq: Permission of Women’s Studies Program Committee. Independent study on a topic in Women’s Studies.

W S 594. Women in Art. (Same as Art H 594.) See Art History.
Courses Offered by Other Departments

Engl 304. Creative Writing - Fiction. See English. Acceptable only when offered as a course on women’s writing.

Frnch 370. French Studies in English. See Foreign Languages and Literatures. Acceptable only when offered as a course on women or feminism in French literature.

Ger 370. German Studies in English. See Foreign Languages and Literatures. Acceptable only when offered as a course on women or feminism in German literature.

Zoology and Genetics

www.mbb.iastate.edu/htm/index.html

M. Duane Enger, Chair of Department

University Professors: Dolphin

Professors: Ackerman, Atherly, Campbell, Drewes, Enger, Haydon, Henderson, Howell, J. Johansen, Lee, Mayfield, Myers, T. Peterson, Richmond, Schnable, Shen

Distinguished Professor (Emeritus): Ulmer

University Professor (Emeritus): Stadler

Professors (Collaborators): Palmer, Paradise, Shoemaker

Professors (Emeritus): Bishop, Brown, Buttrey, Holland, Imsande, Jeska, Miller, Mutchmor, Pattee, Pollak, Redmond, Robertson, Wielshons

Associate Professors (Adjunct): D. Veck, Wang

Associate Professors (Collaborators): Link, Mahajan, Tucker

Associate Professor (Emeritus): Shaw

Assistant Professors: Becraft, Chou, Gu, Naylor, Powell-Coffman

Assistant Professors (Adjunct): Coffman, Pleasants

Assistant Professor (Collaborators): Bricker

Instructors (Adjunct): Carlson, Leshem-Ackerman

Instructor (Collaborator): Bowman

Courses and Programs

Zoology and Genetics 333

Undergraduate Study

The department offers majors in genetics, zoology and co-administers biology. The zoology and genetics majors are available to students in both the College of Agriculture and the College of Liberal Arts and Sciences. The programs for these majors are listed below and under the Curriculam in Agriculture. College requirements can be found under Curriculam in Agriculture and Curriculum in Liberal Arts and Sciences. The department offers minors in both genetics and zoology. B.S./M.S. programs are available in which a student, with proper planning, can complete the requirements for both bachelor’s and master’s degrees in five years. Students interested in the B.S./M.S. program must apply during their sophomore year.

Training in genetics, zoology or biology may lead to employment in teaching, research, or any of a variety of health-related professions. In most cases, students should plan on continuing their education in graduate or professional school. Students with the B.S. degree may expect to find employment in the biotechnolgy, health, or food industries. Recent graduates have also developed careers in conservation biology, technical writing, science journalism, technical sales, business, and genetic counseling.

The required course work and associated electives are designed to provide students with knowledge of the basic biological sciences, mathematics, chemistry, and physics. This background is essential for professions involving modern biological sciences. As part of these courses, students develop skills in problem solving, critical thinking, writing, research-related activities and an introduction to biological professions.

The respective communications and English proficiency requirements of both colleges are met by an average of C or better in Engl 104, 105 or 105H, and an additional English writing course. The lowest grade acceptable in any of these courses is C-. Students in the College of Agriculture must also achieve a C or better in an oral communications course.

A grade of C– or better is required in all biological science courses within the majors with a cumulative GPA of at least 2.0.

Specific entrance requirements for medical and health-related professions are established by the professional schools. Students interested in fulfilling preprofessional requirements for such professions as cytotechnology, dental hygiene, dentistry, human medicine, medical technology, nursing, optometry, pharmacy, physical therapy, physicians assistant, and veterinary medicine can major in either genetics or zoology while fulfilling the preprofessional requirements. (See Preprofessional Study.)

Genetics

Genetics is the scientific study of heredity. The understanding of heredity is fundamental to all the biological sciences. The department offers a full range of instruction in all aspects of genetics from the molecular genetics of microorganisms to population genetics.

In addition to basic degree requirements listed in the Curriculam in Agriculture or the Curriculam in Liberal Arts and Sciences, genetics majors must satisfy the following requirements:
2. Gen 110, 410, 411, 491, and either 462 or 563.
3. Eleven credits of calculus and statistics including at least one course in each.
4. Three years of chemistry and biochemistry.
5. One year of general college physics.
6. Nine credits for the degree in the College of Agriculture, and 6 credits for the degree in the College of Liberal Arts and Sciences, of support electives chosen from an approved list.
7. Majors in the College of Liberal Arts and Sciences must take one course that involves both humanities and biology such as history of science or bioethics. This course may also count toward a college group requirement. A list of acceptable courses is available from the departmental office.
8. Majors in the College of Agriculture must include Biol (A Ecl) 312 in their program. The department offers a minor in genetics that may be earned by completing Biol 301, 301L, 302, 302L, Gen 410, 411 and 491. A Genetics major may not double major or minor in Biology.

Zoology

The study of zoology includes all aspects of animal life. The department offers instruction in a wide range of zoological subjects ranging from the structure and function of cells to the behavior of animals and their populations.

In addition to the basic degree requirements listed in the Curriculam in Agriculture and the Curriculam in Liberal Arts and Sciences, zoology majors (including those preparing for professional programs in medical and other health-related fields) must complete satisfactorily the following requirements.
2. Zoology electives: 17 credits in zoology at the 300 level or above are required including seven credits at the 400 level or above and two laboratory courses with at least one at the 400 level. Biol 312, 303, and Gen 462 are also acceptable electives. A maximum of 4 credits of 490R and no credits of 490S and 490U may be used toward the 17 credits; however, only 2 credits of 490R may be applied to the requirement of seven 400 or above credits and no 490R credits can be applied to the laboratory requirement. The 17 credits must also include at least one organismal course.
3. Two years of chemistry or biochemistry totaling 15 credits to include one year of general chemistry with laboratory and at least one semester of organic chemistry with laboratory.
4. Eleven credits of calculus and statistics including at least one course in each.
5. One year of general college physics.
6. Majors in the College of Liberal Arts and Sciences must take one course that involves both humanities and biology such as history of science or bioethics. This course may also count toward a college group requirement. A list of acceptable courses is available in the department office.
7. Majors in the College of Agriculture must take 6 credits of agricultural biology electives. This requirement is satisfied by passing six credits at the 300 level or above from the departments of Animal Ecology, Animal Science, or Entomology.
8. Majors in the College of Agriculture must include Biol (A Ecl) 312 in their program.
Courses Primarily for Undergraduate Students

Gen 110. Genetics Orientation. (1-0) Cr. 0.5. F. First 8 weeks. Orientation to the area of genetics. For students considering a major in genetics. Specializations and career opportunities. Offered on a satisfactory-fail grading basis only.

Gen 260. Human Heredity and Society. (3-0) Cr. 3. F. Prereq: One semester of college biology or Anthr 202. A survey course in genetics for non-biology majors interested in heredity and its importance, and implications to self and society. Not recommended for those intending to take advanced courses in genetics. Credit for graduation will not be allowed for more than one of the following: 260, 301, 320, Biol 301 and 301L, and Agron 320.

Gen 296. Cooperative Education. Cr. R. F.S.S. Prereq: Permission of department cooperative education coordinator; sophomore classification. Required of all cooperative education students. Students must register for this course prior to commencing each work period.

Gen 301. Principles of Genetics. (Same as Biol 301.) See Biology. Credit for graduation will not be allowed for more than one of the following: 260, 301, 320, Biol 301 and 301L and Agron 320.

Gen 301L. Principles of Genetics Laboratory. (Same as Biol 301L.) See Biology.

Gen 320. Genetics, Agriculture and Biotechnology. (Same as Agron 320.) (3-0) Cr. 3. F. Prereq: Biol 202. Transmission genetics with an emphasis on applications in agriculture, the structure and expression of the gene in populations and how recombinant DNA technology can be used to improve agriculture. Credit for graduation will not be allowed for more than one of the following: 260, 301, 320, Biol 301 and 301L and Agron 320.

Gen 340. Human Genetics. (3-0) Cr. 3. S. Prereq: Biol 301 or Gen 301. Fundamental concepts and current issues of human genetics. Human chromosome analysis, pedigree analysis, gene mapping, the human genome, pattern recognition, genetics of the immune system, genetics of cancer, gene therapy, the genetic basis of human diversity, eugenics.

Gen 398. Cooperative Education. Cr. R. F.S.S. Prereq: Permission of department cooperative education coordinator; junior classification. Required of all cooperative education students. Students must register for this course prior to commencing each work period.

Gen 410. Transmission Genetics. (Dual-listed with 410.) (3-0) Cr. 3. F. Prereq: Biol 301 or Gen 301. The principles and practice of transmission genetics. The Mendelian concept of the gene, mutational analysis of gene function, linkage and gene mapping, genetic fine structure analysis, chromosomal aberrations, aneuploidy and polyploidy, extrachromosomal inheritance, analysis of genetic pathways, genetics of quantitative traits. Nonmajor graduate credit.

Gen 411. Molecular Genetics. (3-0) Cr. 3. S. Prereq: Biol 302. The principles of molecular genetics: gene structure and function at the molecular level, including regulation of gene expression, genetic rearrangement, and the organization of genetic information in prokaryotes and eukaryotes. Nonmajor graduate credit.

Gen 462. Evolutionary Genetics. (Dual-listed with 462; same as Zool 462.) (3-0) Cr. 3. S. Prereq: Biol 302. The genetic basis of evolutionary processes in higher organisms. The role of genetic variation in adaptation, natural selection, adaptive processes, and the influence of random processes on evolutionary change. Nonmajor graduate credit.

Gen 490. Independent Study. Cr. arr. Prereq: 301, junior or senior classification, permission of instructor. Students in the College of Agriculture may use no more than 6 credits of Gen 490 toward the total of 128 credits required for graduation; students in the College of Liberal Arts and Sciences may use no more than 9 credits of Gen 490 toward graduation. R. Genetics research. Cr. 1 to 5 each time taken. S. Attendance and critique of genetics seminars. Cr. 1. Offered on a satisfactory-fail grading basis only.

U. Laboratory teaching experience. For students registering to be undergraduate laboratory assistants. Cr. 1 to 2. Offered on a satisfactory-fail grading basis only.

Gen 491. Undergraduate Seminar. (1-0) Cr. 1. F. Prereq: Junior classification. The investigation of current issues in genetics. Graduate school and employment opportunities discussed. Practice in research writing and interview techniques. Required for majors in genetics.

Gen 495. Molecular Biology for Computational Scientists. (Same as BCB 495.) (3-0) Cr. 3. F. Dobbs. Survey of molecular cell biology and molecular genetics for non-biologists, especially those interested in bioinformatics/computational biology. Basic cell structure and function; principles of molecular genetics; biosynthesis, structure, and function of DNA, RNA, and proteins; regulation of gene expression; selected topics. Provides biological background for BCB/Gen/Com S/Math 594.

Gen 498. Cooperative Education. Cr. R. F.S.S. Prereq: Permission of department cooperative education coordinator; senior classification. Required of all cooperative education students. Students must register for this course prior to commencing each work period.

Courses Primarily for Graduate Students, Open to Qualified Undergraduate Students

Gen 508. Biotechnology in Agriculture, Food, and Human Health. (Same as Agron 508.) (3-0) Cr. 3. Prereq: 411 or BBMB 405. Gen 260, 298. An introduction to the principles of recombinant DNA technology, the application of these principles to applications in agriculture, food, and human health. Ethical, legal, and social implications of biotechnology. A research paper is required for graduate credit.

Gen 511. Molecular Genetics. (Same as MCDB 511.) (3-0) Cr. 3. S. Prereq: Biol 301 and BBMB 405. The principles of molecular genetics: gene structure and function at the molecular level, including regulation of gene expression, genetic rearrangement, and the organization of genetic information in prokaryotes and eukaryotes.

Gen 512. Plant Growth and Development. (Same as Bot 512.) See Botany.

Gen 520. Genetic Engineering. (Same as BBMB 520, MCDB 520.) (3-0) Cr. 3. S. Prereq: 301, offered 2001. Prereq: 411 or BBMB 405. Strategies and methods of gene cloning, restriction endonuclease mapping, Southern hybridization, isolation and manipulation of plasmid DNA, and detection of specific genes in bacteria.

Zool 155. Basic Human Physiology and Anatomy. (3-0) Cr. 3. F.S.S.S. Prereq: H. S. biology and chemistry or Biol 109 or 201. Recommended. The structure and functions of human organ systems.

Zool 156. Laboratory in Human Physiology and Anatomy. (4-0) Cr. 2. F.S.S.S. Prereq: Credit or enrollment in 155. Introduction to selected aspects of human anatomy and physiology through the use of models, specimens, and student conducted experiments.

Zool 298. Cooperative Education. Cr. R. F.S.S.S. Prereq: Permission of the department cooperative education coordinator; sophomore classification. Required of all cooperative education students. Students must register for this course prior to commencing each work period.

Zool 301. Iowa Natural History. (Same as La LL 301.) See Iowa Lakeside Laboratory.

Zool 303. Biological Evolution. (Same as Biol 303.) See Biology.

Zool 304L. Laboratory in Animal Behavior. (3-0) Cr. 1. F. Prereq: Credit or enrollment in 304. Laboratory techniques for observation, description and analysis of animal activities; independent projects.

Zool 310. Brain and Behavior. (Same as Psych 310.) See Psychology.

Zool 311. Introduction to Parasitology. (Same as Micro 311.) (3-3) Cr. 4. F. Prereq: Biol 202. Biology and host-parasite relationships of major groups of animal parasites, and techniques of diagnosing and studying parasites.

Zool 312. Ecology. (Same as La LL 312.) See Iowa Lakeside Laboratory.

Zool 320. Comparative Chordate Anatomy. (3-4) Cr. 5. F. Prereq: Biol 202, junior classification. The evolution of chordates as reflected in the anatomy of extinct and living forms. Lecture topics include the history and diversity of chordates; comparisons of anatomic structures among major groups, the adaptive significance of anatomic structures. Laboratory involves dissection of representative species.

Zool 334. Embryology. (2-0) Cr. 2. S. Prereq: Biol 202. Basic principles and processes of development. Course will cover classical as well as current aspects of developmental biology. Emphasis will be on vertebrate model systems. Not acceptable for credit in the major for Genetics or Zoology majors.

Zool 334L. Embryology Laboratory. (0-3) Cr. 1. S. Prereq: Credit or enrollment in 334. Selected experiments demonstrating basic concepts in development. Mixture of live embryo experiments and vertebrate developmental anatomy.

Zool 383. Women in Science and Engineering. (Same as W 383.) (3-0) Cr. 3. Alt. F., offered 2001. Prereq: A 200 level course in science, engineering or women's studies, Engl 105. The interrelationships of women and science and engineering examined from historical, sociological, philosophical, and biological perspectives. Factors contributing to under-representation, feminist critiques of science, examination of successful women.

Zool 398. Cooperative Education. Cr. R. F.S.S.S. Prereq: Permission of the department cooperative education coordinator; junior classification. Required of all cooperative education students. Students must register for this course prior to commencing each work period.

Zool 403I. Evolution. (Same as La LL 403I.) See Iowa Lakeside Laboratory. Nonmajor graduate credit.

Zool 404I. Behavioral Ecology. (Same as La LL 404I.) See Iowa Lakeside Laboratory. Nonmajor graduate credit.

Zool 405. Biology of Invertebrates. (Dual-listed with 505.) (3-0) Cr. 3 or (3-3) Cr. 4. F. Prereq: Biol 302. Emphasis on diversity, development, physiology and behavior of invertebrate organisms - the "spineless wonders" of the world. Laboratory emphasizes hands-on study and experimentation with living invertebrates. Nonmajor graduate credit.

Zool 415I. Freshwater Invertebrates. (Same as La LL 415I.) See Iowa Lakeside Laboratory. Nonmajor graduate credit.

Zool 419. Vertebrate Ecology and Evolution. (Same as La LL 419I.) See Iowa Lakeside Laboratory. Nonmajor graduate credit.

Zool 420. Amphibians and Reptiles. (Same as La LL 420I.) See Iowa Lakeside Laboratory. Nonmajor graduate credit.

Zool 433. Developmental Biology. (Dual-listed with 533, same as Biol 433.) (3-0) Cr. 3. S. Pr. Biol 302. Principles of multicellular development, from gametogenesis and fertilization through reproductive maturity. Emphasis is placed on understanding the underlying mechanisms that govern developmental processes.

Zool 433L. Developmental Biology Laboratory. (Same as Biol 433L.) (0-3) Cr. 1. S. Prereq: Credit or enrollment in 433. Experiments and explorations illustrating fundamental principles of multicellular development.

Zool 454. General and Comparative Endocrinology. (Dual-listed with 554) (3-0) Cr. 3 or (3-3) Cr. 4. S. Prereq: 355 and Biol 302. Chemical integration of vertebrate organ systems, development, and evolution of the endocrine glands and the function and structure of their hormones. Laboratory techniques for studying hormonal phenomena. Laboratory experiments require animal surgery and involvement outside of scheduled class time. Nonmajor graduate credit.

Zool 456. Neurobiology. (Dual-listed with 556.) (3-0) Cr. 3 or (3-3) Cr. 4. F. Prereq: 310 or 355, physics recommended; permission of instructor to enroll in lab. Integration, coding, plasticity, and development in nervous systems. Nonmajor graduate credit.

Zool 459. Environmental Physiology. (Dual-listed with 559.) (3-0) Cr. 3 or (3-3) Cr. 4. S. Prereq: 355 or A Ecol 311, physics recommended. Physiological adaptations to the environment, emphasis on vertebrates. Nonmajor graduate credit.

Zool 462. Evolutionary Genetics. (Dual-listed with 562; same as Gen 462.) See Genetics. Nonmajor graduate credit.

Zool 490. Independent Study. Prereq: 15 credits in zoological sciences; permission of instructor. Students in the College of Agriculture may use no more than 6 credits of 490 toward the total of 128 credits required for graduation; students in the College of Liberal Arts and Sciences may use no more than 9 credits of 490 toward graduation. I. Iowa Lakeside Laboratory. R. Zoology research. Cr. 1 to 5 each taken. S. Attendance and critique of zoology seminars. Cr. 1. Offered on a satisfactory-fail grading basis only. U. Laboratory teaching experiences. Cr. 1 to 2. For students registering to be undergraduate laboratory assistants. Offered on a satisfactory-fail grading basis only.

Zool 498. Cooperative Education. Cr. R. F.S.S.S. Prereq: Permission of the department cooperative education coordinator; senior classification. Required of all cooperative education students. Students must register for this course prior to commencing each work period.

Courses and Programs Zoology and Genetics 335
Courses Primarily for Graduate Students, Open to Qualified Undergraduate Students

Zool 501. Principles of Toxicology. (Same as Tox 501, VDPM 501.) See Toxicology or Veterinary Diagnostic and Production Animal Medicine.

Zool 502. Methods of Toxicology. (Same as Tox 502, VDPM 502.) See Toxicology or Veterinary Diagnostic and Production Animal Medicine.

Zool 505. Biology of Invertebrates. (Dual-listed with 405.) (3-0) Cr. 3 or (3-2) Cr. 4. Prereq: Biol 302. Emphasis on diversity, development, physiology and behavior of invertebrate organisms - the “spineless wonders” of the world. Laboratory emphasizes hands-on study and experimentation with living invertebrates.

Zool 507. Advanced Animal Behavior. (2-0) Cr. 2. S. Prereq: 304. Permission of instructor. Analysis of current research in animal behavior with emphasis on physiological or endocrine control mechanisms.

Zool 510. Histology and Pathology of Fish Diseases. (Same as A Ecol 510.) (2-3) Cr. 3. Alt. S., offered 2002. Prereq: A course in vertebrate histology or ichthyology. Histology of teleost fishes; pathogen biology and analysis of cell and tissue changes in the major teleost diseases.

Zool 511. Field Parasitology. (Same as a LL 5111.) See Iowa Lakeside Laboratory.

Zool 528. Cellular Growth and Regulation. (Same as MCDB 528.) (3-0) Cr. 3. F. Prereq: Courses in cell biology and biochemistry. Cell cycle, regulation of cell growth, cell division, membranes, transport processes, and regulation of cellular activities.

Zool 540. Signal Transduction. (Same as BBMB 540, MCDB 540.) (3-0) Cr. 3. S. Prereq: 528, BBMB 404. Mechanisms and components of cellular signal transduction including receptors, G-proteins, second messengers, protein phosphorylation, and other post-translational protein modifications, and transcriptional regulation.

Zool 542. Introduction to Molecular Biology Techniques. (Same as BBMB 542, Bot 542, FS HN 542, BMS 542.) Cr. 1 per module. F.S.SS. Prereq: Graduate classification. Workshops in basic molecular biology techniques and related procedures. Offered on a satisfactory-fail grading basis only.

A. DNA Techniques. Includes genetic engineering procedures, sequencing, PCR, and genotyping.
B. Protein Techniques. Includes fermentation, protein isolation and analysis, NMR and monoclonal antibody production.
C. Cell Techniques. Includes cell immobilization, ELISA, flow cytometry, karyotyping and image analysis.
D. Plant Transformation. Includes Agrobacterium and particle gun transformation, and analysis of trans-_forms (enzyme assay, PCR, Southern blot).

Zool 554. General and Comparative Endocrinology. (Dual-listed with 454.) (3-0) Cr. 3 or (3-3) Cr. 4. S. Prereq: 355 and Biol 202. Graduate study in conjunction with 454. Chemical integration of vertebrate organisms. The structure, development, and evolution of the endocrine glands and the function and structure of their hormones. Laboratory techniques for studying hormonal phenomena. Laboratory experiments require animal surgery and involvement outside of scheduled class time.

Zool 556. Neurobiology. (Dual-listed with 456; same as Neuro 556.) (3-0) Cr. 3 or (3-3) Cr. 4. F. Prereq: 355 or 310; physics recommended; permission of instructor to enroll in lab. Graduate study in conjunction with 456. Integration, coding, plasticity, and development in nervous systems.

Zool 557. Advanced Neuroscience Techniques. (Same as Neuro 557.) See Neuroscience.

Zool 559. Environmental Physiology. (Dual-listed with 459.) (3-0) Cr. 3 or (3-3) Cr. 4. F. Prereq: 355 or A Ecol 311; physics recommended. Graduate study in conjunction with 459. Physiological adaptations to the environment with emphasis on vertebrates.

Zool 562. Evolutionary Genetics. (Dual-listed with 462; same as Gen 562.) See Genetics.

Zool 563. Molecular Phylogenetics. (Same as Gen 563, Bot 563.) (3-3) Cr. 3. F. Prereq: Biol 303 and 301. Essential processes of evolution. Topics from DNA sequence data. Course provides an overview of uses for phylogenetic trees in bioinformatics, genomics, molecular genetic, and systematics and explores the relationship between data, models of molecular evolution and patterns of biological diversification.

Zool 566. Molecular Evolution. (Same as Bot 566.) See Botany.

Zool 568. Advanced Systematics. (Same as Ent 568.) See Entomology.

Zool 569. Biogeography. (Same as Bot 579.) See Botany.

Zool 590. Special Topics. (Same as a LL 5901.) Cr. 1 to 5 each time taken. Prereq: Permission of instructor.

Zool 5901. Graduate Independent Study. (Same as a LL 5901.) See Iowa Lakeside Laboratory.

Courses for Graduate Students

Zool 632. Current Topics in Signal Transduction. Cr. 2 to 3 each time taken. Prereq: Permission of instructor. Selected topics in signal transduction events, their molecular mechanisms and their relation to cellular processes. Topics may include cell communication, second messenger systems, information integration and transfer, cell cycle, cell differentiation, and pattern formation.

Zool 660. Current Topics in Neurobiology and Behavior. (Same as Neuro 660.) Cr. 2 to 3 each time taken. Prereq: Permission of instructor. Topics may include communication, hormones and behavior, neural integration, developmental neurobiology, neuroanatomy and ultrastructure, sensory biology, social behavior, techniques in neurobiology and behavior.

Zool 690. Seminar in Zoology. Cr. 1 each time taken. Journal article critique and discussion by faculty and graduate students. Offered on a satisfactory-fail grading basis only.

A. Cellular, Molecular, and Developmental Biology
B. Biology of Populations and Organisms
C. Neurobiology
D. Physiology
E. Evolution
F. Animal Models of Gene Therapy
G. Behavior
H. Bioinformatics

Zool 696. Research Seminar. Cr. 1 each time taken. Research seminars by faculty and graduate students. Offered on a satisfactory-fail grading basis only.
A. Cellular, Molecular, and Developmental Biology
B. Biology of Populations and Organisms
C. Neurobiology
D. Physiology
E. Evolution
F. Animal Models of Gene Therapy
G. Behavior
H. Bioinformatics

Zool 698. Seminar in Molecular, Cellular, and Developmental Biology. (Same as MCDB 698.) See Molecular, Cellular, and Developmental Biology.

Zool 699. Research. 1. Iowa Lakeside Laboratory. See Iowa Lakeside Laboratory.

Courses Offered at the Gulf Coast Research Laboratory (GCRL), Ocean Springs, Mississippi

The Gulf Coast Research Laboratory is affiliated with the University of Southern Mississippi. Iowa State students may register for the following University of Southern Mississippi GCRL courses and transfer them to their ISU degree programs. Written permission of the ISU coordinator for the GCRL, 201 Bessey, is required for this arrangement. Inquire at 201 Bessey for further information.

MAR 301. Marine Biology. Cr. 3. SS. Prereq: 8 semester hours of biological sciences. A general introduction to marine biology with emphasis on local fauna and flora.

MAR 301L. Marine Biology Lab. Cr. 2. SS. Lab to accompany 301.

MAR 403L. Marine Invertebrate Zoology Lab. Cr. 3. SS. Lab to accompany 403.

MAR 404. Parasites of Marine Animals. Cr. 3. SS. Prereq: 311. Study of the parasites of marine and estuarine animals with emphasis on morphology, taxonomy, life histories, and host-parasite relationships.

MAR 404L. Parasites of Marine Animals Lab. Cr. 3. SS. Lab to accompany 404.

MAR 408L. Marine Ichthyology Lab. Cr. 3. SS. Lab to accompany 408.

MAR 430. Comparative Histology of Marine Organisms. Cr. 3. SS. Prereq: Permission of instructor. Detailed study of the histological organization of representative marine organisms at the light and electron microscope levels.

MAR 430L. Comparative Histology of Marine Animals Lab. Cr. 3. SS. Lab to accompany 430.
Distinguished Professor denotes those faculty members who have been recognized for having attained outstanding national and international reputations within their professional disciplines.

University Professor denotes those faculty members who have been recognized for having made outstanding contributions to the quality of education at Iowa State University.

* denotes active member of the Graduate Faculty.

*AITCHISON, GARY L., Emeritus Associate Professor of Management. B.A., 1966, Northern Iowa; M.A., 1961, Northern Colorado; Ph.D., 1972, Iowa State.

*AKINC, MUFTI, Professor of Materials Science and Engineering and Chair of the Department. B.S., 1970, M.S., 1973, Middle East Technical (Turkey); Ph.D., 1977, Iowa State.

*AKKURT, CIGDEM T., Associate Professor of Food Science and Human Nutrition. B.S., 1979, Cornell; M.S., 1982, Massachusetts.

*Al-Kaisi, Mahdi, Assistant Professor of Agronomy. B.S., 1974, Baghdad; M.S., 1982, Ph.D., 1986, North Dakota State.

*Alcorn, Janet W., Emeritus Professor of Music. B.Mus., 1958, Northwestern; M.Mus., 1960, Boston University.

*Alekex, K. Lee, Assistant Professor of Food Science and Human Nutrition. B.S., 1979, Cornell; M.S., 1985, Pennsylvania State; Ph.D., 1993, Illinois.

*Allen, Benjamin J., Professor of Logistics, Operations and Management Information Systems; Professor of Economics; Distinguished Professor in Business; Dean of the College of Business. B.S., 1969, Indiana; M.A., 1973, Ph.D., 1974, Illinois.

*Allen, Beverly, Assistant Professor of Sociology. B.S.W., 1975, M.S.W., 1977, Temple; Ph.D., 1995, Iowa State.

*Allen, Linda Quinn, Assistant Professor of Foreign Languages and Literatures; Assistant Professor of Curriculum and Instruction. B.A., 1978, Purdue; M.A., 1982, Ball State; Ph.D., 1994, Purdue.

*Allen, Virginia, Associate Professor of English; Associate Professor of Curriculum and Instruction. B.A., 1965, Florida State; M.A., 1972, Chicago State; Ph.D., 1980, Florida State.

*Aluru, Srinivas, Assistant Professor of Electrical and Computer Engineering; Assistant Professor of Computer Science. B.Tech., 1989, Indian Institute of Technology; M.S., 1991, Ph.D., 1994, Iowa State.

*Amaya, Jose M., Assistant Professor of English. B.A., 1987, California State (Northridge); Ph.D., 1995, California (Los Angeles).

*Ambrosio, Linda, Associate Professor of Zoology and Genetics. B.S., 1976, New York (Stony Brook); M.S., 1985, Princeton.

*Amenson, Jerry L., Adjunct Instructor in Civil Engineering.

*Amos, Rosalie Jeanne, Emeritus Associate Professor of Family and Consumer Sciences, Education and Studies; Emeritus Associate Professor of Curriculum and Instruction. B.S., 1953, Iowa State; M.S., 1960, Ph.D., 1976, Cornell.

*Anderson, Kevin F., Assistant Professor of Veterinary Microbiology and Preventive Medicine (Collaborator). B.S., 1975, Iowa Wesleyan; M.S., 1983, Western Illinois.

*Anderson, Lloyd Lee, Professor of Animal Science; Charles F. Curtiss Distinguished Professor in Agriculture. B.S., 1957, Ph.D., 1961, Iowa State.

*Andrei, Thomas, Professor of Curriculum and Instruction; Professor of Psychology. B.S., 1967, Massachusetts; M.A., 1970, Ph.D., 1971, Illinois.
BAUMEL, PHILLIP, Professor of Economics; Charles F. Curtis Distinguished Professor in Agriculture. B.S., 1950, M.S., 1957, Ohio State; Ph.D., 1961, Iowa State.

BEAL, GEORGE M., Emeritus Professor of Sociology. Charles F. Curtis Distinguished Professor in Microbiology. B.S., 1943, M.S., 1947, Ph.D., 1953, Iowa State.

BEATTIE, GWYN A., Assistant Professor of Microbiology; Assistant Professor of Plant Pathology. B.A., 1985, Carleton; Ph.D., 1991, Wisconsin.

BEAVERS, IRENE, Emeritus Professor of Family and Consumer Sciences Education and Studies; Emeritus Professor of Educational Leadership and Policy Studies. B.S., 1948, George Peabody; M.S., 1953, Iowa State; Ph.D., 1962, Wisconsin.

BECRAFT, PHILIP W., Assistant Professor of Zoology and Genetics; Assistant Professor of Agronomy. B.A., 1980, Montana; M.S., 1987, Montana State; Ph.D., 1992, California (Berkeley).

BEETHE, JEFFREY K., Assistant Professor of Veterinary Pathology; Assistant Professor of Entomology. B.S., 1982, Western Washington; Ph.D., 1994, California (Davis).

BEGHIN, JOHN C., Emeritus Professor of Agricultural (Collaborator). B.A., 1978, California (Los Angeles); M.S., 1985, California State (San Diego); Ph.D., 1990, Arizona.

BEITZ, DONALD C., Professor of Animal Science; Professor of Biochemistry, Biophysics and Molecular Biology; Charles F. Curtis Distinguished Professor in Agriculture. B.S., 1962, M.S., 1963, Illinois; Ph.D., 1967, Michigan State.

BENNETT, JAMES L., Professor of Biomedical Sciences (Collaborator). B.S., 1964, Brigham Young; Ph.D., 1972, Johns Hopkins.

BENSENT, DWIGHT W., Emeritus Professor of Forestry. B.S., 1937, Ph.D., 1942, Minnesota.

BERAN, JANICE ANN, Emeritus Adjunct Professor of Health and Human Performance. A.B., 1953, Central; M.S., 1970, Drake; Ph.D., 1976, Iowa State.

CHARLES, DON C., Emeritus Professor of Psychology; Emeritus Professor of Curriculum and Instruction. B.A., 1941, Northern Iowa; M.A., 1947, Ph.D., 1951, Nebraska.

CHATFIELD, WALTER L., Emeritus Assistant Professor of Foreign Languages and Literatures; Emeritus Assistant Professor of Curriculum and Instruction. B.A., 1956, Augustana (Illinois); M.A., 1958, Iowa.

*CHEN, CHING-SHIHN, Associate Professor of Industrial Education and Technology. B.S., 1982, Tunghai (Taiwan); M.S., 1988, Ph.D., 1994, Auburn.

*CHEN, DEGANG, Assistant Professor of Political Science. B.S., 1986, Ph.D., 1995, Wisconsin.

*CLARK, CHRISTINA, Adjunct Assistant Professor of Foreign Languages and Literatures. B.A., 1985, Georgetown (Ph.D., 1995, Wisconsin).

*CLARK, COOK, WILLIAM JOHN, Associate Professor of Psychology. B.A., 1972, Walla Walla; M.P.A., 1983, California State (San Bernardino); Ph.D., 1990, Alabama.

*CLEM, ANNE MARIE, Associate Professor of Political Science. B.A., 1986, Iowa State; Ph.D., 1992, Iowa State.

*CONSIDNER, JAMES T., Associate Professor of Political Science. B.A., 1986, Iowa State; Ph.D., 1992, Iowa State.

*COATS, JOEL, Professor of Entomology and Chair of the Department. B.S., 1970, Arizona State; M.S., 1972, Ph.D., 1974, Illinois.

*COCHRAN, JAMES, Assistant Professor of Physics and Astronomy. B.S., 1989, Georgia Inst. of Technology; M.A., 1987, Ph.D., 1993, New York (Stony Brook).

*CODY, ROBERT, Associate Professor of Geological and Atmospheric Sciences. B.S., 1960, St. Louis; M.A., 1962, Wyoming; Ph.D., 1968, Colorado.

*COFFMAN, CLARK, Adjunct Assistant Professor of Zoology and Genetics. B.S., 1986, Iowa State; Ph.D., 1993, California (La Jolla).

*COLLETTI, JOE PAUL, Associate Professor of Forestry. B.S., 1972, Humboldt; M.S., 1974, Ph.D., 1978, Wisconsin.

*COLLINS, EDGAR W. JR., Emeritus Associate Professor of Chemical Engineering. B.S., 1944, Louisiana State; M.S., 1947, Iowa State.

*COVIN, THOMAS, Professor of Agricultural and Biosystems Engineering (Collaborator); B.S., 1970, Ph.D., 1971, Iowa State.

*COOK, DIANNE H., Associate Professor of Curriculum and Instruction. B.S., 1967, M.S., 1973, Iowa State.

*COOK, JOHN D., Associate Professor of Veterinary Medicine; Interim Director of the Veterinary Clinical Sciences; B.S., 1965, Iowa State; M.S., 1963, Ph.D., 1964, Wisconsin; M.D., 1968, Colorado State.

*COOK, CHRISTINE C., Assistant Professor of Zoology and Human Performance. B.S., 1988, Iowa State; M.S., 1990, Northwestern.

*COOK, CHRISTINE C., Associate Professor of Veterinary Science. B.S., 1995, M.S., 1996, Iowa State.

*CONTI, GRACE, Associate Professor of Veterinary Science. B.S., 1995, M.S., 1996, Iowa State.

*COON, STEPHEN C., Associate Professor of Animal Ecology. B.S., 1971, Rutgers; M.S., 1974, Iowa State.

*COON, CHRISTINE A., Professor of Psychology. B.S., 1979, M.S., 1980, Iowa State.

*COON, JULIE, Associate Professor of Psychology. B.S., 1979, M.S., 1980, Iowa State.

*COON, JULIE, Adjunct Instructor in Psychology. B.S., 1979, M.S., 1980, Iowa State.

*COON, JULIE, Associate Professor of Psychology. B.S., 1979, M.S., 1980, Iowa State.

*COON, JULIE, Adjunct Instructor in Psychology. B.S., 1979, M.S., 1980, Iowa State.

*COON, JULIE, Professor of Psychology. B.S., 1979, M.S., 1980, Iowa State.

*COON, JULIE, Adjunct Instructor in Psychology. B.S., 1979, M.S., 1980, Iowa State.

*COON, JULIE, Adjunct Instructor in Psychology. B.S., 1979, M.S., 1980, Iowa State.

*COON, JULIE, Adjunct Instructor in Psychology. B.S., 1979, M.S., 1980, Iowa State.
DECARLO, THOMAS E., Associate Professor of Marketing. B.S., 1982, North Carolina State; Ph.D., 1993, Georgia.

DECKER, KENT A., Adjunct Instructor in Military Science and Tactics.

*DELEANE, KATHLEEN, Assistant Professor of Horticulture; Assistant Professor of Agronomy. M.S., 1968, B.S., 1988, Florida; Ph.D., 1991, California (Berkeley).

*DELIUS, MATTHEW J., Assistant Professor of Sociology. B.A., 1995, Syracuse; Ph.D., 2000, Colorado.

DELLMANN, H. DIETER, Emeritus Professor of Biomedical Sciences; Clarence Hartley Covault Distinguished Professor in Veterinary Medicine. Dr. Veterinary. 1965, Ph.D. (Habilitation); 1961, Munich.

DOBBS, DRENA LEIGH, Emeritus Associate Professor of Zoology. B.S., 1977, Georgia; Ph.D., 1983, Oregon.

*DOLPHIN, WARREN DEAN, Professor of Zoology. University Professor. B.S., 1962, West Chester; Ph.D., 1968, Ohio State.

*DOMOTO, PAUL ALAN, Professor of Horticulture. B.A., 1969, M.S., 1971, California State (Fresno); Ph.D., 1974, Marquette State.

*DORAISWAMY, L., Emeritus Professor of Chemical Engineering. Arcon Marion Distinguished Professor in Engineering. B.S., 1946, Nizam (India); M.S., 1950, Ph.D., 1952, Wisconsin.

*DRAKE, SHARON KAY, Adjunct Assistant Professor of Industrial Education and Technology. B.S., 1964, M.S., 1966, Wisconsin.

*DURAND, DONALD P., Emeritus Professor of Microbiology, Emeritus Professor of Plant Pathology. A.B., 1955, Guilford; M.S., 1967, Ph.D., 1966, Kansas State.

*DYER, DONALD CHESTER, Professor of Biomedical Sciences. B.S., 1961, Ph.D., 1965, Kansas.

EBERT, GLADYS M., Emeritus Associate Professor of Family and Consumer Sciences Education and Studies; Emeritus Associate Professor of Curriculum and Instruction. B.A., 1942, Northern Iowa; M.S., 1967, Ph.D., 1978, Iowa State.

*EDDELMAN, MARK ALAN, Professor of Economics. B.S., 1975, M.S., 1978, Kansas State; Ph.D., 1981, Purdue.

B.E., 1989, Bharathidasan (India); M.Tech., 1994, The University of Minnesota.
GLATZ, CHARLES E., Professor of Chemical Engineering and Chair of the Department. B.S., 1971, Notre Dame; Ph.D., 1975, Wisconsin.
GLEASON, MARK L., Professor of Plant Pathology; Professor of Horticulture. B.A., 1972, Carleton; M.S., 1976, Ph.D., 1980, Virginia; Ph.D., 1985, Kentucky.
GOLDSBY, THOMAS J., Ph.D., 1999, Iowa State.
GOLZ, HEINZ, M.S., 1979, Ph.D., 1982, Germany.
GLOCK, RUTH ELIZABETH, Adjunct Assistant Professor of Textiles and Clothing. B.S., 1958, Nebraska; M.S., 1959, Iowa State.
GEMEL, WALTER H., Professor of Educational Leadership and Policy Studies; Dean of the College of Education. B.A., 1969, Stanford; M.A., 1971, California (Berkeley); Ph.D., 1975, California (Santa Barbara).
GOOGI, ALCIRA S., Assistant Professor of Agronomy. B.S., 1982, De Buenos Aires (Argentina); M.S., 1987, Ph.D., 1990, Mississippi.
HALBUR, PATRICK G., Associate Professor of Veterinary Diagnostic and Production Animal Medicine; Associate Professor of Veterinary Pathology. D.V.M., 1986, M.S., 1992, Ph.D., 1995, Iowa State.

HALE, HARRY W., Emeritus Professor of Electrical and Computer Engineering. B.S., 1942, M.S., 1949, Ph.D., 1953, Purdue.

HALL, CHARLES VIRDUS, Emeritus Professor of Horticulture. B.S., 1950, M.S., 1953, Arkansas; Ph.D., 1960, Kansas State.

HALL, RICHARD BRIAN, Professor of Forestry. M.S., 1969, Iowa State; Ph.D., 1974, Wisconsin.

HALLAM, J. ARNE, Professor of Economics and Chair of the Department. B.S., 1977, Brigham Young; M.S., 1980, Ph.D., 1982, California (Berkeley).

HANITZ, ROBERT G., Professor of Agronomy. B.S., 1955, Iowa State; J.D., 1961, Iowa; Ph.D., 1965, Iowa State.

HARMON, JAY D., Associate Professor of Agricultural and Biosystems Engineering. B.S., 1984, Purdue; M.S., 1986, Minnesota; Ph.D., 1989, Virginia Polytechnic.

HARMON, KAREN M., Assistant Professor of Veterinary Diagnostic and Production Animal Medicine. B.S., 1981, Wisconsin; Ph.D., 1988, Minnesota.

HARRIS, DELBERT LINN, Professor of Microbiology; Professor of Veterinary Diagnostic and Production Animal Medicine. D.V.M., 1967, Ph.D., 1970, Iowa State.

HARRIS, ROGER W., Emeritus Professor of Sociology. B.A., 1972, Cornell College; M.Ed., 1973, Texas A&M. Ph.D., 1977, Texas A&M.

HART, ROBERT, Emeritus Professor of Mechanical Engineering. B.S., 1950, Illinois Institute of Technology; M.S., 1953, Minnesota.

HARTZEL, ROBERT J., Emeritus Professor of Engineering. B.S., 1951, Missouri; M.S., 1953, Ph.D., 1956, Iowa State.

HAUPTMAN, JOHN M., Professor of Physics and Astronomy. B.A., 1988, Ph.D., 1974, California (Berkeley).

HAUSAFUS, CHERYL O., Associate Professor of Family and Consumer Sciences Education and Studies; Associate Professor of Curriculum and Instruction. B.S., 1968, Florida State; M.S., 1971, Pennsylvania State; Ph.D., 1978, Iowa State.

HAYES, DERMOT JAMES, Professor of Economics. B.S., 1981, Dublin; Ph.D., 1986, California (Berkeley).

HAYNES, EMMIT HOWARD, Emeritus Professor of Animal Science. B.S., 1951, M.S., 1953, Kentucky; Ph.D., 1959, Cornell.

HAYNES, JOSEPH S., Professor of Veterinary Pathology. D.V.M., 1979, Missouri; Ph.D., 1986, Minnesota.

HAZEN, THAMON EDSON, Emeritus Professor of Agricultural and Biosystems Engineering. B.S., 1947, Oklahoma State; M.S., 1950, Purdue; Ph.D., 1956, Iowa State.

HEEMSTA, HOWARD C., Professor of Architecture. B.Arch., 1962, Iowa State; M.Arch., 1958, Cranbrook.

HEGLAND, SUSAN M., Associate Professor of Human Development and Family Studies. B.A., 1970, St. Olaf; M.S., 1972, Iowa State; Ph.D., 1977, Ohio State.

HEINDEL, THEODORE JOHN, Associate Professor of Mechanical Engineering. B.S.M.E., 1988, Wisconsin; M.S.M.E., 1990, Ph.D., 1994, Purdue.

HEISING, CAROLYN, Professor of Industrial and Manufacturing Systems Engineering. B.S., 1974, California (San Diego); Ph.D., 1978, Stanford.

HELD, SHIRLEY ELAINE, Emeritus Professor of Art and Design. B.S., 1945, M.S., 1952, Iowa State.

HENDERSON, ERIC R., Professor of Zoology. B.A., 1979, Ph.D., 1984, California (Los Angeles).
HILLESLAND, GLENN G., Adjunct Professor of Electrical and Computer Engineering. B.S.E.E., 1947, Iowa State.

HINZ, PAUL N., Emeritus Professor of Statistics; Emeritus Professor of Forestry; Emeritus Professor of Veterinary Science. B.S., 1969, M.S., 1971, Ludhiana; Ph.D., 1975, Missouri.

HOLMGREN, MARGARET R., Associate Professor of Philosophy and Religious Studies. B.A., 1974, Bryn Mawr; Ph.D., 1981, Texas.

HOLSCHEK, KENNETH, Associate Professor of Entomology. B.S., 1972, Kearney; M.S., 1978, Ph.D., 1981, Oklahoma State.

HOMER, ROGER HARRY, Emeritus Professor of Mathematics. A.B., 1951, Southern California; Ph.D., 1959, California Berkeley.

HONEYMAN, MARK S., Associate Professor of Animal Science; Associate Professor of Agricultural Education and Studies. B.S., 1977, M.S., 1983, Ph.D., 1989, Iowa State.

HONG, MEI, Assistant Professor of Chemistry. B.A., 1992, Mount Holyoke College; Ph.D., 1996, California Berkeley.

HONZATKO, RICHARD B., Professor of Biochemistry, Biophysics and Molecular Biology. B.S., 1976, Michigan; Ph.D., 1982, Harvard.

HOPKINS, STEVEN M., Professor of Veterinary Diagnostic and Production Animal Medicine; Professor of Veterinary Clinical Sciences. D.V.M., 1974, Michigan State.

HOPPER, DAVID L., Professor of Veterinary Diagnostic and Production Animal Medicine; Professor of Veterinary Pathology. B.S., 1971, M.S., 1972, Wisconsin; M.D., 1976; Ph.D., 1976, Iowa State.

HOPPER, JOAN GILMORE, Assistant Professor of Veterinary Clinical Sciences. B.S., 1973, D.V.M., 1979, Iowa State.

HORNER, HARRY T. JR., Professor of Botany; University Professor. B.A., 1959, M.S., 1961, Ph.D., 1964, Northwestern.

HÖRÖWITZ, JACK, Emeritus Professor of Biochemistry, Biophysics and Molecular Biology; University Professor. B.A., 1952, City University of New York; Ph.D., 1957, Indiana.

HORST, RONALD L., Professor of Animal Science (Collaborator); Professor of Biomedical Sciences (Collaborator). B.S., 1971, West Virginia; M.S., 1972, Ph.D., 1976, Wisconsin.

JIA, YAN-BIN, Assistant Professor of Computer Engineering. B.S., 1975, New York (Buffalo); M.F.A., 1988, Arizona State.

JOLLY, COLLEEN D., Microbiology and Preventive Medicine. D.V.M., 1989, California (Santa Barbara); Ph.D., 1995, California (San Diego).

JOLLY, ROBERT WILLIAM, Professor of Economics. B.S., 1968, M.S., 1974, Ph.D., 1976, Minnesota.

JONES, BERNARD JR., Associate Professor of Agricultural and Human Sciences. B.S., 1950, Missouri Southern; M.A., 1974, Central Missouri; Ph.D., 1985, Wisconsin.

JONES, BRENT JOYCE, Associate Professor of Zoology. B.S., 1973, M.S., 1976, Iowa State.

JONES, CHARLES W., Emeritus Professor of Zoology. B.S., 1964, Oregon; M.A., 1964, Drake.

JULIUS, MARVIN G., Emeritus Professor of Economics. B.S., 1948, Ph.D., 1968, Iowa State.

JUNGST, STEVEN E., Professor of Forestry. B.S., 1969, Ph.D., 1976, Iowa State.

JURA, JERZY OSKAR, Assistant Professor of Foreign Languages and Literatures. M.A., 1986, Jagiellonian (Poland); M.A., 1994, Ph.D., 1997, Wisconsin.

KADOLPH, SARAH JEAN, Associate Professor of Textiles and Clothing. B.A., 1972, Iowa State; M.S., 1973, Kansas State; Ph.D., 1979, Minnesota.

KAELBERER, MATTHIAS, Assistant Professor of Political Science. B.A., 1987, Tuebingen (Germany); M.A., 1991, Ph.D., 1997, Princeton.

KAIRIS, JOHN, Associate Professor of Electrical and Computer Engineering. B.S., 1978, M.S., 1980, Cairo (Egypt); M.A.Sc., 1982, Ph.D., 1986, Toronto (Canada).

KANDEL, EDWARD I., Emeritus Professor of Physics; Emeritus Professor of Molecular and Cellular Biology. B.A., 1959, Ph.D., 1966, Wisconsin; Ph.D., 1972, Purdue; D.Sc., 1977, Virginia.

KAPLAN, MURRAY LEE, Professor of Food Science and Human Nutrition. B.A., 1962, Alfred; Ph.D., 1969, Cornell; Food Science and Human Nutrition: Graduate Dean; Ph.D., 1969, Cornell; Food Science and Human Nutrition: Graduate Dean; Ph.D., 1970, Cornell; Food Science and Human Nutrition: Graduate Dean; Ph.D., 1974, Cornell; Food Science and Human Nutrition: Graduate Dean; Ph.D., 1977, Cornell; Food Science and Human Nutrition: Graduate Dean; Ph.D., 1980, Cornell; Food Science and Human Nutrition: Graduate Dean; Ph.D., 1984, Cornell; Food Science and Human Nutrition: Graduate Dean; Ph.D., 1988, Cornell; Food Science and Human Nutrition: Graduate Dean; Ph.D., 1992, Cornell; Food Science and Human Nutrition: Graduate Dean; Ph.D., 1996, Cornell; Food Science and Human Nutrition: Graduate Dean; Ph.D., 2000, Cornell; Food Science and Human Nutrition: Graduate Dean; Ph.D., 2004, Cornell; Food Science and Human Nutrition: Graduate Dean; Ph.D., 2008, Cornell; Food Science and Human Nutrition: Graduate Dean; Ph.D., 2012, Cornell; Food Science and Human Nutrition: Graduate Dean; Ph.D., 2016, Cornell; Food Science and Human Nutrition: Graduate Dean; Ph.D., 2020, Cornell; Food Science and Human Nutrition: Graduate Dean; Ph.D., 2024, Cornell; Food Science and Human Nutrition: Graduate Dean; Ph.D., 2028, Cornell; Food Science and Human Nutrition: Graduate Dean; Ph.D., 2032, Cornell; Food Science and Human Nutrition: Graduate Dean; Ph.D., 2036, Cornell; Food Science and Human Nutrition: Graduate Dean; Ph.D., 2040, Cornell; Food Science and Human Nutrition: Graduate Dean; Ph.D., 2044, Cornell; Food Science and Human Nutrition: Graduate Dean; Ph.D., 2048, Cornell; Food Science and Human Nutrition: Graduate Dean; Ph.D., 2052, Cornell; Food Science and Human Nutrition: Graduate Dean; Ph.D., 2056, Cornell; Food Science and Human Nutrition: Graduate Dean; Ph.D., 2060, Cornell; Food Science and Human Nutrition: Graduate Dean; Ph.D., 2064, Cornell; Food Science and Human Nutrition: Graduate Dean; Ph.D., 2068, Cornell; Food Science and Human Nutrition: Graduate Dean; Ph.D., 2072, Cornell; Food Science and Human Nutrition: Graduate Dean; Ph.D., 2076, Cornell; Food Science and Human Nutrition: Graduate Dean; Ph.D., 2080, Cornell; Food Science and Human Nutrition: Grad...
KELKAR, ATUL G., Associate Professor of Mechanical Engineering. B.E., 1984, Poona (India); M.S., 1990, Ph.D., 1993, Old Dominion.

KELLER, BRIAN ALAN, Associate Professor of Mathematics. B.S., 1983, Purdue; S.M., 1989, Massachusetts Institute of Technology; Ph.D., 1993, Western Michigan.

KENDALL, RICK A., Adjunct Associate Professor of Computer Science. B.S., 1983, Indiana State; Ph.D., 1988, Utah.

KENEALY, MICHAEL D., Professor of Animal Science; University Professor. B.S., 1969, Ph.D., 1974, Iowa State.

KENDRED, WILLIAM J., Jr., Professor of Statistics. B.S., 1959, M.S., 1960, Oklahoma State; Ph.D., 1969, Iowa State.

KERN, THOMAS, Associate Professor of Veterinary Diagnostic and Production Animal Medicine. B.S., 1974, New Mexico State; D.V.M., 1978, Purdue; M.S., 1985, Ohio State.

KESSLER, JULIUS O., Emeritus Professor of Veterinary Medicine. B.S., 1942, Iowa State; M.S., 1945, Iowa State.

KOSTIC, NENAD M., Professor of Chemistry; Professor of Biochemistry, Biophysics and Molecular Biology. Dipl., 1976, Belgrade; Ph.D., 1982, Wisconsin.

KOTHARI, SHARAT C., Professor of Electrical and Computer Engineering; Professor of Computer Science. B.S. 1970, Poona; Ph.D., 1977, Purdue.

KRAY, KATHERINE M., Adjunct Assistant Professor of Veterinary Diagnostic and Production Animal Medicine. B.S., 1965, St. Mary's; Ph.D., 1969, Notre Dame.

KRAZ, JOHN JOSEPH, Professor of Chemistry. B.A., 1961, Case Western Reserve; Ph.D., 1965, Princeton.

KRAUSER, ALFRED, Adjunct Assistant Professor of Geographical and Atmospheric Sciences. MATUR, 1963, Wien-Kalksburg (Austria); Ph.D., 1974, Vienna.

KRAUS, GEORGE A., Professor of Chemistry. B.S., 1972, Rochester; Ph.D., 1976, Columbia.

KUNERTH, WILLIAM F., Iowa State.
LANG, RICHARD D., Adjunct Assistant Professor of Military Science and Tactics. B.S., 1984, Upper Iowa; M.P.A., 1997, Drake.
LANG, RICHARD D., Adjunct Assistant Professor of Military Science and Tactics. B.S., 1984, Upper Iowa; M.P.A., 1997, Drake.
LAPAN, HARVEY E., Professor of Economics; University Professor. B.S., 1969, M.S., 1969, Ph.D., 1971, Massachusetts Institute of Technology.
LAROSE, RICHARD C., Professor of Chemistry; University Professor. B.S., 1967, California (Davis); Ph.D., 1972, Purdue.
LARSEN, WILLIAM L., Emeritus Professor of Materials Science and Engineering. B.M.E., 1948, Marquette; M.S., 1950, Ph.D., 1956, Ohio State.
LARSON, DAVID, Associate Professor of Veterinary Diagnostic and Production Animal Medicine; Associate Professor of Veterinary Pathology. B.S., 1964, D.V.M., 1968, Iowa State; M.S., 1975, Missouri.
LARSON, DAVID, Associate Professor of Veterinary Diagnostic and Production Animal Medicine; Associate Professor of Veterinary Pathology. B.S., 1964, D.V.M., 1968, Iowa State; M.S., 1975, Missouri.
LARSEN, WILLIAM L., Emeritus Professor of Materials Science and Engineering. B.M.E., 1948, Marquette; M.S., 1950, Ph.D., 1956, Ohio State.
LARSON, DAVID, Associate Professor of Veterinary Diagnostic and Production Animal Medicine; Associate Professor of Veterinary Pathology. B.S., 1964, D.V.M., 1968, Iowa State; M.S., 1975, Missouri.
LARSEN, WILLIAM L., Emeritus Professor of Materials Science and Engineering. B.M.E., 1948, Marquette; M.S., 1950, Ph.D., 1956, Ohio State.
LARSON, DAVID, Associate Professor of Veterinary Diagnostic and Production Animal Medicine; Associate Professor of Veterinary Pathology. B.S., 1964, D.V.M., 1968, Iowa State; M.S., 1975, Missouri.
LARSEN, WILLIAM L., Emeritus Professor of Materials Science and Engineering. B.M.E., 1948, Marquette; M.S., 1950, Ph.D., 1956, Ohio State.
LARSON, DAVID, Associate Professor of Veterinary Diagnostic and Production Animal Medicine; Associate Professor of Veterinary Pathology. B.S., 1964, D.V.M., 1968, Iowa State; M.S., 1975, Missouri.
LARSEN, WILLIAM L., Emeritus Professor of Materials Science and Engineering. B.M.E., 1948, Marquette; M.S., 1950, Ph.D., 1956, Ohio State.
LARSON, DAVID, Associate Professor of Veterinary Diagnostic and Production Animal Medicine; Associate Professor of Veterinary Pathology. B.S., 1964, D.V.M., 1968, Iowa State; M.S., 1975, Missouri.
LARSEN, WILLIAM L., Emeritus Professor of Materials Science and Engineering. B.M.E., 1948, Marquette; M.S., 1950, Ph.D., 1956, Ohio State.
LEWIS-ACKERMAN, ADAM, Adjunct Instructor in Zoology and Genetics. B.S., 1980, King's (London); M.Phil., 1981, Cambridge (U.K); Ph.D., 1989, Tel Aviv (Israel).

LEWIS, CALVIN F., Professor of Architecture and Chair of the Department. B.Arch., 1969, Iowa State.

*LEWIS, DOUGLAS S., Associate Professor of Food Science and Human Nutrition. B.S., 1973, Georgia; Ph.D., 1978, Michigan State.

*LIECHTENSTEIN, MARKUS, Assistant Professor of Computer Science. M.Sc., 1990, Dresden (Germany); Ph.D., 1994, Illinois.

*LITZ, ROBERT DALE, Emeritus Associate Professor of Industrial and Manufacturing Systems Engineering. B.S., 1948, M.S., 1965, Iowa State.

LOBBY, WALTER C., Emeritus Professor of Agricultural and Biosystems Engineering. B.S., 1949, Maine.

LOBBY, WALTER C., Emeritus Professor of History. B.S.S., 1943, City University of New York; M.A., 1946, Ph.D., 1948, Columbia.

LOYNYAANANACH, THOMAS E., Professor of Agriculture; Professor of Microbiology. B.S., 1968, M.S., 1972, Iowa State; Ph.D., 1975, North Carolina State.

*LUBAN, JOHN, Emeritus Professor of Horticulture. B.S., 1947, Miami (Ohio); M.S., 1948, Ph.D., 1951, Michigan State.

*MALLAPRAGADA, S., Assistant Professor of Chemical Engineering; Assistant Professor of Materials Science and Engineering. B.Tech., 1993, Indian Institute of Technology; Ph.D., 1996, Purdue.

MALLARINO, ANTONIO P., Emeritus Associate Professor of Agriculture. B.S., 1975, Ghana; M.S., 1979, Ph.D., 1983, Iowa State.

MALONE, WILLIAM A., Emeritus Associate Professor of Community and Regional Planning. B.S., 1947, M.S., 1950, Iowa State.

MANATT, RICHARD P., Professor of Educational Leadership and Policy Studies; University Professor. B.S., 1953, M.S., 1956, Iowa State; Ph.D., 1964, Iowa.

MANEY, ARTHUR LOUISE, Professor of Political Science. B.A., 1966, Colby; Ph.D., 1975, Columbia.

MANSBACH, RICHARD W., Emeritus Associate Professor of Sociology. B.A., 1984, Iowa State; Ph.D., 1988, Pennsylvania State.

MARTIN, ROBERT ALLEN, Professor of Sociology. B.A., 1964, Swarthmore; Ph.D., 1967, Cornell.

MAYFIELD, JOHN ERIC, Professor of Zoology and Genetics; Associate Dean of the Graduate College. B.A., 1963, Wooster; M.S., 1965, Ph.D., 1968, Purdue.

MAYNAR, ANTHONY J., Adjunct Instructor in Military Science and Tactics.

MAZUR, ROBERT EDWARD, Associate Professor of Sociology. B.S., 1976, Iowa; M.A., 1979, Ph.D., 1982, Brown.

McClain, Jeoraldean S., Emeritus Associate Professor of Art and Design. B.A., 1959, Tulia; M.A., 1962, Michigan; Ph.D., 1974, Ohio State.

McClelland, John F., Adjunct Associate Professor of Mechanical Engineering. B.S., 1965, Dickinson College, Ph.D. 1976, Iowa State.

McCloskey, Michael A., Associate Professor of Zoology. B.S., 1974, California (Riverside); Ph.D., 1979, California (Davis).

McCuller, Scott R., Assistant Professor of Veterinary Clinical Sciences. B.S., 1986, D.V.M.; 1990, Iowa State; Ph.D., 1996, Texas A and M.

McComber, Diane R., Emeritus Associate Professor of Food Science and Human Nutrition. B.S., 1980, M.S., 1985, Iowa State.

McDowell, Patrick T., Professor of Civil and Construction Engineering (Collaborator). B.S., 1963, M.S., 1964, Iowa State; M.S., 1967, Texas A and M.

McDonald, E. D. W., Emeritus Assistant Professor of Health and Human Performance. B.S., 1960, Boston University; M.S., 1968, Southern Illinois.

McElroy, James C., Professor of Management; Associate Dean of the College of Business. B.S., 1971, Jamestown; M.B.A., 1972, South Dakota; Ph.D., 1979, Oklahoma State.

McLrath, Timothy J., Associate Professor of Art and Design. B.A., 1966, Dominican (Wisconsin); M.S., 1969, Wisconsin.

McLmsey, George T., Professor of History and Chair of the Department. B.A., 1958, Grinnell; M.A., 1959, Columbia; Ph.D., 1968, Wisconsin.

McMechan, James D., Emeritus Associate Professor of Electrical and Computer Engineering. B.S., 1955, M.S.E.E., 1960, Iowa State.

McMillan, Thelma J., Emeritus Professor of Food Science and Human Nutrition. B.S., 1940, Arizona; M.S., 1942, Nebraska; Ph.D., 1951, Cornell.
McNAB, HAROLD S., JR., Emeritus Professor of Plant Pathology; Emeritus Professor of Forestry; University Professor. B.S., 1949, Nebraska; M.S., 1951, Ph.D., 1954, Yale.

MEEKER, WILLIAM G. JR., Professor of Statistics; Distinguished Professor in Liberal Arts and Sciences. B.S., 1972, Clarkson; M.S., 1973, Ph.D., 1975, Union.

MEEMS, CAROL B., Professor of Human Development and Family Studies; Dean of the College of Family and Consumer Sciences. B.S., 1968, M.S., 1969, Ph.D., 1972, Ohio State.

MEEMS, HOWARD D., Associate Professor of Industrial and Manufacturing Systems Engineering. B.S., 1980, Iowa State; M.S., 1986, Ph.D., 1970, Ohio State.

MEEMS, MARVIN, Professor of Military Science and Tactics and Chair of the Department. B.S., 1979, US Military Academy, M.S. 1986, Central Michigan.

MELSA, JAMES L., Professor of Electrical and Computer Engineering; Dean of the College of Engineering. B.S., 1960, Iowa State; M.S., 1962, Ph.D., 1965, Arizona.

MELTZER, DAVID E., Professor of Veterinary Pathology (Collaborator). B.A., 1981, Gustavus Adolphus; Ph.D., 1987, Ph.D., 1988, Iowa State.

MEYER, WILLIAM WADE, Professor of Agricultural and Biosystems Engineering. B.S., 1952, M.S., 1955, Ph.D., 1966, Iowa State.

MEEKS, MARVIN, Professor of Military Science and Tactics and Chair of the Department. B.S., 1979, US Military Academy, M.S. 1986, Central Michigan.

MENDONCA, AUBREY F., Assistant Professor of Food Science and Human Nutrition. B.S., 1985, M.S., 1987, Ph.D., 1992, Iowa State.

MENDELSON, BRUCE W., Emeritus Professor of Agricultural and Biosystems Engineering and Chair of the Department: B.S., 1964, M.S., 1967, Ph.D., 1970, Iowa State.

MENNINGER, ROBERT, Emeritus Professor of Veterinary Pathology. B.S., 1976, M.S., 1979, Ph.D., 1982, Iowa State.

MENNINGER, ROBERT, Emeritus Professor of Veterinary Pathology. B.S., 1976, M.S., 1979, Ph.D., 1982, Iowa State.

MENNINGER, ROBERT, Emeritus Professor of Veterinary Pathology. B.S., 1976, M.S., 1979, Ph.D., 1982, Iowa State.

MENNINGER, ROBERT, Emeritus Professor of Veterinary Pathology. B.S., 1976, M.S., 1979, Ph.D., 1982, Iowa State.

MENNINGER, ROBERT, Emeritus Professor of Veterinary Pathology. B.S., 1976, M.S., 1979, Ph.D., 1982, Iowa State.
NONNECK, GAIL R., Assistant Professor of Veterinary Microbiology (Collaborator); Professor of Zoology and Genetics (Collaborator). B.A., 1965, Illinois; Ph.D., 1970, Indiana.

PANIGRAHY, BRUNDABAN, Associate Professor of Veterinary Microbiology and Preventive Medicine (Collaborator). B.V.Sc., 1982, Orissa Veterinary College; M.S., 1968, Minnesota; Ph.D., 1972, Texas A and M.

PAUL, KAY MARIE, Associate Professor of Marketing. B.S., 1976, Winona; M.B.A., 1990, Moonhead; Ph.D., 1994, Texas Technical University.

PAUL, REID G., Professor of Agronomy (Collaborator); Professor of Zoology and Genetics (Collaborator). B.A., 1965, Illinois; Ph.D., 1970, Indiana.

O'MAHONY, JAMES M., Emeritus Professor of Veterinary Pathology. D.V.M., 1966, Tuskegee; M.S., 1971, Ph.D., 1975, Iowa State.

O'BERRY, PHILLIP A., Emeritus Professor of Veterinary Pathology; Emeritus Professor of Veterinary Pathology. B.S., 1955, Florida; D.V.M., 1960, Auburn; Ph.D., 1965, Iowa State.

PARRISH, FREDERICK C., Emeritus Professor of Veterinary Pathology. B.S., 1966, Ph.D., 1975, Iowa State; M.S., 1971, Ph.D., 1975, Iowa State.

PAUL, REID G., Professor of Agronomy (Collaborator); Professor of Zoology and Genetics (Collaborator). B.A., 1965, Illinois; Ph.D., 1970, Indiana.

OLSON, CAROLYN G., Emeritus Professor of Veterinary Science and Human Nutrition; Emeritus Professor of Veterinary and Comparative Medicine. B.S., 1986, Ph.D., 1990, Iowa State.

OLSON, CAROLYN G., Emeritus Professor of Veterinary Science and Human Nutrition; Emeritus Professor of Veterinary and Comparative Medicine. B.S., 1986, Ph.D., 1990, Iowa State.

OLSON, CAROLYN G., Emeritus Professor of Veterinary Science and Human Nutrition; Emeritus Professor of Veterinary and Comparative Medicine. B.S., 1986, Ph.D., 1990, Iowa State.

OLSON, CAROLYN G., Emeritus Professor of Veterinary Science and Human Nutrition; Emeritus Professor of Veterinary and Comparative Medicine. B.S., 1986, Ph.D., 1990, Iowa State.

OLSON, CAROLYN G., Emeritus Professor of Veterinary Science and Human Nutrition; Emeritus Professor of Veterinary and Comparative Medicine. B.S., 1986, Ph.D., 1990, Iowa State.

OLSON, CAROLYN G., Emeritus Professor of Veterinary Science and Human Nutrition; Emeritus Professor of Veterinary and Comparative Medicine. B.S., 1986, Ph.D., 1990, Iowa State.

OLSON, CAROLYN G., Emeritus Professor of Veterinary Science and Human Nutrition; Emeritus Professor of Veterinary and Comparative Medicine. B.S., 1986, Ph.D., 1990, Iowa State.
POWELL-COFFMAN, JO A., B.S., 1943, Monmouth; Ph.D., 1952, Iowa State.

POWELL, JACK E., Emeritus Professor of Chemistry. B.S., 1943, Monmouth; Ph.D., 1952, Iowa State.

POWELL-COFFMAN, JO A., Assistant Professor of Zoology and Genetics. B.S., 1968, California (Davis); Ph.D., 1993, California (San Diego).

POWERS-SCHILLING, W., Assistant Professor of Animal Science; Assistant Professor of Agricultural and Biosystems Engineering. B.S., 1989, Cornell; M.S., 1993, Ph.D., 1997, Florida.

PRIDDY, STEVEN W., Assistant Professor of Forestry. B.S., 1979, Fort Hays; M.S., 1980, Ph.D., 1983, Kansas State.

PRUCE, ERIC, Assistant Professor of Psychology. B.A., 1984, Ph.D., 1995, Glasgow.

QUAN, CHEN, Assistant Professor of Mechanical Engineering. B.S., 1994, Ph.D., 1999, Iowa State.

QUINN, LOYD V., Emeritus Professor of Microbiology. B.S., 1941, M.S., 1947, Ph.D., 1950, Purdue.

QUINN, ROBERT T., Emeritus Professor of Veterinary Medicine. B.S., 1949, Ph.D., 1953, Purdue.

QUINN, ROBERT W., Emeritus Professor of Physics. B.S., 1962, Iowa State.

QUINN, RICHARD M., Emeritus Professor of Education. B.S., 1969, Oregon (Eugene); M.A., 1970, Iowa State.

RAHMAN, MUSLIM, Associate Professor of Chemistry. B.S., 1967, Ph.D., 1973, Iowa State.

RAKATANSKY, MARK, Professor of Architecture. B.A., 1979, California (Santa Cruz); M.Arch., 1982, California (Berkeley).

RAMANUJAN, K., Emeritus Professor of Mathematics. B.S., 1949, Ph.D., 1953, Purdue.

RASMUSSEN, JORGEN S., Emeritus Professor of Political Science; Emeritus Professor of Curriculum and Instruction; Distinguished Professor in Liberal Arts and Sciences. A.B., 1957, Indiana; M.A., 1958, Ph.D., 1962, Wisconsin.

RASMUSSEN, MARK A., Assistant Professor of Animal Science (Collaborator); Assistant Professor of Biomedical Sciences (Collaborator). B.S., 1976, M.S., 1979, Nebraska; Ph.D., 1986, Illinois; M.B.A., 1996, Iowa State.

ROBERTSON, DONALD S., Emeritus Professor of Zoology. A.B., 1947, Stanford; Ph.D., 1951, California Institute of Technology.

ROBINSON, WILLIAM, Leadership and Policy Studies; University Professor.

ROSS, RICHARD FRANCIS, Professor of Veterinary Microbiology and Preventive Medicine; Clarence Hartley Covaull Distinguished Professor in Veterinary Medicine; Dean of the College of Agriculture. D.V.M., 1959, M.S., 1960, Ph.D., 1965, Iowa State.

ROTH, JAMES ALLEN, Professor of Veterinary Microbiology and Preventive Medicine; Clarence Hartley Covaull Distinguished Professor in Veterinary Medicine. D.V.M., 1975, M.S., 1979, Ph.D., 1981, Iowa State.

Rothschild, Max F., Emeritus Professor of Chemistry. B.S., 1949, M.A., 1947, University of Chicago.

RUDOLPH, WILLIAM B., Emeritus Professor of Mathematics; Emeritus Professor of Curriculum and Instruction. B.A., 1960, Bethany (West Virginia); M.S., 1965, Ph.D., 1969, Purdue.

RUEDENBERG, CLAUS, Emeritus Professor of Chemistry; Emeritus Professor of Physics and Astronomy; Distinguished Professor in Liberal Arts and Sciences. Abitur, 1938, Bielefeld; M.S., 1944, Fribourg; Ph.D., 1950, Zurich; Ph.D., 1975, (Hon) Basel.

RUEFLE, LITA C., Associate Professor of Forestry. B.S., 1975, M.S., 1982, Philippines; Ph.D., 1988, Texas A and M.

RUSSELL, STEVE F., Associate Professor of Chemistry. B.S., 1972, M.S., 1975, Ph.D., 1994, Iowa State.

RUSSELL, DANIEL W., Professor of Psychology. B.S., 1975, Tulsa; Ph.D., 1980, California (Los Angeles).

RUSSELL, MARTHA E., Emeritus Professor of Chemistry. B.S., 1945, Rochester; M.A., 1947, New York (Buffalo); Ph.D., 1954, Purdue.

RUSSELL, WILBERT A., Emeritus Professor of Agriculture; Charles F. Curtiss Distinguished Professor in Agriculture. B.S.A., 1942, Manitoba; M.S., 1947, Ph.D., 1952, Minnesota.

RUST, ROBERT E., Emeritus Professor of Animal Science; Emeritus Professor of Food Science and Human Nutrition. B.S., 1951, Wisconsin; M.S., 1954, Michigan State.

Ryan, Vernond Dean, Professor of Sociology. B.S., 1966, Utah State; M.S., 1969, Ph.D., 1974, Pennsylvania State.

Sacco, Randy E., Assistant Professor of Veterinary Microbiology and Preventive Medicine (Collaborator). B.S., 1981, M.S., 1983, Iowa State; Ph.D., 1987, Texas A and M.

Sakaguchi, Donald S., Associate Professor of Zoology and Genetics. B.S., 1979, Ph.D., 1984, New York (Albany).

Salvador, Ricardo J., Associate Professor of Agronomy. B.S., 1979, New Mexico State; M.S., 1984, Ph.D., 1989, Iowa State.

Sanada, Laurie M., Assistant Professor of Health and Human Performance; Assistant Professor of Music. B.A., 1977, Columbia College; M.A., 1984, M.F.A., 1988, Iowa.

Sanderson, Donald E., Emeritus Professor of Mathematics. B.A., 1949, Cornell College; M.S., 1951, California Institute of Technology; Ph.D., 1963, Wisconsin.

Sandor, Jonathan A., Professor of Agronomy. B.A., 1974, California (Santa Barbara); M.S., 1979, Ph.D., 1983, California (Berkeley).

Sapp, Stephen Graham, Associate Professor of Sociology. B.A., 1974, M.A., 1980, Florida; Ph.D., 1984, Texas A and M.

Sardo, Ann G., Assistant Professor of Civil and Construction Engineering. B.S., 1988, California (Davis); M.S., 1989, Stanford; Ph.D., 1999, California (Davis).

Sartin, Ralph D., Adjunct Instructor in Military Science and Tactics.

Sastry, Vedula V., Adjunct Professor of Electrical and Computer Engineering. B.S.E.E., 1963, Andhra (India); M.S.E.E., 1965, Ph.D., 1968, Indian Institute of Technology.

Sauer, Tom, Associate Professor of Biology (Collaborator). B.S., 1982, Wisconsin (Stevens Point); M.S., 1985, Ph.D., 1993, Wisconsin.

Sawyer, John E., Associate Professor of Agronomy. B.S., 1977, Ohio State; M.S., 1985, Ph.D., 1988, Illinois.

*SHEBLE, MACK CLAYTON, Professor of Educational Leadership and Policy Studies; Professor of Political Science. B.A., 1972, American; M.S., 1973, Ph.D., 1977, Wisconsin.

*SHERRARD, WILLIS H., Emeritus Professor of Agronomy. B.S., 1941, Nebraska; Ph.D., 1949, Purdue.

SKRDLA, WILLIS H., Emeritus Professor of Agronomy. B.S., 1941, Nebraska; Ph.D., 1949, Purdue.

*SMAY, TERRY ALLEN, Emeritus Professor of Aerospace Engineering and Engineering Mechanics; Associate Professor of Statistics. B.S., 1974, M.S., 1975, Ph.D., 1984, Wisconsin.

*SORDEN, STEVEN D., Adjunct Professor of Veterinary Diagnostic and Production Animal Medicine; Assistant Professor of Veterinary Medicine; Assistant Professor of Veterinary Pathology. B.S., 1981, D.V.M., 1984, Iowa State; Ph.D., 1992, Wisconsin.

*SOUTHWICK, MARY L., Professor of English. B.S., 1986, Oregan State.

*SPERLING, MARY E., Associate Professor of Foreign Languages and Literatures. B.A., 1971, Novosibirsk State (Russia); M.A., 1974, Ph.D., 1983, Moscow State (Russia); M.A., 1995, Ph.D., 1997, Kansas.

SPIRA, STEVEN, Emeritus Professor of Nuclear Engineering. B.S., 1942, M.S., 1944, Ph.D., 1945, Yale.

SPONESELL, BEATRICE T., Adjunct Instructor in Veterinary Clinical Sciences. D.V.M., 1996, Berlin (Germany).

SQUIRES, RICHARD, Emeritus Professor of Industrial and Manufacturing Systems Engineering. B.S., 1931, Purdue; M.S., 1932, Yale.

SREENIVASAM, ELSA M., Emeritus Associate Professor of Art and Design. B.A., 1951, St. Scholastica; M.A., 1969, Minnesota.

*SRITHARAN, VIMALA, Emeritus Associate Professor of Civil and Construction Engineering. B.S.C.E., 1985, Peradeniya (Sri Lanka); M.E., 1989, Auckland (New Zealand); Ph.D., 1998, California (San Diego).

*ST GERMAIN, SHELBY, Associate Professor of English. B.A., 1979, Southeastern Louisiana; M.A., 1982, Ph.D., 1986, Texas (Dallas).

STADLER, JOAN K., Emeritus Professor of Zoology and Genetics; University Professor. B.A., 1951, Wellesley; Ph.D., 1954, Missouri.

*STAHLY, TIMOTHY S., Professor of Animal Science. B.S., 1970, M.S., 1972, South Dakota State; Ph.D., 1975, Nebraska.

*STANTON, THADDEUS BRIAN, Assistant Professor of Civil and Construction Engineering (Collaborator). B.S., 1972, Northeast Missouri State; M.S., 1979, Iowa State.

STANLEY, ROBERT, Assistant Professor of Civil and Construction Engineering (Collaborator). B.S., 1972, Northeast Missouri State; M.S., 1979, Iowa State.

*STANTON, THADDEUS BRIAN, Assistant Professor of Civil and Construction Engineering (Collaborator). B.S., 1972, Northeast Missouri State; M.S., 1979, Iowa State.

*STARRS, GLORIA K., Adjunct Assistant Professor of Mechanical Engineering. B.S., 1979, B.S., 1986, Kentucky; M.S., 1990, Ph.D., 1996, Iowa State.

*STASSIS, CONSTANTINE, Professor of Physics and Astronomy. B.S., 1960, M.S., 1961, Lausanne; Ph.D., 1970, Massachusetts Institute of Technology.

*STEVENS, ROGER, Professor of Food Science and Human Nutrition. B.S., 1949, M.S., 1953, Ph.D., 1958, Iowa State.

*STROHBEHN, CATHERINE, Adjunct Assistant Professor of Hotel, Restaurant, and Institution Management. B.A., 1979, Texas Tech; M.S., 1981, Ph.D., 1985, Cornell College; Ph.D., 1986, Iowa State.

STROHL, JOHN KENNETH, Adjunct Instructor in Food Science and Human Nutrition. B.S., 1981, Minnesota; Ph.D., 1988, Iowa State.

*STROMER, MARVIN H., Professor of Animal Science; Professor of Food Science and Human Nutrition; Professor of Biochemistry, Biophysics and Molecular Biology. B.S., 1959, Ph.D., 1966, Iowa State.

*SUEN, I-SHIAN, Associate Professor in Food and Regional Planning. B.S., 1984, Feng Chia (Taiwan); M.U.P., 1988, Oregon; Ph.D., 1998, Washington.

*SUN, SHIH-WU, Assistant Professor of Civil and Construction Engineering. B.S., 1983, Tian Kung University; M.S., 1988, Auburn; Ph.D., 1994, Iowa State.

*SWATOS, MICHELE LYNN, Assistant Professor of Philosophy and Religious Studies. B.S., 1987, Tulane; Ph.D., 1994, Arizona.

*SVEC, HARRY J., Emeritus Professor of Chemistry; Distinguished Professor in Liberal Arts and Sciences. B.S., 1941, John Carroll; Ph.D., 1950, Iowa State.

*SWAN, PATRICIA B., Emeritus Professor of Food Science and Human Nutrition. B.S., 1958, North Carolina (Greensboro); M.S., 1961, Ph.D., 1964, Wisconsin.

*SWENSON, CLAYTON A., Emeritus Professor of Physics and Astronomy; Distinguished Professor in Liberal Arts and Sciences. B.S., 1944, Harvard; D.Phil., 1949, Oxford.

*SWENSON, RUTH WILDMAN, Emeritus Professor of Botany; Emeritus Associate Dean of Liberal Arts and Sciences. A.B., 1948, Mount Holyoke; M.S., 1947, Illinois; Ph.D., 1969, Iowa State.

SWITZER, WILLIAM P., Emeritus Professor of Veterinary Microbiology and Preventive Medicine; Clarence Hartley Covault Distinguished Professor in Veterinary Medicine. D.V.M., 1948, Texas A and M; M.S., 1951, Ph.D., 1954, Iowa State; Dr.H.C., 1979, Vienna.

*TABATABAI, LOUISA, Professor of Biochemistry, Biophysics and Molecular Biology (Collaborator); Professor of Veterinary Microbiology and Preventive Medicine (Collaborator). B.A., 1962, California (Berkeley); M.S., 1966, Ph.D., 1976, Iowa State.

*TABATABAI, M. ALI, Professor of Agronomy. B.S., 1958, Baghdad; M.S., 1960, Oklahoma State; Ph.D., 1965, Iowa State.

TUCKER, ROBERT D., Associate Professor of Zoology and Genetics; Distinguished Professor in Liberal Arts and Sciences. B.S., 1937, City University of New York; M.A., 1940, Ph.D., 1942, Michigan.

VAN BOOIJ, TIMOTHY, Assistant Professor of Industrial and Manufacturing Systems Engineering; B.A., 1988, Covenant; BIE, 1988, M.S., 1992, Ph.D., 1997, Georgia Institute of Technology.

VANDERVALK, ARNOLD, Professor of Botany; Director of Iowa Lakeside Laboratory. B.Sc., 1968, Windermere; M.Sc., 1970, Alberta; Ph.D., 1973, North Carolina State.

VENKAT, SUBRAHMANYAM, Professor of Electrical and Computer Engineering and Chair of the Department. B.S., 1963, Andhra (India); M.S., 1966, Indian Institute of Technology; Ph.D., 1971, South Carolina.

VESTERLUND, LISE, Assistant Professor of Economics. B.A., 1990, Copenhagen (Denmark); M.S., 1995, Ph.D., 1997, Wisconsin.

VIGIL, DENNIS R., Assistant Professor of Chemical Engineering. B.S., 1985, New Mexico; M.S., 1986, Ph.D., 1990, Michigan.

VINNOGRADE, BERNARD, Emeritus Professor of Mathematics; Distinguished Professor in Liberal Arts and Sciences. B.S., 1937, City University of New York; M.A., 1940, Ph.D., 1942, Michigan.

VITTEL, VLAJ, Professor of Electrical and Computer Engineering. B.E., 1977, B S M College of Engineering (India); M.Tech., 1979, Indian Institute of Technology; Ph.D., 1982, Iowa State.

VLECK, DAVID, Adjunct Associate Professor of Zoology and Genetics. B.A., 1972, Pomona; Ph.D., 1978, California (Los Angeles).

VONDA, CARL FRANK, Emeritus Professor of Geology; Distinguished Professor in Liberal Arts and Sciences. B.S., 1956, M.S., 1958, Ph.D., 1963, Nebraska.

WAGGONER, KATHLEEN M., Adjunct Assistant Professor of Sociology; Adjunct Assistant Professor of Political Science. B.S., 1975, Wisconsin (Lacrosse); M.S., 1978, Ph.D., 1983, Iowa State.

WAGNER, BRUCE HARVEY, Associate Professor of Mathematics. B.A., 1975, California (Santa Cruz); M.A., 1979, Ph.D., 1982, California (Berkeley).

WATERS, RAY, Assistant Professor of Veterinary Microbiology and Preventive Medicine (Collaborator). B.S., 1985, D.V.M., 1988, Auburn; Ph.D., 1996, Iowa State.

WEBER, THOMAS A., Professor of Physics and Astronomy. B.S., 1962, De Paul; Ph.D., 1961, Notre Dame.

WECHSLER, MONROE S., Emeritus Professor of Materials Science and Engineering; Emeritus Professor of Nuclear Engineering. B.S., 1944, City University of New York; A.M., 1950, Ph.D., 1953, Columbia.

WEERASINGHE, ANANDA, Associate Professor of Mathematics. B.S., 1979, Colombo; Ph.D., 1986, Minnesota.

WEI, LI, Assistant Professor of Finance. B.S., 1992, M.S., 1994, Tsinghua (China); Ph.D., 2000, Utah.

WEIBUST, INGER, Assistant Professor of Political Science. B.S., 1986, Carleton; M.A., 1990, Ottawa; Ph.D., 2000, Massachusetts Institute of Technology.

WENDT, SCOTT E., Adjunct Instructor in Veterinary Clinical Sciences; University Professor. B.A., 1969, Western Washington; Ph.D., 1966, Washington State.

WHITE, BERNARD J., Emeritus Professor of Biochemistry, Biophysics and Molecular Biology; University Professor. B.S., 1958, Portland; M.A., 1961, Ph.D., 1963, Oregon.

WHITE, PAMELA JUNE, Professor of Food Science and Human Nutrition. B.S., 1972, M.S., 1974, Washington; Ph.D., 1978, Oregon.

WHITE, WENDY S., Associate Professor of Food Science and Human Nutrition. B.S., 1980, Cornell; M.S., 1982, Massachusettes General; M.S., 1986, Ph.D., 1990, Cornell.

WHITFORD, MICHAEL B., Professor of Anthropology and Chair of the Department. B.A., 1967, Beloit; M.A., 1970, Ph.D., 1972, California (Berkeley).

WHITHAM, STEVEN A., Assistant Professor of Plant Pathology. B.S., 1980, Iowa State; M.S., 1992, Ph.D., 1995, California (Berkeley).

WICKERSHAM, THOMAS W., Emeritus Professor of Animal Science. B.S., 1941, M.S., 1945, Iowa State.

WIDRECHNER, MARK P., Assistant Professor of Agronomy (Collaborator), Assistant Professor of Horticulture (Collaborator). B.S., 1977, Michigan State; M.S., 1980, Illinois; Ph.D., 1982, Minnesota.

WIENER, MERLE OLIVER, Emeritus Professor of Industrial Education and Technology. B.S., 1938, Northern Iowa; M.S., 1950, Iowa State.

ZIEGLER, KENNETH E., Instructor in Agronomy.

*ZIMMERMAN, JEFFREY J., Associate Professor of Veterinary Diagnostic and Production Animal Medicine; Associate Professor of Veterinary Microbiology and Preventive Medicine. B.A., 1978, Nebraska (Omaha); D.V.M., 1984, M.S., 1986, Ph.D., 1990, Iowa State.

*ZIMMERMAN, ZORA DEVRNJA, Professor of English; Associate Dean of the College of Liberal Arts and Sciences. B.A., 1967, Ph.D., 1974, New York (Buffalo).

ZMOLEK, WILLIAM G., Emeritus Professor of Animal Science. B.S., 1944, M.S., 1951, Iowa State.

*ZUERNER, RICHARD L., Associate Professor of Veterinary Microbiology and Preventive Medicine (Collaborator). B.A., 1980, California State (Chico); M.S., 1983, Ph.D., 1986, West Virginia.

Agricultural and Biosystems Engineering (See Agricultural Systems Technology) 129
Agricultural Business 59
Agricultural Education 59
Agricultural Education and Studies 125
Agricultural Engineering 89, 127
Agricultural Extension Education 60
Agricultural Studies 60
Agricultural Systems Technology 60, 129
Agriculture and Home Economics Experiment Station 35
Agriculture and Natural Resources, Extension to 36
Agriculture, College of 57
Agronomy 61, 131
Airworthiness Assurance Center of Excellence 32
Air Force Aerospace Studies 135
Alcohol-free Houses 22
American Indian Studies 137
Ames Center for Animal Health 32
Ames Laboratory of the U.S. Department of Energy 32
Analog and Mixed Signal VLSI Design Center 32
Animal Ecology 62, 137
Animal Science 62, 140
Annual Recognition Ceremony 48
Anthropology 143
Art: Craft Design and Drawing/Painting/Printmaking (See Art: Integrated Studio Arts) 153
Art Education 151
Art: Graphic Design 151
Art History 153
Art: Integrated Studio Arts 153
Art: Interior Design 154
Art: Visual Studies (See Art: Integrated Studio Arts) 153
Articulation/Transfer Agreements 10
Associate in Arts (AA) Articulation Agreement 10
Astronomy and Astrophysics (See Physics and Astronomy) 309
Athletics 246
Attendance 39, 41
Auditing Courses 49, 112
Automobiles on Campus 32

B
Bachelor of Arts - Performing Arts Major 341
Bachelor of Liberal Studies (BLS) 16
Bachelor’s Degree Requirements 53
Bachelor’s Degree, Two 43
Bacteriology, (See Microbiology) 296
Bicycle Regulations 32
Biochemistry, Biophysics, and Molecular Biology 155
Bioinformatics and Computational Biology 158
Biological/ Premedical Illustration 159
Biology 159
Biomedical Engineering 161
Biomedical Sciences 162
Biotechnology Council 32
Board of Regents, State of Iowa 7
Botany 163
Bribery 41
Bridge Engineering Center 32
Business 71
Business, College of 71
Business Administration 166
Business and Industry, Extension to 36
Business Research Institute 35

C
Calendar 3
Campus Visits 8
Cancellation, Registration 39
Cancelled Courses, Sections 38
Career Services Offices 25
Carrie Chapman Catt, Center for Women & Politics 32
Cars on Campus 31
Catalog in Effect 55
Center for Advanced Technology Development (CATD) 32
Center for Agricultural and Rural Development (CARD) 32
Index

Center for Building Energy Research 32
Center for Crops Utilization Research 33
Center for Designer Crops 33
Center for Designing Foods to Improve Nutrition 34
Center for Excellence in Science and Mathematics Education 33
Center for Family Policy 33
Center for Interfacial Materials and Crystallization 33
Center for Nondestructive Evaluation (CNDE) 33
Center for Physical and Computational Mathematics 35
Center for Plant Genomics 33
Center for Plant Responses to Environmental Stresses 33
Center for Transportation Research and Education 33
Certificate of Public Management 16
CEU, Continuing Education Units 16
Challenge and Review of Records 51
Change of Schedule Fee 18
Changing Curriculum or Major 43
Changing a Grade 45
Changing Curriculum or Major 43
Changing a Grade 45
Cheating, See Academic Dishonesty 41
Chemical Engineering 89, 167
Chemistry 169
Child and Family Services, Curriculum in 97
Child Care 29
Child Development/See Human Development and Family Studies 258
Chinese 231
Civil Engineering 89, 172
Class Attendance 41
Classical Studies 176
Classification, Resident/Nonresident 10
Classification of a Student 42
CLEP (College Level Examination Program) 10
Clinical Laboratory Science/Medical Technology 319
Co-ed Housing 22
Co-listed Courses 119
Coaching Interscholastic Athletics 245, 335
College Level Examination Program (CLEP) 10
College Research Institutes 35
Colleges
Agriculture 53, 57, 58
Business 53, 71
Design 53, 74
Education 14, 53, 80
Engineering 53, 86
Family and Consumer Sciences 53, 95
Liberal Arts and Sciences 53, 102
Veterinary Medicine 53, 107
Colleges and Curricula 53
Committee on Lectures 31
Communication Disorders 325
Communication Studies, (See Greenlee School of Journalism) 273
Communities, Extension to 36
Community and Regional Planning 77, 177
College Induction/Mentoring (CCIM) Program 15
Community Health Education 81
Complex Adaptive Systems 180
Computation Center 34
Computational Fluid Dynamics Center 33
Computer Engineering 90, 180
Computer Fee 18
Computer Science 183
Concurrent Graduate Degree Programs 112
Concurrent Undergraduate Programs 112
Conduct Probation 42
Confidential Information 50
Confidential Information Reports 50
Construction Engineering 91, 186
Contact Hours 119
Continuing Education, (See Extended and Continuing Education) 14
Continuing Education Units 16
Continuous Registration 17
Correspondence Course Credit 10
Credit Hours 185
Counseling Service, Student 24
Counselor Education 200
Course Abbreviations, (See Designators) 52
Course Numbers 119
Course Prerequisites 119
Course-related Presentations, Ownership of 41
Courses and Programs 119
Creative Component 114
Credit by Examination (CBE) 12, 49
Credit, Definition of 119
Credit Fee Schedule 17
Credit for Military Service 10
Credit Involving a Paid Activity 41
Credit Limits 38
Criminal Justice Studies 185
Crop Science/See Agronomy
Cross-Cultural House 22
Cross-Listed Courses 119
Cumulative Grade Point Average 45
Curricula 53
Curriculum and Instruction 188
Curriculum Requirements 54
Cytotechnology, Preprofessional Study 319
Dairy Science 63
Dance 245
Day Care 29
Dead Week 44
Dean’s List 48
Dean of Students Office 25
Declaring a Minor 43
Deferred Payment 17
Deficiency, Quality Point 46
Degree Planning 43
Degree Requirements, Bachelor’s 54
Graduate College 115
Dental Hygiene, Preprofessional Study 319
Dentistry, Preprofessional Study 319
Departmental Examinations 12
Departmental Test-out Exams 12
Design and Pattern Making/See Textiles and Clothing
Design, College of 74
Design Studies 194
Designated Repeats, Repeating a Course 45
Designators 52
Developmental Math Fee 18
Dietetics 63, 98
Disabilities, Services for Students with See Student Support Services (SSSP) 28
Disability Resources (DR) 26
Disciplinary Reprimand 42
Dishonesty, Academic 41
Distance Education (See Extended and Continuing Education) 14
Diversity, U.S. and International Perspective Requirements 54
Dismissal, Academic 46
Dissertation 116
Doctor of Philosophy 115
Dormitories (See Student Housing) 22
Double Degrees 43
Double Major/Curriculum 43
Drake University Law School/Iowa State University Combined Degree 115
Dramatics 31
Drawing/Painting/Printmaking (See Art: Integrated Studio Arts) 153
Drop Limit 39
Dual-degree Programs 55
Dual-listed Courses 119
2001-2003
Extended and Continuing Education Fee 18
Extension, University 36

F
Facts 11
Faculty Listing 357
Families, Extension to 36
Family and Consumer Sciences, College of 95
Family and Consumer Sciences Education and Studies 98, 224
Family and Consumer Sciences, Master of 224
Family and Consumer Sciences Research Institute 35
Family Housing, University 23
Family Resource Management and Consumer Sciences, Curriculum in 99
Federal Cooperative Education Program 55
Federal Direct PLUS Loan 21
Federal Direct Stafford Loan 21
Federal Health Professions Loan and Scholarships 21
Federal Pell Grant 20
Federal Perkins Loan 20
Federal Supplemental Educational Opportunity Grant 20
Fee Payment 17
Fee Schedule Per Credit 17
Fees 18, 20
Fees and Expenses 17
Field Trips 41
Final Exams 44
Final Oral Exams 114, 117
Finance 226
Financial Aid 20
Financial Aid, Satisfactory Academic Progress for 48
Food Safety Consortium 33
Food Science 99
Food Science and Technology-B.S./M.S. 100
Food Science and Technology-B.S./M.S., Curriculum in 65
Food Science, Curriculum in 64
Food Science and Human Nutrition 227
Foreign Language Placement 12
Foreign Languages and Literatures 230
Foreign Languages, Special Courses 236
Forensics 29
Forestry 65, 236
Fraternities and Sororities 23
French 232
Freshman Honors Program 55

G
General Education Requirement, (See also information for each College) 335
Genetics 65, 353
Genetics - Interdisciplinary 239
Geological and Atmospheric Sciences 240
Geology 232
German 230
Gerontology 244
Gift Aid 20
Grade Change 45
Grade Point Average (GPA) 45, 112
Grade Posting 51
Grades, Release of 51
Grading System 45
Graduate Appointments 111
Graduate Area of Specialization 119
Graduate College 110
Graduate Major 119
Graduate Majors, Summary of 117
Graduate Programs 119
Graduate Student Approval Slip 114
Graduate Studies 244
Graduate Study 112
Graduation 44
Graduation Fee 18
Graduation Requirements (See individual departments) 244
Graduation with Distinction 48
Grants 20
Graphic Design 77, 151
Greek 233
Greek Affairs 25
Greek Houses (See Fraternities and Sororities) 23
Greenlee School of Journalism and Communication 270
Grievances, Academic 49
Gulf Coast Research Laboratory 55, 139, 161, 165, 243, 298, 356

H
Health and Human Performance 244
Health Center, Student 24
Health Facility Fee 18
Health Fee 18
Health Information Management, Preprofessional Study 319
Health Insurance Fee 19
Health, Premedical and Preprofessional Programs (See Preprofessional Study) 319
Health Professions Loans and Scholarships 21
Health Studies 246
Help with Academic Problems 49
High School Preparation Required for Admission 9
Index

High School Requirements, Unmet 47
Higher Education 202
Historical, Philosophical, and Comparative Studies in Education 192
History 249
History of the University 6
Honor Societies 29
Honors House 22
Honors Program 55, 57
Horticulture 66, 253
Hospital and Health Administration 319
Hotel, Restaurant, and Institution Management 100, 256
Housing and the Near Environment 100
Housing (Interdepartmental Graduate Minor—See Human Development and Family Studies) 258
Housing, Student 22
Human Development and Family Studies 258
Human Medicine, Preprofessional Study 320

I

Identification Number 51
Immunobiology 262
Incomplete Coursework 45
Independent Study 49
Industrial Engineering 93, 262
Industrial Relations 265
Industrial Relations Center 33
Industrial Technology 85, 265
Information Assurance 267
Information Assurance Center 33
Information Disclosure 50
Institute for Design Research and Outreach 35
Institute for International Cooperation in Animal Biologics 33
Institute for Physical Research and Technology 34
Institute for Social and Behavioral Research 34
Integrated Studio Arts 153
Intensive English and Orientation Program (IEOP) 10, 42
Interdepartmental Programs 119
Interdisciplinary Graduate Studies 268
Interdisciplinary Studies (undergraduate) 268
Inter-institutional Programs 55
Interior Design 78, 154
International Agriculture 67, 268
International Baccalaureate Examinations 12
International Business 72, 269
International Educational Services 25
International Institute of Theoretical and Applied Physics 34
International Students, English Requirement for 54
International Studies 269
Internships 21, 58
Interpersonal and Rhetorical Communication 329
Intramural Program (See Recreation Services) 25, 27
Iowa Beef Center 34
Iowa Energy Center 34
Iowa Grant 20
Iowa Lakeside Laboratory 55, 270
Iowa Regents’ Universities Articulation Agreement 10
Iowa Space Grant Consortium 34
Iowa State University Industrial Assessment Center 34
ISUCard and Identification Number 51
Italian 233

J

Journalism and Mass Communication, Greenlee School of 269
Judicial Affairs 25

L

Lakeside Laboratory (See Iowa Lakeside Laboratory)
Land Grant University 4
Landscape Architecture 79, 276
Languages (See Foreign Languages and Literatures) 230
Late Afternoon, Evening, and Saturday Classes 56
Late Fee Payment 19
Late Registration Fee 19, 38
Latin 234
Latino/a Studies 279
Laurence H. Baker Center for Bioinformatics and Biological Statistics 34
Law, Preprofessional Study 320
Learning Communities 37
Learning Disabilities (See Curriculum and Instruction) 187
Learning Disabilities, Academic Help (See Academic Success Center (ASC)) 25
Learning Lab 26
Lectures 31
Legal Services 28
Leopold Center for Sustainable Agriculture 34
Lesbian Gay Bisexual Transgender Student Services (LGBTSS) 26
Liberal Arts and Sciences, College of 103
Liberal Arts and Sciences Cross-Disciplinary Studies 279
Liberal Arts and Sciences, Curriculum in 103
Liberal Studies 106
Library 280
Library, University 24
Library and Information Science 319
Library Requirement 54
Library Study 54
Licensure, Teacher 81, 335
Linguistics 280
Loans 20-21

M

Majors, Changing 43
Majors, Graduate 117
Management 281
Management Information Systems 282
Margaret Sloss Women’s Center 25, 27
Marine Biology/See Gulf Coast Research Laboratory 55, 139, 161, 165, 243, 296, 356
Marketing 284
Master’s Degrees 113 (See also Extended and Continuing Education) 14
Master’s Double Degree Programs 115
Materials Engineering 93, 285
Materials Preparation Center 34
Materials Science and Engineering 287
Mathematics 288
Matriculation Fee 19
Meal Plans 22
Meat Export Research Center 34
Mechanical Engineering 94, 292
Memorial Union 31
Meteorology 242
Microanalytical Instrumentation Center 34
Microbiology 67, 296
Microelectronics Research Center 35
Midwest Agribusiness Trade Research and Information Center (MATRIC) 34
Military Credit 10
Military Science 298
Military Service, Credit for 10
Military Studies 26, 299
Military Training 56
Minority Student Affairs, Office of 25
Minors 54
Minor, Declaring 44
Minors Requirements (See Colleges)
Misrepresentation 41
Mission, Role, and Scope Statement 4
Molecular, Cellular, and Developmental Biology 300
Motor Vehicles and Bicycles 31
Music 105, 301
Music Activities 31
Music Instruction Fees 18
N
National Soil Tilth Laboratory 34
National Student Exchange 55
Naval Science 304
Neuroscience 305
New Student Days 13
New Student/Matriculation Fee 19
New Student Programs, Office of 13
Noncredit Courses, Converting to Credit 48
Nondiscrimination Policy and Affirmative Action Policy 5
Nonmajor Graduate Credit 120
Nonresident Students, Classification of 10
Nonthesis Degrees, M.S., M.A. 114
North Central Regional Aquaculture Center 35
North Central Regional Center for Rural Study Development 35
North Central Regional Plant Introduction Station 35
Nuclear Medicine Technology, Preprofessional Study 320
Nursing, Preprofessional Study 320
Nutrition B.S./M.S. 68, 101
Nutritional Science 67, 101
Nutritional Sciences Council 35

O
Occupational Therapy, Preprofessional Study 320
Off Campus and Adult Student Services (OCASS) 25, 27
Off-Campus Credit Courses and Programs 14, 57
Off-Campus Employment 21
Off-Campus Housing for Students 23
Office of Admissions 8
Office of International Education Services 25
Office of Minority Student Affairs 25
Office of the Registrar 8
Officer Education, Financial Assistance 20
Officer Education Programs 305
Optometry, Preprofessional Study 320
Organizational Learning and Human Resource Development 203
Organizations, Student 28
Orientation 13
Ownership of Course-related Presentations 41

P
Parents Association (ISUPA) 25, 27
Part-time Definition for Financial Aid 48
Part-time Employment 21
Pass-Not Pass Grading 49, 112
Past Due Accounts 17
Pathology/See Plant Pathology and Veterinary Pathology
Payment of Fees 17, 38
Pell Grant 20
Performing Arts 341-342
Perkins Loan 20
Permission Required Courses/Sections 38
Pest Management 68, 305
Pharmacology/See Veterinary Physiology and Pharmacology
Ph.D. Requirements 115
Philosophy and Religious Studies 306
Physical Therapy 320
Physician Assistant 320
Physical Education/See Health and Human Performance 244
Physical Education Licensure 337
Physical Sciences, Physics 301
Physics 311
Physics and Astronomy 309
Placement Offices (See Career Services) 25
Plagiarism 41
Plant Health and Protection 68, 313
Plant Pathology 313
Plant Physiology 314
Plant Sciences Institute 35
PLUS Loan 21
Podiatry 321
Policies and Procedures
Governing CBE Tests 13
Policy on Student Names 51
Political Science 315
Portuguese 234
Postdoctoral Study 111
Posting Grades and Test Scores 51
Preliminary Exams (Ph.D.) 116
Premedical and Preprofessional Health Programs (See Preprofessional Study) 319
Preprofessional Study 319
Prerequisites 39
Preveterinary Medicine 57, 107
Priority Enrollment 119
Privacy, of Students 50
Private Music Instruction 18
Production/Operations Management 321
Professional Agriculture 69, 322
Professional Teacher Education Requirement 335
Program of Study Committee, Graduate 113, 116
Progressing Toward a Degree 42
Provisional Admission Status, Graduate 110
Psychology 322
Public Information 50
Public Relations/See Greenlee School of Journalism and Communication 270
Public Service and Administration in Agriculture 69

Q
Quality Point Deficiency 47
Quality Points 47
Quantity Standard, for Financial Aid 48
Quiet House 22

R
Raymond F. Baker Center for Plant Breeding 35
Recognition, Scholastic 48
Recording and Transmission of Classes 41
Records, Retention 50
Records, Withholding 51
Registration, Review and Challenge 51
Records, Student 50
Recreation Services 25, 27
Reentry 40
Refund of Room and Board Fees 40
Refunds 19
Regents 7
Regents’ Articulation Agreement 10
Regents’ Semester In Wales 56
Regents’ Universities Student Exchange Program 55
Registration 12, 37
Registration and Advising 37
Registration, Cancellation 39
Registration, Disabled Students 38
Registration Fee, Late 18
Registration Fee Schedule 17
Registration Holds 38
Registration, in Abstentia 112
Registration Process 37
Regulations, Academic 41
Reinstatement 47
Release of Grades 51
Religious Life 31
Religious Studies 308
Removal of Unmet High School Requirements 47
Repeating a Course 45
Required Credit 119
Research and Evaluation 204
Research Institute for Studies in Education (RISE) 35
Research Organizations 32
Reserve Officer Training Corps (ROTTC) (See Military Science) 298
Residence Halls 22
Residency Guidelines 10
Restricted Admission Status, Graduate
- 110

Restricted Courses/Sections
- 38

Retention of Records
- 44

Returning or Reentry to the University
- 10, 40

Review and Challenge of Records
- 51

ROTC Scholarships
- 20

Room and Board, Refund of Fees
- 40

Russian
- 234

SAT, Admission Requirement
- 8

Satisfactory Academic Progress for Financial Aid Recipients
- 48

Saturday and Evening Classes
- 56

Schedule Change Fee
- 18

Schedule Changes, Making
- 38

Scholarships
- 20

Scholastic Recognition
- 48

School Mathematics, Master of
- 16

Second Major
- 43

Secondary Education (See Curriculum and Instruction)
- 188

Seed Science
- 69

Seed Science Center
- 35

Semester Calendar
- 3

Semester of Offering
- 119

Senior Fee
- 19

Smoke-free Houses
- 22

Social Security Numbers
- 51

Sociology
- 325

Sororities
- 23

Spanish
- 235

Special Admission (Nondegree Undergraduate)
- 10

Special Course Fees
- 119

Special Education
- 193

Special Programs
- 55

Speech Communication
- 329

Sponsored International Student Fee
- 19

Stafford Loans
- 21

State of Iowa, Board of Regents, State of Iowa
- 7

Statistical Laboratory
- 35

Statistics
- 330

Strategic Plan
- 6

Student Activities Center (SAC)
- 26, 28

Student Answer Center
- 28

Student Apartments
- 23

Student Appeal, Academic Status
- 47

Student Assistance Services
- 26, 28

Student Counseling Service
- 24

Student Data Verification Form
- 38

Student Exchange Program, Regent Universities
- 55

Student Financial Aid
- 20

Student Health Center
- 24

Student Health Fee
- 19

Student Housing
- 22

Student-Initiated Withdrawal
- 39

Student Legal Services (SLS)
- 26, 28

Student Life
- 29

Student Names, Policy on
- 51

Student Records (public and confidential)
- 50

Student Schedules
- 38

Student Services
- 24

Student Support Services Program
- 26, 28

Student Teaching
- 334

Students, Dean of
- 25

Study Abroad
- 55, 57

Study Abroad Fee
- 19

Summer Orientation
- 12

Summer Study Abroad
- 56

Suspension Deferred
- 42

Sustainable Agriculture
- 333

Systems Engineering
- 334

Teacher Education
- 334

Teacher Licensure
- 81, 335

Technology and Social Change
- 338

Test of English as a Foreign Language (TOEFL)
- 9

Test-Out Credit
- 10

Test-Out/See Credit by Examination
- 12

Textiles and Clothing
- 339

Theatre
- 325, 341

Theatre and Dramatics
- 31

Theatre and Performing Arts
- 341

Theology or Religious Studies
- 321

Thesis
- 114

TOEFL, Test of English as a Foreign Language
- 9

Touch-tone Registration
- 37

Toxicology
- 343

Transcript Fee
- 19

Transfer Agreements
- 10

Transfer Credit Practices, Policies
- 9

Transfer of Credits
- 42

Transfer Students
- 9

Transportation
- 343

Transportation and Logistics
- 344

Tuition
- 17

Tuition Assistance Grant for Undergraduate Foreign Students
- 20

Tutoring Services
- 26

Twelve-Month Payment Plan
- 17

Two Bachelor’s Degrees
- 43

U

U.S. Diversity and International Perspective Requirements
- 54

Undergraduate Admission into Degree Programs by Transfer from Other Educational Institutions
- 9

Undergraduate Admission into Degree Programs Directly from High School
- 8

Undergraduate and Professional Degree Programs
- 53

Undergraduate Residence Halls
- 22

University
- 4

University Calendar
- 3

University Emergency Loans
- 21

University Extension
- 36

University Family Housing
- 23

University History
- 6

University Long-Term Loan
- 21

University Mission, Role, Scope
- 4

University Points of Pride
- 5

University Strategic Plan
- 6

University Student Apartments
- 23

University Studies
- 344

University-Initiated Withdrawal
- 40

Unmet High School Requirements, Removal
- 47

V

Validation of Enrollment
- 39

Vehicles on Campus
- 31

Veteran Attendance
- 41

Veterinary Clinical Sciences
- 343

Veterinary Diagnostic Lab
- 35

Veterinary Diagnostic and Production Animal Medicine
- 346

Veterinary Medical Research Institute
- 35

Veterinary Medicine
- 108, 321, 348

Veterinary Medicine, College of
- 107

Veterinary Microbiology & Preventive Medicine
- 348

Veterinary Pathology
- 350

Virtual Reality Applications Center
- 35

Visits to the Campus
- 8

Vocational Rehabilitation Services
- 28

Vocational Technical Education/See Industrial Technology
- 85, 265
W
Washington Center Program 55
Water Resources 351
Water Resources Research Institute 35
Web Registration 37
WelcomeFest 13
Wildlife Biology/See Animal Ecology 137
William D. Ford Federal Direct Loan 21
Withdrawal
 Student Initiated 39
 University initiated 40
Withdrawal and Reentry 39
Withdrawal from the University 39
Withholding Records 51
Women’s Center, Margaret Sloss 25, 27
Women’s Studies 352
Work-Study Program 21
Workshops, Fee 19
Workshops, Refunds 19

Y-Z
Youth and 4-H, Extension to 36
Zoology 70, 353
Zoology and Genetics 353