Agricultural Engineering (A E)

Courses primarily for undergraduates:

A E 110. Experiencing Agricultural and Biosystems Engineering.
(2-2) Cr. 1. S.
Laboratory-based, team-oriented experiences in a spectrum of topics common to the practice of agricultural and biosystems engineering. Report writing, co-ops, internships, careers, registration planning.

(Cross-listed with BSE). (2-2) Cr. 3. F.S. Prereq: Satisfactory scores in math placement assessments; credit or enrollment in MATH 142.
Applications of multi-view drawings and dimensioning. Techniques for visualizing, analyzing, and communicating 3-D geometries. Application of the design process including written and oral reports.

A E 201. Preparing for Workplace Seminar.
(Cross-listed with BSE, TSM). (1-0) Cr. 1. F.S. Prereq: Sophomore classification in A E, AST, BSE or ITeC

A E 216. Fundamentals of Agricultural and Biosystems Engineering.
(Cross-listed with BSE). (2-2) Cr. 3. F. Prereq: A E 110, ENGR 160, credit or enrollment in MATH 160.
Application of mathematics and engineering sciences to mass and energy balances in agricultural and biological systems. Emphasis is on solving engineering problems in the areas of heat and mass transfer, air and water vapor systems; animal production systems, grain systems; food systems, hydrologic systems, and bioprocessing.

A E 216. Project Management & Design in Agricultural and Biosystems Engineering.
(Cross-listed with BSE). (1-2) Cr. 2. S. Prereq: A E 216
Project management - critical path, Gantt charts, resource allocations, basic project budgeting, and project management software. Engineering design approaches. Open-ended design projects to demonstrate the preceding principles through application of technical concepts taught in prerequisite coursework.

A E 271. Engineering Applications of Parametric Solid Modeling.
(1-0) Cr. 1. F.S. Prereq: ENGR 170 or TSM 116 or equivalent
8 week-course. Creating, editing, and documenting part and assembly models using Solidworks.

A E 272. Parametric Solid Models, Drawings, and Assemblies Using Pro/ENGINEER.
(1-2) Cr. 1. F.S. Prereq: ENGR 170 or TSM 116 or equivalent
8 week-course. Applications of Pro/ENGINEER software. Create solid models of parts and assemblies. Utilize the solid models to create design documentation: standard drawing views, dimensions, and notes.

A E 298. Cooperative Education.
Cr. R. F.S.SS. Prereq: Permission of department and Engineering Career Services
First professional work period in the cooperative education program. Students must register for this course before commencing work.

(Cross-listed with BSE). (2-2) Cr. 3. F. Prereq: ENGR 160, Math 266
Computer aided solution of agricultural engineering problems by use of numerical techniques and mathematical models. Systems analysis and optimization applicable to agricultural and biological systems.

(Cross-listed with TSM, AGRON, AN S, BSE, BUSAD, ECON). (3-0) Cr. 3. F. Prereq: ECON 101, CHEM 163 or higher, MATH 140 or higher
Converting biorenewable resources into bioenergy and biobased products. Biorenewable concepts as they relate to drivers of change, feedstock production, processes, products, co-products, economics, and transportation/logistics.

(2-2) Cr. 3. F. Prereq: A E 110, A E 216, A E 316
Principles of operation, design, selection, testing and evaluation of agricultural field machinery and systems. Functional and mechanical performances. Crop and soil interaction with machines. Machine systems, including land preparation, crop establishment, crop protection, harvesting and post-harvest, materials handling systems.

A E 342. Agricultural Tractor Power.
(2-3) Cr. 3. S. Prereq: C h E 381 or M E 231
Thermodynamic principles and construction of tractor engines. Fuels, combustion, and lubrication. Kinematics and dynamics of tractor power applications; drawbar, power take-off and traction mechanisms. Nonmajor graduate credit.

(3-2) Cr. 4. F. Prereq: PHYS 222

A E 388. Sustainable Engineering and International Development.
(Cross-listed with C E, E E, M E, MAT E, BSE). (2-2) Cr. 3. F. Prereq: Junior classification in engineering
Multi-disciplinary approach to sustainable engineering and international development, sustainable development, appropriate design and engineering, feasibility analysis, international aid, business development, philosophy and politics of technology, and ethics in engineering. Engineering-based projects from problem formulation through implementation. Interactions with partner community organizations or international partners such as nongovernment organizations (NGOs). Course readings, final project/design report. Meets International Perspectives Requirement.

A E 396. Summer Internship.
Cr. R. Repeatable. SS. Prereq: Permission of department and Engineering Career Services
Summer professional work period.

A E 397. Engineering Internship.
Cr. R. Repeatable. F.S. Prereq: Permission of department and Engineering Career Services
One semester maximum per academic year professional work period.

A E 398. Cooperative Education.
Cr. R. F.S.SS. Prereq: A E 298, permission of department and Engineering Career Services
Second professional work period in the cooperative education program. Students must register for this course before commencing work.

A E 403. Modeling and Controls for Agricultural Systems.
(Dual-listed with A E 503). (Cross-listed with BSE). (2-2) Cr. 3. Alt. S., offered 2013, Prereq: A E 363, MATH 266
Modeling dynamic systems with ordinary differential equations. Introduction to state variable methods of system analysis. Analysis of mechanical, electrical, and fluid power systems. Analytical and numerical solutions of differential equations. Introduction to classical control theory. Feedback and stability examined in the s domain. Frequency response as an analytical and experimental tool. MATLAB will be used throughout the course for modeling.

A E 404. Instrumentation for Agricultural and Biosystems Engineering.
(Dual-listed with A E 504). (2-2) Cr. 3. F. Prereq: A E 363 or CPR E 281
Interfacing techniques for computer-based data acquisition and control systems. Basic interfacing components including A/D and D/A conversion, signal filtering, multiplexing, and process control. Sensors and theory of operation applied to practical monitoring and control problems.

A E 408. GIS and Natural Resources Management.
(Dual-listed with A E 508). (Cross-listed with ENSCI). (2-2) Cr. 3. F. Prereq: Working knowledge of computers and Windows environment
Introduction to fundamental concepts and applications of GIS in natural resources management with specific focus on watersheds. Topics include: basic GIS technology, data structures, database management, spatial analysis, and modeling; visualization and display of natural resource data. Case studies in watershed and natural resource management using ArcView GIS.
(Dual-listed with A E 510). Cr. 3. S. Prereq: A E 263 or equivalent.
System architecture and design of electronics used in agricultural machinery and production systems. Emphasis on information technology and systems integration for automated agriculture processes. Design of Controller Area Network (CAN BUS) communication systems and discussion of relevant standards (ISO 11783 and SAE J1939). Application of technologies for sensing, distribution control, and automation of agricultural machinery will be emphasized.

A E 411. Bioprocessing and Bioproducts.
(Dual-listed with A E 511). (Cross-listed with C E, BIOE, BSE). (3-0) Cr. 3. F. Prereq: A E 216, C E 326 or equivalent, MATH 160 or MATH 165, CHEM 167 or higher, BIOL 173 or BIOL 211 or higher, senior or graduate classification. Sustainability, cleaner production. Taxonomy, kinetics, metabolism, microbial cultivation, aerobic and anaerobic fermentation. Antibiotics, food supplements, fermented foods, vitamin production. Biofuels, bioenergy and coproducts. Mass/energy balances, process integration, pretreatment, separation. Membrane reactors, bioelectrolysis, microbial fuel cells, nanotechnology, genetic engineering, mutagenesis.

A E 413. Fluid Power Engineering.
(Cross-listed with M E). (2-2) Cr. 3. F. Prereq: Credit or enrollment in E M 378 or M E 335, A E 216 or M E 270.

A E 415. Agricultural Engineering Design I.

A E 416. Agricultural Engineering Design II.
(Cross-listed with BSE). (1-2) Cr. 2. F. S. Prereq: A E 415.
Selection of promising solutions to design problems identified in 415 for development by design teams. Presentation of designs through oral and written reports and prototypes. Nonmajor graduate credit.

A E 424. Air Pollution.
(Dual-listed with A E 524). (Cross-listed with ENSECI, C E). (1-0) Cr. 1. Prereq: Either PHYS 221 or CHEM 178 and either MATH 166 or 3 credits in statistics. Senior classification or above
1 cr. per module. Module A prerequisite for all modules; module B prerequisite for D and E.

A E 424A. Air Pollution: Air quality and effects of pollutants.
(Dual-listed with A E 524A). (Cross-listed with ENSECI, C E). (1-0) Cr. 1. Prereq: Either PHYS 221 or CHEM 178 and either MATH 166 or 3 credits in statistics. Senior classification or above
1 cr. per module. Module A prerequisite for all modules; module B prerequisite for D and E.

A E 424B. Air Pollution: Climate change and causes.
(Dual-listed with A E 524B). (Cross-listed with ENSECI, C E). (1-0) Cr. 1. Prereq: Either PHYS 221 or CHEM 178 and either MATH 166 or 3 credits in statistics. Senior classification or above
1 cr. per module. Module A prerequisite for all modules; module B prerequisite for D and E.

A E 424C. Air Pollution: Transportation constraints.
(Dual-listed with A E 524C). (Cross-listed with ENSECI, C E). (1-0) Cr. 1. Prereq: Either PHYS 221 or CHEM 178 and either MATH 166 or 3 credits in statistics. Senior classification or above
1 cr. per module. Module A prerequisite for all modules; module B prerequisite for D and E.

A E 424D. Air Pollution: Off-gas treatment technology.
(Dual-listed with A E 524D). (Cross-listed with ENSECI, C E). (1-0) Cr. 1. Prereq: Either PHYS 221 or CHEM 178 and either MATH 166 or 3 credits in statistics. Senior classification or above
1 cr. per module. Module A prerequisite for all modules; module B prerequisite for D and E.

A E 424E. Air Pollution: Agricultural sources of pollution.
(Dual-listed with A E 524E). (Cross-listed with ENSECI, C E). (1-0) Cr. 1. Prereq: Either PHYS 221 or CHEM 178 and either MATH 166 or 3 credits in statistics. Senior classification or above
1 cr. per module. Module A prerequisite for all modules; module B prerequisite for D and E.

A E 432. Nonpoint Source Pollution and Control.
(Dual-listed with A E 532). (3-0) Cr. S. Prereq: E M 378 or CH E 356 or M E 335. Characteristics and courses of non-point source (NPS) pollution in agricultural and urban watersheds, computer modeling and NPS pollution for terrestrial and aquatic systems, strategies to control and manage NPS pollution of water bodies, total maximum daily loads (TMDLs) and integrated watershed management. Graduate students are required to review research papers and develop/deliver lecture models on assigned topics.

(Dual-listed with A E 536). (3-0) Cr. 3. S. Alt. S., offered 2014. Prereq: A E 431 or permission of the instructor.
Development of monitoring systems that support effective planning, performance evaluation, modeling, or environmental impact assessment of soil-, water-, and waste-management systems. Typical soil and water pollutants and physical, chemical, and biological characteristics that affect sample location and timing. Sample collection, documentation, chain-of-custody, and quality assurance procedures.

A E 451. Food and Bioprocess Engineering.
(Dual-listed with A E 551). (3-0) Cr. 3. F. Prereq: A E 216 and M E 436 or CH E 357, or FS HN 351 and MATH 266 or MATH 267. Application of engineering principles and mathematical modeling to the quantitative analysis of food and bioprocessing systems. Physical/chemical characteristics of foods and biological systems, flow processes, thermal processes and separation processes.

A E 466. Multidisciplinary Engineering Design.
(Cross-listed with AER E, CPR E, ENGR, E E, I E, M E, MAT E). (1-4) Cr. 3. Prereq: Student must be within two semesters of graduation and receive permission of the instructor.
Application of design team concepts to projects of a multidisciplinary nature. Concurrent treatment of design, manufacturing and life cycle considerations. Application of design tools such as CAD, CAM, and FEM. Design methodologies, project scheduling, cost estimating, quality control, manufacturing processes. Development of a prototype and appropriate documentation in the form of written reports, oral presentations, computer models and engineering drawings.

A E 469. Grain Processing and Handling.
(Dual-listed with A E 569). (Cross-listed with BSE). (2-3) Cr. 3. S. Prereq: A E 216. Cereal grain and oilseed properties, quality measurement, processing, and end-use value. Design of drying systems using computer simulation. Corn wet and dry milling. Soybean oil extraction. Grain handling systems.

A E 478. Wood Frame Structural Design.

A E 490. Agricultural Engineering Independent Study.
Cr. 1-4. Repeatable.

A E 490C. Agricultural Engineering Independent Study: Computer-aided Design.
Cr. 1-4. Repeatable. Guided instruction in computer-aided design.

Cr. 1-4. Repeatable. Guided instruction in agricultural engineering topics for honors students.

A E 496. Agricultural and Biosystems Engineering Travel Course. (Cross-listed with BSE). Cr. 1-4. Repeatable. F.S.SS. Prereq: Permission of instructor. Limited enrollment. Tour and study of international agricultural and biosystems engineering as applied to biorenewable and food systems. Location and duration of tours will vary. Travel expenses paid by students. Course requires completion of options A, B, and C or option D. Meets International Perspectives Requirement.

A E 496A. Agricultural and Biosystems Engineering Travel Course: Pre-departure. (Cross-listed with BSE). Cr. 1-4. Repeatable. F.S.SS. Prereq: Permission of instructor. Limited enrollment. Tour and study of international agricultural and biosystems engineering as applied to biorenewable and food systems. Location and duration of tours will vary. Travel expenses paid by students. Course requires completion of options A, B, and C or option D. Meets International Perspectives Requirement.

A E 496B. Agricultural and Biosystems Engineering Travel Course: Travel (R credit). (Cross-listed with BSE). Cr. 1-4. Repeatable. F.S.SS. Prereq: Permission of instructor. Limited enrollment. Tour and study of international agricultural and biosystems engineering as applied to biorenewable and food systems. Location and duration of tours will vary. Travel expenses paid by students. Course requires completion of options A, B, and C or option D. Meets International Perspectives Requirement.

A E 496C. Agricultural and Biosystems Engineering Travel Course: Post-travel. (Cross-listed with BSE). Cr. 1-4. Repeatable. F.S.SS. Prereq: Permission of instructor. Limited enrollment. Tour and study of international agricultural and biosystems engineering as applied to biorenewable and food systems. Location and duration of tours will vary. Travel expenses paid by students. Course requires completion of options A, B, and C or option D. Meets International Perspectives Requirement.

A E 496D. Agricultural and Biosystems Engineering Travel Course: Combination (A/B/C). (Cross-listed with BSE). Cr. 1-4. Repeatable. F.S.SS. Prereq: Permission of instructor. Limited enrollment. Tour and study of international agricultural and biosystems engineering as applied to biorenewable and food systems. Location and duration of tours will vary. Travel expenses paid by students. Course requires completion of options A, B, and C or option D. Meets International Perspectives Requirement.

Courses primarily for graduate students, open to qualified undergraduates:

A E 501. Fundamentals of Biorenewable Resources. (Cross-listed with BRT). Cr. 3-0. S. Prereq: Undergraduate training in an engineering or physical or biological discipline or degrees in agriculture or economics. Introduction to the science and engineering of converting biorenewable resources into bioenergy and biobased products. Survey of biorenewable resource base and properties; description of biobased products; methods of biorenewable resource production and processing technologies for fuels, chemicals, materials, and energy; environmental impacts; economics of biobased products and bioenergy.

A E 503. Modeling and Controls for Agricultural Systems. (Dual-listed with A E 405). Cr. 3. Alt. S. Prereq: A E 363, MATH 266. Modeling dynamic systems with ordinary differential equations. Introduction to state variable methods of system analysis. Analysis of mechanical, electrical, and fluid power systems. Analytical and numerical solutions of differential equations. Introduction to classical control theory. Feedback and stability examined in the s-domain. Frequency response as an analytical and experimental tool. MATLAB will be used throughout the course for modeling.

A E 504. Instrumentation for Agricultural and Biosystems Engineering. (Dual-listed with A E 404). F. Cr. 3. F. Prereq: A E 363 or CPR E 281. Interfacing techniques for computer-based data acquisition and control systems. Basic interfacing components including A/D and D/A conversion, signal filtering, multiplexing, and process control. Sensors and theory of operation applied to practical monitoring and control problems.

A E 506. Applied Computational Intelligence. (2-2) Cr. 3. F. Prereq: A E 316 or equivalent, MATH 166, STAT 305. Applications of biologically inspired computational intelligence tools for data mining, system modeling, and optimization for agricultural, biological and other engineered systems. Introduction to Artificial Neural Networks, Support Vector Machines, Fuzzy Logic, Genetic Algorithms, Bayesian and Decision Tree learning. Fundamental Machine Vision techniques will be introduced in the first part of course and be integrated into the lab exercises for learning different computational intelligence techniques. MATLAB will be used throughout the course for algorithm implementation.

A E 508. GIS and Natural Resources Management. (Dual-listed with A E 408). (Cross-listed with ENSCI). S. F. Prereq: Working knowledge of computers and Windows environment. Introduction to fundamental concepts and applications of GIS in natural resources management with specific focus on watersheds. Topics include: basic GIS technology, data structures, database management, spatial analysis, and modeling; visualization and display of natural resource data. Case studies in watershed and natural resource management using ArcView GIS. In addition to other assignments, graduate students will prepare research literature reviews on topics covered in class and develop enterprise applications.

A E 510. Electronic Systems Integration for Agricultural Machinery & Production Systems. (Dual-listed with A E 410). Cr. 3. S. Prereq: A E 363 or equivalent. System architecture and design of electronics used in agricultural machinery and production systems. Emphasis on information technology and systems integration for automated agriculture processes. Design of Controller Area Network (CAN BUS) communication systems and discussion of relevant standards (ISO 11783 and SAE J1939). Application of technologies for sensing, distribution control, and automation of agricultural machinery will be emphasized.

A E 511. Bioprocessing and Bioproducts. (Dual-listed with A E 411). (Cross-listed with C E, BIOE, BSE). (3-0) Cr. 3. F. Prereq: A E 216, C E 326 or equivalent, MATH 160 or MATH 165, CHEM 167 or higher, BIOL 173 or BIOL 211 or higher, senior or graduate classification. Sustainability, cleaner production. Taxonomy, kinetics, metabolism, microbial cultivation, aerobic and anaerobic fermentation. Antibiotics, food supplements, fermented foods, vitamin production. Biofuels, bioenergy and coproducts. Mass/energy balances, process integration, pretreatment, separation. Membrane reactors, bioelectrolysis, microbial fuel cells, nanotechnology, genetic engineering, mutagenesis.

A E 515. Integrated Crop and Livestock Production Systems. (Cross-listed with SUSAG, AGRON, AN S). (3-0) Cr. 3. Alt. F. Prereq: SUSAG 509. Methods to maintain productivity and minimize the negative ecological effects of agricultural systems by understanding nutrient cycles, managing manure and crop residue, and utilizing multispecies interactions. Crop and livestock production within landscapes and watersheds is also considered. Course includes a significant field component, with student teams analyzing Iowa farms.
A E 524. Air Pollution.
(Dual-listed with A E 424). (Cross-listed with ENSCI, C E), (1-0) Cr. 1. Prereq: Either PHYS 221 or CHEM 178 and either MATH 166 or 3 credits in statistics. Senior classification or above
1 cr. per module. Module A prereq for all modules; module B prereq for D and E.

A E 524A. Air Pollution: Air quality and effects of pollutants.
(Dual-listed with A E 424A). (Cross-listed with ENSCI, C E), (1-0) Cr. 1. Prereq: Either PHYS 221 or CHEM 178 and either MATH 166 or 3 credits in statistics. Senior classification or above
1 cr. per module. Module A prereq for all modules; module B prereq for D and E.

A E 524B. Air Pollution: Climate change and causes.
(Dual-listed with A E 424B). (Cross-listed with ENSCI, C E), (1-0) Cr. 1. Prereq: Either PHYS 221 or CHEM 178 and either MATH 166 or 3 credits in statistics. Senior classification or above
1 cr. per module. Module A prereq for all modules; module B prereq for D and E.

A E 524C. Air Pollution: Transportation constraints.
(Dual-listed with A E 424C). (Cross-listed with ENSCI, C E), (1-0) Cr. 1. Prereq: Either PHYS 221 or CHEM 178 and either MATH 166 or 3 credits in statistics. Senior classification or above
1 cr. per module. Module A prereq for all modules; module B prereq for D and E.

A E 524D. Air Pollution: Off-gas treatment technology.
(Dual-listed with A E 424D). (Cross-listed with ENSCI, C E), (1-0) Cr. 1. Prereq: Either PHYS 221 or CHEM 178 and either MATH 166 or 3 credits in statistics. Senior classification or above
1 cr. per module. Module A prereq for all modules; module B prereq for D and E.

A E 524E. Air Pollution: Agricultural sources of pollution.
(Dual-listed with A E 424E). (Cross-listed with ENSCI, C E), (1-0) Cr. 1. Prereq: Either PHYS 221 or CHEM 178 and either MATH 166 or 3 credits in statistics. Senior classification or above
1 cr. per module. Module A prereq for all modules; module B prereq for D and E.

(Dual-listed with A E 431), (2-3) Cr. 3. F. Prereq: E M 378 or CH E 356 Hydrology and hydraulics in agricultural and urbanizing watersheds. Design and evaluation of systems for the conservation and quality preservation of soil and water resources. Use and analysis of hydrologic data in engineering design; relationship of topography, soils, crops, climate, and cultural practices in conservation and quality preservation of soil and water for agriculture. Small watershed hydrology, water movement and utilization in the soil-plant-atmosphere system, agricultural water management, best management practices, and agricultural water quality. Graduate students will prepare several research literature reviews on topics covered in the class in addition to the other assignments.

A E 532. Nonpoint Source Pollution and Control.
(Dual-listed with A E 432), (3-0) Cr. 3. Prereq: E M 378 or CH E 356 or M E 335 Characteristics and courses of non-point source (NPS) pollution in agricultural and urban watersheds, computer modeling and NPS pollution for terrestrial and aquatic systems, strategies to control and manage NPS pollution of water bodies, total maximum daily loads (TMDLs) and integrated watershed management. Graduate students are required to review research papers and develop/deliver lecture materials on assigned topics.

(Cross-listed with ENSCI). (3-0) Cr. 3. Alt. F., offered 2012. Prereq: A E 422 or C E 372, MATH 266
Soil erosion processes, modified universal soil loss equation and its application to conservation planning, sediment properties, initiation of sediment motion and over land flow, flow in alluvial channels and theory of sediment transport, channel stability, reserves sedimentation, wind erosion, BMPs for controlling erosion.

(Dual-listed with A E 436), (3-0) Cr. 3. Alt. S., offered 2014. Prereq: A E 431 or permission of the instructor Development of monitoring systems that support effective planning, performance evaluation, modeling, or environmental impact assessment of soil-, water-, and waste-management systems. Typical soil and water pollutants and physical, chemical, and biological characteristics that affect sample location and timing. Sample collection, documentation, chain-of-custody, and quality assurance procedures.

(2-2) Cr. 3. Alt. F., offered 2011. Prereq: CE 372 or equivalent A project-based course to develop a water quality improvement plan. The legislative and judicial basis of the Total Maximum Daily Load (TMDL) program, different approaches for TMDL development, data needs and sources, SWAT modeling, and principles and techniques for implementation of water quality improvement plans.

A E 551. Food and Bioprocess Engineering.
(Dual-listed with A E 451), (3-0) Cr. 3. F. Prereq: A E 216 and M E 436 or CH E 357, or FS HN 351 and MATH 266 or MATH 267 Application of engineering principles and mathematical modeling to the quantitative analysis of food and bioprocessing systems. Physical/chemical characteristics of foods and biological systems, flow processes, thermal processes and separation processes.

A E 556. Pretreatment of Biomass.
(1-2) Cr. 2. S. Prereq: A E 216 or equivalent Review of lignocellulosic chemistry; chemical and physical impacts of pretreatment; impact of pretreatment on downstream processing; pretreatment economics. Lab experiments using current and novel pretreatment methods.

A E 569. Grain Processing and Handling.
(Dual-listed with A E 469). (Cross-listed with BSE), (2-3) Cr. 3. S. Prereq: A E 216 Cereal grain and oilseed properties, quality measurement, processing, and end-use value. Design of drying systems using computer simulation. Corn wet and dry milling. Soybean oil extraction. Grain handling systems.

(Dual-listed with A E 472), (3-0) Cr. 3. Alt. S., offered 2012. Prereq: A E 216, M E 231 Principles and design of animal environmental control systems. Insulation, heat and mass transfer, fans, ventilation, air distribution, heating and cooling equipment, energy use, control strategies.

A E 578. Wood Frame Structural Design.

A E 580. Engineering Analysis of Biological Systems.
(3-0) Cr. 3. F. Prereq: A E 216; MATH 266; BIOL 211 or BIOL 212; M E 231 Systems-level engineering analysis of biological systems. Economic and life-cycle analysis of bioresource production and conversion systems. Global energy and resource issues and the role of biologically derived materials in addressing these issues. Students enrolled in AE 580 will be required to answer additional exam questions and report on two journal articles.

A E 590. Special Topics in Agricultural & Biosystems Engineering.
Cr. 1-3. Repeatable. Guided instruction and self-study on special topics relevant to agricultural and biosystems engineering.

A E 598. Technical Communications for a Master’s Degree.
(Cross-listed with TSM), Cr. 1. F.S.SS. A technical paper draft based on the M.S. thesis or creative component is required of all master’s students. This paper must be in a form that satisfies the requirements of some specific journal and be ready for submission. A technical presentation based on M.S. thesis or creative component is required of all master’s students. This presentation must be in a form that satisfies the normal presentation requirements of a professional society. The presentation itself (oral or poster) may be made at a professional society meeting or at any international, regional, state, or university conference/event as long as the presentation content and form conforms to normal expectations. Offered on a satisfactory-fail basis only.

A E 599. Creative Component.
Cr. arr. Repeatable. Courses for graduate students:
A E 601. Graduate Seminar.
(Cross-listed with TSM). (1-0) Cr. 1. F.
Keys to writing a good MS thesis or PhD dissertation. How to begin formulating research problems. Discussion of research problems and broader impacts, review of literature, identifying knowledge gaps and needs, long-term goals, research hypotheses, objectives, rationale and significance, methods, procedures, data analysis, and reporting results. Presentation of research proposal in different formats. Using peer review and responding to feedback.

A E 610. Foundations of Sustainable Agriculture.
(Cross-listed with AGRON, SUSAG, ANTHR, SOC). (3-0) Cr. 3. F.
Prereq: Graduate classification, permission of instructor
Historical, biophysical, socioeconomic, and ethical dimensions of agricultural sustainability. Strategies for evaluating existing and emerging agricultural systems in terms of the core concepts of sustainability and their theoretical contexts.

A E 690. Advanced Topics.
Cr. arr. Repeatable.

A E 694. Teaching Practicum.
(Cross-listed with TSM). Cr. 1-3. Repeatable. F.S.S.S. Prereq: Graduate classification and permission of instructor
Graduate student experience in the agricultural and biosystems engineering departmental teaching program.

A E 697. Engineering Internship.
Cr. R. Repeatable. Prereq: Permission of department chair, graduate classification
One semester and one summer maximum per academic year professional work period.

A E 698. Technical Communications for a Doctoral Degree.
(Cross-listed with TSM). Cr. 1. F.S.S.S.
A technical paper draft based on the dissertation is required of all Ph.D. students. This paper must be in a form that satisfies the requirements of some specific journal and be ready for submission. A technical presentation based on the dissertation is required of all Ph.D. students. This presentation must be in a form that satisfies the normal presentation requirements of a professional society. The presentation itself (oral or poster) may be made at a professional society meeting or at any international, regional, state, or university conference/event as long as the presentation content and form conforms to normal expectations. Offered on a satisfactory-fail basis only.

Cr. arr. Repeatable.

A E 699B. Research: Biosystems Engineering.
Cr. arr. Repeatable.
Guided graduate research in biosystems engineering.

Cr. arr. Repeatable.
Guided graduate research in computer-aided design.

Cr. arr. Repeatable.
Guided graduate research in environmental systems.

A E 699F. Research: Food Engineering.
Cr. arr. Repeatable.
Guided graduate research in food engineering.

A E 699O. Research: Environment and Natural Resources.
Cr. arr. Repeatable.
Guided graduate research in environment and natural resources.

A E 699P. Research: Power and Machinery Engineering.
Cr. arr. Repeatable.
Guided graduate research in power and machinery engineering.

A E 699Q. Research: Structures.
Cr. arr. Repeatable.
Guided graduate research in structures.

Cr. arr. Repeatable.
Guided graduate research in process engineering.

A E 699S. Research: Environment and Natural Resources.
Cr. arr. Repeatable.
Guided graduate research in environment and natural resources.

Cr. arr. Repeatable.
Guided graduate research in waste management.