COMPUTER ENGINEERING (CPR E)

Courses primarily for undergraduates:

CPR E 131: Introduction to Computer Security Literacy

(Cross-listed with INFAS). (1-0) Cr. 1.

Basic concepts of practical computer and Internet security: passwords, firewalls, antivirus software, malware, social networking, surfing the Internet, phishing, and wireless networks. This class is intended for students with little or no background in information technology or security. Basic knowledge of word processing required. Offered on a satisfactory-fail basis only.

CPR E 166: Professional Programs Orientation

(Cross-listed with E E). Cr. R. F.S.

(1-0) Overview of the nature and scope of electrical engineering and computer engineering professions. Overview of portfolios. Departmental rules, advising center operations, degree requirements, program of study planning, career options, and student organizations.

CPR E 185: Introduction to Computer Engineering and Problem Solving I (2-2) Cr. 3.

Prereq: MATH 143 or satisfactory scores on mathematics placement examinations; credit or enrollment in MATH 165

Introduction to Computer Engineering. Project based examples from computer engineering. Individual interactive skills for small and large groups. Computer-based projects. Solving engineering problems and presenting solutions through technical reports. Solution of engineering problems using a programming language.

CPR E 186: Introduction to Computer Engineering and Problem Solving II (0-2) Cr. 1. S.

Prereg: CPR E 185

Project based examples from computer engineering. Group skills needed to work effectively in teams. Group problem solving. Computer based projects. Technical reports and presentations. Students will work on 2 or 3 self-directed team based projects that are representative of problems faced by computer engineers.

CPR E 261: Transfer Orientation

(Cross-listed with E E). Cr. R.

Introduction to the College of Engineering and the engineering profession specifically for transfer students. Information concerning university and college policies, procedures, and resources. Offered on a satisfactory-fail basis only.

CPR E 281: Digital Logic

(3-3) Cr. 4. F.S.

Prereq: sophomore classification

Number systems and representation. Boolean algebra and logic minimization. Combinational and sequential logic design. Arithmetic circuits and finite state machines. Use of programmable logic devices. Introduction to computer-aided schematic capture systems, simulation tools, and hardware description languages. Design of simple digital systems.

CPR E 288: Embedded Systems I: Introduction

(3-2) Cr. 4. F.S.

Prereq: CPR E 281, COM S 207 or COM S 227 or E E 285

Embedded C programming. Interrupt handling. Memory mapped I/O in the context of an application. Elementary embedded design flow/ methodology. Timers, scheduling, resource allocation, optimization, state machine based controllers, real time constraints within the context of an application. Applications laboratory exercises with embedded devices.

CPR E 294: Program Discovery

(Cross-listed with E E). Cr. R.

Prereq: CPR E 166 or E E 166

The roles of professionals in computer and electrical engineering. Relationship of coursework to industry and academic careers. Issues relevant to today's world. Offered on a satisfactory-fail basis only.

CPR E 298: Cooperative Education

Cr. R. F.S.SS.

Prereq: Permission of department and Engineering Career Services First professional work period in the cooperative education program. Students must register for this course before commencing work.

CPR E 308: Operating Systems: Principles and Practice

(3-3) Cr. 4. F.S.

Prereg: CPR E 381 or COM S 321

Operating system concepts, processes, threads, synchronization between threads, process and thread scheduling, deadlocks, memory management, file systems, I/O systems, security, Linux-based lab experiments.

CPR E 310: Theoretical Foundations of Computer Engineering

(3-0) Cr. 3. F.S.

Prereq: COM S 228

Propositional logic and methods of proof; set theory and its applications; mathematical induction and recurrence relations; functions and relations; and counting; trees and graphs; applications in computer engineering.

CPR E 315: Applications of Algorithms in Computer Engineering

(3-0) Cr. 3. F.S.SS.

Prereg: CPR E 310

Solving computer engineering problems using algorithms. Emphasis on problems related to the core focus areas in computer engineering. Real world examples of algorithms used in the computer engineering domain. Algorithm engineering. Prototyping of algorithms.

CPR E 329: Software Project Management

(Cross-listed with S E). (3-0) Cr. 3.

Prereg: COM S 309

Process-based software development. Capability Maturity Model (CMM). Project planning, cost estimation, and scheduling. Project management tools. Factors influencing productivity and success. Productivity metrics. Analysis of options and risks. Version control and configuration management. Inspections and reviews. Managing the testing process. Software quality metrics. Modern software engineering techniques and practices.

CPR E 330: Integrated Electronics

(Cross-listed with E E). (3-3) Cr. 4.

Prereq: E E 201, credit or enrollment in E E 230, CPR E 281

Semiconductor technology for integrated circuits. Modeling of integrated devices including diodes, BJTs, and MOSFETs. Physical layout. Circuit simulation. Digital building blocks and digital circuit synthesis. Analysis and design of analog building blocks. Laboratory exercises and design projects with CAD tools and standard cells.

CPR E 332: Cyber Defense Competition

(Cross-listed with INFAS). (0-2) Cr. 1. Repeatable. S.

Participation in cyber defense competition driven by scenario-based network design. Includes computer system setup, risk assessment and implementation of security systems, as well as defense of computer and network systems against trained attackers. Team based. Offered on a satisfactory-fail basis only.

CPR E 339: Software Architecture and Design

(Cross-listed with S E). (3-0) Cr. 3.

Prereg: S E 319

Modeling and design of software at the architectural level. Architectural styles. Basics of model-driven architecture. Object-oriented design and analysis. Iterative development and unified process. Design patterns. Design by contract. Component based design. Product families. Measurement theory and appropriate use of metrics in design. Designing for qualities such as performance, safety, security, reliability, reusability, etc. Analysis and evaluation of software architectures. Introduction to architecture definition languages. Basics of software evolution, reengineering, and reverse engineering. Case studies. Introduction to distributed system software.

CPR E 370: Toying with Technology

(Cross-listed with MAT E). (2-2) Cr. 3. F.S.

Prereg: C I 201 or C I 202

A project-based, hands-on learning course. Technology literacy, appreciation for technological innovations, principles behind many technological innovations, hands-on laboratory experiences based upon simple systems constructed out of LEGOs and controlled by small microcomputers. Future K-12 teachers will leave the course with complete lesson plans for use in their upcoming careers.

CPR E 381: Computer Organization and Assembly Level Programming (3-2) Cr. 4. F.S.

Prereq: CPR E 288

Introduction to computer organization, evaluating performance of computer systems, instruction set design. Assembly level programming: arithmetic operations, control flow instructions, procedure calls, stack management. Processor design. Datapath and control, scalar pipelines, introduction to memory and I/O systems.

CPR E 388: Embedded Systems II: Mobile Platforms

(3-2) Cr. 4.

Prereq: CPR E 288

Contemporary programming techniques for event driven systems. Mobile platforms and operating systems. Location and motion sensors based user interfaces. Threading and scheduling. Resource management - measurement and control techniques - for memory and energy. Client-server application design. Distributed applications. Laboratory includes exercises based on a mobile platform.

CPR E 394: Program Exploration

(Cross-listed with E E). Cr. R.

Prereq: CPR E 294 or E E 294

Exploration of academic and career fields for electrical and computer engineers. Examination of professionalism in the context of engineering and technology with competencies based skills. Introduction to professional portfolio development and construction. Offered on a satisfactory-fail basis only.

CPR E 396: Summer Internship

Cr. R. Repeatable. SS.

Prereq: Permission of department and Engineering Career Services Summer professional work period.

CPR E 397: Engineering Internship

Cr. R. Repeatable. F.S.SS.

Prereq: Permission of department and Engineering Career Services

One semester maximum per academic year professional work period.

CPR E 398: Cooperative Education

Cr. R. F.S.SS.

Prereq: CPR E 298, permission of department and Engineering Career Services Second professional work period in the cooperative education program. Students must register for this course before commencing work.

CPR E 412: Formal Methods in Software Engineering

(Cross-listed with COM S, S E). (3-0) Cr. 3. S.

Prereg: COM S 230 or CPR E 310; COM S 311, STAT 330

A study of formal techniques for model-based specification and verification of software systems. Topics include logics, formalisms, graph theory, numerical computations, algorithms and tools for automatic analysis of systems. Graduate credit requires in-depth study of concepts.

CPR E 416: Software Evolution and Maintenance

(Cross-listed with S E). (3-0) Cr. 3.

Prereq: COM S 309

Practical importance of software evolution and maintenance, systematic defect analysis and debugging techniques, tracing and understanding large software, impact analysis, program migration and transformation, refactoring, tools for software evolution and maintenance, experimental studies and quantitative measurements of software evolution. Written reports and oral presentation.

CPR E 418: High Speed System Engineering Measurement and Testing

(Cross-listed with E E). (3-2) Cr. 4. F.

Prereq: E E 230 and E E 311

Measurement of high speed systems and mixed signal systems. Measurement accuracy and error. Network analysis and spectrum analysis used in high speed measurement and testing. Test specification process and parametric measurement. Sampling and digital signal processing concepts. Design for testability. Testing equipment. Applications.

CPR E 419: Software Tools for Large Scale Data Analysis

(Cross-listed with S E). (3-3) Cr. 4.

Prereq: CPR E 308 or COM S 352, COM S 309

Software tools for managing and manipulating large volumes of data, external memory processing, large scale parallelism, and stream processing, data interchange formats. Weekly programming labs that involve the use of a parallel computing cluster.

CPR E 424: Introduction to High Performance Computing

(Cross-listed with COM S, MATH). (2-2) Cr. 3. F.

Prereq: MATH 265; MATH 207 or MATH 317

Numerical serial and parallel computing using the Message Passing Interface. Oral and written semester project.

CPR E 425: High Performance Computing for Scientific and Engineering Applications

(Cross-listed with COM S). (3-1) Cr. 3. S.

Prereg: COM S 311, COM S 230, ENGL 250, SP CM 212

Introduction to high performance computing platforms including parallel computers and workstation clusters. Discussion of parallel architectures, performance, programming models, and software development issues. Sample applications from science and engineering. Practical issues in high performance computing will be emphasized via a number of programming projects using a variety of programming models and case studies. Oral and written reports.

CPR E 426: Introduction to Parallel Algorithms and Programming

(Dual-listed with CPR E 526). (Cross-listed with COM S). (3-2) Cr. 4. F. Prereq: CPR E 308 or COM S 321, CPR E 315 or COM S 311

Models of parallel computation, performance measures, basic parallel constructs and communication primitives, parallel programming using MPI, parallel algorithms for selected problems including sorting, matrix, tree and graph problems, fast Fourier transforms.

CPR E 431: Basics of Information System Security

(3-0) Cr. 3. S.

Prereq: credit or enrollment in CPR E 308 or COM S 352
Introduction to and application of basic mechanisms for protecting information systems from accidental and intentional threats. Basic cryptography use and practice. Computer security issues including authentication, access control, and malicious code. Network security mechanisms such as intrusion detection, firewalls, IPSEC, and related protocols. Ethics and legal issues in information security. Wireless security. Programming and system configuration assignments.

CPR E 435: Analog VLSI Circuit Design

(Cross-listed with E E). (3-3) Cr. 4. S.

Prereq: E E 324, E E 330, E E 332, and either E E 322 or STAT 330

Basic analog integrated circuit and system design including design space exploration, performance enhancement strategies, operational amplifiers, references, integrated filters, and data converters.

CPR E 444: Bioinformatic Analysis

(Cross-listed with BCB, BCBIO, BIOL, COM S, GEN). (4-0) Cr. 4. F. Prereq: MATH 165 or STAT 401 or equivalent.

Broad overview of bioinformatics with a significant problem-solving component, including hands-on practice using computational tools to solve a variety of biological problems. Topics include: bioinformatic data processing, Perl programming, genome assembly, database search, sequence alignment, gene prediction, next-generation sequencing, comparative and functional genomics, and systems biology.

CPR E 450: Distributed Systems and Middleware

(Dual-listed with CPR E 550). (3-0) Cr. 3.

Prereq: CPR E 308 or COM S 352

Fundamentals of distributed computing, software agents, naming services, distributed transactions, security management, distributed object-based systems, web-based systems, middleware-based application design and development, case studies of middleware and internet applications.

CPR E 454: Distributed Systems

(Dual-listed with CPR E 554). (Cross-listed with COM S). (3-1) Cr. 3. S. *Prereq: COM S 311, COM S 352*

(3-1) Cr. 3. Theoretical and practical issues of design and implementation of distributed systems. The client server paradigm, inter-process communications, synchronization and concurrency control, naming, consistency and replication, fault tolerance, and distributed file systems. Graduate credit requires additional in-depth study of concepts. Programming projects and written reports.

CPR E 458: Real Time Systems

(Dual-listed with CPR E 558). (3-0) Cr. 3.

Prereg: CPR E 308 or COM S 352

Fundamental concepts in real-time systems. Real time task scheduling paradigms. Resource management in uniprocessor, multiprocessor, and distributed real-time systems. Fault-tolerance, resource reclaiming, and overload handling. Real-time channel, packet scheduling, and real-time LAN protocols. Case study of real-time operating systems. Laboratory experiments.

CPR E 465: Digital VLSI Design

(Cross-listed with E E). (3-3) Cr. 4. S.

Prereg: E E 330

Digital design of integrated circuits employing very large scale integration (VLSI) methodologies. Technology considerations in design. High level hardware design languages, CMOS logic design styles, area-energy-delay design space characterization, datapath blocks: arithmetic and memory, architectures and systems on a chip (SOC) considerations. VLSI chip hardware design project.

CPR E 466: Multidisciplinary Engineering Design

(Cross-listed with A B E, AER E, B M E, E E, ENGR, I E, M E, MAT E). (1-4) Cr. 3. Repeatable. F.S.

Prereq: Student must be within two semesters of graduation and permission of instructor.

Application of team design concepts to projects of a multidisciplinary nature. Concurrent treatment of design, manufacturing and life cycle considerations. Application of design tools such as CAD, CAM and FEM. Design methodologies, project scheduling, cost estimating, quality control, manufacturing processes. Development of a prototype and appropriate documentation in the form of written reports, oral presentations, computer models and engineering drawings.

CPR E 467: Multidisciplinary Engineering Design II

(Cross-listed with AER E, E E, ENGR, I E, M E, MAT E). (1-4) Cr. 3. Repeatable, maximum of 2 times. Alt. F., offered irregularly. Alt. S., offered irregularly.

Prereq: Student must be within two semesters of graduation or receive permission of instructor.

Build and test of a conceptual design. Detail design, manufacturability, test criteria and procedures. Application of design tools such as CAD and CAM and manufacturing techniques such as rapid prototyping. Development and testing of a full-scale prototype with appropriate documentation in the form of design journals, written reports, oral presentations and computer models and engineering drawings.

CPR E 480: Graphics Processing and Architecture

(3-3) Cr. 4. S.

Prereq: CPR E 381 or COM S 321

Introduction to hardware architectures for computer graphics and their programming models. System-level view, including framebuffers, video output devices, displays, 2D and 3D graphics acceleration, and device interfacing. Architectural design of GPUs, from 2D and 3D sprite engines to 3D rendering pipelines to unified shader architectures. Computing models for graphics processors. GPGPU and GPU computing.

CPR E 483: Hardware Software Integration

(3-3) Cr. 4. S.

Prereg: CPR E 381

Embedded system design using hardware description language (HDL) and field programmable gate array (FPGA). HDL modeling concepts and styles are introduced; focus on synthesizability, optimality, reusability and portability in hardware design description. Introduction to complex hardware cores for data buffering, data input/output interfacing, data processing. System design with HDL cores and implementation in FPGA. Laboratory-oriented design projects.

CPR E 488: Embedded Systems Design

(3-3) Cr. 4.

Prereq: CPR E 381 or COM S 321

Embedded microprocessors, embedded memory and I/O devices, component interfaces, embedded software, program development, basic compiler techniques, platform-based FPGA technology, hardware synthesis, design methodology, real-time operating system concepts, performance analysis and optimizations.

CPR E 489: Computer Networking and Data Communications

(3-2) Cr. 4. F.S.

Prereq: CPR E 381 or E E 324

Modern computer networking and data communications concepts. TCP/IP, OSI protocols, client server programming, data link protocols, local area networks, and routing protocols.

CPR E 490: Independent Study

Cr. arr. Repeatable.

Prereq: Senior classification in computer engineering

Investigation of an approved topic.

CPR E 490H: Independent Study: Honors

Cr. arr. Repeatable.

Prereq: Senior classification in computer engineering

Investigation of an approved topic.

CPR E 491: Senior Design Project I and Professionalism

(Cross-listed with E E). (2-3) Cr. 3. F.S.

Prereq: E E 322 or CPR E 308, completion of 24 credits in the E E core professional program or 29 credits in the Cpr E core professional program, ENGL 314

Preparing for entry to the workplace. Selected professional topics. Use of technical writing skills in developing project plan and design report; design review presentation. First of two-semester team-oriented, project design and implementation experience.

CPR E 492: Senior Design Project II

(Cross-listed with E E). (1-3) Cr. 2. F.S.

Prereq: CPR E 491 or E E 491

Second semester of a team design project experience. Emphasis on the successful implementation and demonstration of the design completed in E E 491 or Cpr E 491 and the evaluation of project results. Technical writing of final project report; oral presentation of project achievements; project poster.

CPR E 494: Portfolio Assessment

(Cross-listed with E E). Cr. R.

Prereq: CPR E 394 or E E 394, credit or enrollment in CPR E 491 or E E 491 Portfolio update and evaluation. Portfolios as a tool to enhance career opportunities.

CPR E 498: Cooperative Education

Cr. R. Repeatable. F.S.SS.

Prereq: CPR E 398, permission of department and Engineering Career Services Third and subsequent professional work periods in the cooperative education program. Students must register for this course before commencing work.

Courses primarily for graduate students, open to qualified undergraduates:

CPR E 501: Analog and Mixed-Signal VLSI Circuit Design Techniques (Cross-listed with E E). (3-3) Cr. 4. F.

Prereq: E E 435

Design techniques for analog and mixed-signal VLSI circuits. Amplifiers; operational amplifiers, transconductance amplifiers, finite gain amplifiers and current amplifiers. Linear building blocks; differential amplifiers, current mirrors, references, cascading and buffering. Performance characterization of linear integrated circuits; offset, noise, sensitivity and stability. Layout considerations, simulation, yield and modeling for high-performance linear integrated circuits.

CPR E 504: Power Management for VLSI Systems

(Cross-listed with E E). (3-3) Cr. 4.

Prereq: E E 435, Credit or Registration for E E 501

Theory, design and applications of power management and regulation circuits (Linear and switching regulators, battery chargers, and reference circuits) including: Architectures, Performance metrics and characterization, Noise and stability analysis, Practical implementation and on-chip integration issues, design considerations for portable, wireless, and RF SoCs.

CPR E 505: CMOS and BiCMOS Data Conversion Circuits

(Cross-listed with E E). (3-3) Cr. 4. Alt. S., offered even-numbered years. *Prereq: E E 501*

Theory, design and applications of data conversion circuits (A/D and D/A converters) including: architectures, characterization, quantization effects, conversion algorithms, spectral performance, element matching, design for yield, and practical comparators, implementation issues.

CPR E 506: Design of CMOS Phase-Locked Loops

(Cross-listed with E E). (3-3) Cr. 4.

Prereq: E E 435 or E E 501 or instructor approval

Analysis and design of phase-locked loops implemented in modern CMOS processes including: architectures, performance metrics, and characterization; noise and stability analysis; and design issues of phase-frequency detectors, charge pumps, loop filters (passive and active), voltage controlled oscillators, and frequency dividers.

CPR E 507: VLSI Communication Circuits

(Cross-listed with E E). (3-3) Cr. 4. Alt. S., offered odd-numbered years. Prereq: E E 435 or E E 501

Phase-locked loops, frequency synthesizers, clock and data recovery circuits, theory and implementation of adaptive filters, low-noise amplifiers, mixers, power amplifiers, transmitter and receiver architectures.

CPR E 511: Design and Analysis of Algorithms

(Cross-listed with COM S). (3-0) Cr. 3. F.

Prereq: COM S 311

A study of basic algorithm design and analysis techniques. Advanced data structures, amortized analysis and randomized algorithms. Applications to sorting, graphs, and geometry. NP-completeness and approximation algorithms.

CPR E 525: Numerical Analysis of High Performance Computing

(Cross-listed with COM S, MATH). (3-0) Cr. 3. S.

Prereq: CPR E 308 or MATH 481; experience in scientific programming; knowledge of FORTRAN or C

Introduction to parallelization techniques and numerical methods for distributed memory high performance computers. A semester project in an area related to each student's research interests is required.

CPR E 526: Introduction to Parallel Algorithms and Programming

(Dual-listed with CPR E 426). (Cross-listed with COM S). (3-2) Cr. 4. F. Prereg: CPR E 308 or COM S 321, CPR E 315 or COM S 311

Models of parallel computation, performance measures, basic parallel constructs and communication primitives, parallel programming using MPI, parallel algorithms for selected problems including sorting, matrix, tree and graph problems, fast Fourier transforms.

CPR E 528: Probabilistic Methods in Computer Engineering (3-0) Cr. 3.

Prereg: CPR E 315 or COM S 311

The application of randomization and probabilistic methods in the design of computer algorithms, and their efficient implementation. Discrete random variables in modeling algorithm behavior, with applications to sorting, selection, graph algorithms, hashing, pattern matching, cryptography, distributed systems, and massive data set algorithmics.

CPR E 530: Network Protocols and Security

(Cross-listed with INFAS). (3-0) Cr. 3.

Prereq: CPR E 381 or equivalent

Detailed examination of networking standards, protocols, and their implementation. TCP/IP protocol suite, network application protocols. Network security issues, attack and mitigation techniques. Emphasis on laboratory experiments.

CPR E 531: Information System Security

(Cross-listed with INFAS). (3-0) Cr. 3.

Prereq: CPR E 489 or CPR E 530 or COM S 586 or MIS 535

Computer, software, and data security: basic cryptography, security policies, multilevel security models, attack and protection mechanisms, legal and ethical issues.

CPR E 532: Information Warfare

(Cross-listed with INFAS). (3-0) Cr. 3. S.

Prereq: CPR E 531

Computer system and network security: implementation, configuration, testing of security software and hardware, network monitoring.

Authentication, firewalls, vulnerabilities, exploits, countermeasures. Study and use of attack tools. Ethics in information assurance. Emphasis on laboratory experiments.

CPR E 533: Cryptography

(Cross-listed with INFAS, MATH). (3-0) Cr. 3. S.

Prereq: MATH 301 or CPR E 310 or COM S 330

Basic concepts of secure communication, DES and AES, public-key cryptosystems, elliptic curves, hash algorithms, digital signatures, applications. Relevant material on number theory and finite fields.

CPR E 534: Legal and Ethical Issues in Information Assurance

(Cross-listed with INFAS, POL S). (3-0) Cr. 3. S.

Prereq: Graduate classification; CPR E 531 or INFAS 531

Legal and ethical issues in computer security. State and local codes and regulations. Privacy issues.

CPR E 535: Steganography and Digital Image Forensics

(Cross-listed with INFAS, MATH). (3-0) Cr. 3. Alt. S., offered evennumbered years.

Prereg: E E 524 or MATH 317 or MATH 407 or COM S 330

Basic principles of covert communication, steganalysis, and forensic analysis for digital images. Steganographic security and capacity, matrix embedding, blind attacks, image forensic detection and device identification techniques. Related material on coding theory, statistics, image processing, pattern recognition.

CPR E 536: Computer and Network Forensics

(Cross-listed with INFAS). (3-0) Cr. 3.

Prereq: CPR E 489 or CPR E 530

Fundamentals of computer and network forensics, forensic duplication and analysis, network surveillance, intrusion detection and response, incident response, anonymity and pseudonymity, privacy-protection techniques, cyber law, computer security policies and guidelines, court testimony and report writing, and case studies. Emphasis on hands-on experiments.

CPR E 537: Wireless Network Security

(3-0) Cr. 3. S.

Prereq: Credit or enrollment in CPR E 489 or CPR E 530

Introduction to the physical layer and special issues associated with the security of wireless networks. The basics of wireless communication systems (antennas and propagation, modulation, multiple access, channel modeling, specific security issues of the wireless link), jamming and countermeasures (spread spectrum technologies, channel coding, interleaving), authentication and confidentiality (basics of classic cryptography, common authentication and encryption algorithms). Detailed case studies on authentication, encryption and privacy flaws, and good practices based on the most common wireless technologies, including WiFi, GSM/3G, Bluetooth, and RFID. Individual or team-based class projects.

CPR E 538: Reverse Engineering and Security Testing

(Cross-listed with INFAS). (2-3) Cr. 3. S.

Prereq: COM S 321 or CPR E 381, COM S 352 or CPR E 308

Techniques and tools for understanding the behavior of software/ hardware systems based on reverse engineering. Flaw hypothesis, black, grey, and white box testing as well as other methods for testing the security of software systems. Discussion of counter-reverse engineering techniques.

CPR E 539: Cyber Physical System Security for the Smart Grid (3-0) Cr. 3. S.

Introduction to cyber security, cyber physical system (CPS), and smart grid automation technologies; supervisor control and data acquisition (SCADA) systems; cyber risk modeling, vulnerability analysis, impact analysis, defense and mitigation techniques; cyber security of wide-area monitoring, protection, and control; security and privacy in advanced metering infrastructure (AMI), cyber security compliance and best practices, CPS security test-beds and attack-defense hands-on laboratory experiments.

CPR E 541: High-Performance Communication Networks

(3-0) Cr. 3.

Prereg: CPR E 489 or CPR E 530

Selected topics from recent advances in high performance networks; next generation internet; asynchronous transfer mode; traffic management, quality of service; high speed switching.

CPR E 542: Optical Communication Networks

(3-0) Cr. 3. S. Prereq: CPR E 489

Optical components and interfaces; optical transmission and reception techniques; wavelength division multiplexing; network architectures and protocol for first generation, single and multihop optical network; routing and wavelength assignment in second generation wavelength routing networks; traffic grooming, optical network control; survivability; access networks; metro networks.

CPR E 543: Wireless Network Architecture

(3-0) Cr. 3.

Prereq: Credit or enrollment in CPR E 489 or CPR E 530
Introduction to the protocol architecture of the data link layer, network layer and transport layer for wireless networking. Operation and management of Medium Access Control in Wireless Local Area Networks (WLAN) and Wireless Metropolitan Area Networks (WMAN); recent developments in IEEE 802.11 & 802.16 and Bluetooth; Mobile IP; Mobile

CPR E 544: Fundamentals of Bioinformatics

(Cross-listed with BCB, COM S, GDCB). (4-0) Cr. 4. F.

Prereg: MATH 165 or STAT 401 or equivalent

Survey of key bioinformatics methods, including hands-on use of computational tools to solve various biological problems. Topics include: database searching, sequence alignment, gene prediction, RNA and protein structure prediction, construction of phylogenetic trees, comparative and functional genomics, and systems biology.

CPR E 545: Fault-Tolerant Systems

(3-0) Cr. 3.

Prereq: CPR E 381

Faults and their manifestations, errors, and failures; fault detection, location and reconfiguration techniques; time, space, and information (coding) redundancy management; design for testability; self-checking and fail-safe circuits; system-level fault diagnosis; Byzantine agreement; stable storage and RAID; clock synchronization; fault-tolerant networks; fault tolerance in real-time systems; reliable software design; checkpointing and rollback recovery; atomic actions; replica management protocols; and reliability evaluation techniques and tools.

CPR E 546: Wireless and Sensor Networks

(3-0) Cr. 3.

Prereg: CPR E 489 or CPR E 530

Fundamental and well-known protocols for wireless ad hoc and sensor networks at various layers, including physical layer issues, MAC (medium access control) layer protocols, routing protocols for wireless ad hoc and sensor networks, data management in sensor networks, coverage and connectivity, localization and tracking, security and privacy issues. Introduction to TinyOS and the nesC language. Hands-on experiments with Crossbow Mote sensor devices.

CPR E 547: Resource Allocation in Communication Networks

3-0) Cr. 3

Analytical approach to resource allocation on communication networks (e.g. the Internet, multihop wireless networks, etc.). Network utility maximization and the internet congestion control algorithm. Layering as optimization decomposition: a cross-layer design approach in multihop wireless networks. Capacity of ad hoc wireless networks.

CPR E 549: Advanced Algorithms in Computational Biology

(Cross-listed with COM S). (3-0) Cr. 3. Alt. S., offered even-numbered years.

Prereq: COM S 311 and either COM S 228 or COM S 208

Design and analysis of algorithms for applications in computational biology, pairwise and multiple sequence alignments, approximation algorithms, string algorithms including in-depth coverage of suffix trees, semi-numerical string algorithms, algorithms for selected problems in fragment assembly, phylogenetic trees and protein folding. No background in biology is assumed. Also useful as an advanced algorithms course in string processing.

CPR E 550: Distributed Systems and Middleware

(Dual-listed with CPR E 450). (3-0) Cr. 3.

Prereq: CPR E 308 or COM S 352

Fundamentals of distributed computing, software agents, naming services, distributed transactions, security management, distributed object-based systems, web-based systems, middleware-based application design and development, case studies of middleware and internet applications.

CPR E 554: Distributed Systems

(Dual-listed with CPR E 454). (Cross-listed with COM S). (3-1) Cr. 3. S. *Prereq: COM S 311, COM S 352*

(3-1) Cr. 3. Theoretical and practical issues of design and implementation of distributed systems. The client server paradigm, inter-process communications, synchronization and concurrency control, naming, consistency and replication, fault tolerance, and distributed file systems. Graduate credit requires additional in-depth study of concepts. Programming projects and written reports.

CPR E 556: Scalable Software Engineering

(3-0) Cr. 3.

Prereq: COM S 309

Design and analysis techniques scalable to large software, projectbased learning of problem solving techniques, automation tools for high productivity and reliability of software, analysis-based measurement and estimation techniques for predictable software engineering.

CPR E 557: Computer Graphics and Geometric Modeling

(Cross-listed with COM S, M E). (3-0) Cr. 3. F.

Prereq: M E 421, programming experience in C

Fundamentals of computer graphics technology. Data structures. Parametric curve and surface modeling. Solid model representations. Applications in engineering design, analysis, and manufacturing.

CPR E 558: Real Time Systems

(Dual-listed with CPR E 458). (3-0) Cr. 3.

Prereg: CPR E 308 or COM S 352

Fundamental concepts in real-time systems. Real time task scheduling paradigms. Resource management in uniprocessor, multiprocessor, and distributed real-time systems. Fault-tolerance, resource reclaiming, and overload handling. Real-time channel, packet scheduling, and real-time LAN protocols. Case study of real-time operating systems. Laboratory experiments.

CPR E 566: Physical Design of VLSI Systems

(3-0) Cr. 3.

Prereg: CPR E 465

Physical design of VLSI systems. Partitioning algorithms. Placement and floorplanning algorithms. Routing-global and detailed. Layout compaction. Physical design of FPGA's and MCM's. Performance-driven layout synthesis.

CPR E 567: Bioinformatics I (Fundamentals of Genome Informatics)

(Cross-listed with BCB, COM S). (3-0) Cr. 3. F.

Prereq: COM S 228; COM S 330; credit or enrollment in BIOL 315, STAT 430 Biology as an information science. Review of algorithms and information processing. Generative models for sequences. String algorithms. Pairwise sequence alignment. Multiple sequence alignment. Searching sequence databases. Genome sequence assembly.

CPR E 569: Bioinformatics III (Structural Genome Informatics)

(Cross-listed with BBMB, BCB, COM S). (3-0) Cr. 3. F.

Prereq: BCB 567, BBMB 316, GEN 409, STAT 430

Algorithmic and statistical approaches in structural genomics including protein, DNA and RNA structure. Structure determination, refinement, representation, comparison, visualization, and modeling. Analysis and prediction of protein secondary and tertiary structure, disorder, protein cores and surfaces, protein-protein and protein-nucleic acid interactions, protein localization and function.

CPR E 570: Bioinformatics IV (Computational Functional Genomics and Systems Biology)

(Cross-listed with BCB, COM S, GDCB, STAT). (3-0) Cr. 3. S. *Prereq: BCB 567 or COM S 311, COM S 228, GEN 409, STAT 430*Algorithmic and statistical approaches in computational functional genomics and systems biology. Elements of experiment design. Analysis of high throughput gene expression, proteomics, and other datasets obtained using system-wide measurements. Topological analysis, module discovery, and comparative analysis of gene and protein networks. Modeling, analysis, simulation and inference of transcriptional regulatory modules and networks, protein-protein interaction networks, metabolic networks, cells and systems: Dynamic systems, Boolean, and probabilistic models. Multi-scale, multi-granularity models. Ontology-driven, network based, and probabilistic approaches to information integration.

CPR E 575: Computational Perception

(Cross-listed with COM S, HCI). (3-0) Cr. 3. S.

Prereq: Graduate standing or permission of instructor

This class covers statistical and algorithmic methods for sensing, recognizing, and interpreting the activities of people by a computer. This semester we will focus on machine perception techniques that facilitate and augment human-computer interaction. The main goal of the class is to introduce computational perception on both theoretical and practical levels. Participation in small groups to design, implement, and evaluate a prototype of a human-computer interaction system that uses one or more of the techniques covered in the lectures.

CPR E 581: Computer Systems Architecture

(Cross-listed with COM S). (3-0) Cr. 3. F.

Prereq: CPR E 381

Quantitative principles of computer architecture design, instruction set design, processor architecture: pipelining and superscalar design, instruction level parallelism, memory organization: cache and virtual memory systems, multiprocessor architecture, cache coherency, interconnection networks and message routing, I/O devices and peripherals.

CPR E 582: Computer Systems Performance

(3-0) Cr. 3.

Prereg: CPR E 381, CPR E 310 and STAT 330

Review of probability and stochastic processes concepts; Markovian processes; Markovian queues; renewal theory; semi-Markovian queues; queueing networks, applications to multiprocessor architectures, computer networks, and switching systems.

CPR E 583: Reconfigurable Computing Systems

(Cross-listed with COM S). (3-0) Cr. 3.

Prereq: Background in computer architecture, design, and organization Introduction to reconfigurable computing, FPGA technology and architectures, spatial computing architectures such as systolic and bit serial adaptive network architectures, static and dynamic rearrangeable interconnection architectures, processor architectures incorporating reconfigurability.

CPR E 584: Models and Techniques in Embedded Systems

(3-0) Cr. 3.

Industry-standard tools and optimization strategies; practical embedded platforms and technology (reconfigurable platforms, multi-core platforms, low-power platforms); instruction augmentation, memory-mapped accelerator design, embedded software optimization. Students will be encouraged to compete as teams in an embedded system design competition.

CPR E 585: Developmental Robotics

(Cross-listed with HCl). (3-0) Cr. 3. Alt. S., offered odd-numbered years. *Prereq: knowledge of C/C++ programming language.*

An introduction to the emerging interdisciplinary field of Developmental Robotics, which crosses the boundaries between robotics, artificial intelligence, developmental psychology, and philosophy. The main goal of this field is to create autonomous robots that are more intelligent, more adaptable, and more useful than the robots of today, which can only function in very limited domains and situations.

CPR E 586: Pervasive Computing

(3-0) Cr. 3.

Prereq: CPR E 489 or CPR E 530

Fundamentals of pervasive computing, including location and context awareness, mobile and location services, ubiquitous data access, low power computing and energy management, middleware, security and privacy issues.

CPR E 588: Embedded Computer Systems

(3-0) Cr. 3.

Prereq: CPR E 308

Hardware/software systems and codesign. Models of computation for embedded systems. System-level design. Modeling, specification, synthesis, and verification. Hardware/software implementation. Design space exploration. Performance analysis and optimization. Multiprocessor system on chip. Platform-based design. Design methodologies and tools. Case studies and design projects.

CPR E 590: Special Topics

Cr. 1-6. Repeatable.

Formulation and solution of theoretical or practical problems in computer engineering.

CPR E 592: Seminar in Computer Engineering

Cr. 1-4. Repeatable.

Prereq: Permission of instructor

Projects or seminar in Computer Engineering.

CPR E 594: Selected Topics in Computer Engineering

(3-0) Cr. 3. Repeatable.

CPR E 599: Creative Component

Cr. arr. Repeatable.

Courses for graduate students:

CPR E 626: Parallel Algorithms for Scientific Applications

(Cross-listed with COM S). (3-0) Cr. 3.

Prereg: CPR E 526

Algorithm design for high-performance computing. Parallel algorithms for multidimensional tree data structures, space-filling curves, random number generation, graph partitioning and load balancing. Applications to grid and particle-based methods and computational biology.

CPR E 632: Information Assurance Capstone Design

(Cross-listed with INFAS). (3-0) Cr. 3.

Prereg: INFAS 531, INFAS 532, INFAS 534

Capstone design course which integrates the security design process. Design of a security policy. Creation of a security plan. Implementation of the security plan. The students will attack each other's secure environments in an effort to defeat the security systems. Students evaluate the security plans and the performance of the plans. Social, political and ethics issues. Student self-evaluation, journaling, final written report.

CPR E 681: Advanced Topics in Computer Architecture

(Cross-listed with COM S). (3-0) Cr. 3. Alt. S., offered odd-numbered years. *Prereq: CPR E 581. Repeatable with Instructor permission*Current topics in computer architecture design and implementation.
Advanced pipelining, cache and memory design techniques. Interaction of algorithms with architecture models and implementations. Tradeoffs in architecture models and implementations.

CPR E 697: Engineering Internship

(Cross-listed with E E). Cr. R. Repeatable.

One semester and one summer maximum per academic year professional work period. Offered on a satisfactory-fail basis only.

CPR E 699: Research

Cr. arr. Repeatable.