Ecology, Evolution, and Organismal Biology (EEOB)

This is an archived copy of the 2016-2017 catalog. To access the most recent version of the catalog, please visit http://catalog.iastate.edu.

View PDF

Expand all courses

Courses

Courses primarily for graduate students, open to qualified undergraduates:

(3-0) Cr. 3. S.

Prereq: Graduate standing, BIOL 354, or permission of instructor
Analysis of current research in animal behavior. Topics covered may include behavioral ecology, mechanisms of behavior, evolution of behavior, applications of animal behavior to conservation biology, and applications of animal behavior to wild animals in captivity.

(Dual-listed with BIOL 414). (3-0) Cr. 3. F.

Prereq: BIOL 315 or equivalent recommended.
Evolution of ecological adaptations at the individual, population, and species level. Emphasis is on evolutionary mechanisms and adaptive strategies related to life histories and reproduction; age and size at maturity; lifespan and senescense; offspring size/number trade-offs; sex and mating systems; sex determination and sex ratios.

(Cross-listed with A ECL). (3-0) Cr. 3. Alt. S., offered even-numbered years.

Prereq: BIOL 312; BIOL 313 or graduate standing
Examination of conservation issues from a population and a community perspective. Population-level analysis will focus on the role of genetics, demography, and environment in determining population viability. Community perspectives will focus on topics such as habitat fragmentation, reserve design, biodiversity assessment, and restoration ecology.

(Cross-listed with A ECL, IA LL). Cr. 4. Alt. SS., offered even-numbered years.

Prereq: IA LL 312I
Population-and community-level examination of factors influencing the viability of plant and animal populations from both demographic and genetic perspectives; assessment of biodiversity; design and management of preserves.

(Dual-listed with BIOL 434). (3-0) Cr. 3. S.

Prereq: BIOL 211, BIOL 212
Chemical integration of vertebrate organisms. The structure, development, and evolution of the endocrine glands and the function and structure of their hormones.

(Cross-listed with ENSCI, NREM). (2-3) Cr. 3. Alt. F., offered odd-numbered years.

Prereq: BIOL 366 or BIOL 474 or graduate standing
Theory and practice of restoring animal and plant diversity, structure and function of disturbed ecosystems. Restored freshwater wetlands, forests, prairies and reintroduced species populations will be used as case studies.

(Cross-listed with A ECL, ENSCI, IA LL). Cr. 4. Alt. SS., offered even-numbered years.

Prereq: A course in ecology
Ecological principles for the restoration of native ecosystems; establishment (site preparation, selection of seed mixes, planting techniques) and management (fire, mowing, weed control) of native vegetation; evaluation of restorations. Emphasis on the restoration of prairie and wetland vegetation.

(Dual-listed with BIOL 439). Cr. 3-4. Alt. S., offered even-numbered years.

Prereq: BIOL 335; physics recommended
Physiological adaptations to the environment with an emphasis on vertebrates.

(Cross-listed with B M S, FS HN, GDCB, HORT, NREM, NUTRS, V MPM, VDPAM). Cr. 1. Repeatable. F.S.SS.


Sessions in basic molecular biology techniques and related procedures. Offered on a satisfactory-fail basis only.

(Cross-listed with B M S, BBMB, FS HN, GDCB, HORT, NREM, NUTRS, V MPM, VDPAM). Cr. 1. Repeatable. F.S.


Includes genetic engineering procedures, sequencing, PCR, and genotyping. Offered on a satisfactory-fail basis only.

(Cross-listed with B M S, BBMB, FS HN, GDCB, HORT, NREM, NUTRS, VDPAM). Cr. 1. Repeatable. S.SS.

Prereq: Graduate classification
Techniques. Includes: fermentation, protein isolation, protein purification, SDS-PAGE, Western blotting, NMR, confocal microscopy and laser microdissection, Immunophenotyping, and monoclonal antibody production. Sessions in basic molecular biology techniques and related procedures. Offered on a satisfactory-fail basis only.

(Cross-listed with B M S, BBMB, FS HN, GDCB, HORT, NREM, NUTRS, V MPM, VDPAM). Cr. 1. Repeatable. F.S.


Includes: immunophenotyping, ELISA, flow cytometry, microscopic techniques, image analysis, confocal, multiphoton and laser capture microdissection. Offered on a satisfactory-fail basis only.

(Cross-listed with B M S, FS HN, GDCB, HORT, NREM, NUTRS, V MPM, VDPAM). Cr. 1. Repeatable. S.


Includes: Agrobacterium and particle gun-mediated transformation of tobacco, Arabidopsis, and maize, and analysis of tranformants. Offered on a satisfactory-fail basis only.

(Cross-listed with B M S, BBMB, FS HN, GDCB, HORT, NREM, NUTRS, V MPM, VDPAM). Cr. 1. Repeatable. F.


Includes: two-dimensional electrophoresis, laser scanning, mass spectrometry, and database searching. Offered on a satisfactory-fail basis only.

(Cross-listed with B M S, BBMB, FS HN, GDCB, HORT, NREM, NUTRS, V MPM, VDPAM). Cr. 1. Repeatable. F.


Includes: metabolomics and the techniques involved in metabolite profiling. For non-chemistry majoring students who are seeking analytical aspects into their biological research projects. Offered on a satisfactory-fail basis only.

(Cross-listed with B M S, BBMB, FS HN, GDCB, HORT, NREM, NUTRS, V MPM, VDPAM). Cr. 1. Repeatable. S.


Offered on a satisfactory-fail basis only.

(4-0) Cr. 4. F.

Prereq: MATH 165 or STAT 401 or equivalent
Broad overview of bioinformatics with a significant problem-solving component, including hands-on practice using computational tools to solve a variety of biological problems. Topics include: database searching, sequence alignment, gene prediction, RNA and protein structure prediction, construction of phylogenetic trees, comparative and functional genomics, systems biology.

(Dual-listed with BIOL 451). (3-3) Cr. 4. F.

Prereq: BIOL 315 or equivalent.
Survey of land plant evolution; phylogenetic comparison of anatomical, reproductive, and life history specializations. Relationships among bryophytes, lycophytes, pteridophytes, gymnosperms, and angiosperms emphasizing significant evolutionary changes documented by paleobotanical, morphological, and molecular studies.

(2-3) Cr. 3. Alt. F., offered even-numbered years.

Prereq: BIOL 366
Structure, identification, classification, phylogeny, and economic aspects of grasses and related families.

(Dual-listed with BIOL 455). Cr. 3.

Prereq: BIOL 211, BIOL 211L
Introduction to the biology and ecology of mosses, liverworts, and lichens. Emphasis on identification and diversity of local representatives of these three groups of organisms. Required field trips and service-learning.

(2-3) Cr. 3. S.

Prereq: BIOL 351 or A ECL 365
Biology, ecology, and evolution of mammals. Emphasis on structure, physiological adaptation to different environments, behavior, reproduction, roles of mammals in ecosystems, and conservation. Laboratory focus on identification, distribution, habits, and habitats of mammals.

(2-3) Cr. 3. Alt. S., offered even-numbered years.

Prereq: BIOL 212, BIOL 212L, BIOL 312; STAT 101 or STAT 104 or graduate standing
Ecological and economical management of sustainable biological resources. Unifying current management concepts and models in wildlife, fisheries, water quality, forestry, recreation, and agriculture. Research problems.

(3-0) Cr. 3. S.

Prereq: Permission of instructor; BCBIO 444 recommended.
Use of genomic and other "omic" data in evolution and ecology. Review of data-generation platforms, computational methods, and examples of how phylogenomics, metagenomics, epigenomics, and population genomics are transforming the disciplines of evolution and ecology.

(3-0) Cr. 3. Alt. S., offered odd-numbered years.

Prereq: Permission of instructor
Seminar/discussion course covering the genetic basis of evolutionary processes in multicellular organisms.

(2-3) Cr. 3. F.

Prereq: BIOL 313 and BIOL 315
An overview of the theory underlying phylogenetic analysis and the application of phylogenetic methods to molecular datasets. The course emphasizes a hands-on approach to molecular phylogenetics and combines lecture presentations with computer exercises and discussion of original scientific literature.

(Dual-listed with BIOL 464). (Cross-listed with ENSCI). (3-0) Cr. 3. S.

Prereq: 15 credits in biological sciences.
Ecology, classification, creation and restoration, and management of wetlands. Emphasis on North American temperate wetlands.

(Cross-listed with ENSCI, IA LL). Cr. 4. SS.

Prereq: IA LL 312I
Ecology, classification, creation, restoration, and management of wetlands. Field studies will examine the composition, structure and functions of local natural wetlands and restored prairie pothole wetlands. Individual or group projects.

(Dual-listed with BIOL 465). (3-2) Cr. 4. Alt. S., offered even-numbered years.

Prereq: STAT 401
A comprehensive overview of the theory and methods for the analysis of biological shape with emphasis on data acquisition, standardization, statistical analysis, and visualization of results. Methods for both landmark and outline data will be discussed.

(3-0) Cr. 3. Alt. F., offered even-numbered years.

Prereq: Permission of instructor
Seminar/discussion course covering the fundamentals of molecular evolution. Emphasis is placed on original scientific literature and current topics, including rates and patterns of genetic divergence; nucleotide and allelic diversity; molecular clocks; gene duplications; genome structure; organellar genomes; polyploidy; transposable elements; and modes and mechanisms of gene and genome evolution.

(3-0) Cr. 3. F.

Prereq: Permission of instructor
An overview of fundamental population genetic theory and the ecological and evolutionary factors underlying the distribution of genetic variation within and among natural populations. Emphasis on the analysis of inbreeding, breeding systems, parentage, relatedness, spatial autocorrelation, effective population size, hierarchial population models, and phylogeography.

(Cross-listed with ENT). (2-3) Cr. 3. Alt. S., offered odd-numbered years.

Prereq: Permission of instructor
Principles and practice of systematic biology; taxonomy, nomenclature and classification of plants and animals; sources and interpretation of systematic data; speciation; fundamentals of phylogenetic systematics.

(3-0) Cr. 3. Alt. S., offered even-numbered years.

Prereq: BIOL 315 or equivalent; permission of instructor
Principles underlying the geographic distribution of organisms throughout the world; biological influences of geological history and tectonic movements; role of climate, migration, dispersal, habitat, and phylogeny on past and present organismal distribution patterns; biogeographic methods.

(Cross-listed with A ECL). (2-3) Cr. 3. Alt. F., offered even-numbered years.

Prereq: Permission of instructor; EEOB 588; a course in calculus
The study of ecological and evolutionary processes within a spatial context with emphasis on behavior, population, and community dynamics.

(Cross-listed with A ECL, IA LL). Cr. 1-2. Repeatable. SS.


The development and implementation of laboratory exercises suitable for inclusion in elementary, middle, high school, and community college biology and environmental courses. Exercises will be built around common organisms and ecosystems in Iowa. Field trips.

(Cross-listed with A ECL, IA LL). Cr. 1-2. Repeatable. SS.


The development and implementation of laboratory exercises suitable for inclusion in elementary, middle, high school, and community college biology and environmental courses. Exercises will be built around common organisms and ecosystems in Iowa. Field trips.

(Cross-listed with IA LL). Cr. 1-2. Repeatable. SS.


The development and implementation of laboratory exercises suitable for inclusion in elementary, middle, high school, and community college biology and environmental courses. Exercises will be built around common organisms and ecosystems in Iowa. Field trips.

(Cross-listed with IA LL). Cr. 1-2. Repeatable. SS.


The development and implementation of laboratory exercises suitable for inclusion in elementary, middle, high school, and community college biology and environmental courses. Exercises will be built around common organisms and ecosystems in Iowa. Field trips.

(Cross-listed with IA LL). Cr. 1-2. Repeatable. SS.


The development and implementation of laboratory exercises suitable for inclusion in elementary, middle, high school, and community college biology and environmental courses. Exercises will be built around common organisms and ecosystems in Iowa. Field trips.

(Cross-listed with IA LL). Cr. 1-2. Repeatable. SS.


The development and implementation of laboratory exercises suitable for inclusion in elementary, middle, high school, and community college biology and environmental courses. Exercises will be built around common organisms and ecosystems in Iowa. Field trips.

(Cross-listed with IA LL). Cr. 1-2. Repeatable. SS.


The development and implementation of laboratory exercises suitable for inclusion in elementary, middle, high school, and community college biology and environmental courses. Exercises will be built around common organisms and ecosystems in Iowa. Field trips.

(Cross-listed with A ECL, IA LL). Cr. 1-2. Repeatable. SS.


The development and implementation of laboratory exercises suitable for inclusion in elementary, middle, high school, and community college biology and environmental courses. Exercises will be built around common organisms and ecosystems in Iowa. Field trips.

(Cross-listed with IA LL). Cr. 1-2. Repeatable. SS.


The development and implementation of laboratory exercises suitable for inclusion in elementary, middle, high school, and community college biology and environmental courses. Exercises will be built around common organisms and ecosystems in Iowa. Field trips.

(Cross-listed with A ECL, IA LL). Cr. 1-2. Repeatable. SS.


The development and implementation of laboratory exercises suitable for inclusion in elementary, middle, high school, and community college biology and environmental courses. Exercises will be built around common organisms and ecosystems in Iowa. Field trips.

(Cross-listed with IA LL). Cr. 1-2. Repeatable. SS.


The development and implementation of laboratory exercises suitable for inclusion in elementary, middle, high school, and community college biology and environmental courses. Exercises will be built around common organisms and ecosystems in Iowa. Field trips.

(Cross-listed with IA LL). Cr. 1-2. Repeatable. SS.


The development and implementation of laboratory exercises suitable for inclusion in elementary, middle, high school, and community college biology and environmental courses. Exercises will be built around common organisms and ecosystems in Iowa. Field trips.

(Cross-listed with A ECL, IA LL). Cr. 1-2. Repeatable. SS.


The development and implementation of laboratory exercises suitable for inclusion in elementary, middle, high school, and community college biology and environmental courses. Exercises will be built around common organisms and ecosystems in Iowa. Field trips.

(Cross-listed with IA LL). Cr. 4. Alt. SS., offered even-numbered years.


Identification and classification of the common fungi; techniques for identification, preservation, and culture practiced with members of the various fungi groups.

(Dual-listed with BIOL 476). (3-0) Cr. 3. Alt. S., offered odd-numbered years.

Prereq: BIOL 312
The nature of adaptations to physical and biotic environments. Biophysical, biomechanical, and physiological bases of the structure, form, growth, distribution, and abundance of organisms.

(2-0) Cr. 1. Alt. F., offered even-numbered years.


Readings and discussion of influential ideas in ecological and evolutionary theory, with an emphasis on how models are used as conceptual tools for building synthetic paradigms. Topics are chosen according to student interests; may include spatial ecology, behavioral theory, chaos, community assembly and biodiversity, and others.

(3-0) Cr. 3. Alt. S., offered even-numbered years.

Prereq: 1 semester of calculus or permission of instructor.
Quantitative exploration of classic models and results in ecological and evolutionary theory. Introduction to conceptual, mathematical, and programming tools needed to build and analyze models.

(Cross-listed with IA LL). Cr. 4. SS.


Field and laboratory study of freshwater diatoms; techniques in collection, preparation, and identification of diatom samples; study of environmental factors affecting growth, distribution, taxonomic characters; project design and execution including construction of reference and voucher collections and data organization and analysis.

(Dual-listed with BIOL 381). (Cross-listed with ENSCI). Cr. 3-4. F.

Prereq: 12 credits of natural science including biology and chemistry
Introduction to the structure and function of natural environmental systems. Emphasis on the analysis of material and energy flows in natural environmental systems and the primary environmental factors controlling these systems.

(Dual-listed with BIOL 382). (Cross-listed with ENSCI). (2-2) Cr. 3. S.

Prereq: ENSCI 381
Continuation of ENSCI 381. Systems approach to the analysis of material and energy flows in natural environmental systems and the primary environmental factors controlling these systems.

(Cross-listed with ENSCI). (3-0) Cr. 3. Alt. S., offered even-numbered years.

Prereq: Combined 12 credits in biology, chemistry, and physics.
Advanced studies of ecosystems and the biological and physical factors that influence their properties and dynamics. Conceptual foundations and modern approaches to ecosystem studies. Interactions among organisms, biological diversity, and ecosystem attributes. Quantitative analyses of accumulations, transformations, and fluxes of nutrients, water, and energy within and among ecosystems. Global change issues.

(2-3) Cr. 3. Alt. F., offered even-numbered years.

Prereq: BIOL 312
Factors controlling species diversity, species abundance, and the structure and function of communities in space and time. Relationships between species diversity and ecosystem process rates and community stability.

(Dual-listed with BIOL 486). (Cross-listed with ENSCI). (3-0) Cr. 3. F.

Prereq: BIOL 312 or ENSCI 381 or ENSCI 402 or NREM 301
Structure and function of aquatic ecosystems with application to fishery and pollution problems. Emphasis on lacustrine, riverine, and wetland ecology.

(Dual-listed with BIOL 486L). (Cross-listed with ENSCI). (0-3) Cr. 1. F.

Prereq: Concurrent enrollment in BIOL 486
Field trips and laboratory exercises to accompany 486. Hands-on experience with aquatic research and monitoring techniques and concepts.

(Dual-listed with BIOL 487). (Cross-listed with ENSCI, MICRO). (3-0) Cr. 3. F.

Prereq: Six credits in biology and 6 credits in chemistry
Introduction to major functional groups of autotrophic and heterotrophic microorganisms and their roles in natural systems.

(Dual-listed with BIOL 489). (Cross-listed with A ECL). (2-2) Cr. 3. F.

Prereq: BIOL 312, STAT 101 or STAT 104, a course in calculus, or graduate standing
Concepts and theories of population dynamics with emphasis on models of growth, predation, competition, and regulation.

(Cross-listed with A ECL, ANTHR, IA LL). Cr. 1-4. Repeatable. SS.

Prereq: Graduate classification and permission of instructor

Cr. 1-3. Repeatable.

Prereq: 10 credits in biology, permission of instructor

Cr. 1-3. Repeatable.

Prereq: 10 credits in biology, permission of instructor

Cr. 1-3. Repeatable.

Prereq: 10 credits in biology, permission of instructor

Cr. 1-4. Repeatable. SS.

Prereq: Graduate classification and permission of instructor

Cr. arr.


Research toward nonthesis master's degree.

Courses for graduate students:

Cr. 1. Repeatable.


Meetings of graduate students and faculty to discuss recent literature and problems under investigation.

Cr. arr. Repeatable.


Research for thesis or dissertation. Offered on a satisfactory-fail basis only.

(Cross-listed with A ECL, ANTHR, GDCB, IA LL). Cr. 1-4. Repeatable.