AEROSPACE ENGINEERING (AERE)

Courses primarily for undergraduates:

AERE 1600: Aerospace Engineering Problems With Computer Applications Laboratory
Credits: 3. Contact Hours: Lecture 2, Laboratory 2.
Prereq: Credit or enrollment in MATH 1650 or satisfactory (76+) score on mathematics placement exam

Introduction to aerospace engineering and systems thinking through engineering design team projects such as flight control of Lighter Than Air (LTA) vehicles. Introduction to programming using python. Solving aerospace engineering problems while learning about significant figures, estimation, units of measure, graphing, curve fitting, and presenting solutions through technical reports. Brief history of aerospace engineering. Satisfactory placement scores can be found at: https://math.iastate.edu/academics/undergraduate/aleks/placement/.
Graduation Restriction: Only one of ENGR 1600, ABE 1600, AERE 1600, BME 1600, CE 1600, CHE 1600, CPRE 1850, EE 1850, IE 1480, ME 1600, and SE 1850 may count towards graduation. (Typically Offered: Fall, Spring)

AERE 1600H: Aerospace Engineering Problems With Computer Applications Laboratory: Honors
Credits: 3. Contact Hours: Lecture 2, Laboratory 2.
Prereq: Credit or enrollment in MATH 1650 or satisfactory (76+) score on mathematics placement exam

Solving aerospace engineering problems and presenting solutions through technical reports. Significant figures and estimation. SI units. Graphing and curve fitting. Introduction to aerospace engineering and engineering design. Spreadsheet programs. History of aerospace. Systems thinking. Team projects. Satisfactory placement scores can be found at: https://math.iastate.edu/academics/undergraduate/aleks/placement/. Graduation Restriction: Only one of ENGR 1600, ABE 1600, AERE 1600, BME 1600, CE 1600, CHE 1600, CPRE 1850, EE 1850, IE 1480, ME 1600, and SE 1850 may count towards graduation. (Typically Offered: Fall, Spring)

AERE 1610: Numerical, Graphical and Laboratory Techniques for Aerospace Engineering
Credits: 4. Contact Hours: Lecture 3, Laboratory 2.
Prereq: Credit or enrollment in ABE 1600, AERE 1600, BME 1600, CE 1600, CHE 1600, CPRE 1850, EE 1850, ENGR 1600, IE 1480, ME 1600, or SE 1850
Computer-based problem solving using Matlab(R), with emphasis on numerical methods. Introduction to solid modeling and aerospace design using SolidWorks. (Typically Offered: Fall, Spring)
AERE 2940: Make to Innovate I
Credits: 1. Repeatable.
Prereq: Freshman or Sophomore classification
Multidisciplinary projects to engage students in the fundamentals of engineering, project management, systems engineering, teamwork, and oral and visual communication. Students will define and attain their team objectives and milestones that are approved by the instructor. Graduation Restriction: Can only be used toward graduation in these cases. To make credit deficiencies in 1000 or 2000 level courses. No more than 2 credits of AERE 2940 can be used to make-up credit deficiencies in 1000 or 2000 level courses. Cannot be used in any category or technical electives in the AERE curriculum. (Typically Offered: Fall, Spring)

AERE 3010: Flight Experience
Credits: Required.
Prereq: Credit or enrollment in AERE 3550
Two hours of in-flight training and necessary ground instruction. Course content prescribed by the Aerospace Engineering Department. Ten hours of flight training certified in a pilot log book can be considered by the course instructor as evidence of satisfactory performance in the course. Offered on a satisfactory-fail basis only. (Typically Offered: Fall, Spring)

AERE 3100: Aerodynamics I: Incompressible Flow
Credits: 3. Contact Hours: Lecture 3.
Prereq: Grade of C- or better in AERE 2610 and MATH 2650

AERE 3110: Aerodynamics II: Compressible Flow
Credits: 3. Contact Hours: Lecture 3.
Prereq: AERE 3100 and ME 2310
Review of thermodynamics, energy equation, compressible flow, and isentropic flow. Normal and oblique shocks. Mach waves and expansion fans. Applications to ducts and nozzles. Compressible airfoil and wing theory. Introduction to advanced compressible flow topics. (Typically Offered: Fall, Spring)

AERE 3210: Flight Structures Analysis
Credits: 3. Contact Hours: Lecture 3.
Prereq: EM 3240 and Credit or concurrent enrollment in MATH 2660 or MATH 2670

AERE 3220: Aerospace Structures Laboratory
Credits: 2. Contact Hours: Lecture 1, Laboratory 2.
Prereq: Credit or enrollment in AERE 3210

AERE 3310: Flight Control Systems I
Credits: 3. Contact Hours: Lecture 3.
Prereq: AERE 3550
Linear system analysis. Control system designs using root-locus and frequency response methods. Applications in flight control systems. (Typically Offered: Fall, Spring)

AERE 3440: Aerodynamics and Propulsion Laboratory
Credits: 3. Contact Hours: Lecture 2, Laboratory 2.
Prereq: AERE 3100; concurrent enrollment in AERE 3110

AERE 3510: Astrodynamics I
Credits: 3. Contact Hours: Lecture 3.
Prereq: ME 3450
Introduction to astrodynamics. Two-body Keplerian satellite and planetary motion. Geocentric and extraterrestrial trajectories and applications. Ballistic missiles. (Typically Offered: Fall, Spring)

AERE 3550: Aircraft Flight Dynamics and Control
Credits: 3. Contact Hours: Lecture 3.
Prereq: AERE 2610, MATH 2670, and ME 3450
Aircraft rigid body equations of motion, linearization, and modal analysis. Longitudinal and lateral-directional static and dynamic stability analysis. Flight handling characteristics analysis. Longitudinal and lateral-directional open loop response to aircraft control inputs. Aircraft flight handling qualities. (Typically Offered: Fall, Spring)

AERE 3610: Computational Techniques for Aerospace Design
Credits: 3. Contact Hours: Lecture 2, Laboratory 2.
AERE 3100; EM 3240; (ENGL 3090 or ENGL 3140); ME 3450; MATH 2670
Advanced programming, workstation environment, and development of computational tools for aerospace analysis and design. Technical report writing. (Typically Offered: Fall, Spring)
AERE 3620: Aerospace Systems Integration
Credits: 3. Contact Hours: Lecture 3.
Prereq: ENGL 2500, Junior classification in Aerospace Engineering or permission of instructor for AERE 3620
Emphasis on impact of component interfaces in aerospace systems. Understand how changes in variables associated with individual components impact the performance of the aerospace system. Solving aerospace engineering problems and presenting solutions through reports. Specific integration challenges include: capturing implicit disciplinary interactions (e.g. structures/aerodynamics, propulsion/aerodynamics, etc.), propagating tolerances through the system (i.e. uncertainty modeling), balancing component attributes in the system objective. (Typically Offered: Fall, Spring)

AERE 3640X: Cyber-Physical Systems Application
(Cross-listed with CPS 3640X).
Credits: 3. Contact Hours: Laboratory 2, Lecture 2.
Repeatable.
Prereq: ENGR 1600 or equivalent; credit or enrollment in MATH 2670
Fundamental principles of cyber-physical systems and their system-level applications at an introductory level; introduction to radio control systems and control of actuators; computer programming of physical systems; data processing and communication; control loops; X-by-wire control systems; simulation; testing of control loops. (Typically Offered: Spring)

AERE 3810: Introduction to Wind Energy
Credits: 3. Contact Hours: Lecture 3.
Prereq: MATH 1660 or MATH 1660H; PHYS 2310 or PHYS 2310H; PHYS 2310L
Basic introduction to the fundamentals of Wind Energy and Wind Energy conversion systems. Topics include but not limited to various types of wind energy conversion systems and the aerodynamics, blade and tower structural loads, kinematics of the blades and meteorology. (Typically Offered: Spring)

AERE 4070: Applied Formal Methods
(Dual-listed with AERE 5070/ COMS 5070). (Cross-listed with COMS 4070).
Credits: 3. Contact Hours: Lecture 3.
Prereq: AERE 3610 for AERE majors. COMS 3110 for COMS majors.
AERE 3610 or COMS 3110, or an equivalent course, plus instructor permission for other majors.
Introduction to the fundamentals of formal methods, a set of mathematically rigorous techniques for the formal specification, validation, and verification of safety- and security-critical systems. Tools, techniques, and applications of formal methods with an emphasis on real-world use-cases such as enabling autonomous operation. Build experience in writing mathematically analyzable specifications from English operational concepts for real cyberphysical systems, such as aircraft and spacecraft. Review capabilities and limitations of formal methods in the design, verification, and system health management of today’s complex systems. (Typically Offered: Spring)

AERE 4110: Aerospace Vehicle Propulsion
Credits: 3. Contact Hours: Lecture 3.
Prereq: AERE 3110 and AERE 3440
Atmospheric propulsion system performance and cycle analysis. Momentum theorem, thrust and propulsive efficiency. Thermodynamics of compressible flow with heat and work addition. Components and principles of turbojet, ramjet, and turbofan aircraft engines. Introduction to rocket engines. (Typically Offered: Spring)

AERE 4120: Spacecraft Electric Propulsion
Credits: 3. Contact Hours: Lecture 3.
Prereq: AERE 3110

AERE 4150: Rocket Propulsion
Credits: 3. Contact Hours: Lecture 3.
Prereq: AERE 3110 and AERE 3440
Components and principles of liquid rocket engines, solid rocket motors, and hybrid rocket motors. Rocket flight performance and rocket staging. Combustion and thermochemistry. Rocket cooling and nozzle heat transfer. Introduction to nuclear thermal propulsion and electric propulsion systems. Applications to spacecraft. (Typically Offered: Fall, Spring)
AERE 4170: Experimental Mechanics
(Dual-listed with EM 5170/ AERE 5170). (Cross-listed with EM 4170).
Credits: 3. Contact Hours: Lecture 2, Laboratory 2.
Prereq: EM 3240, and MATE 2730
Introduction to fundamental concepts for force, displacement, stress
and strain measurements for structures and materials applications.
Strain gage theory and application. Full field deformation measurements
with laser interferometry and digital image processing. Advanced
experimental concepts at the micro- and nano-scale regimes. Selected
laboratory experiments. Offered even-numbered years. (Typically Offered:
Fall)

AERE 4210: Advanced Flight Structures
Credits: 3. Contact Hours: Lecture 2, Laboratory 2.
Prereq: AERE 3210, MATH 2660 or MATH 2670
Analysis of indeterminate flight structures including finite element
laboratory. Static analysis of complex structural components subject to
thermal and aerodynamic loads. Analytical and finite element solutions
for stresses and displacements of membrane, plane stress, plate
structures. Buckling of beams, frames, and plate structures. Introduction
to vibration of flight structures. Steady state and transient structural
response using normal modal analysis. (Typically Offered: Fall, Spring)

AERE 4220: Vibrations and Aeroelasticity
Credits: 3. Contact Hours: Lecture 3.
Prereq: EM 3240 or AERE 3210
Vibration theory. Steady and unsteady flows. Mathematical foundations
of aeroelasticity, static and dynamic aeroelasticity. Linear unsteady
aerodynamics, non-steady aerodynamics of lifting surfaces. Stall flutter.
Aeroelastic problems in civil engineering structures. Aeroelastic problems
of rotorcraft. Experimental aeroelasticity. Selected wind tunnel laboratory
experiments. Offered even-numbered years. (Typically Offered: Spring)

AERE 4230: Composite Flight Structures
Credits: 3. Contact Hours: Lecture 2, Laboratory 2.
Prereq: EM 3240, and MATE 2730
Fabrication, testing and analysis of composite materials used in
flight structures. Basic laminate theory of beams, plates and shells.
Manufacturing and machining considerations of various types of composites. Testing of composites for material properties, strength and
defects. Student projects required. (Typically Offered: Spring)

AERE 4260: Design of Aerospace Structures
(Dual-listed with AERE 5260).
Credits: 3. Contact Hours: Lecture 2, Laboratory 2.
Prereq: EM 3240
Detailed design and analysis of aerospace vehicle structures. Material
selection, strength, durability and damage tolerance, and validation
analysis. Design for manufacturability. (Typically Offered: Fall)

AERE 4320: Flight Control Systems II
Credits: 3. Contact Hours: Lecture 3.
Prereq: AERE 3310
Aircraft lateral directional stability augmentation. Launch vehicle
pitch control system design. Control of flexible vehicles. Satellite
attitude control. Flight control designs based on state-space methods.
Introduction to sample-data systems. (Typically Offered: Fall)

AERE 4330: Spacecraft Dynamics and Control
Credits: 3. Contact Hours: Lecture 3.
Prereq: ME 3450
Three-dimensional rotational kinematics and attitude dynamics of a rigid
body in space. Classical stability analysis of spinning spacecraft with or
without energy dissipation. Attitude dynamics, stability, and control of
spacecraft in a circular orbit in the presence of gravity-gradient torques.
Introduction to spacecraft attitude determination and control systems
(ADCS) with emphasis on modern attitude determination algorithms.
Simulation of spacecraft attitude dynamics and control problems of
practical interest using programming and analysis software. (Typically
Offered: Fall)

AERE 4420: V/STOL Aerodynamics and Performance
Credits: 3. Contact Hours: Lecture 3.
Prereq: AERE 2610
Introduction to the aerodynamics, performance, stability, control and
critical maneuvering characteristics of V/STOL vehicles. Topics include
hovercrafts, jet flaps, ducted fans and thrust vectored engines. (Typically
Offered: Fall)

AERE 4450: Experimental Flow Mechanics and Heat Transfer
(Dual-listed with AERE 5450).
Credits: 3. Contact Hours: Lecture 3.
Prereq: AERE 2610 or AERE 2800 or ME 3350
Similitude and dimensional analysis. Measurement uncertainty
analysis; Fluid mechanical apparatus: wind tunnel and water tunnels.
Various experimental techniques widely used for fluid mechanics,
aerodynamics, heat transfer, and combustion studies: Pressure gauge
and transducers; Pitot tube; hot wire anemometry; Shadowgraph and
Schlieren Photography; laser Doppler velocimetry; particle image
velocimetry (PIV); advanced PIV techniques (stereo PIV, 3-D PIV,
Tomographic PIV, Holograph PIV and microscopic PIV); laser induced
fluorescence; pressure sensitive painting, temperature sensitive painting;
molecular tagging velocimetry; molecular tagging thermometry. Extensive
applications and laboratory experiments will be included. (Typically
Offered: Fall)
AERE 4460: Computational Fluid Dynamics
Credits: 3. Contact Hours: Lecture 3.
Prereq: AERE 3110 and AERE 3610

AERE 4480: Fluid Dynamics of Turbomachinery
(Cross-listed with ME 4480).
Credits: 3. Contact Hours: Lecture 3.
Prereq: AERE 3110 or ME 3350
Applications of principles of fluid mechanics and thermodynamics in performance analysis and design of turbomachines. Conceptual and preliminary design of axial and radial flow compressors and turbines using velocity triangles and through-flow approaches. (Typically Offered: Spring)

AERE 4510: Astrodynamics II
Credits: 3. Contact Hours: Lecture 3.
Prereq: AERE 3510
Orbit determination and prediction using Gibb’s and Gauss’ methods. Advanced orbit maneuvers, triple-, and fixed-impulse; universal variables; Kepler’s problem. Earth gravity field models and gravity harmonics, orbit perturbations, advanced dynamics, variational methods, relative orbital mechanics, and Clohessy-Wiltshire equations. (Typically Offered: Fall, Spring)

AERE 4520: Introduction To Systems Engineering And Analysis
(Cross-listed with IE 4520).
Credits: 3. Contact Hours: Lecture 3.
Prereq: Junior Classification in an Engineering Major
Principles of systems engineering to include problem statement formulation, stakeholder analysis, requirements definition, system architecture and concept generation, system integration and interface management, verification and validation, and system commissioning and decommissioning operations. Introduction to discrete event simulation processes. Students will work in groups to propose, research, and present findings for a systems engineering topic of current relevance. (Typically Offered: Summer)

AERE 4610: Modern Design Methodology with Aerospace Applications
Credits: 3. Contact Hours: Lecture 2, Laboratory 2.
Prereq: AERE 3610, AERE 3110, AERE 3210, AERE 3220, AERE 3440, AERE 3510, and AERE 3550
Introduction to modern engineering design methodology. Computational constrained optimal design approach including selection of objective function, characterization of constraint system, materials and strength considerations, and sensitivity analyses. The class contains two focus sections. One section assigns design projects in Aeronautics, and the other assigns design projects in Astronautics. (Typically Offered: Fall, Spring)

AERE 4620: Design of Aerospace Systems
Credits: 3. Contact Hours: Lecture 1, Laboratory 4.
Prereq: AERE 4610
Fundamental principles used in engineering design of aircraft, rockets, and space systems. Preliminary design of aerospace vehicles. Engineering Ethics. The class contains two focus sections. One section assigns design projects in Aeronautics, and the other section assigns design projects in Astronautics. (Typically Offered: Fall, Spring)

AERE 4630: Introduction to Multidisciplinary Design Optimization (MDO)
(Dual-listed with AERE 5630).
Credits: 3. Contact Hours: Lecture 3.
Prereq: Senior classification in an Engineering major or Permission of Instructor
Introduction to the theory and methods of Multidisciplinary Design Optimization (MDO), including system coupling, system sensitivity methods, decomposition methods, MDO formulations (such as multiple-discipline feasible (MDF), individual discipline feasible (IDF) and all-at-once (AAO) approaches, and MDO search methods. (Typically Offered: Fall)

AERE 4640: Spacecraft Systems
Credits: 3. Contact Hours: Lecture 3.
Prereq: AERE 3510
An examination of spacecraft systems including attitude determination and control, power, thermal control, communications, propulsion, guidance, navigation, command and data handling, and mechanisms. Explanation of space and operational environments as they impact spacecraft design. Includes discussion of safety, reliability, quality, maintainability, testing, cost, legal, and logistics issues. (Typically Offered: Spring)
AER 4680: Large-Scale Complex Engineered Systems (LSCES)
(Dual-listed with AERE 5680/ IE 5680). (Cross-listed with IE 4680).
Credits: 3. Contact Hours: Lecture 3.
Prereq: Senior classification in an engineering major or Permission of Instructor
Introduction to the theoretical foundation and methods associated with the design for large-scale complex engineered systems, including objective function formation, design reliability, value-driven design, product robustness, utility theory, economic factors for the formation of a value function and complexity science as a means of detecting unintended consequences in the product behavior. (Typically Offered: Spring)

AER 4800: Ultrasonic Nondestructive Evaluation
(Cross-listed with EM 4800).
Credits: 3. Contact Hours: Lecture 3.
Prereq: EM 3240, MATH 2660 or MATH 2670, PHYS 2320
Introduction to stress/strain, Hooke's law, and elastic wave propagation in two dimensions in isotropic media. Ultrasonic plane-wave reflection and transmission; and simple straight-crested guided waves. Transducer construction, behavior, and performance. Simple signal analysis and discrete signal processing. The last few weeks of the course are devoted to case studies. (Typically Offered: Spring)

AER 4830: Aeroacoustics
(Dual-listed with AERE 5830).
Credits: 3. Contact Hours: Lecture 3.
Prereq: AERE 3110 or ME 3350 and MATH 2660 or MATH 2670

AER 4900A: Aerospace Engineering Independent Study: Aero and/or Gas Dynamics
Credits: 1-6. Repeatable.
Prereq: Junior or Senior classification; Instructor Permission

AER 4900B: Aerospace Engineering Independent Study: Propulsion
Credits: 1-6. Repeatable.
Prereq: Junior or Senior classification; Instructor Permission

AER 4900C: Aerospace Engineering Independent Study: Aerospace Structures
Credits: 1-6. Repeatable.
Prereq: Junior or Senior classification; Instructor Permission

AER 4900D: Aerospace Engineering Independent Study: Flight Dynamics
Credits: 1-6. Repeatable.
Prereq: Junior or Senior classification; Instructor Permission

AER 4900E: Aerospace Engineering Independent Study: Spacecraft Systems
Credits: 1-6. Repeatable.
Prereq: Junior or Senior classification; Instructor Permission

AER 4900F: Aerospace Engineering Independent Study: Flight Control Systems
Credits: 1-6. Repeatable.
Prereq: Junior or Senior classification; Instructor Permission

AER 4900G: Aerospace Engineering Independent Study: Aeroelasticity
Credits: 1-6. Repeatable.
Prereq: Junior or Senior classification; Instructor Permission

AER 4900H: Aerospace Engineering Independent Study: Independent Study, Honors
Credits: 1-6. Repeatable.
Prereq: Junior or Senior classification; Instructor Permission

AER 4900I: Aerospace Engineering Independent Study: Design
Credits: 1-6. Repeatable.
Prereq: Junior or Senior classification; Instructor Permission

AER 4900J: Aerospace Engineering Independent Study: Non-destructive Evaluation
Credits: 1-6. Repeatable.
Prereq: Junior or Senior classification; Instructor Permission

AER 4900K: Aerospace Engineering Independent Study: Wind Engineering
Credits: 1-6. Repeatable.
Prereq: Junior or Senior classification; Instructor Permission

AER 4900L: Aerospace Engineering Independent Study: Multi-functional Ultra-light Structures
Credits: 1-6. Repeatable.
Prereq: Junior or Senior classification; Instructor Permission

AER 4900M: Aerospace Engineering Independent Study: Intelligent Systems and Autonomy
Credits: 1-6. Repeatable.
Prereq: Junior or Senior classification; Instructor Permission
(Typically Offered: Fall, Spring, Summer)

AER 4900O: Aerospace Engineering Independent Study: Other
Credits: 1-6. Repeatable.
Prereq: Junior or Senior classification; Instructor Permission
AERE 4940: Make to Innovate II
Credits: 2-3. Repeatable.
Prereq: Junior or Senior Classification
Multidisciplinary projects to engage students in the fundamentals of engineering, project management, systems engineering, teamwork, and oral and visual communication. Students will define and attain their team objectives and milestones that are approved by their instructors. Graduation Restriction: Maximum of 6 credits may count toward graduation as Technical Elective. (Typically Offered: Fall, Spring)

AERE 4990: Senior Project
Credits: 1-2. Repeatable.
Prereq: Senior classification, credit or enrollment in AERE 4910
Development of aerospace principles and concepts through individual research and projects. Written report. (Typically Offered: Fall, Spring)

Courses primarily for graduate students, open to qualified undergraduates:

AERE 5010: Advanced Engineering Analysis
Credits: 3. Contact Hours: Lecture 3.
Linear ordinary differential equations with variable coefficients; hyperbolic, parabolic, and elliptic equations; tensors. (Typically Offered: Fall)

AERE 5070: Applied Formal Methods
(Dual-listed with AERE 4070/ COMS 4070). (Cross-listed with COMS 5070).
Credits: 3. Contact Hours: Lecture 3.
Introduction to the fundamentals of formal methods, a set of mathematically rigorous techniques for the formal specification, validation, and verification of safety- and security-critical systems. Tools, techniques, and applications of formal methods with an emphasis on real-world use-cases such as enabling autonomous operation. Build experience in writing mathematically analyzable specifications from English operational concepts for real cyberphysical systems, such as aircraft and spacecraft. Review capabilities and limitations of formal methods in the design, verification, and system health management of today’s complex systems. (Typically Offered: Spring)

AERE 5110: Wind Energy System Design
(Cross-listed with WESEP 5110).
Credits: 3. Contact Hours: Lecture 3.
Advanced design, control, and operation of wind plants. Topics include electromechanical energy conversion systems, aerodynamic and aeroelastic loads, optimal control of wind farms, life cycle management strategies, tall tower design, and prediction of component residual life.

AERE 5140: Advanced Mechanics of Materials
(Cross-listed with EM 5140).
Credits: 3. Contact Hours: Lecture 3.

AERE 5150: Atomistic and Multiscale Mechanics of Materials
Credits: 3. Contact Hours: Lecture 3.
Introduction to atomistic and multiscale computational methodology for the graduate-level study of mechanics of materials. At the end of this course, students will have an awareness and understanding of the application of atomistic and multiscale materials modeling techniques to fracture, plasticity, phase transformation, corrosion, thermal and mass transport in a variety of engineering materials. Offered odd-numbered years. (Typically Offered: Fall)

AERE 5170: Experimental Mechanics
(Dual-listed with EM 4170/ AERE 4170). (Cross-listed with EM 5170).
Credits: 3. Contact Hours: Lecture 2, Laboratory 2.
Introduction to fundamental concepts for force, displacement, stress and strain measurements for structures and materials applications. Strain gage theory and application. Full field deformation measurements with laser interferometry and digital image processing. Advanced experimental concepts at the micro- and nano-scale regimes. Selected laboratory experiments. Offered even-numbered years. (Typically Offered: Fall)

AERE 5210: Airframe Analysis
Credits: 3. Contact Hours: Lecture 3.
Analysis of static stresses and deformation in continuous aircraft structures. Various analytical and approximate methods of analysis of isotropic and anisotropic plates and shells. (Typically Offered: Fall)

AERE 5220: Design and Analysis of Composite Materials
Credits: 3. Contact Hours: Lecture 3.
Composite constituent materials, micro-mechanics, laminate analysis, hygro-thermal analysis, composite failure, joining of composites, design of composite beams and plates, honeycomb core, manufacturing of composites, short fiber composites, and demonstration laboratory. (Typically Offered: Fall)
AERE 5240: Numerical Mesh Generation
Credits: 3. Contact Hours: Lecture 3.
Introduction to modern mesh generation techniques. Structured and unstructured mesh methods, algebraic and PDE methods, elliptic and hyperbolic methods, variational methods, error analysis, Delaunay triangulation, data structures, geometric modeling with B-spline and NURBS surfaces, surface meshing. (Typically Offered: Fall)

AERE 5250: Finite Element Analysis
(Cross-listed with EM 5250).
Credits: 3. Contact Hours: Lecture 3.
Variational and weighted residual approach to finite element equations. Emphasis on two- and three-dimensional problems in solid mechanics. Isoparametric element formulation, higher order elements, numerical integration, imposition of constraints and penalty, convergence, and other more advanced topics. Use of two- and three-dimensional computer programs. Dynamic and vibrational problems, eigenvalues, and time integration. Introduction to geometric and material nonlinearities. (Typically Offered: Spring)

AERE 5260: Design of Aerospace Structures
(Dual-listed with AERE 4260).
Credits: 3. Contact Hours: Lecture 2, Laboratory 2.
Detailed design and analysis of aerospace vehicle structures. Material selection, strength, durability and damage tolerance, and validation analysis. Design for manufacturability. (Typically Offered: Fall)

AERE 5310: Automatic Control of Flight Vehicles
Credits: 3. Contact Hours: Lecture 3.
Applications of classical and modern linear control theory to automatic control of flight vehicles. Spacecraft attitude control. Control of flexible vehicles. Linear-quadratic regulator design applications. (Typically Offered: Spring)

AERE 5320: Compressible Fluid Flow
(Cross-listed with ME 5320).
Credits: 3. Contact Hours: Lecture 3.
Thermodynamics of compressible flow. Viscous and inviscid compressible flow equations. One dimensional steady flow; isentropic flow, shocks, expansions. Multidimensional compressible flow aspects. Linear and nonlinear wave analysis and method of characteristics. Subsonic, transonic, supersonic and hypersonic flows. (Typically Offered: Spring)

AERE 5380: Foundations of Engineering Education
(Cross-listed with ENGR 5380/ HGED 5380).
Credits: 3. Contact Hours: Lecture 3.
Introduction to the field of engineering education, with an emphasis on engineering education history, existing challenges, teaching and learning pedagogies and theories, research opportunities, and research methodologies. The course goal is to develop students as scholars and to have students think critically about engineering and education. Students will apply the knowledge gained from this course to propose a research project related to their own discipline. The proposal is intended to help students learn and apply the key elements of engineering education research. This course is intended for students with a variety of interests and career goals, including those interested in learning to conduct engineering education research, exploring research discoveries about teaching and learning, and engaging with the engineering education community. (Typically Offered: Fall)

AERE 5410: Incompressible Flow Aerodynamics
Credits: 3. Contact Hours: Lecture 3.
Kinematics and dynamics of fluid flow. Derivation of the Navier-Stokes, Euler and potential flow equations. Introduction to generalized curvilinear coordinates. Ideal fluids. Two-dimensional and three-dimensional potential flow. Complex variable methods. (Typically Offered: Fall)

AERE 5440: Viscous Flow
Credits: 3. Contact Hours: Lecture 3.
Prereq: AERE 3110 or ME 3350
Kinematics and dynamics of compressible viscous fluid flow in aerodynamics. Derivation of the Navier-Stokes and compressible Prandtl boundary layer equations. Asymptotic analysis and solution methods for low/high Reynolds number compressible boundary layer flows. (Typically Offered: Spring)

AERE 5450: Experimental Flow Mechanics and Heat Transfer
(Dual-listed with AERE 4450).
Credits: 3. Contact Hours: Lecture 3.
Similitude and dimensional analysis. Measurement uncertainty analysis; Fluid mechanical apparatus: wind tunnel and water tunnels. Various experimental techniques widely used for fluid mechanics, aerodynamics, heat transfer, and combustion studies: Pressure gauge and transducers; Pitot tube; hot wire anemometry; Shadowgraph and Schlieren Photography; laser Doppler velocimetry; particle image velocimetry (PIV); advanced PIV techniques (stereo PIV, 3-D PIV, Tomographic PIV, Holograph PIV and microscopic PIV); laser induced fluorescence; pressure sensitive painting, temperature sensitive painting; molecular tagging velocimetry; molecular tagging thermometry. Extensive applications and laboratory experiments will be included. (Typically Offered: Fall)
AERE 5460: Computational Fluid Mechanics and Heat Transfer I
(Cross-listed with ME 5460).
Credits: 3. Contact Hours: Lecture 3.
Basic concepts of discretization, consistency, and stability. Explicit and implicit methods for ordinary differential equations. Methods for each type of partial differential equation. Iterative solution methods; curvilinear grids. Students will program basic algorithms. (Typically Offered: Fall)

AERE 5470: Computational Fluid Mechanics and Heat Transfer II
(Cross-listed with ME 5470).
Credits: 3. Contact Hours: Lecture 3.
Application of computational methods to current problems in fluid mechanics and heat transfer. Methods for solving the Navier-Stokes and reduced equation sets such as the Euler, boundary layer, and parabolized forms of the conservation equations. Introduction to relevant aspects of grid generation and turbulence modeling. (Typically Offered: Spring)

AERE 5510: Orbital Mechanics
Credits: 3. Contact Hours: Lecture 3.
Review of 2-body problem. Orbital maneuvers. Relative motion in orbit. Orbit perturbation analysis. Gravity field expansions and effects on orbiters. 3-body problem with applications. (Typically Offered: Fall)

AERE 5560: Guidance and Navigation of Aerospace Vehicles
Credits: 3. Contact Hours: Lecture 3.

AERE 5630: Introduction to Multidisciplinary Design Optimization
(Dual-listed with AERE 4630).
Credits: 3. Contact Hours: Lecture 3.
Introduction to the theory and methods of Multidisciplinary Design Optimization (MDO), including system coupling, system sensitivity methods, decomposition methods, MDO formulations (such as multi-discipline feasible (MDF), individual discipline feasible (IDF) and all-at-once (AAO) approaches, and MDO search methods. (Typically Offered: Fall)

AERE 5640: Fracture and Fatigue
(Cross-listed with EM 5640/ ME 5640/ MSE 5640).
Credits: 3. Contact Hours: Lecture 3.
Materials and mechanics approach to fracture and fatigue. Fracture mechanics, brittle and ductile fracture, fracture and fatigue characteristics, fracture of thin films and layered structures. Fracture and fatigue tests, mechanics and materials designed to avoid fracture or fatigue. Offered even-numbered years. (Typically Offered: Fall)

AERE 5650: Systems Engineering and Analysis
(Cross-listed with IE 5650/ EE 5650).
Credits: 3. Contact Hours: Lecture 3.
Introduction to organized multidisciplinary approach to designing and developing systems. Concepts, principles, and practice of systems engineering as applied to large integrated systems. Life cycle costing, scheduling, risk management, functional analysis, conceptual and detail design, test and evaluation, and systems engineering planning and organization. Graduation Restrictions: Not available for degrees in industrial engineering.

AERE 5660: Avionics Systems Engineering
(Cross-listed with EE 5660).
Credits: 3. Contact Hours: Lecture 3.
Avionics functions. Applications of systems engineering principles to avionics. Top down design of avionics systems. Automated design tools. (Typically Offered: Spring)

AERE 5680: Large-Scale Complex Engineered Systems (LSCES)
(Dual-listed with AERE 4680/ IE 4680). (Cross-listed with IE 5680).
Credits: 3. Contact Hours: Lecture 3.
Introduction to the theoretical foundation and methods associated with the design for large-scale complex engineered systems, including objective function formation, design reliability, value-driven design, product robustness, utility theory, economic factors for the formation of a value function and complexity science as a means of detecting unintended consequences in the product behavior. (Typically Offered: Spring)

AERE 5690: Mechanics of Composite and Combined Materials
(Cross-listed with EM 5690/ MSE 5690).
Credits: 3. Contact Hours: Lecture 3.
Prereq: EM 3240

AERE 5700: Wind Engineering
(Cross-listed with EM 5700).
Credits: 3. Contact Hours: Lecture 3.
Prereq: ABE 3780 and ME 3450
Atmospheric circulations, atmospheric boundary layer wind, bluff-body aerodynamics, aeroelastic phenomena, wind-tunnel and full-scale testing, wind-load code and standards, effect of tornado and thunderstorm winds, design applications. Offered odd-numbered years. (Typically Offered: Spring)
AERE 5720: Turbulence
(Cross-listed with CHE 5720).
Credits: 3. Contact Hours: Lecture 3.

AERE 5730: Random Signal Analysis and Kalman Filtering
(Cross-listed with EE 5730/ ME 5730).
Credits: 3. Contact Hours: Lecture 3.

AERE 5740: Optimal Control
(Cross-listed with EE 5740/ ME 5740).
Credits: 3. Contact Hours: Lecture 3.

AERE 5750: Introduction to Robust Control
(Cross-listed with EE 5750/ ME 5750).
Credits: 3. Contact Hours: Lecture 3.

AERE 5760: Digital Feedback Control Systems
(Cross-listed with EE 5760/ ME 5760).
Credits: 3. Contact Hours: Lecture 3.

AERE 5770: Linear Systems
(Cross-listed with EE 5770/ ME 5770/ MATH 5770).
Credits: 3. Contact Hours: Lecture 3.

AERE 5780: Nonlinear Systems
(Cross-listed with EE 5780/ ME 5780/ MATH 5780).
Credits: 3. Contact Hours: Lecture 3.

AERE 5810: Perturbation Methods
Credits: 3. Contact Hours: Lecture 3.

AERE 5830: Aeroacoustics
(Dual-listed with AERE 4830).
Credits: 3. Contact Hours: Lecture 3.

AERE 5900A: Aerospace Engineering Independent Study: Aero and/or Gas Dynamics
Credits: 1-5. Repeatable, maximum of 3 times.
Prereq: Instructor Permission for Course

AERE 5900B: Aerospace Engineering Independent Study: Propulsion
Credits: 1-5. Repeatable, maximum of 3 times.
Prereq: Instructor Permission for Course

AERE 5900C: Aerospace Engineering Independent Study: Aerospace Structures
Credits: 1-5. Repeatable, maximum of 3 times.
Prereq: Instructor Permission for Course
AERE 5900D: Aerospace Engineering Independent Study: Flight Dynamics
Credits: 1-5. Repeatable, maximum of 3 times.
Prereq: Instructor Permission for Course

AERE 5900E: Aerospace Engineering Independent Study: Spacecraft Systems
Credits: 1-5. Repeatable, maximum of 3 times.
Prereq: Instructor Permission for Course

AERE 5900F: Aerospace Engineering Independent Study: Flight Control Systems
Credits: 1-5. Repeatable, maximum of 3 times.
Prereq: Instructor Permission for Course

AERE 5900G: Aerospace Engineering Independent Study: Aeroelasticity
Credits: 1-5. Repeatable, maximum of 3 times.
Prereq: Instructor Permission for Course

AERE 5900H: Aerospace Engineering Independent Study: Viscous Aerodynamics
Credits: 1-5. Repeatable, maximum of 3 times.
Prereq: Instructor Permission for Course

AERE 5900I: Aerospace Engineering Independent Study: Design
Credits: 1-5. Repeatable, maximum of 3 times.
Prereq: Instructor Permission for Course

AERE 5900J: Aerospace Engineering Independent Study: Hypersonics
Credits: 1-5. Repeatable, maximum of 3 times.
Prereq: Instructor Permission for Course

AERE 5900K: Aerospace Engineering Independent Study: Computational Aerodynamics
Credits: 1-5. Repeatable, maximum of 3 times.
Prereq: Instructor Permission for Course

AERE 5900L: Aerospace Engineering Independent Study: Optimization
Credits: 1-5. Repeatable, maximum of 3 times.
Prereq: Instructor Permission for Course

AERE 5900M: Aerospace Engineering Independent Study: Non-Destructive Evaluation
Credits: 1-5. Repeatable, maximum of 3 times.
Prereq: Instructor Permission for Course

AERE 5900N: Aerospace Engineering Independent Study: Wind Engineering
Credits: 1-5. Repeatable, maximum of 3 times.
Prereq: Instructor Permission for Course

AERE 5900Q: Aerospace Engineering Independent Study: Astrodynamics
Credits: 1-5. Repeatable, maximum of 3 times.
Prereq: Instructor Permission for Course

AERE 5900R: Aerospace Engineering Independent Study: Ocean Wave Energy Conversion
Credits: 1-5. Repeatable, maximum of 3 times.
Prereq: Instructor Permission for Course

AERE 5910: Graduate Student Seminar Series
Credits: Required. Contact Hours: Lecture 1.
Repeatable.
Presentation of professional topics by department graduate students. Development of presentation skills used in a professional conference setting involving question and answer format.

AERE 5990: Creative Component
Credits: 1-5. Repeatable.
Prereq: Instructor Permission for Course

Courses for graduate students:

AERE 6400: Stability of Fluid Flow
Credits: 3. Contact Hours: Lecture 3.
Theoretical methods of stability analysis; linear analysis of exchange of stability and over stability; bifurcation of equilibria; most dangerous modes and pattern formation; shear flow stability theorems. Physical mechanisms. Tollmein-Schlichting waves, disintegration of capillary jets, Benard convection, Taylor-Couette flow, centrifugal instability, double diffusion.

AERE 6470: Advanced Computational Fluid Dynamics
(Cross-listed with ME 6470).
Credits: 3. Contact Hours: Lecture 3.
AERE 6510: Space Trajectory Optimization
Credits: 3. Contact Hours: Lecture 3.
Classical methods and recent advances in space trajectory optimization. Primer vector theory, introduction to direct and indirect methods for trajectory optimization, the problem of multi gravity assist with deep space maneuvers (MGADSM), optimization of the MGADSM using evolutionary algorithms, hidden genes genetic algorithms for trajectory optimization, and shape-based methods for trajectory design. Offered odd-numbered years. (Typically Offered: Spring)

AERE 6900A: Aerospace Engineering Independent Study: Aero and/or Gas Dynamics
Credits: 1-5. Repeatable.
Prereq: Instructor Permission for Course

AERE 6900B: Aerospace Engineering Independent Study: Propulsion
Credits: 1-5. Repeatable.
Prereq: Instructor Permission for Course

AERE 6900C: Aerospace Engineering Independent Study: Aerospace Structures
Credits: 1-5. Repeatable.
Prereq: Instructor Permission for Course

AERE 6900D: Aerospace Engineering Independent Study: Flight Dynamics
Credits: 1-5. Repeatable.
Prereq: Instructor Permission for Course

AERE 6900E: Aerospace Engineering Independent Study: Spacecraft Systems
Credits: 1-5. Repeatable.
Prereq: Instructor Permission for Course

AERE 6900F: Aerospace Engineering Independent Study: Flight Control Systems
Credits: 1-5. Repeatable.
Prereq: Instructor Permission for Course

AERE 6900G: Aerospace Engineering Independent Study: Aeroelasticity
Credits: 1-5. Repeatable.

AERE 6900H: Aerospace Engineering Independent Study: Viscous Aerodynamics
Credits: 1-5. Repeatable.

AERE 6900I: Aerospace Engineering Independent Study: Design
Credits: 1-5. Repeatable.

AERE 6900J: Aerospace Engineering Independent Study: Hypersonics
Credits: 1-5. Repeatable.

AERE 6900K: Aerospace Engineering Independent Study: Computational Aerodynamics
Credits: 1-5. Repeatable.
Prereq: Instructor Permission for Course

AERE 6900L: Aerospace Engineering Independent Study: Non Destructive Evaluation
Credits: 1-5. Repeatable.
Prereq: Instructor Permission for Course

AERE 6900M: Aerospace Engineering Independent Study: Wind Engineering
Credits: 1-5. Repeatable.
Prereq: Instructor Permission for Course

AERE 6970: Engineering Internship
Credits: Required. Repeatable.
One semester and one summer maximum per academic year professional work period. Offered on a satisfactory-fail basis only.

AERE 6990: Research
Credits: 1-30. Repeatable.
Prereq: Instructor Permission for Course