ECOLOGY, EVOLUTION, AND ORGANISMAL BIOLOGY (EEOB)

The department offers graduate work leading to both Master of Science (M.S.) and Doctor of Philosophy (Ph.D.) degrees. Each EEOB faculty member is affiliated with one or more interdepartmental majors, and EEOB students major in one of these programs. These interdepartmental programs include:

- Bioinformatics and Computational Biology (http://www.bcb.iastate.edu/)
- Ecology and Evolutionary Biology (http://www.eeb.iastate.edu/)
- Environmental Science (https://enscigrad.iastate.edu/)
- Genetics and Genomics (http://www.genetics.iastate.edu)
- Interdisciplinary Graduate Studies (http://www.grad-college.iastate.edu/igs/admission.html)
- Microbiology (http://www.micrograd.iastate.edu/)
- Plant Biology (http://www.ipb.iastate.edu/)
- Sustainable Agriculture (https://susag.iastate.edu/)

The department offers graduate work leading to both Master of Science (M.S.) and Doctor of Philosophy (Ph.D.) degrees.

Any experimental courses offered by EEOB can be found at: registrar.iastate.edu/faculty-staff/courses/explistings/ (http://www.registrar.iastate.edu/faculty-staff/courses/explistings/)

Courses primarily for graduate students, open to qualified undergraduates:

EEOB 507: Advanced Animal Behavior
(3-0) Cr. 3. S.
Prereq: Graduate standing, BIOL 354, or permission of instructor
Analysis of current research in animal behavior. Topics covered may include behavioral ecology, mechanisms of behavior, evolution of behavior, applications of animal behavior to conservation biology, and applications of animal behavior to wild animals in captivity.

EEOB 514: Life History and Reproductive Strategies
(Dual-listed with BIOL 414). (3-0) Cr. 3. Alt. F., offered odd-numbered years.
Prereq: BIOL 315 or equivalent recommended
Evolution of ecological adaptations at the individual, population, and species level. Emphasis is on evolutionary mechanisms and adaptive strategies related to life histories and reproduction; age and size at maturity; lifespan and senescence; offspring size/number trade-offs; sex and mating systems; sex determination and sex ratios.

EEOB 521: Biological Principles of Aging
(Dual-listed with BIOL 421). (Cross-listed with GERON). (3-0) Cr. 3. SS.
Prereq: BIOL 211 and BIOL 212
Basic biological principles of aging. Course modules include an introduction to the aging process, body systems and normal aging, and environment and the biology of aging. In addition, disorders and diseases of aging, prevention and treatment and exercise and aging topics will be covered.

EEOB 531: Conservation Biology
(Cross-listed with A ECL). (3-0) Cr. 3. Alt. S., offered even-numbered years.
Prereq: BIOL 312; BIOL 313 or graduate standing
Examination of conservation issues from a population and a community perspective. Population-level analysis will focus on the role of genetics, demography, and environment in determining population viability. Community perspectives will focus on topics such as habitat fragmentation, reserve design, biodiversity assessment, and restoration ecology.

EEOB 531I: Conservation Biology
(Cross-listed with A ECL, IA LL). Cr. 4. Alt. SS., offered even-numbered years.
Prereq: IA LL 312I
Population-and community-level examination of factors influencing the viability of plant and animal populations from both demographic and genetic perspectives; assessment of biodiversity, design and management of preserves.

EEOB 534: Endocrinology
(Dual-listed with BIOL 434). (3-0) Cr. 3. S.
Prereq: BIOL 211, BIOL 212
Chemical integration of vertebrate organisms. The structure, development, and evolution of the endocrine glands and the function and structure of their hormones.

EEOB 535: Restoration Ecology
(Cross-listed with ENSCI, NREM). (2-3) Cr. 3. Alt. F., offered even-numbered years.
Prereq: BIOL 366 or BIOL 474 or graduate standing
Theory and practice of restoring animal and plant diversity, structure and function of disturbed ecosystems. Restored freshwater wetlands, forests, prairies and reintroduced species populations will be used as case studies.
EEOB 535I: Restoration Ecology
(Cross-listed with A ECL, ENSCI, IA LL). Cr. 2. Alt. SS., offered even-numbered years.
Prereq: A course in ecology
Ecological principles for the restoration of native ecosystems; establishment (site preparation, selection of seed mixes, planting techniques) and management (fire, mowing, weed control) of native vegetation; evaluation of restorations. Emphasis on the restoration of prairie and wetland vegetation.

EEOB 542: Introduction to Molecular Biology Techniques
(Cross-listed with B M S, FS HN, GDCB, HORT, NREM, NUTRS, V MPM, VDPAM). Cr. 1. Repeatable. F.S.SS.
Sessions in basic molecular biology techniques and related procedures. Offered on a satisfactory-fail basis only.

EEOB 542A: Introduction to Molecular Biology Techniques: DNA Techniques
(Cross-listed with B M S, BBMB, FS HN, GDCB, HORT, NREM, NUTRS, V MPM, VDPAM). Cr. 1. Repeatable. F.S.
Includes genetic engineering procedures, sequencing, PCR, and genotyping. Offered on a satisfactory-fail basis only.

EEOB 542B: Introduction to Molecular Biology Techniques: Protein
(Cross-listed with B M S, BBMB, FS HN, GDCB, HORT, NREM, NUTRS, VDPAM). Cr. 1. Repeatable. S.SS.
Prereq: Graduate classification
Techniques. Includes: fermentation, protein isolation, protein purification, SDS-PAGE, Western blotting, NMR, confocal microscopy and laser microdissection, immunophenotyping, and monoclonal antibody production. Sessions in basic molecular biology techniques and related procedures. Offered on a satisfactory-fail basis only.

EEOB 542C: Introduction to Molecular Biology Techniques: Cell Techniques
(Cross-listed with B M S, BBMB, FS HN, GDCB, HORT, NREM, NUTRS, V MPM, VDPAM). Cr. 1. Repeatable. F.S.
Includes: immunophenotyping, ELISA, flow cytometry, microscopic techniques, image analysis, confocal, multiphoton and laser capture microdissection. Offered on a satisfactory-fail basis only.

EEOB 542D: Introduction to Molecular Biology Techniques: Plant Transformation
(Cross-listed with B M S, BBMB, FS HN, GDCB, HORT, NREM, NUTRS, V MPM, VDPAM). Cr. 1. Repeatable. S.
Includes: Agrobacterium and particle gun-mediated transformation of tobacco, Arabidopsis, and maize, and analysis of transformants. Offered on a satisfactory-fail basis only.

EEOB 542E: Introduction to Molecular Biology Techniques: Proteomics
(Cross-listed with B M S, BBMB, FS HN, GDCB, HORT, NREM, NUTRS, V MPM, VDPAM). Cr. 1. Repeatable. F.
Includes: two-dimensional electrophoresis, laser scanning, mass spectrometry, and database searching. Offered on a satisfactory-fail basis only.

EEOB 542F: Introduction to Molecular Biology Techniques: Metabolomics
(Cross-listed with B M S, BBMB, FS HN, GDCB, HORT, NREM, NUTRS, V MPM, VDPAM). Cr. 1. Repeatable. F.
Includes: metabolomics and the techniques involved in metabolite profiling. For non-chemistry majoring students who are seeking analytical aspects into their biological research projects. Offered on a satisfactory-fail basis only.

EEOB 542G: Introduction to Molecular Biology Techniques: Genomic
(Cross-listed with B M S, BBMB, FS HN, GDCB, HORT, NREM, NUTRS, VDPAM). Cr. 1. Repeatable. S.
Offered on a satisfactory-fail basis only.

EEOB 546: Computational Skills for Biological Data
(Cross-listed with BCB). Cr. 3. F.
Prereq: Graduate student status or permission of the instructor
Computational skills necessary for biologists working with big data sets. UNIX commands, scripting in R and Python, version control using Git and GitHub, and use of high performance computing clusters. Combination of lectures and computational exercises.

EEOB 551: Plant Evolution and Phylogeny
(Dual-listed with BIOL 451). (3-3) Cr. 4. Alt. F., offered even-numbered years.
Prereq: BIOL 315 or equivalent.
Survey of land plant evolution; phylogenetic comparison of anatomical, reproductive, and life history specializations. Relationships among bryophytes, lycophytes, pteridophytes, gymnosperms, and angiosperms emphasizing significant evolutionary changes documented by paleobotanical, morphological, and molecular studies.

EEOB 553: Agrostology
(2-3) Cr. 3. Alt. F., offered even-numbered years.
Prereq: BIOL 366 or equivalent.
Structure, identification, classification, phylogeny, and economic aspects of grasses and related families.
EEOB 555: Bryophyte and Lichen Biodiversity
(Dual-listed with BIOL 455). (2-3) Cr. 3. S.
Prereq: BIOL 211, BIOL 211L
Introduction to the biology and ecology of mosses, liverworts, and lichens. Emphasis on identification and diversity of local representatives of these three groups of organisms. Required field trips and service-learning.

EEOB 559: Mammalogy
(Dual-listed with BIOL 459). (2-0) Cr. 2. S.
Prereq: BIOL 351 or A ECL 365
Biology, ecology, and evolution of mammals. Emphasis on structure, physiological adaptation to different environments, behavior, reproduction, roles of mammals in ecosystems, and conservation.

EEOB 561: Evolutionary and Ecological Genomics
(3-0) Cr. 3. Alt. S., offered even-numbered years.
Prereq: Permission of instructor; BCBIO 444 recommended.
Use of genomic and other "omic" data in evolution and ecology. Review of data-generation platforms, computational methods, and examples of how phylogenomics, metagenomics, epigenomics, and population genomics are transforming the disciplines of evolution and ecology.

EEOB 562: Evolutionary Genetics
(3-0) Cr. 3. Alt. S., offered even-numbered years.
Prereq: Permission of instructor
Seminar/discussion course covering the genetic basis of evolutionary processes in multicellular organisms.

EEOB 563: Molecular Phylogenetics
(2-3) Cr. 3. S.
Prereq: BIOL 313 and BIOL 315
An overview of the theory underlying phylogenetic analysis and the application of phylogenetic methods to molecular datasets. The course emphasizes a hands-on approach to molecular phylogenetics and combines lecture presentations with computer exercises and discussion of original scientific literature.

EEOB 564: Wetland Ecology
(Dual-listed with BIOL 464). (Cross-listed with ENSCI). (3-0) Cr. 3. S.
Prereq: 15 credits in biological sciences.

EEOB 564I: Wetland Ecology
(Cross-listed with ENSCI, IA LL). Cr. 4. SS.
Prereq: IA LL 312I
Ecology, classification, creation, restoration, and management of wetlands. Field studies will examine the composition, structure and functions of local natural wetlands and restored prairie pothole wetlands. Individual or group projects.

EEOB 565: Macroevolution
(Dual-listed with BIOL 465). Cr. 3. Alt. S., offered even-numbered years.
Prereq: BIOL 315
The history and diversity of life on earth; evolutionary patterns and processes above the species level. Diversity from a phylogenetic perspective. Empirical exercises include: phylogeny estimation, ancestral states, estimating diversification rates, evaluating the tempo and mode of evolution, biogeographic patterns, and trait associations across the tree of life.

EEOB 566: Molecular Evolution
(3-0) Cr. 3. Alt. F., offered even-numbered years.
Prereq: Permission of instructor
Seminar/discussion course covering the fundamentals of molecular evolution. Emphasis is placed on original scientific literature and current topics, including rates and patterns of genetic divergence; nucleotide and allelic diversity; molecular clocks; gene duplications; genome structure; organellar genomes; polyploidy; transposable elements; and modes and mechanisms of gene and genome evolution.

EEOB 567: Empirical Population Genetics
(3-0) Cr. 3. Alt. F., offered irregularly.
Prereq: Permission of instructor
An overview of fundamental population genetic theory and the ecological and evolutionary factors underlying the distribution of genetic variation within and among natural populations. Emphasis on the analysis of inbreeding, breeding systems, parentage, relatedness, spatial autocorrelation, effective population size, hierarchial population models, and phylogeography.

EEOB 568: Advanced Systematics
(Cross-listed with ENT). (2-3) Cr. 3. Alt. S., offered irregularly.
Prereq: Permission of instructor
Principles and practice of systematic biology; taxonomy, nomenclature and classification of plants and animals; sources and interpretation of systematic data; speciation; fundamentals of phylogenetic systematics.
Biogeography

Prerequisites: BIOL 315 or equivalent; permission of instructor
Principles underlying the geographic distribution of organisms throughout the world; biological influences of geological history and tectonic movements; role of climate, migration, dispersal, habitat, and phylogeny on past and present organismal distribution patterns; biogeographic methods.

Techniques for Biology Teaching

Course Information

EEOB 569: Biogeography

Cr. 3. Alt. S., offered irregularly.

Prerequisites: BIOL 315 or equivalent; permission of instructor
Principles underlying the geographic distribution of organisms throughout the world; biological influences of geological history and tectonic movements; role of climate, migration, dispersal, habitat, and phylogeny on past and present organismal distribution patterns; biogeographic methods.

EEOB 573: Techniques for Biology Teaching

(Cross-listed with A ECL, IA LL). Cr. 1-2. Repeatable. SS.

The development and implementation of laboratory exercises suitable for inclusion in elementary, middle, high school, and community college biology and environmental courses. Exercises will be built around common organisms and ecosystems in Iowa. Field trips.

EEOB 573A: Techniques for Biology Teaching: Animal Biology

(Cross-listed with A ECL, IA LL). Cr. 1-2. Repeatable. SS.

The development and implementation of laboratory exercises suitable for inclusion in elementary, middle, high school, and community college biology and environmental courses. Exercises will be built around common organisms and ecosystems in Iowa. Field trips.

EEOB 573B: Techniques for Biology Teaching: Plant Biology

(Cross-listed with IA LL). Cr. 1-2. Repeatable. SS.

The development and implementation of laboratory exercises suitable for inclusion in elementary, middle, high school, and community college biology and environmental courses. Exercises will be built around common organisms and ecosystems in Iowa. Field trips.

EEOB 573C: Techniques for Biology Teaching: Fungi and Lichens

(Cross-listed with IA LL). Cr. 1-2. Repeatable. SS.

The development and implementation of laboratory exercises suitable for inclusion in elementary, middle, high school, and community college biology and environmental courses. Exercises will be built around common organisms and ecosystems in Iowa. Field trips.

EEOB 573D: Techniques for Biology Teaching: Aquatic Ecology

(Cross-listed with IA LL). Cr. 1-2. Repeatable. SS.

The development and implementation of laboratory exercises suitable for inclusion in elementary, middle, high school, and community college biology and environmental courses. Exercises will be built around common organisms and ecosystems in Iowa. Field trips.

EEOB 573E: Techniques for Biology Teaching: Prairie Ecology

(Cross-listed with IA LL). Cr. 1-2. Repeatable. SS.

The development and implementation of laboratory exercises suitable for inclusion in elementary, middle, high school, and community college biology and environmental courses. Exercises will be built around common organisms and ecosystems in Iowa. Field trips.

EEOB 573F: Techniques for Biology Teaching: Wetland Ecology

(Cross-listed with IA LL). Cr. 1-2. Repeatable. SS.

The development and implementation of laboratory exercises suitable for inclusion in elementary, middle, high school, and community college biology and environmental courses. Exercises will be built around common organisms and ecosystems in Iowa. Field trips.

EEOB 573G: Techniques for Biology Teaching: Limnology

(Cross-listed with A ECL, IA LL). Cr. 1-2. Repeatable. SS.

The development and implementation of laboratory exercises suitable for inclusion in elementary, middle, high school, and community college biology and environmental courses. Exercises will be built around common organisms and ecosystems in Iowa. Field trips.

EEOB 573H: Techniques for Biology Teaching: Animal Behavior

(Cross-listed with IA LL). Cr. 1-2. Repeatable. SS.

The development and implementation of laboratory exercises suitable for inclusion in elementary, middle, high school, and community college biology and environmental courses. Exercises will be built around common organisms and ecosystems in Iowa. Field trips.

EEOB 573I: Techniques for Biology Teaching: Insect Ecology

(Cross-listed with A ECL, IA LL). Cr. 1-2. Repeatable. SS.

The development and implementation of laboratory exercises suitable for inclusion in elementary, middle, high school, and community college biology and environmental courses. Exercises will be built around common organisms and ecosystems in Iowa. Field trips.

EEOB 573J: Techniques for Biology Teaching: Biology of Invertebrates

(Cross-listed with IA LL). Cr. 1-2. Repeatable. SS.

The development and implementation of laboratory exercises suitable for inclusion in elementary, middle, high school, and community college biology and environmental courses. Exercises will be built around common organisms and ecosystems in Iowa. Field trips.

EEOB 573K: Techniques for Biology Teaching: Non-invasive Use of Living Organisms

(Cross-listed with IA LL). Cr. 1-2. Repeatable. SS.

The development and implementation of laboratory exercises suitable for inclusion in elementary, middle, high school, and community college biology and environmental courses. Exercises will be built around common organisms and ecosystems in Iowa. Field trips.

EEOB 573W: Techniques for Biology Teaching: Project WET

(Cross-listed with A ECL, IA LL). Cr. 1-2. Repeatable. SS.

The development and implementation of laboratory exercises suitable for inclusion in elementary, middle, high school, and community college biology and environmental courses. Exercises will be built around common organisms and ecosystems in Iowa. Field trips.
EEOB 575I: Field Mycology
(Cross-listed with IA LL). Cr. 4. Alt. SS., offered even-numbered years.
Identification and classification of the common fungi; techniques for
identification, preservation, and culture practiced with members of the
various fungi groups.

EEOB 576: Functional Ecology
(Dual-listed with BIOL 476). (3-0) Cr. 3. Alt. S., offered odd-numbered
years.
Prereq: BIOL 312
The nature of adaptations to physical and biotic environments.
Biophysical, biomechanical, and physiological bases of the structure,
form, growth, distribution, and abundance of organisms.

EEOB 577: Concepts in Theoretical Ecology and Evolution
(2-0) Cr. 1. Alt. F., offered even-numbered years.
Readings and discussion of influential ideas in ecological and
evolutionary theory, with an emphasis on how models are used as
conceptual tools for building synthetic paradigms. Topics are chosen
according to student interests; may include spatial ecology, behavioral
theory, chaos, community assembly and biodiversity, and others.

EEOB 580I: Ecology and Systematics of Diatoms
(Cross-listed with IA LL). Cr. 4. SS.
Field and laboratory study of freshwater diatoms; techniques in
collection, preparation, and identification of diatom samples; study
of environmental factors affecting growth, distribution, taxonomic
characters; project design and execution including construction of
reference and voucher collections and data organization and analysis.

EEOB 581: Environmental Systems I: Introduction to Environmental
Systems
(Dual-listed with BIOL 381). (Cross-listed with ENSCI). Cr. 3-4. F.
Prereq: 12 credits of natural science including biology and chemistry
Introduction to the structure and function of natural environmental
systems. Emphasis on the analysis of material and energy flows in
natural environmental systems and the primary environmental factors
controlling these systems.

EEOB 582: Environmental Systems II: Analysis of Environmental
Systems
(Dual-listed with BIOL 382). (Cross-listed with ENSCI). (2-2) Cr. 3. S.
Prereq: ENSCI 381
Continuation of EnSci 381. Systems approach to the analysis of material
and energy flows in natural environmental systems and the primary
environmental factors controlling these systems.

EEOB 584: Ecosystem Science
(Cross-listed with ENSCI). (3-0) Cr. 3. Alt. S., offered even-numbered years.
Prereq: Combined 12 credits in biology, chemistry, and physics.
Advanced studies of ecosystems and the biological and physical factors
that influence their properties and dynamics. Conceptual foundations
and modern approaches to ecosystem studies. Interactions among
organisms, biological diversity, and ecosystem attributes. Quantitative
analyses of accumulations, transformations, and fluxes of nutrients,
water, and energy within and among ecosystems. Global change issues.

EEOB 585: Advanced Community Ecology
(2-2) Cr. 3. Alt. F., offered odd-numbered years.
Prereq: BIOL 312
Factors controlling species diversity, species abundance, and the
structure and function of communities in space and time. Relationships
between species diversity and ecosystem process rates and community
stability.

EEOB 586: Aquatic Ecology
(Dual-listed with BIOL 486). (Cross-listed with A ECL, ENSCI). (3-0) Cr. 3. F.
Prereq: Biol 312 or EnSci 381 or EnSci 402 or NREM 301
Structure and function of aquatic ecosystems with application to fishery
and pollution problems. Emphasis on lacustrine, riverine, and wetland
ecology.

EEOB 586L: Aquatic Ecology Laboratory
(Dual-listed with BIOL 486L). (Cross-listed with A ECL, ENSCI). (0-3) Cr. 1.
F.
Prereq: Concurrent enrollment in BIOL 486
Field trips and laboratory exercises to accompany 486. Hands-on
experience with aquatic research and monitoring techniques and
concepts.

EEOB 587: Microbial Ecology
(Dual-listed with BIOL 487). (Cross-listed with ENSCI, GEOL, MICRO). (3-0)
Cr. 3. F.
Prereq: Six credits in biology and 6 credits in chemistry
Introduction to major functional groups of autotrophic and heterotrophic
microorganisms and their roles in natural and environmental systems.
Consequences of microbial activity on water chemistry, weathering, and
precipitation/dissolution reactions will be emphasized.

EEOB 589: Population Ecology
(Dual-listed with BIOL 489). (Cross-listed with A ECL). (2-2) Cr. 3. Alt. F.,
offered even-numbered years.
Prereq: BIOL 312, STAT 101 or STAT 104, a course in calculus, or graduate
standing
Concepts and theories of population dynamics with emphasis on models
of growth, predation, competition, and regulation.
EEOB 590: Special Topics
Cr. 1-3. Repeatable.
Prereq: 10 credits in biology, permission of instructor

EEOB 590A: Special Topics: Current Topics in Ecology
Cr. 1-3. Repeatable.
Prereq: 10 credits in biology, permission of instructor

EEOB 590B: Special Topics: Current Topics in Evolutionary Biology
Cr. 1-3. Repeatable.
Prereq: 10 credits in biology, permission of instructor

EEOB 590C: Special Topics: Current Topics in Organismal Biology
Cr. 1-3. Repeatable.
Prereq: 10 credits in biology, permission of instructor

EEOB 590I: Special Topics: Graduate Independent Study
(Cross-listed with A ECL, ANTHR, IA LL). Cr. 1-4. Repeatable. SS.
Prereq: Graduate classification and permission of instructor

EEOB 596: Ecology and Society
(Cross-listed with PHIL). (3-0) Cr. 3.
Prereq: Graduate classification in biological or environmental sciences/
studies with at least one course in ecology
Analysis of conceptual and methodological debates in ecology. Historical
development of competing research traditions and philosophies. Topics
include i) methodological issues in ecological science, ii) conceptual
issues in theoretical ecology, iii) conceptual issues in applied ecology, iv)
relation of ecology to environmental and social issues.

EEOB 599: Creative Component
Cr. arr.
Research toward nonthesis master’s degree.

Courses for graduate students:

EEOB 698: Seminar
Cr. 1. Repeatable.
Meetings of graduate students and faculty to discuss recent literature
and problems under investigation.

EEOB 699: Research
Cr. arr. Repeatable.
Research for thesis or dissertation. Offered on a satisfactory-fail basis
only.

EEOB 699I: Iowa Lakeside Laboratory. (Cross-listed with Ia LL 699I)
(Cross-listed with A ECL, ANTHR, GDCB, IA LL). Cr. arr. Repeatable.
Research for thesis or dissertation. Offered on a satisfactory-fail basis
only.