MATERIALS SCIENCE AND ENGINEERING (MSE)

Courses primarily for graduate students, open to qualified undergraduates:

MSE 5010: Fundamentals of Materials Science and Engineering I
Credits: 1. Contact Hours: Lecture 1.
Repeatable.
An examination of structure-property-process relationships in materials, focusing on control and measurement of end-use performance characteristics. Materials design fundamentals are discussed as they pertain to various critical industries, applications, and manufacturing technologies. Offered on a satisfactory-fail basis only. (Typically Offered: Fall)

MSE 5020: Fundamentals of Materials Science and Engineering II
Credits: 1. Contact Hours: Lecture 1.
Repeatable, maximum of 1 credits.
An examination of the physical behavior of materials, as underpinned by multiphase multicomponent thermodynamics, transport phenomena, interfaces, defect structures, the kinetics of phase transformations, and the mechanistic origins of structure-property-processing relationships in various types of materials. Offered on a satisfactory-fail basis only. (Typically Offered: Fall)

MSE 5030: Fundamentals of Materials Science and Engineering III
Credits: 1. Contact Hours: Lecture 1.
Repeatable.
Directed study of advanced topics in Materials Science and Engineering. Fundamental principles and relationships connecting structure, chemistry, stability, physical behavior, properties, and processing response are reviewed. Experimental and computational methods for materials research are emphasized. Offered on a satisfactory-fail basis only. (Typically Offered: Summer)

MSE 5100: Fundamentals of Structure and Chemistry of Materials
Credits: 3. Contact Hours: Lecture 3.
Geometric and algebraic representations of symmetry. Pair distribution function. Structure, chemistry, and basic properties of covalent, ionic, and metallic solids, glasses and liquids, and polymers. Interactions of materials with particles and waves. Relationships between direct and reciprocal spaces. The kinematical theory of diffraction, with an introduction to the dynamical theory. (Typically Offered: Fall)

MSE 5190: Magnetism and Magnetic Materials
(Dual-listed with EE 4190/ MATE 4190). (Cross-listed with EE 5190).
Credits: 3. Contact Hours: Lecture 3.
Magnetic fields, flux density and magnetization. Magnetic materials, magnetic measurements. Magnetic properties of materials. Domains, domain walls, domain processes, magnetization curves and hysteresis. Types of magnetic order, magnetic phases and critical phenomena. Magnetic moments of electrons, theory of electron magnetism. Technological application, soft magnetic materials for electromagnets, hard magnetic materials, permanent magnets, magnetic recording technology, magnetic measurements of properties for materials evaluation. Offered odd-numbered years. (Typically Offered: Fall)

MSE 5200: Thermodynamics and Kinetics in Multicomponent Materials
Credits: 3. Contact Hours: Lecture 3.
A review of the fundamental principles of heat, work, basic thermodynamic relations, and criteria for equilibrium. Analytical treatments for the thermodynamic description of multicomponent chemical solutions and reacting systems are developed and employed to predict phase equilibria in materials systems. Builds on the thermodynamic construction to treat the kinetics of chemical reactions and phase transformations. Topics include general first and second order transitions, along with chemical diffusion. Detailed examples involving nucleation and diffusion limited growth, spinodal decomposition, martensitic transformations, magnetic and electric transitions, and glass formation will be considered. (Typically Offered: Fall)

MSE 5210: Mechanical Behavior and Manufacturing of Polymers and Composites
(Cross-listed with ME 5210).
Credits: 3. Contact Hours: Lecture 3.
Effect of chemical structure and morphology on properties. Linear viscoelasticity, damping and stress relaxation phenomena. Structure and mechanics of filler and fiber reinforced composites. Mechanical properties and failure mechanisms. Material selection and designing with polymers. Processing of polymer and composite parts. (Typically Offered: Spring)

MSE 5300: Solid State Science
Credits: 3. Contact Hours: Lecture 3.
Development of a quantitative description of the electronic structure of solids starting with fundamentals of atoms, atomic bonding, basic crystallography, and band theory of solids. Continuum properties of solids in response to electromagnetic fields and thermal gradients. Quantitative description of the atomistic properties of solids through electron-electron interactions, electron-phonon interactions, and dipole interactions. (Typically Offered: Spring)
MSE 5320: Microelectronics Fabrication Techniques
(Dual-listed with EE 4320/ MATE 4320). (Cross-listed with EE 5320).
Credits: 4. Contact Hours: Lecture 2, Laboratory 4.
Techniques used in modern integrated circuit fabrication, including
diffusion, oxidation, ion implantation, lithography, evaporation, sputtering,
chemical-vapor deposition, and etching. Process integration. Process
evaluation and final device testing. Extensive laboratory exercises
utilizing fabrication methods to build electronic devices. Use of computer
simulation tools for predicting processing outcomes. Recent advances in
processing CMOS ICs and micro-electro-mechanical systems (MEMS).

MSE 5370: Electronic Properties of Materials
(Dual-listed with EE 4370/ MATE 4370). (Cross-listed with EE 5370).
Credits: 3. Contact Hours: Lecture 3.
Magnetic fields, flux density and magnetization. Magnetic materials,
magnetic measurements. Magnetic properties of materials. Domains,
domain walls, domain processes, magnetization curves and hysteresis.
Types of magnetic order, magnetic phases and critical phenomena.
Magnetic moments of electrons, theory of electron magnetism.
Technological application, soft magnetic materials for electromagnets,
hard magnetic materials, permanent magnets, magnetic recording
technology, biomedical applications of magnetism, magnetic evaluation
of materials. (Typically Offered: Spring)

MSE 5400: Mechanical Behavior of Materials
Credits: 3. Contact Hours: Lecture 3.
Mechanical behavior of materials with emphasis on micromechanics
of deformation in three generic regimes: elasticity, plasticity, and
fracture. A materials science approach is followed to understand and
model the mechanical behavior that combines continuum mechanics,
thermodynamics, kinetics, and microstructure. Some topics include
elastic properties of materials, permanent deformation mechanisms
at different temperatures (e.g., via dislocation motion and creep), and
fracture in ductile and brittle materials. Specific classes of materials
that are studied: metals, ceramics, polymers, glasses and composites.
(Typically Offered: Spring)

MSE 5500: Nondestructive Evaluation
(Cross-listed with EM 5500).
Credits: 4. Contact Hours: Lecture 3, Laboratory 2.
Principles of five basic NDE methods and their application in engineering
inspections. Materials behavior and simple failure analysis. NDE
reliability, and damage-tolerant design. Advanced methods such as
acoustic microscopy, laser ultrasonics, thermal waves, and computed
tomography are analyzed. Computer-based experiments on a selection
of methods: ultrasonics, eddy currents, x-rays are assigned for student
completion. (Typically Offered: Spring)

MSE 5510: Characterization Methods in Materials Science
Credits: 3. Contact Hours: Lecture 2, Laboratory 3.
Characterization of ceramic, metal, polymer and glassy materials using
modern analytical techniques. Spectroscopic (IR, Raman, UV/VIS/NIR,
and NMR), thermal (DSC, DTA/TGA, and DMA) methods, mechanical and
rheological testing, magnetic and electrical characterization, and powder
characterization. (Typically Offered: Spring)

MSE 5520: Scanning and Auger Electron Microscopy
(Dual-listed with MATE 4520).
Credits: 3. Contact Hours: Lecture 2, Laboratory 2.
Characterization of materials using scanning electron microscopes
(SEM) and variants thereof, including electron microprobe, Auger
spectrometer, and DualBeam focused ion beams (FIB)/SEMs).
Compositional determination using energy and wavelength dispersive x-
ray and Auger spectroscopies. Orientation determination using electron
backscattered diffraction. Specimen preparation. Laboratory covers SEM
operation. (Typically Offered: Fall)

MSE 5530: Physical and Mechanical Properties of Polymers
(Dual-listed with MATE 4530).
Credits: 3. Contact Hours: Lecture 2, Laboratory 3.
Overview of polymer chemical composition, microstructure, thermal and
mechanical properties, rheology, and principles of polymer materials
selection. Intensive laboratory experiments include chemical composition
studies, microstructural characterization, thermal analysis, and
mechanical testing. (Typically Offered: Fall)

MSE 5540: Polymer Composites and Processing
(Dual-listed with MATE 4540).
Credits: 3. Contact Hours: Lecture 3.
Basic concepts in polymer composites, blends, and block copolymers.
Phase separation and miscibility, microstructures and mechanical
behavior. Fiber reinforced and laminated composites. Viscosity, rheology,
viscoelasticity of polymers. Polymer melt processing methods such as
injection molding and extrusion; selection of suitable processing
methods and their applications. (Typically Offered: Spring)

MSE 5550: Biomaterials
(Dual-listed with BME 4560/ MATE 4560).
Credits: 3. Contact Hours: Lecture 3.
Presentation of the basic chemical and physical properties of
biomaterials, with special emphasis on metallic, ceramic, polymeric, and
composite biomaterials, as they are related to their manipulation by the
engineer for incorporation into living systems. Role of microstructure
and properties needed to select and design biomaterials used in medical
devices, artificial organs, implants, and prostheses. Overview of medical
science vis-à-vis materials science. (Typically Offered: Fall)
MSE 5570: Chemical and Physical Metallurgy of Rare Earth Metals
(Dual-listed with MATE 4570).
Credits: 3. Contact Hours: Lecture 3.
Electronic configuration, valence states, minerals, ores, beneficiation, extraction, separation, metal preparation and purification. Crystal structures, phase transformations and polymorphism, and thermochemical properties of rare earth metals. Chemical properties: inorganic and organometallic compounds, alloy chemistry, nature of the chemical bonding. Physical properties: mechanical and elastic properties, magnetic properties, resistivity, and superconductivity. (Typically Offered: Spring)

MSE 5640: Fracture and Fatigue
(Cross-listed with AERE 5640/ ME 5640/ EM 5640).
Credits: 3. Contact Hours: Lecture 3.
Materials and mechanics approach to fracture and fatigue. Fracture mechanics, brittle and ductile fracture, fracture and fatigue characteristics, fracture of thin films and layered structures. Fracture and fatigue tests, mechanics and materials designed to avoid fracture or fatigue. Offered even-numbered years. (Typically Offered: Fall)

MSE 5690: Mechanics of Composite and Combined Materials
(Cross-listed with AERE 5690/ EM 5690).
Credits: 3. Contact Hours: Lecture 3.
Prereq: EM 3240

MSE 5800X: Introduction of Project Management for Thesis Research
(Cross-listed with CHE 5800X/ IE 5800X).
Credits: 1. Contact Hours: Lecture 1.
Tools and skills of Project Management (PM) adapted from industry to improve efficiency in thesis research. Project charter initiation for thesis, timeline and meeting scheduling tools, expectation management, and communication with advisors. Practice of the PM skills using student’s own thesis. Presentation of a project charter. Demonstration of knowledge of related PM skills and the ability of utilizing these skills for thesis research. Sharing thesis ideas and learning experience in the Graduate for Advancing Professional Skills (GAPS) learning community. Offered on a satisfactory-fail basis only. (Typically Offered: Fall, Spring)

MSE 5810: Computational Modeling of Materials
(Dual-listed with MATE 4810).
Credits: 3. Contact Hours: Lecture 3.
Introduction to the basic methods used in the computational modeling and simulation of materials, from atomistic simulations to methods at the mesoscale. Students will be expected to develop and run sample programs. Topics to be covered include, for example, electronic structure calculations, molecular dynamics, Monte Carlo, phase-field methods, etc. (Typically Offered: Fall)

MSE 5880: Eddy Current Nondestructive Evaluation
(Dual-listed with EE 4880/ MATE 4880). (Cross-listed with EE 5880).
Credits: 3. Contact Hours: Lecture 3.
Electromagnetic fields of various eddy current probes. Probe field interaction with conductors, crack and other material defects. Ferromagnetic materials. Layered conductors. Elementary inversion of probe signals to characterize defects. Special techniques including remote-field, transient, potential drop nondestructive evaluation and the use of Hall sensors. Practical assignments using a ‘virtual’ eddy current instrument will demonstrate key concepts. Offered odd-numbered years. (Typically Offered: Fall)

MSE 5900: Special Topics
Credits: 1-30. Repeatable.
Prereq: Instructor Permission for Course
(Typically Offered: Fall, Spring, Summer)

MSE 5990: Creative Component
Credits: 1-30. Repeatable.
Prereq: Instructor Permission for Course
(Typically Offered: Fall, Spring, Summer)

Courses for graduate students:
MSE 6010: Materials Seminar
Credits: 1. Contact Hours: Lecture 1.
Repeatable.
Seminar course - presentations given on a weekly basis by leading U.S. and international researchers that are experts in their respective fields closely related to Materials Science. Offered on a satisfactory-fail basis only. (Typically Offered: Fall, Spring)
MSE 6200: Fundamentals of Phase Transformations
Credits: 3. Contact Hours: Lecture 3.
Explores various advanced theoretical treatments of the energetics and kinetics of multicomponent materials. Topics include analytical and computational descriptions of thermodynamic quantities, experimental measurement of essential physical properties, analytical and computational treatments of kinetic processes, and the use of theoretical predictions of phase equilibria and evolution in materials systems. (Typically Offered: Spring)

MSE 6300: Physical Properties of Solids
Credits: 3. Contact Hours: Lecture 3.
Advanced course in the behavior of solids within the framework of solid state physics and chemistry. Includes magnetic, dielectric, transport, and optical phenomena in solids. Influence of phase transformations and crystal symmetry on the physical properties.

MSE 6510: Powder Diffraction Methods
Credits: 3. Contact Hours: Lecture 3.

MSE 6520: Transmission Electron Microscopy
Credits: 3. Contact Hours: Lecture 2, Laboratory 3.
Theory and application of transmission electron microscopy to inorganic materials. Specimen preparation, selected area and convergent beam electron diffraction, bright field/dark field/high resolution imaging. Compositional analysis using X-ray and electron energy loss spectroscopy. (Typically Offered: Spring)

MSE 6900: Advanced Topics in Materials Science
Repeatable.
Prereq: Instructor Permission for Course
(Typically Offered: Fall, Spring, Summer)