BIOLOGICAL SYSTEMS ENGINEERING

For the undergraduate curriculum in biological systems engineering leading to the degree bachelor of science. The Biological Systems Engineering program is accredited by the Engineering Accreditation Commission of ABET, http://www.abet.org/.

Biological Systems Engineering integrates life sciences with engineering to solve problems related to, or using, biological systems. These biological systems may include microbes, plants, animals, humans and/or ecosystems. Biological systems engineers have a worldview shaped by an understanding of fundamental principles of engineering and life-sciences. They use their understanding of engineering to analyze organisms or ecosystems, and their knowledge of biological systems to inspire and inform their designs. They approach engineering design from a biological systems perspective, appreciating the complexity of biological systems and developing solutions that accommodate and anticipate the adaptability of biological systems.

Goal: To educate students to solve problems related to biorenewables production and processing, water quality, environmental impacts of the bioeconomy, food processing, and biosensors, and in so doing to prepare students for professional practice and post-graduate educational opportunities.

Program Educational Objectives: Three to five years after graduation, our graduates will be using the knowledge, skills, and abilities from their biological systems engineering degree to improve the human condition through successful careers in a wide variety of fields. They will be effective leaders, collaborators, and innovators who address environmental, social, technical, and business challenges. They will be engaged in life-long learning and professional development through self-study, continuing education, or graduate/professional school.

Well-qualified juniors and seniors in biological systems engineering who are interested in graduate study may apply for concurrent enrollment in the Graduate College to simultaneously pursue a bachelor of science degree in biological systems engineering and a master of science degree in agricultural engineering. Under concurrent enrollment, students are eligible for assistantships and simultaneously take undergraduate and graduate courses.

A concurrent bachelor of science and master of business administration program is also offered by the department.

The department also offers a bachelor of science curriculum in agricultural engineering. See College of Engineering (http://catalog.iastate.edu/collegeofengineering/). Additionally, the department offers bachelor of science curricula in agricultural systems technology and in industrial technology. See College of Agriculture and Life Sciences (http://catalog.iastate.edu/collegeofagricultureandlifesciences/).

The department also participates in interdepartmental majors in environmental science, sustainable agriculture, biorenewable resources and technology, human computer interaction, and toxicology (see Index (http://catalog.iastate.edu/azindex/)).

Curriculum in Biological Systems Engineering

Administered by the Department of Agricultural and Biosystems Engineering.

Leading to the degree bachelor of science.

Total credits required:

<table>
<thead>
<tr>
<th>Option</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biorenewable Resources Option</td>
<td>128.0 cr</td>
</tr>
<tr>
<td>Bioenvironmental Engineering Option</td>
<td>127.0 cr</td>
</tr>
<tr>
<td>Food Engineering Option</td>
<td>128.0 cr</td>
</tr>
<tr>
<td>Open Option</td>
<td>128.0 cr</td>
</tr>
</tbody>
</table>

Any transfer credit courses applied to the degree program require a grade of C or better (but will not be calculated into the ISU cumulative GPA, Basic Program GPA or Core GPA). See also Basic Program and Special Programs.

International Perspectives: 3 cr.

U.S. Diversity: 3 cr.

Communication Proficiency/Library requirement:

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGL 150</td>
<td>3</td>
</tr>
<tr>
<td>ENGL 250</td>
<td>3</td>
</tr>
<tr>
<td>LIB 160</td>
<td>1</td>
</tr>
</tbody>
</table>

Communication Elective: One of the following (Must have a C or better in this course)

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>AGEDS 311</td>
<td>3</td>
</tr>
<tr>
<td>ENGL 309</td>
<td>3</td>
</tr>
<tr>
<td>ENGL 314</td>
<td>3</td>
</tr>
<tr>
<td>MKT 450</td>
<td>3</td>
</tr>
<tr>
<td>SP CM 212</td>
<td>3</td>
</tr>
<tr>
<td>SP CM 312</td>
<td>3</td>
</tr>
</tbody>
</table>

Social Sciences and Humanities: 12 cr.

<table>
<thead>
<tr>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>6</td>
</tr>
</tbody>
</table>

Total Credits 12

Basic Program: 24 cr.

A minimum GPA of 2.00 required for this set of courses (please note that transfer course grades will not be calculated into the Basic Program GPA). See Requirement for Entry into Professional Program in College of
Engineering Overview section. Within the Biological Systems Engineering Basic Program, students are required to complete CHEM 167 and CHEM 167L or the sequence of CHEM 177, CHEM 177L, and CHEM 178. This is a departmental requirement within the College of Engineering Basic Program requirements. The CHEM 178 course will show as completing the chemistry portion of the Basic Program and the credits will be applied towards a student’s classification.

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABE 160</td>
<td>Systematic Problem Solving and Computer Programming</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 167</td>
<td>General Chemistry for Engineering Students</td>
<td>4</td>
</tr>
<tr>
<td>ENGL 150</td>
<td>Critical Thinking and Communication (Must have a C or better in this course)</td>
<td>3</td>
</tr>
<tr>
<td>ENGR 101</td>
<td>Engineering Orientation</td>
<td>R</td>
</tr>
<tr>
<td>LIB 160</td>
<td>Information Literacy</td>
<td>1</td>
</tr>
<tr>
<td>MATH 165</td>
<td>Calculus I</td>
<td>4</td>
</tr>
<tr>
<td>MATH 166</td>
<td>Calculus II</td>
<td>4</td>
</tr>
<tr>
<td>PHYS 221</td>
<td>Introduction to Classical Physics I</td>
<td>5</td>
</tr>
<tr>
<td>Total Credits</td>
<td></td>
<td>24</td>
</tr>
</tbody>
</table>

Biological, Math and Physical Science: 23 cr.

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL 212</td>
<td>Principles of Biology II</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 167L</td>
<td>Laboratory in General Chemistry for Engineering</td>
<td>1</td>
</tr>
<tr>
<td>or CHEM 177L</td>
<td>Laboratory in General Chemistry I</td>
<td>4</td>
</tr>
<tr>
<td>Chemistry Sequence I (select from list of lecture with corresponding lab)</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>CHEM 231</td>
<td>Elementary Organic Chemistry</td>
<td></td>
</tr>
<tr>
<td>CHEM 231L</td>
<td>Laboratory in Elementary Organic Chemistry</td>
<td></td>
</tr>
<tr>
<td>CHEM 331</td>
<td>Organic Chemistry I</td>
<td></td>
</tr>
<tr>
<td>CHEM 331L</td>
<td>Laboratory in Organic Chemistry I</td>
<td></td>
</tr>
<tr>
<td>MATH 267</td>
<td>Elementary Differential Equations and Laplace Transforms</td>
<td>4</td>
</tr>
<tr>
<td>MICRO 302</td>
<td>Biology of Microorganisms</td>
<td>3</td>
</tr>
<tr>
<td>MICRO 302L</td>
<td>Microbiology Laboratory</td>
<td>1</td>
</tr>
<tr>
<td>STAT 305</td>
<td>Engineering Statistics (Chemistry Sequence I)</td>
<td>3</td>
</tr>
<tr>
<td>Chemistry Sequence II (select from list of lecture with corresponding lab)</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>CHEM 211</td>
<td>Quantitative and Environmental Analysis</td>
<td></td>
</tr>
<tr>
<td>CHEM 211L</td>
<td>Quantitative and Environmental Analysis Laboratory</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 332</td>
<td>Organic Chemistry II</td>
<td></td>
</tr>
<tr>
<td>CHEM 332L</td>
<td>Laboratory in Organic Chemistry II</td>
<td></td>
</tr>
<tr>
<td>FS HN 311</td>
<td>Food Chemistry</td>
<td></td>
</tr>
<tr>
<td>Total Credits</td>
<td></td>
<td>24</td>
</tr>
</tbody>
</table>

Biological Systems Engineering Core: 42 cr.

(A minimum GPA of 2.00 required for this set of courses, including any transfer courses; please note that transfer course grades will not be calculated into the Core GPA).

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABE 216</td>
<td>Fundamentals of Agricultural and Biosystems Engineering</td>
<td>3</td>
</tr>
<tr>
<td>ABE 218</td>
<td>Project Management & Design in Agricultural and Biosystems Engineering</td>
<td>2</td>
</tr>
<tr>
<td>ABE 273</td>
<td>CAD for Process Facilities and Land Use Planning</td>
<td>1</td>
</tr>
<tr>
<td>ABE 316</td>
<td>Applied Numerical Methods for Agricultural and Biosystems Engineering</td>
<td>3</td>
</tr>
<tr>
<td>ABE 363</td>
<td>Agri-Industrial Applications of Electric Power and Electronics</td>
<td>4</td>
</tr>
<tr>
<td>ABE 378</td>
<td>Mechanics of Fluids</td>
<td>3</td>
</tr>
<tr>
<td>ABE 380</td>
<td>Principles of Biological Systems Engineering</td>
<td>3</td>
</tr>
<tr>
<td>ABE 404</td>
<td>Instrumentation for Agricultural and Biosystems Engineering</td>
<td>3</td>
</tr>
<tr>
<td>ABE 415</td>
<td>Agricultural & Biosystems Engineering Design I</td>
<td>2</td>
</tr>
<tr>
<td>ABE 416</td>
<td>Agricultural & Biosystems Engineering Design II</td>
<td>2</td>
</tr>
<tr>
<td>ABE 480</td>
<td>Engineering Analysis of Biological Systems</td>
<td>3</td>
</tr>
<tr>
<td>CE 274</td>
<td>Engineering Statics</td>
<td>3</td>
</tr>
<tr>
<td>EM 324</td>
<td>Mechanics of Materials</td>
<td>3</td>
</tr>
<tr>
<td>EM 327</td>
<td>Mechanics of Materials Laboratory</td>
<td>1</td>
</tr>
<tr>
<td>IE 305</td>
<td>Engineering Economic Analysis</td>
<td>3</td>
</tr>
<tr>
<td>ME 231</td>
<td>Engineering Thermodynamics I</td>
<td>3</td>
</tr>
<tr>
<td>Total Credits</td>
<td></td>
<td>42</td>
</tr>
</tbody>
</table>

Other Remaining Courses: 11 cr.

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABE 110</td>
<td>Experiencing Agricultural and Biosystems Engineering</td>
<td>1</td>
</tr>
<tr>
<td>ABE 170</td>
<td>Engineering Graphics and Introductory Design</td>
<td>3</td>
</tr>
<tr>
<td>ABE 201</td>
<td>Preparing for Workplace Seminar</td>
<td>1</td>
</tr>
<tr>
<td>ENGL 250</td>
<td>Written, Oral, Visual, and Electronic Composition (Must have a C or better in this course)</td>
<td>3</td>
</tr>
<tr>
<td>Communication Elective: One of the following (Must have a C or better in this course)</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>AGEDS 311</td>
<td>Presentation and Sales Strategies for Agricultural Audiences</td>
<td>3</td>
</tr>
<tr>
<td>ENGL 309</td>
<td>Proposal and Report Writing</td>
<td></td>
</tr>
<tr>
<td>ENGL 314</td>
<td>Technical Communication</td>
<td></td>
</tr>
<tr>
<td>MKT 450</td>
<td>Advanced Professional Selling</td>
<td></td>
</tr>
<tr>
<td>SP CM 212</td>
<td>Fundamentals of Public Speaking</td>
<td></td>
</tr>
</tbody>
</table>
Total Credits: 11

Complete remaining courses from one of the following options:

Biorenewable Resources Engineering Option: 16 cr.
- A B E 325 Biorenewable Systems 3
- A B E 451 Food and Bioprocess Engineering 3
- A B E 469 Engineering for Grain Storage, Preservation, Handling, and Processing Systems 3
- M E 436 Heat Transfer 4
- Biorenewable Elective (select 3cr from the following): 3
 - SCM 301 Supply Chain Management
 - FS HN 471 Food Processing

Total Credits: 16

Bioenvironmental Engineering Option: 15 cr.
- A B E 431 Design and Evaluation of Soil and Water Conservation Systems 3
- A B E 432 Nonpoint Source Pollution and Control 3
- C E 326 Principles of Environmental Engineering 3
- C E 372 Engineering Hydrology and Hydraulics 3
- Bioenvironmental Elective 2

Total Credits: 16

Food Engineering Option: 16 cr.
- A B E 451 Food and Bioprocess Engineering 3
- A B E 469 Engineering for Grain Storage, Preservation, Handling, and Processing Systems 3
- FS HN 420 Food Microbiology 3
- M E 436 Heat Transfer 4
- Food Elective (select 3 cr from the following): 3
 - FS HN 471 Food Processing
 - SCM 301 Supply Chain Management

Total Credits: 16

Open Option: 16 cr.
- A B E 451 Food and Bioprocess Engineering 3
- M E 436 Heat Transfer 4
- Sequence I, II & III Elective 2

Total Credits: 16

Co-op/Internships (Optional)

1. These university requirements will add to the minimum credits of the program unless the university-approved courses are also approved by the department to meet other course requirements within the degree program.

U.S. Diversity, International Perspectives and Social Science/Humanities courses may not be taken Pass/Not Pass.

2. Choose from department approved list. (http://www.abe.iastate.edu/undergraduate-students/biological-systems-engineering/bse-curricula/)

3. See Basic Program for Professional Engineering Curricula for accepted substitutions for curriculum designated courses in the Basic Program.

TRANSFER CREDIT REQUIREMENTS

Students graduating with a degree in A E or BSE are required to have a minimum of 18 credits of 300-level and 400-level ABE courses taken at Iowa State University (excluding 490, 415, and 416), and must complete the two-semester ABE Capstone sequence (ABE 415 & 416) at Iowa State University. The Department of Agricultural & Biosystems Engineering requires a grade of C or better for any transfer credit course that is applied to the degree program.

See also: A 4-year plan of study grid showing course template by semester for Biological Systems Engineering.
Third Year

<table>
<thead>
<tr>
<th>Fall</th>
<th>Credits</th>
<th>Spring</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>A B E 316</td>
<td>3</td>
<td>A B E 363</td>
<td>4</td>
</tr>
<tr>
<td>A B E 378</td>
<td>3</td>
<td>A B E 380</td>
<td>3</td>
</tr>
<tr>
<td>MICRO 302</td>
<td>3</td>
<td>C E 372</td>
<td>3</td>
</tr>
<tr>
<td>MICRO 302L</td>
<td>1</td>
<td>E M 324</td>
<td>3</td>
</tr>
<tr>
<td>STAT 305</td>
<td>3</td>
<td>I E 305</td>
<td>3</td>
</tr>
<tr>
<td>Communication Elective</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>16</td>
<td>16</td>
<td></td>
</tr>
</tbody>
</table>

Fourth Year

<table>
<thead>
<tr>
<th>Fall</th>
<th>Credits</th>
<th>Spring</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>A B E 415</td>
<td>2</td>
<td>A B E 416</td>
<td>2</td>
</tr>
<tr>
<td>A B E 404</td>
<td>3</td>
<td>A B E 432</td>
<td>3</td>
</tr>
<tr>
<td>A B E 431</td>
<td>3</td>
<td>C E 326</td>
<td>3</td>
</tr>
<tr>
<td>A B E 480</td>
<td>3</td>
<td>E M 327</td>
<td>1</td>
</tr>
<tr>
<td>Social Science or Humanities Elective</td>
<td>3</td>
<td>Bioenvironmental Elective</td>
<td>3</td>
</tr>
<tr>
<td>International Perspectives</td>
<td>3</td>
<td>Social Science or Humanities Elective</td>
<td>3</td>
</tr>
<tr>
<td>Elective</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>17</td>
<td>15</td>
<td></td>
</tr>
</tbody>
</table>

Biological Systems Engineering, B.S. - biorenewable resources engr option

First Year

<table>
<thead>
<tr>
<th>Fall</th>
<th>Credits</th>
<th>Spring</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGR 101</td>
<td>1</td>
<td>A B E 110</td>
<td>1</td>
</tr>
<tr>
<td>A B E 170</td>
<td>3</td>
<td>A B E 160</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 167</td>
<td>4</td>
<td>MATH 166</td>
<td>4</td>
</tr>
<tr>
<td>CHEM 167L</td>
<td>1</td>
<td>PHYS 221</td>
<td>5</td>
</tr>
<tr>
<td>MATH 165</td>
<td>4</td>
<td>ENGL 250</td>
<td>3</td>
</tr>
<tr>
<td>ENGL 150</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LIB 160</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>16</td>
<td>16</td>
<td></td>
</tr>
</tbody>
</table>

Second Year

<table>
<thead>
<tr>
<th>Fall</th>
<th>Credits</th>
<th>Spring</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>A B E 216</td>
<td>3</td>
<td>A B E 218</td>
<td>2</td>
</tr>
<tr>
<td>C E 274</td>
<td>3</td>
<td>A B E 201</td>
<td>1</td>
</tr>
<tr>
<td>BIOL 212</td>
<td>3</td>
<td>A B E 273</td>
<td>1</td>
</tr>
<tr>
<td>Chemistry Sequence I with Lab</td>
<td>3</td>
<td>M E 231</td>
<td></td>
</tr>
<tr>
<td>US Diversity Elective</td>
<td>3</td>
<td>MATH 267</td>
<td>4</td>
</tr>
<tr>
<td>Total</td>
<td>16</td>
<td>16</td>
<td></td>
</tr>
</tbody>
</table>

Biological Systems Engineering, B.S. - Open Option

First Year

<table>
<thead>
<tr>
<th>Fall</th>
<th>Credits</th>
<th>Spring</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGR 101</td>
<td>1</td>
<td>A B E 110</td>
<td>1</td>
</tr>
<tr>
<td>A B E 170</td>
<td>3</td>
<td>A B E 160</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 167</td>
<td>4</td>
<td>MATH 166</td>
<td>4</td>
</tr>
<tr>
<td>CHEM 167L</td>
<td>1</td>
<td>PHYS 221</td>
<td>5</td>
</tr>
<tr>
<td>MATH 165</td>
<td>4</td>
<td>ENGL 250</td>
<td>3</td>
</tr>
<tr>
<td>ENGL 150</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LIB 160</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>16</td>
<td>16</td>
<td></td>
</tr>
</tbody>
</table>

Second Year

<table>
<thead>
<tr>
<th>Fall</th>
<th>Credits</th>
<th>Spring</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>A B E 216</td>
<td>3</td>
<td>A B E 218</td>
<td>2</td>
</tr>
<tr>
<td>C E 274</td>
<td>3</td>
<td>A B E 201</td>
<td>1</td>
</tr>
<tr>
<td>BIOL 212</td>
<td>3</td>
<td>A B E 273</td>
<td>1</td>
</tr>
<tr>
<td>Chemistry Sequence I with Lab</td>
<td>4</td>
<td>M E 231</td>
<td>3</td>
</tr>
<tr>
<td>US Diversity Elective</td>
<td>3</td>
<td>MATH 267</td>
<td>4</td>
</tr>
</tbody>
</table>
Biological Systems Engineering, B.S. Food Engineering Option

First Year

<table>
<thead>
<tr>
<th>Credits</th>
<th>Spring</th>
<th>Fall</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>16</td>
<td>ENGR 101</td>
<td>R A B E 110</td>
</tr>
<tr>
<td>16</td>
<td>16</td>
<td>A B E 170</td>
<td>3 A B E 160</td>
</tr>
<tr>
<td>16</td>
<td>16</td>
<td>MATH 165</td>
<td>4 MATH 166</td>
</tr>
<tr>
<td>16</td>
<td>16</td>
<td>CHEM 167</td>
<td>4 PHYS 221</td>
</tr>
<tr>
<td>16</td>
<td>16</td>
<td>CHEM 167L</td>
<td>1 ENGL 250</td>
</tr>
<tr>
<td>16</td>
<td>16</td>
<td>ENGL 150</td>
<td>3</td>
</tr>
<tr>
<td>16</td>
<td>16</td>
<td>LIB 160</td>
<td>1</td>
</tr>
</tbody>
</table>

Second Year

<table>
<thead>
<tr>
<th>Credits</th>
<th>Spring</th>
<th>Fall</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>16</td>
<td>A B E 216</td>
<td>3 A B E 218</td>
</tr>
<tr>
<td>16</td>
<td>16</td>
<td>C E 274</td>
<td>3 A B E 201</td>
</tr>
<tr>
<td>16</td>
<td>16</td>
<td>BIOL 212</td>
<td>3 A B E 273</td>
</tr>
<tr>
<td>16</td>
<td>16</td>
<td>Chemistry Sequence I with Lab</td>
<td>4 M E 231</td>
</tr>
<tr>
<td>16</td>
<td>16</td>
<td>US Diversity Elective</td>
<td>3 MATH 267</td>
</tr>
</tbody>
</table>

Third Year

<table>
<thead>
<tr>
<th>Credits</th>
<th>Spring</th>
<th>Fall</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>15</td>
<td>A B E 316</td>
<td>3 A B E 363</td>
</tr>
<tr>
<td>16</td>
<td>15</td>
<td>A B E 378</td>
<td>3 A B E 380</td>
</tr>
<tr>
<td>16</td>
<td>15</td>
<td>MICRO 302</td>
<td>3 E M 324</td>
</tr>
<tr>
<td>16</td>
<td>15</td>
<td>MICRO 302L</td>
<td>1 I E 305</td>
</tr>
<tr>
<td>16</td>
<td>15</td>
<td>STAT 305</td>
<td>3 Sequence I Elective</td>
</tr>
<tr>
<td>16</td>
<td>15</td>
<td>Communication Elective</td>
<td>3</td>
</tr>
</tbody>
</table>

Fourth Year

<table>
<thead>
<tr>
<th>Credits</th>
<th>Spring</th>
<th>Fall</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>16</td>
<td>A B E 415</td>
<td>2 A B E 416</td>
</tr>
<tr>
<td>16</td>
<td>16</td>
<td>A B E 404</td>
<td>3 A B E 451</td>
</tr>
<tr>
<td>16</td>
<td>16</td>
<td>A B E 480</td>
<td>3 E M 327</td>
</tr>
<tr>
<td>16</td>
<td>16</td>
<td>Sequence II Elective</td>
<td>3 M E 436</td>
</tr>
<tr>
<td>16</td>
<td>16</td>
<td>International Perspectives Elective</td>
<td>3 Sequence III Elective</td>
</tr>
<tr>
<td>16</td>
<td>16</td>
<td>Social Science or Humanities Elective</td>
<td>3 Social Science or Humanities Elective</td>
</tr>
</tbody>
</table>

Graduate Study

The department offers master of science, master of engineering, and doctor of philosophy degrees with a major in agricultural and biosystems engineering. Within the agricultural and biosystems engineering major the student may specialize in advanced machinery engineering, animal production systems engineering, biological and process engineering, occupational safety engineering, or water and environmental stewardship engineering. Details on current research programs available at http://www.abe.iastate.edu/.

For the master of science program, at least 30 credits of acceptable graduate work must be completed with a minimum of 22 credits of course work; corresponding numbers for the master of engineering program are 32 and 27. For the doctor of philosophy degree, at least 72 credits of acceptable graduate work must be completed with a minimum of 42 credits of course work. All Ph.D. students must complete a teaching/extension experience prior to graduation.

The department also offers both master of science and doctor of philosophy degrees in industrial and agricultural technology.

Courses primarily for undergraduates:
A B E 102: Learning Communities
Cr. 0.5. F.
8 week learning communities course focusing on student success, engineering, and department curriculum. Building community within the ABE Department. Offered on a satisfactory-fail basis only.

A B E 110: Experiencing Agricultural and Biosystems Engineering
(0-2) Cr. 1. S.
Laboratory-based, team-oriented experiences in a spectrum of topics common to the practice of agricultural and biosystems engineering. Report writing, co-ops, internships, careers, registration planning.

A B E 160: Systematic Problem Solving and Computer Programming
(2-2) Cr. 3. S.
Prereq: Credit or enrollment in MATH 143 or MATH 165
Introduction to principles of dynamics, statics, and mass and energy conservation. Introduction to algorithmic thinking; use of spreadsheet programs and computer programming language(s) to solve engineering problems. Only one of ENGR 160, A B E 160, AER E 160, C E 160, CH E 160, CPR E 185, EE 185, IE 148, M E 160 and S E 185 may count towards graduation.

A B E 170: Engineering Graphics and Introductory Design
(2-2) Cr. 3.
Applications of multi-view drawings and dimensioning. Techniques for visualizing, analyzing, and communicating 3-D geometries. Application of the design process including written and oral reports.

A B E 201: Preparing for Workplace Seminar
(Cross-listed with TSM). (1-0) Cr. 1. F.S.
Prereq: Prereq: Sophomore classification in AE, AST, BSE, or I TEC
8 week course. Professionalism in the context of the engineering/technical workplace. Development and demonstration of key workplace competencies: teamwork, initiative, communication, and engineering/technical knowledge. Resumes; Cover Letters; Behavioral Based Interviewing; Industry Speakers; Preparation for internships experiences.

A B E 216: Fundamentals of Agricultural and Biosystems Engineering
(2-2) Cr. 3. F.
Prereq: A B E 160 or permission of the instructor
Application of mathematics and engineering sciences in agricultural and biosystems engineering. Emphasis is on solving engineering problems.

A B E 218: Project Management & Design in Agricultural and Biosystems Engineering
(1-2) Cr. 2. S.
Prereq: A B E 216
Engineering design process with emphasis on criteria and constraints, ideation, and analysis. Fundamental principles of project management including project management software. Open-ended project(s) to apply core principles using concepts from prerequisite courses.

A B E 271: Engineering Applications of Parametric Solid Modeling
(1-2) Cr. 1. F.S.
Prereq: A B E 170 or TSM 116 or equivalent
8 week-course. Creating, editing, and documenting part and assembly models using Solidworks.

A B E 272: Parametric Solid Models, Drawings, and Assemblies Using Creo Parametric
(1-2) Cr. 1. F.S.
Prereq: A B E 170 or TSM 116 or equivalent
8 week-course. Applications of Creo Parametric software. Create solid models of parts and assemblies. Utilize the solid models to create design documentation (standard drawing views, dimensions, and notes) and for the geometric analysis of parts and assemblies.

A B E 273: CAD for Process Facilities and Land Use Planning
(1-2) Cr. 1. F.S.
Prereq: ENGR 170 or TSM 116 or equivalent.
8-week course. Application of 2-D AutoCAD software to create and interpret 2-D drawings and 3-D models of facilities. Topics include geometric construction, design documentation: (using views, dimension, notes), and AutoCAD specific features (i.e. Layers, Blocks, Standards, Styles).

A B E 316: Applied Numerical Methods for Agricultural and Biosystems Engineering
(2-2) Cr. 3. F.S.
Prereq: A B E 160; MATH 266 or MATH 267
Computer aided solution of agricultural engineering problems by use of numerical techniques and mathematical models. Systems analysis and optimization applicable to agricultural and biological systems.

A B E 325: Biorenewable Systems
(Cross-listed with TSM). (3-0) Cr. 3. F.
Prereq: CHEM 163 or higher; MATH 140 or higher
Converting biorenewable resources into bioenergy and biobased products. Biorenewable concepts as they relate to drivers of change, feedstock production, processes, products, co-products, economics, and transportation/logistics.
(2-2) Cr. 3. F.
Prereq: A B E 216

A B E 342: Agricultural Tractor Power
(2-3) Cr. 3. S.
Prereq: Ch E 381 or M E 231
Thermodynamic principles and construction of tractor engines. Fuels, combustion, and lubrication. Kinematics and dynamics of tractor power applications; drawbar, power take-off and traction mechanisms.

A B E 363: Agri-Industrial Applications of Electric Power and Electronics
(3-2) Cr. 4. F.S.
Prereq: A B E 216

A B E 388: Sustainable Engineering and International Development
(Cross-listed with C E, E E). (2-2) Cr. 3. F.
Prereq: Junior classification in engineering
Multi-disciplinary approach to sustainable engineering and international development, sustainable development, appropriate design and engineering, feasibility analysis, international aid, business development, philosophy and politics of technology, and ethics in engineering. Engineering-based projects from problem formulation through implementation. Interactions with partner community organizations or international partners such as nongovernment organizations (NGOs).
Course readings, final project/design report.
Meets International Perspectives Requirement.

A B E 396: Summer Internship
Cr. R. Repeatable. SS.
Prereq: Permission of department and Engineering Career Services
Professional work period of at least 10 weeks during the summer. Students must register for this course prior to commencing work. Offered on a satisfactory-fail basis only.

A B E 398: Cooperative Education
Cr. R. Repeatable. F.S.
Prereq: A B E 218 and permission of department and Engineering Career Services
Professional work period. One semester per academic or calendar year. Students must register for this course before commencing work. Offered on a satisfactory-fail basis only.

A B E 403: Modeling, Simulation, and Controls for Agricultural and Biological Systems
(Dual-listed with A B E 503). (2-2) Cr. 3. Alt. S., offered odd-numbered years.
Prereq: A B E 316, and A B E 363, and MATH 266 or MATH 267
Modeling and simulation of dynamic systems with modern software tools including Matlab Simulink and Modelica. Introduction to state variable methods of system analysis. Analysis of several engineering systems. Introduction to classical control theory. Term project required for graduate credit.

A B E 404: Instrumentation for Agricultural and Biosystems Engineering
(Dual-listed with A B E 504). (2-2) Cr. 3. F.
Prereq: A B E 316 and A B E 363
Interfacing techniques for computer-based data acquisition and control systems. Basic interfacing components including A/D and D/A conversion, signal filtering, multiplexing, and process control. Sensors and theory of operation applied to practical monitoring and control problems. Individual and group projects required for graduate credit.
A B E 410: Electronic Systems Integration for Agricultural Machinery
(Dual-listed with A B E 510). Cr. 3. S.
System architecture and design of electronics used in agricultural machinery and production systems. Emphasis on information technology and systems integration for automated agriculture processes. Design of Controller Area Network (CAN BUS) communication systems and discussion of relevant standards (ISO 11783 and SAE J1939). Application of technologies for sensing, distributed control, and automation of agricultural machinery will be emphasized.

A B E 413: Fluid Power Engineering
(Cross-listed with M E). (2-2) Cr. 3. F.
Prereq: Credit or enrollment in E M 378 or M E 335, A B E 216 or M E 270

A B E 415: Agricultural & Biosystems Engineering Design I
(1-2) Cr. 2. F.S.
Prereq: A B E 316 (majors only)
Engineering design process with emphasis on team delivery of: clearly defined deliverables; criteria and constraints; wide-field ideation; discipline-appropriate analysis methods; identification and application of relevant standards.

A B E 416: Agricultural & Biosystems Engineering Design II
(1-2) Cr. 2. F.S.
Prereq: A B E 415
Final execution of the engineering design process with emphasis on team delivery of: oral and written communication in completion of the client-agreed deliverables.

A B E 418: Fundamentals of Engineering Review
(1-0) Cr. 1.
Prereq: senior classification.
8 week course. Review of core concepts covered in the Fundamentals of Engineering examination with emphasis on statics, dynamics, fluid mechanics, heat transfer, electric circuits, and engineering economics. Open to all College of Engineering seniors, however focus is on the general exam, not discipline specific exams.

A B E 424: Air Pollution
(Dual-listed with A B E 524). (Cross-listed with C E, ENSCI). (1-0) Cr. 1.
Prereq: Either PHYS 221 or CHEM 178 and either MATH 166 or 3 credits in statistics. Senior classification or above
1 cr. per module. Module A prereq for all modules; module B prereq for D and E.

A B E 424A: Air Pollution: Air quality and effects of pollutants
(Dual-listed with A B E 524A). (Cross-listed with C E, ENSCI). (1-0) Cr. 1.
Prereq: Either PHYS 221 or CHEM 178 and either MATH 166 or 3 credits in statistics. Senior classification or above
1 cr. per module. Module A prereq for all modules; module B prereq for D and E.

A B E 424B: Air Pollution: Climate change and causes
(Dual-listed with A B E 524B). (Cross-listed with C E, ENSCI). (1-0) Cr. 1.
Prereq: Either PHYS 221 or CHEM 178 and either MATH 166 or 3 credits in statistics. Senior classification or above
1 cr. per module. Module A prereq for all modules; module B prereq for D and E.

A B E 424C: Air Pollution: Transportation Air Quality
(Dual-listed with A B E 524C). (Cross-listed with C E, ENSCI). (1-0) Cr. 1.
Prereq: C E 524A; PHYS 221 or CHEM 178; MATH 166 or 3 credits in statistics. Senior classification or above.

A B E 424D: Air Pollution: Off-gas treatment technology
(Dual-listed with A B E 524D). (Cross-listed with C E, ENSCI). (1-0) Cr. 1.
Prereq: C E 524A, C E 524B; Either PHYS 221 or CHEM 178 and either MATH 166 or 3 credits in statistics. Senior classification or above.

A B E 424E: Air Pollution: Agricultural sources of pollution
(Dual-listed with A B E 524E). (Cross-listed with C E, ENSCI). (1-0) Cr. 1.
Prereq: Either PHYS 221 or CHEM 178 and either MATH 166 or 3 credits in statistics. Senior classification or above
1 cr. per module. Module A prereq for all modules; module B prereq for D and E.
A B E 431: Design and Evaluation of Soil and Water Conservation Systems
(Dual-listed with A B E 531). (2-3) Cr. 3. F.
Prereq: E M 378 or CH E 356
Hydrology and hydraulics in agricultural and urbanizing watersheds. Design and evaluation of systems for the conservation and quality preservation of soil and water resources. Use and analysis of hydrologic data in engineering design; relationship of topography, soils, crops, climate, and cultural practices in conservation and quality preservation of soil and water for agriculture. Small watershed hydrology, water movement and utilization in the soil-plant-atmosphere system, agricultural water management, best management practices, and agricultural water quality. Graduate students will prepare several research literature reviews on topics covered in the class in addition to the other assignments.

A B E 432: Nonpoint Source Pollution and Control
(Dual-listed with A B E 532). (3-0) Cr. 3.
Prereq: A B E 431 or C E 372
Characteristics and mechanisms of non-point source (NPS) pollution in agricultural and urban watersheds, modeling of NPS pollution for terrestrial and aquatic systems, statistical tools to assess environmental datasets, strategies to control and manage NPS pollution of water bodies, and integrated watershed management. Graduate students are required to develop/deliver lecture models on assigned topics and/or complete additional assignments.

A B E 437: Watershed Modeling and Policy
(Dual-listed with A B E 537). (2-2) Cr. 3. Alt. F., offered odd-numbered years.
Prereq: CE 372 or equivalent
A project-based course on watershed-scale models for improving water quality. Legislative and judicial basis of the Total Maximum Daily Load (TMDL) program; approaches to TMDL development; principles and techniques for implementation; stakeholder engagement strategies. Hands-on experiences with GIS-interfaced models, data sources, calibration/validation, statistical assessment of model results, and simulation using multiple tools. In addition to other assignments, graduate students will present case studies of TMDLs using different modeling tools.

A B E 451: Food and Bioprocess Engineering
(Dual-listed with A B E 551). (3-0) Cr. 3. S.
Prereq: A B E 216 and credit or enrollment in M E 436 or CH E 357; or FS HN 351 and MATH 266 or MATH 267
Application of engineering principles and mathematical modeling to the quantitative analysis of transport phenomena in food and bioprocesses. Physical/chemical characteristics of foods and biological materials and systems, flow processes, thermal processes, cooling/freezing processes, dehydration processes and separation processes.

A B E 466: Multidisciplinary Engineering Design
(Cross-listed with AER E, B M E, CPR E, E E, ENGR, I E, M E, MAT E). (1-4) Cr. 3. Repeatable. F.S.
Prereq: Student must be within two semesters of graduation; permission of instructor.
Application of team design concepts to projects of a multidisciplinary nature. Concurrent treatment of design, manufacturing, and life cycle considerations. Application of design tools such as CAD, CAM, and FEM. Design methodologies, project scheduling, cost estimating, quality control, manufacturing processes. Development of a prototype and appropriate documentation in the form of written reports, oral presentations and computer models and engineering drawings.

A B E 469: Engineering for Grain Storage, Preservation, Handling, and Processing Systems
(Dual-listed with A B E 569). (2-3) Cr. 3. S.
Prereq: A B E 216
Cereal grain and oilseed production, properties, and quality assessment. Design of storage systems, drying systems, material handling, and size reduction systems. Design of cereal grain processing systems, including dry milling, wet milling, flour milling, feed milling, and fermentation facilities.

A B E 472: Design of Environmental Modification Systems for Animal Housing
(Dual-listed with A B E 572). (3-0) Cr. 3. Alt. S., offered even-numbered years.
Prereq: A B E 216, M E 231
Principles and design of animal environmental control systems. Insulation, heat and mass transfer, fans, ventilation, air distribution, heating and cooling equipment, and controls. Individual and group projects required for graduate credit.
A B E 475: Design in Animal Production Systems Engineering
(2-0) Cr. 2. F.S.
Prereq: A B E 271, A B E 272, or A B E 273; E M 324 and enrollment in APSE option of AE program.
Application of engineering fundamentals to the independent solution of an animal production systems engineering problem with well defined criteria and constraints in either environmental control, structural design, manure management, or air quality/mitigation.

A B E 478: Wood Frame Structural Design
(Dual-listed with A B E 578). (3-0) Cr. 3. Alt. S., offered odd-numbered years.
Prereq: E M 324

A B E 480: Engineering Analysis of Biological Systems
(Dual-listed with A B E 580). (Cross-listed with ENSCI). (2-2) Cr. 3. F.
Prereq: A B E 380 or permission of the instructor
Systems-level quantitative analysis of various biological systems, including applications in foods, feeds, biofuels, bioenergy, and other bio-based systems. Introduction to techno-economic analysis and life-cycle assessment of these systems at multiple production scales. Applying these tools to evaluate and improve cost and sustainability performance. Students enrolled in ABE 580 will be required to conduct additional learning activities.

A B E 490: A B E Independent Study
Cr. 1-5. Repeatable.
Independent Study.

Cr. 1-5. Repeatable.
Independent Study.

A B E 490B: A B E Independent Study: Biorenewable Resources
Cr. 1-5. Repeatable. F.S.SS.
Independent study.

A B E 490E: A B E Independent Study: Environmental Bioprocessing Engineering
Cr. 1-5. Repeatable. F.S.SS.
Independent study in environmental bioprocessing engineering.

A B E 490F: A B E Independent Study: Food Engineering
Cr. 1-5. Repeatable. F.S.SS.
Independent study in food engineering.

A B E 490G: A B E Independent Study: General Topics in A B E
Cr. 1-5. Repeatable. F.S.SS.
Independent study in general A B E topics.

A B E 490H: A B E Independent Study: Honors
Cr. 1-5. Repeatable.
Guided instructing in agricultural and biosystems engineering for honors students.

A B E 490L: A B E Independent Study: Land & Water Resources Engineering
Cr. 1-5. Repeatable.
Guided instruction in land and water resources engineering.

A B E 490M: A B E Independent Study: Advanced Machinery Systems Engineering
Cr. 1-5. Repeatable.
Guided instruction in advance machinery systems engineering.

A B E 495: Agricultural and Biosystems Engineering Department Study Abroad Preparation or Follow-up
(Cross-listed with TSM). Cr. 1-2. Repeatable. F.S.SS.
Prereq: Permission of instructor
Preparation for, or follow-up of, study abroad experience (496). For preparation, course focuses on understanding the tour destination through readings, discussions, and research on topics such as the regional industries, climate, crops, culture, economics, food, geography, government, history, natural resources, and public policies. For follow-up, course focuses on presentations by students, report writing, and reflection. Students enrolled in this course intend to register for 496 the following term or have had taken 496 the previous term. Meets International Perspectives Requirement.

A B E 496: Agricultural and Biosystems Engineering Department Study Abroad
(Cross-listed with TSM). Cr. 1-4. Repeatable. F.S.SS.
Prereq: Permission of instructor
Tour and study at international sites relevant to disciplines of industrial technology, biological systems engineering, agricultural systems technology, and agricultural engineering. Location and duration of tours will vary. Trip expenses paid by students. Pre-trip preparation and/or post-trip reflection and reports arranged through 495. Meets International Perspectives Requirement.

Courses primarily for graduate students, open to qualified undergraduates:
A B E 503: Modeling, Simulation, and Controls for Agricultural and Biological Systems
(Dual-listed with A B E 403). (2-2) Cr. 3. Alt. S., offered odd-numbered years.
Prereq: A B E 316, and A B E 363, and MATH 266 or MATH 267
Modeling and simulation of dynamic systems with modern software tools including Matlab Simulink and Modelica. Introduction to state variable methods of system analysis. Analysis of several engineering systems. Introduction to classical control theory. Term project required for graduate credit.

A B E 504: Instrumentation for Agricultural and Biosystems Engineering
(Dual-listed with A B E 404). (2-2) Cr. 3. F.
Prereq: A B E 316 and A B E 363
Interfacing techniques for computer-based data acquisition and control systems. Basic interfacing components including A/D and D/A conversion, signal filtering, multiplexing, and process control. Sensors and theory of operation applied to practical monitoring and control problems. Individual and group projects required for graduate credit.

A B E 506: Applied Computational Intelligence
(2-2) Cr. 3. Alt. F., offered even-numbered years.
Prereq: A B E 316 or equivalent, MATH 166, STAT 305
Applications of biologically inspired computational intelligence tools for data mining, system modeling, and optimization for agricultural, biological and other engineered systems. Introduction to Artificial Neural Networks, Support Vector Machines, Fuzzy Logic, Genetic Algorithms, Bayesian and Decision Tree learning. Fundamental Machine Vision techniques will be introduced in the first part of course and be integrated into the lab exercises for learning different computational intelligence techniques. MATLAB will be used throughout the course for algorithm implementation.

A B E 510: Electronic Systems Integration for Agricultural Machinery
(Dual-listed with A B E 410). Cr. 3. S.
System architecture and design of electronics used in agricultural machinery and production systems. Emphasis on information technology and systems integration for automated agriculture processes. Design of Controller Area Network (CAN BUS) communication systems and discussion of relevant standards (ISO 11783 and SAE J1939). Application of technologies for sensing, distributed control, and automation of agricultural machinery will be emphasized.

A B E 511: Bioprocessing and Bioproducts
(3-0) Cr. 3. F.
Prereq: A B E 216 or equivalent, MATH 160 or MATH 165, one of CHEM 167 or higher, BIOL 173 or BIOL 211 or higher or BRT 501, senior or graduate classification

A B E 515: Integrated Crop and Livestock Production Systems
(Cross-listed with AGRON, AN S, SUSAG). (3-0) Cr. 3. Alt. F., offered odd-numbered years.
Prereq: SUSAG 509
Methods to maintain productivity and minimize the negative ecological effects of agricultural systems by understanding nutrient cycles, managing manure and crop residue, and utilizing multispecies interactions. Crop and livestock production within landscapes and watersheds is also considered. Course includes a significant field component, with student teams analyzing Iowa farms.

A B E 524: Air Pollution
(Dual-listed with A B E 424). (Cross-listed with C E, ENSCI). (1-0) Cr. 1.
Prereq: Either PHYS 221 or CHEM 178 and either MATH 166 or 3 credits in statistics. Senior classification or above
1 cr. per module. Module A prereq for all modules; module B prereq for D and E.

A B E 524A: Air Pollution: Air quality and effects of pollutants
(Dual-listed with A B E 424A). (Cross-listed with C E, ENSCI). (1-0) Cr. 1.
Prereq: Either PHYS 221 or CHEM 178 and either MATH 166 or 3 credits in statistics. Senior classification or above
1 cr. per module. Module A prereq for all modules; module B prereq for D and E.

A B E 524B: Air Pollution: Climate change and causes
(Dual-listed with A B E 424B). (Cross-listed with C E, ENSCI). (1-0) Cr. 1.
Prereq: Either PHYS 221 or CHEM 178 and either MATH 166 or 3 credits in statistics. Senior classification or above
1 cr. per module. Module A prereq for all modules; module B prereq for D and E.

A B E 524C: Air Pollution: Transportation Air Quality
(Dual-listed with A B E 424C). (Cross-listed with C E, ENSCI). (1-0) Cr. 1.
Prereq: C E 524A; PHYS 221 or CHEM 178; MATH 166 or 3 credits in statistics. Senior classification or above.
A B E 524D: Air Pollution: Off-gas treatment technology
(Dual-listed with A B E 424D). (Cross-listed with C E, ENSCI). (1-0) Cr. 1.
Prereq: C E 524A, C E 524B; Either PHYS 221 or CHEM 178 and either MATH 166 or 3 credits in statistics. Senior classification or above

A B E 524E: Air Pollution: Agricultural sources of pollution
(Dual-listed with A B E 424E). (Cross-listed with C E, ENSCI). (1-0) Cr. 1.
Prereq: Either PHYS 221 or CHEM 178 and either MATH 166 or 3 credits in statistics. Senior classification or above

1 cr. per module. Module A prereq for all modules; module B prereq for D and E.

A B E 531: Design and Evaluation of Soil and Water Conservation Systems
(Dual-listed with A B E 431). (Cross-listed with ENSCI). (2-3) Cr. 3. F.
Prereq: E M 378 or CH E 356
Hydrology and hydraulics in agricultural and urbanizing watersheds. Design and evaluation of systems for the conservation and quality preservation of soil and water resources. Use and analysis of hydrologic data in engineering design; relationship of topography, soils, crops, climate, and cultural practices in conservation and quality preservation of soil and water for agriculture. Small watershed hydrology, water movement and utilization in the soil-plant-atmosphere system, agricultural water management, best management practices, and agricultural water quality. Graduate students will prepare several research literature reviews on topics covered in the class in addition to the other assignments.

A B E 532: Nonpoint Source Pollution and Control
(Dual-listed with A B E 432). (Cross-listed with ENSCI). (3-0) Cr. 3.
Prereq: A B E 431 or C E 372
Characteristics and mechanisms of non-point source (NPS) pollution in agricultural and urban watersheds, modeling of NPS pollution for terrestrial and aquatic systems, statistical tools to assess environmental datasets, strategies to control and manage NPS pollution of water bodies, and integrated watershed management. Graduate students are required to develop/deliver lecture models on assigned topics and/or complete additional assignments.

A B E 533: Erosion and Sediment Transport
(Cross-listed with ENSCI, NREM). (2-3) Cr. 3. Alt. F., offered even-numbered years.
Prereq: C E 372 or GEOL/ENSCI/MTEOR 402, MATH 166 or equivalent
Soil erosion processes, soil loss equations and their application to conservation planning, sediment properties, initiation of sediment motion and over land flow, flow in alluvial channels and theory of sediment transport, channel stability, reservoir sedimentation, wind erosion, BMPs for controlling erosion.

A B E 537: Watershed Modeling and Policy
(Dual-listed with A B E 437). (Cross-listed with ENSCI). (2-2) Cr. 3. Alt. F., offered odd-numbered years.
Prereq: CE 372 or equivalent
A project-based course on watershed-scale models for improving water quality. Legislative and judicial basis of the Total Maximum Daily Load (TMDL) program; approaches to TMDL development; principles and techniques for implementation; stakeholder engagement strategies. Hands-on experiences with GIS-interfaced models, data sources, calibration/validation, statistical assessment of model results, and simulation using multiple tools. In addition to other assignments, graduate students will present case studies of TMDLs using different modeling tools.

A B E 551: Food and Bioprocess Engineering
(Dual-listed with A B E 451). (3-0) Cr. 3. S.
Prereq: A B E 216 and credit or enrollment in M E 436 or CH E 357; or FS HN 351 and MATH 266 or MATH 267
Application of engineering principles and mathematical modeling to the quantitative analysis of transport phenomena in food and bioprocesses. Physical/chemical characteristics of foods and biological materials and systems, flow processes, thermal processes, cooling/freezing processes, dehydration processes and separation processes.

A B E 556: GIS Programming and Automation
(Dual-listed with A B E 556). (Cross-listed with C R P). (3-0) Cr. 3. F.
Prereq: C R P 351 or equivalent or permission of instructor
Introduction to automated geoprocessing in Geographic Information Systems using Python. Focus on learning scripting language and object-oriented programming, automation of custom-designed geoprocessing scripts, and application toward student research and/or interests.

A B E 569: Engineering for Grain Storage, Preservation, Handling, and Processing Systems
(Dual-listed with A B E 469). (2-3) Cr. 3. S.
Prereq: A B E 216
Cereal grain and oilseed production, properties, and quality assessment. Design of storage systems, drying systems, material handling, and size reduction systems. Design of cereal grain processing systems, including dry milling, wet milling, flour milling, feed milling, and fermentation facilities.
A B E 572: Design of Environmental Modification Systems for Animal Housing
(Dual-listed with A B E 472). (3-0) Cr. 3. Alt. S., offered even-numbered years.
Prereq: A B E 216, M E 231
Principles and design of animal environmental control systems. Insulation, heat and mass transfer, fans, ventilation, air distribution, heating and cooling equipment, and controls. Individual and group projects required for graduate credit.

A B E 578: Wood Frame Structural Design
(Dual-listed with A B E 478). (3-0) Cr. 3. Alt. S., offered odd-numbered years.
Prereq: E M 324

A B E 580: Engineering Analysis of Biological Systems
(Dual-listed with A B E 480). (2-2) Cr. 3. F.
Prereq: A B E 380 or permission of the instructor
Systems-level quantitative analysis of various biological systems, including applications in foods, feeds, biofuels, bioenergy, and other bio-based systems. Introduction to techno-economic analysis and life-cycle assessment of these systems at multiple production scales. Applying these tools to evaluate and improve cost and sustainability performance. Students enrolled in ABE 580 will be required to conduct additional learning activities.

A B E 590: Special Topics in Agricultural & Biosystems Engineering
Cr. 1-3. Repeatable.
Guided instruction and self-study on special topics relevant to agricultural and biosystems engineering.

Courses for graduate students:

A B E 601: Graduate Seminar
(Cross-listed with TSM). (1-0) Cr. 1. F.
Keys to starting a successful graduate research project. Effective literature review, formulating research questions, and setting goals. Practicing effectively communicating research and science. Effective strategies for scholarly writing, professional development, responding to feedback, peer-reviewing, successful publishing in journals, and curating scholarly output.

A B E 610: Foundations of Sustainable Agriculture
(Cross-listed with AGRON, ANTHR, SOC, SUSAG). (3-0) Cr. 3. F.
Prereq: Graduate classification, permission of instructor
Historical, biophysical, socioeconomic, and ethical dimensions of agricultural sustainability. Strategies for evaluating existing and emerging agricultural systems in terms of the core concepts of sustainability and their theoretical contexts.

A B E 690: Advanced Topics
Cr. arr. Repeatable.
Advanced topics.

A B E 694: Teaching Practicum
(Cross-listed with TSM). Cr. 1-3. F.S.
Prereq: Graduate classification and permission of instructor
Graduate student experience in the agricultural and biosystems engineering departmental teaching program.

A B E 697: Engineering Internship
Cr. R. Repeatable.
Prereq: Permission of department chair, graduate classification
One semester and one summer maximum per academic year professional work period.

A B E 699: Research
Cr. arr. Repeatable.
Research.

A B E 699B: Research: Biosystems Engineering
Cr. arr. Repeatable.
Guided graduate research in biosystems engineering.

A B E 699C: Research: Computer Aided Design
Cr. arr. Repeatable.
Guided graduate research in computer-aided design.

A B E 699E: Research: Environmental Systems
Cr. arr. Repeatable.
Guided graduate research in environmental systems.

A B E 699F: Research: Food Engineering
Cr. arr. Repeatable.
Guided graduate research in food engineering.

A B E 699O: Research: Occupational Safety
Cr. arr. Repeatable.
Guided graduate research in occupational safety.

A B E 699P: Research: Power and Machinery Engineering
Cr. arr. Repeatable.
Guided graduate research in power and machinery engineering.
A B E 699Q: Research: Structures
Cr. arr. Repeatable.
Guided graduate research in structures.

A B E 699R: Research: Process Engineering
Cr. arr. Repeatable.
Guided graduate research in process engineering.

A B E 699S: Research: Environment and Natural Resources
Cr. arr. Repeatable.
Guided graduate research in environment and natural resources.

A B E 699U: Research: Waste Management
Cr. arr. Repeatable.
Guided graduate research in waste management.