Upon graduation, students should be able to:

1. identify, formulate, and solve complex engineering problems by applying principles of engineering, science, and mathematics
2. apply engineering design to produce solutions that meet specified needs with consideration of public health, safety, and welfare, as well as global, cultural, social, environmental, and economic factors
3. communicate effectively with a range of audiences
4. recognize ethical and professional responsibilities in engineering situations and make informed judgments, which must consider the impact of engineering solutions in global, economic, environmental, and societal contexts
5. function effectively on a team whose members together provide leadership, create a collaborative and inclusive environment, establish goals, plan tasks, and meet objectives
6. develop and conduct appropriate experimentation, analyze and interpret data, and use engineering judgment to draw conclusions
7. acquire and apply new knowledge as needed, using appropriate learning strategies

The curriculum assures that graduates have a thorough grounding in chemistry, along with a working knowledge of advanced chemistry such as organic, inorganic, physical, analytical, materials chemistry, or biochemistry. In addition, a working knowledge, including safety and environmental aspects, of material and energy balances applied to chemical processes; thermodynamics of physical and chemical equilibria; heat, mass, and momentum transfer; chemical reaction engineering; continuous and stage-wise separation operations; process dynamics and control; process design; and appropriate modern experimental and computing techniques is assured.

Program Educational Objectives
The objectives of the Chemical Engineering Program at Iowa State University are to produce graduates who:

• will excel in careers as professional chemical engineers in the businesses and industries related to chemical engineering; and
• will successfully pursue research and advanced studies in chemical engineering, or in related fields such as chemistry or biology, or in related professional fields such as medicine, law, and business.

Cooperative Education
A cooperative education program is available to students in chemical engineering.

Curriculum in Chemical Engineering
Degree requirements leading to the degree bachelor of science.

Total credits required: 129.0.
INTERNATIONAL PERSPECTIVES 1: 3 CR.
U.S. DIVERSITY 1: 3 CR.
COMMUNICATION PROFICIENCY/LIBRARY REQUIREMENT:

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGL 150</td>
<td>Critical Thinking and Communication (Must have a C or better in this course)</td>
<td>3</td>
</tr>
<tr>
<td>ENGL 250</td>
<td>Written, Oral, Visual, and Electronic Composition (Must have a C or better in this course)</td>
<td>3</td>
</tr>
<tr>
<td>LIB 160</td>
<td>Introduction to College Level Research</td>
<td>1</td>
</tr>
</tbody>
</table>
One of the following (C or better in this course) 3

- ENGL 309 Proposal and Report Writing
- ENGL 312 Communicating Science and Public Engagement
- ENGL 314 Technical Communication
- JL MC 347 Science Communication

The CBE Department requires a grade of a C or better for any transfer credit course that is applied to the degree program but will not be calculated into the ISU cumulative GPA, Basic Program GPA or Core GPA.

Social Sciences and Humanities: 15 cr. 2

Complete a total of 15 cr. with at least 6 cr. but not more than 9 cr. from the same department.

Basic Program: 24 cr. 3

A minimum GPA of 2.00 required for this set of courses (please note that transfer course grades will not be calculated into the Basic Program GPA). See Basic Program for Engineering Curricula in College of Engineering section.

CHEM 177 General Chemistry I 4
or CHEM 167 General Chemistry for Engineering Students
or CHEM 201 Advanced General Chemistry
ENGL 150 Critical Thinking and Communication (Must have a C or better in this course) 3
ENGR 101 Engineering Orientation R
CH E 160 Chemical Engineering Problems with Computer Applications Laboratory 3
LIB 160 Introduction to College Level Research 1
MATH 165 Calculus I 4
MATH 166 Calculus II 4
PHYS 231 Introduction to Classical Physics I 4
PHYS 231L Introduction to Classical Physics I Laboratory 1

Total Credits 24

Math and Physical Science: 30 cr.

- MATH 265 Calculus III 4
- MATH 267 Elementary Differential Equations and Laplace Transforms 4
- CHEM 177 Laboratory in General Chemistry I 4
- CHEM 167 Laboratory in General Chemistry for Engineering
- CHEM 201 Laboratory in Advanced General Chemistry
- CHEM 178 General Chemistry II 3
- CHEM 178L Laboratory in College Chemistry II 4
- CHEM 325 Chemical Thermodynamics 3
- CHEM 331 Organic Chemistry I 3
- CHEM 332 Organic Chemistry II 3

PHYS 232 Introduction to Classical Physics II 4
PHYS 232L Introduction to Classical Physics II Laboratory 1
BBMB 303 General Biochemistry 3

Total Credits 30

Chemical Engineering Core: 36 cr.

A minimum GPA of 2.00 required for this set of courses (please note that transfer course grades will not be calculated into the Core Program GPA).

- CH E 202 Chemical Engineering Seminar 1
- CH E 205 Chemical Engineering Progress Assessment R
- CH E 210 Material and Energy Balances 3
- CH E 310 Computational Methods in Chemical Engineering 3
- CH E 325 Chemical Engineering Laboratory I 2
- CH E 356 Transport Phenomena I 3
- CH E 357 Transport Phenomena II 3
- CH E 358 Separations 3
- CH E 381 Chemical Engineering Thermodynamics 3
- CH E 382 Chemical Reaction Engineering 3
- CH E 420 Chemical Process Safety 3
- CH E 421 Process Control 3
- CH E 426 Chemical Engineering Laboratory II 2
- CH E 430 Process and Plant Design 4

Total Credits 36

Other Remaining Courses: 24 cr. 2

- ENGL 250 Written, Oral, Visual, and Electronic Composition (Must have a C or better in this course) 3

One of the following Communication Electives: 3

- ENGL 309 Proposal and Report Writing (Must have a C or better in this course)
- ENGL 312 Communicating Science and Public Engagement (Must have a C or better in this course)
- ENGL 314 Technical Communication (Must have a C or better in this course)
- JL MC 347 Science Communication (Must have a C or better in this course)

Advanced Chemistry Electives 2 3
Statistics Electives 2 3
Chemical Engineering Electives 2 6
Engineering Electives 2 3
Professional Electives 2 3

Total Credits 24
SEMINARS/CO-OPS/INTERNSHIPS:
Co-op/Internship is optional

1. These university requirements will add to the minimum credits of the program unless the university-approved courses are also approved by the department to meet other course requirements within the degree program. U.S. diversity and international perspectives courses may not be taken Pass/Not Pass.

2. Choose from department approved list (http://www.cbe.iastate.edu/current-students/guides-and-handbooks/).

3. See Basic Program for Engineering Curricula for accepted substitutions for curriculum designated courses in the Basic Program.

4. Students who substitute CHEM 201/201L credit for CHEM 177/CHEM 177L/CHEM 178L credit cannot also receive credit for CHEM 178. Credit for CHEM 178 must be earned through an Advanced Chemistry Elective that is taken in addition to the 3 credits of Advanced Chemistry required for all students.

Note: Transfer students with transfer credits in chemical engineering core courses must earn at least 15 semester credits in ISU courses in this category at the 300-level or above to qualify for the B.S. degree in chemical engineering.

Pass-Not Pass Policy
A maximum of nine Pass-Not Pass semester credits may be used to meet graduation requirements. Courses offered on a Satisfactory-Fail basis may not be taken on a Pass-Not Pass basis. Pass-Not Pass credits can be applied toward requirements for a B.S. degree in chemical engineering only if the course is specified in the curriculum as a social science and humanities elective or is a course not used in the degree program. Pass-Not Pass credits are not acceptable for technical elective courses or for courses used to satisfy the US diversity or international perspectives requirements.

See also: A 4-year plan of study grid showing course template by semester.

Chemical Engineering, B.S.

Freshman

<table>
<thead>
<tr>
<th>Fall</th>
<th>Credits</th>
<th>Spring</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CH E 160</td>
<td>3</td>
<td>CHEM 178</td>
<td>3</td>
</tr>
<tr>
<td>ENGR 101</td>
<td>1</td>
<td>R CHEM 178L</td>
<td></td>
</tr>
<tr>
<td>CHEM 177</td>
<td>4</td>
<td>MATH 166</td>
<td>4</td>
</tr>
<tr>
<td>CHEM 177L</td>
<td>1</td>
<td>PHYS 231</td>
<td>4</td>
</tr>
<tr>
<td>MATH 165</td>
<td>4</td>
<td>PHYS 231L</td>
<td>1</td>
</tr>
<tr>
<td>ENGL 150</td>
<td>3</td>
<td>SSH Elective*</td>
<td>3</td>
</tr>
</tbody>
</table>

LIB 160 1

16 16

Sophomore

<table>
<thead>
<tr>
<th>Fall</th>
<th>Credits</th>
<th>Spring</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CH E 202</td>
<td>1</td>
<td>CH E 356</td>
<td>3</td>
</tr>
<tr>
<td>CH E 205</td>
<td>R</td>
<td>CHEM 325</td>
<td>3</td>
</tr>
<tr>
<td>CH E 210</td>
<td>3</td>
<td>CHEM 332</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 331</td>
<td>3</td>
<td>MATH 267</td>
<td>4</td>
</tr>
<tr>
<td>MATH 265</td>
<td>4</td>
<td>ENGL 250</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 232</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PHYS 232L</td>
<td>1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

16 16

Junior

<table>
<thead>
<tr>
<th>Fall</th>
<th>Credits</th>
<th>Spring</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CH E 310</td>
<td>3</td>
<td>CH E 325</td>
<td>2</td>
</tr>
<tr>
<td>CH E 357</td>
<td>3</td>
<td>CH E 358L</td>
<td>3</td>
</tr>
<tr>
<td>CH E 381</td>
<td>3</td>
<td>CH E 382L</td>
<td>3</td>
</tr>
<tr>
<td>BBMB 303</td>
<td>3</td>
<td>Advanced Chemistry Elective*</td>
<td>3</td>
</tr>
<tr>
<td>Statistics Elective*</td>
<td>3 Communication Elective*</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>SSH Elective*</td>
<td>3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

15 17

Senior

<table>
<thead>
<tr>
<th>Fall</th>
<th>Credits</th>
<th>Spring</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CH E 420</td>
<td>3</td>
<td>CH E 426</td>
<td>2</td>
</tr>
<tr>
<td>CH E 421</td>
<td>3</td>
<td>CH E 430</td>
<td>4</td>
</tr>
<tr>
<td>CH E Elective*</td>
<td>3</td>
<td>CH E Elective*</td>
<td>3</td>
</tr>
<tr>
<td>Engineering Elective*</td>
<td>3 Professional Elective*</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>SSH Elective*</td>
<td>3 SSH Elective*</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>SSH Elective*</td>
<td>3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

15 18

* Choose from department approved list (http://www.cbe.iastate.edu/current-students/guides-and-handbooks/).

The Chemical and Biological Engineering Department offers well-qualified juniors and seniors in chemical engineering who are interested in graduate study the opportunity to apply for concurrent enrollment in the Graduate College to simultaneously pursue both the Bachelor of Science in Chemical Engineering and the Master of Engineering in Chemical Engineering.

For more information about concurrent undergraduate and graduate programs in Chemical Engineering visit: https://www.cbe.iastate.edu/
Graduate Study

The department offers work for the degrees master of science, master of engineering, and doctor of philosophy with major in chemical engineering, and minor work to students taking major work in other departments. Prerequisite to major graduate work is a bachelor’s degree in chemical engineering, chemistry, or other related field. Students with undergraduate background other than chemical engineering should contact the department for further details. A thesis is required for the master of science degree. The master of science degree also requires a minimum of 30 graduate credits (minimum of 15 for coursework, 12 within Ch E and 3 outside). The master of engineering requirements are the same for total credits but include a special project or coursework rather than research thesis. The doctor of philosophy degree requires a minimum of 72 graduate credits (minimum of 26 for coursework, at least 16 inside Ch E). Candidates for the doctor of philosophy degree can refer to the department’s home page and/or the department’s Graduate Student Handbook for degree options and credit requirements.