Chemical Engineering is a profession, which provides a link between scientific knowledge and manufactured products. The chemical engineer relies on science, experience, creativity, and ingenuity to produce these materials economically. Almost everything of a material nature used by society today has at some point felt the influence of the chemical engineer. From raw materials such as minerals, coal, petroleum, and agricultural products; chemical engineers create versatile intermediate and commodity chemicals, high performance fuels, new materials for construction, pharmaceuticals, high performance foodstuffs, synthetic textiles, plastics, solid state electronic components, and dozens of other engineered materials. The chemical engineer’s influence has been important in the development of catalysts, fuel cells, automatic controls, biochemical processes, artificial kidneys, tissue engineering, nuclear energy, medical instruments and devices, as well as in the development of air and water pollution control systems. Many new and equally exciting challenges await the practicing chemical engineer of the future.

The profession of chemical engineering embraces a wide variety of activities including research, process development, product development, design, manufacturing supervision, technical sales, consulting, and teaching. The engineer can be behind a desk, in a laboratory, in a manufacturing plant, or engaged in nationwide and worldwide travel. Successful chemical engineers find chemistry, mathematics, and physics to be interesting and exciting. Many chemical engineers also have interest in the biological sciences. The curriculum in chemical engineering includes continued study of chemistry, biochemistry, mathematics, and physics as well as intensive study in the engineering sciences such as chemical reaction engineering, thermodynamics, mass transfer, fluid mechanics, heat transfer, system analysis and process synthesis, and design.

The curriculum in chemical engineering is designed to produce graduates who have the ability to apply knowledge of mathematics, science, and engineering; the ability to design, conduct and interpret experiments; and the ability to design a chemical engineering system, component, or process. Graduates should also have the ability to function on multidisciplinary teams; the ability to identify, formulate, and solve chemical engineering problems; and the ability to use the techniques, skills, and modern engineering tools necessary for engineering practice.

The curriculum should also assure that graduates have the ability to communicate effectively, the broad education necessary to understand the impact of chemical engineering solutions in a global and societal context, and recognition of the need for, and an ability to engage in lifelong learning, as well as a knowledge of contemporary issues and an understanding of professional and ethical responsibility.

The curriculum assures that graduates have a thorough grounding in chemistry, along with a working knowledge of advanced chemistry such as organic, inorganic, physical, analytical, materials chemistry, or biochemistry. In addition, a working knowledge, including safety and environmental aspects, of material and energy balances applied to chemical processes; thermodynamics of physical and chemical equilibria; heat, mass, and momentum transfer; chemical reaction engineering; continuous and stage-wise separation operations; process dynamics and control; process design; and appropriate modern experimental and computing techniques is assured.

Program Educational Objectives
The objectives of the Chemical Engineering Program at Iowa State University are to produce graduates who:

- will excel in careers as professional chemical engineers in the businesses and industries related to chemical engineering; and
- will successfully pursue research and advanced studies in chemical engineering, or in related fields such as chemistry or biology, or in related professional fields such as medicine, law, and business.

Cooperative Education
A cooperative education program is available to students in chemical engineering.

Curriculum in Chemical Engineering
Administrated by the Department of Chemical and Biological Engineering

Leading to the degree bachelor of science.

Total credits required: 129 cr. See also Basic Program and Special Programs.
International Perspectives: 3 cr. ¹
U.S. Diversity: 3 cr. ¹
Communication Proficiency/Library requirement:

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGL 150</td>
<td>Critical Thinking and Communication</td>
<td>3</td>
</tr>
<tr>
<td>ENGL 250</td>
<td>Written, Oral, Visual, and Electronic Composition (Must have a C or better in this course)</td>
<td>3</td>
</tr>
<tr>
<td>LIB 160</td>
<td>Information Literacy</td>
<td>1</td>
</tr>
<tr>
<td>One of the following (C or better in this course)</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>ENGL 309</td>
<td>Proposal and Report Writing</td>
<td></td>
</tr>
<tr>
<td>ENGL 312</td>
<td>Biological Communication</td>
<td></td>
</tr>
</tbody>
</table>
The CBE Department requires a grade of a C or better for any transfer credit course that is applied to the degree program but will not be calculated into the ISU cumulative GPA, Basic Program GPA or Core GPA.

Social Sciences and Humanities: 15 cr.
Complete a total of 15 cr. with at least 6 cr. but not more than 9 cr. from the same department.

Basic Program: 24 cr.
A minimum GPA of 2.00 required for this set of courses (please note that transfer course grades will not be calculated into the Basic Program GPA). See Basic Program for Engineering Curricula in College of Engineering section.

Math and Physical Science: 30 cr.

Chemical Engineering Core: 36 cr.
A minimum GPA of 2.00 required for this set of courses (please note that transfer course grades will not be calculated into the Core Program GPA).

Other Remaining Courses: 24 cr.

SEMINARS/CO-OPS/INTERNSHIPS:
Co-op/Internship is optional

1. These university requirements will add to the minimum credits of the program unless the university-approved courses are also approved by the department to meet other course requirements within the degree program. U.S. diversity and international perspectives courses may not be taken Pass/Not Pass.

2. Choose from department approved list (http://www.cbe.iastate.edu/current-students/guides-and-handbooks/).
3. See Basic Program for Engineering Curricula for accepted substitutions for curriculum designated courses in the Basic Program.

4. Students who substitute CHEM 201/201L credit for CHEM 177/CHEM 178L credit cannot also receive credit for CHEM 178. Credit for CHEM 178 must be earned through an Advanced Chemistry Elective that is taken in addition to the 3 credits of Advanced Chemistry required for all students.

Note: Transfer students with transfer credits in chemical engineering core courses must earn at least 15 semester credits in ISU courses in this category at the 300-level or above to qualify for the B.S. degree in chemical engineering.

Pass-Not Pass Policy
A maximum of nine Pass-Not Pass semester credits may be used to meet graduation requirements. Courses offered on a Satisfactory-Fail basis may not be taken on a Pass-Not Pass basis. Pass-Not Pass credits can be applied toward requirements for a B.S. degree in chemical engineering only if the course is specified in the curriculum as a social science and humanities elective or is a course not used in the degree program. Pass-Not Pass credits are not acceptable for technical elective courses or for courses used to satisfy the US diversity or international perspectives requirements.

See also: A 4-year plan of study grid showing course template by semester.

* Choose from department approved list (http://www.cbe.iastate.edu/current-students/guides-and-handbooks/).

Graduate Study
The department offers work for the degrees master of science, master of engineering, and doctor of philosophy with major in chemical engineering, and minor work to students taking major work in other departments. Prerequisite to major graduate work is a bachelor’s degree in chemical engineering, chemistry, or other related field. Students with undergraduate background other than chemical engineering should contact the department for further details. A thesis is required for the master of science degree. The master of science degree also requires a minimum of 30 graduate credits (minimum of 15 for coursework, 12 within Ch E and 3 outside). The master of engineering requirements are the same for total credits but include a special project or coursework rather than research thesis. The doctor of philosophy degree requires a minimum of 72 graduate credits (minimum of 30 for coursework, at least 16 inside Ch E and a minimum of 8 credits taken outside of Ch E). Candidates for the doctor of philosophy degree can refer to the department’s home page and/or the department’s Graduate Student Handbook for degree options and credit requirements.

Well-qualified juniors and seniors in chemical engineering who are interested in graduate study may apply for concurrent enrollment in the
Graduate College to simultaneously pursue both the Bachelor of Science and Master of Science.

Courses primarily for undergraduates:

CH E 104: Chemical Engineering Learning Community
Cr. R. F.
Prereq: Enrollment in Chemical Engineering Learning Team
(1-0) Curriculum in career planning and academic course support for Freshmen learning team.

CH E 160: Chemical Engineering Problems with Computer Applications Laboratory
(2-2) Cr. 3. F.S.
Prereq: MATH 143 or satisfactory scores on mathematics placement examinations; credit or enrollment in MATH 165

CH E 202: Chemical Engineering Seminar
(1-0) Cr. 1. F.
Professionalism in the context of the engineering/technical workplace. Introduction to chemical engineering career opportunities. Process and workplace safety. Development and demonstration of key workplace competencies: teamwork, professionalism and ethical responsibility, ability to engage in life-long learning, and knowledge of contemporary issues. Resumes; professional portfolios; preparation for internship experiences. Restricted to CHE majors.

CH E 204: Chemical Engineering Continuing Learning Community
Cr. R.
Prereq: Enrollment in Chemical Engineering Learning Team
Curriculum and career planning, academic course support for learning community.

CH E 205: Chemical Engineering Progress Assessment
Cr. R. F.S.
Prereq: CHEM 178, MATH 166; credit or enrollment in CH E 160
Assessment of proficiency in general chemistry, calculus (including infinite series and applications of derivatives and integrals), and material balances, and an ability to use the principles of science and mathematics to identify, formulate, and solve engineering problems. Offered on a satisfactory-fail basis only.

CH E 210: Material and Energy Balances
(3-0) Cr. 3. F.S.
Prereq: Chem 178, Math 166, CH E 160
Introduction to chemical processes. Physical behavior of gases, liquids, and solids. Application of material and energy balances to chemical engineering equipment and processes.

CH E 220: Introduction to Biomedical Engineering
(Cross-listed with B M E). (3-0) Cr. 3. S.
Prereq: BIOL 212, ENGR 160 or equiv, MATH 166, CHEM 167 or CHEM 177, PHYS 232
Engineering analysis of basic biology and engineering problems associated with living systems and health care delivery. The course will illustrate biomedical engineering applications in such areas as: biotechnology, biomechanics, biomaterials and tissue engineering, and biosignal and image processing, and will introduce the basic life sciences and engineering concepts associated with these topics.

CH E 310: Computational Methods in Chemical Engineering
(3-0) Cr. 3. F.S.
Prereq: CH E 160, CH E 205, CH E 210, MATH 265
Numerical methods for solving systems of linear and nonlinear equations, ordinary differential equations, numerical differentiation and integration, and nonlinear regression using chemical engineering examples.

CH E 325: Chemical Engineering Laboratory I
(0-4) Cr. 2. F.S.
Prereq: CH E 357, CH E 381; credit or enrollment in ENGL 314 or ENGL 309 or ENGL 312 or JL MC 347
Experiments covering fundamental material and energy balances, momentum and energy transport operations, and thermodynamics. Computer applications.

CH E 356: Transport Phenomena I
(3-0) Cr. 3. F.S.
Prereq: CH E 205, CH E 210, PHYS 221; credit or enrollment in MATH 267
Momentum and mechanical energy balances. Incompressible and compressible fluid flow. Applications to fluid drag, piping system design, filtration, packed beds and settling.

CH E 357: Transport Phenomena II
(3-0) Cr. 3. F.S.
Prereq: CH E 356
Conduction and diffusion, convective heat and mass transfer, boiling and condensation, radiation, and design of heat exchange equipment. Introduction to diffusion.
Chemical Engineering

CH E 358: Separations
(3-0) Cr. 3. F.S.
Prereq: CH E 310, CH E 357, CH E 381
Diffusion and mass transfer in fluids. Analysis and design of continuous contacting and multistage separation processes. Binary and multicomponent distillation, absorption, extraction, evaporation, membrane processes, and simultaneous heat and mass transfer.

CH E 381: Chemical Engineering Thermodynamics
(3-0) Cr. 3. F.S.
Prereq: CH E 202, MATH 267, PHYS 232, CHEM 325; credit or enrollment in CH E 310, PHYS 232L
Application of thermodynamic principles to chemical engineering problems. Thermodynamic properties of fluids, phase equilibria, and chemical reaction equilibria.

CH E 382: Chemical Reaction Engineering
(3-0) Cr. 3. F.S.
Prereq: CH E 310, CH E 381; credit or enrollment in CH E 357
Kinetics of chemical reactions. Design of homogeneous and heterogeneous chemical reactors.

CH E 391: Foreign Study Orientation
(3-0) Cr. 3. S.
Prereq: CH E 357, CH E 381; credit or enrollment in ENGL 314 or ENGL 309 or ENGL 312 or JL MC 347
Offered on a satisfactory-fail basis only. Credit for graduation allowable only upon completion of Ch E 392. Meets International Perspectives Requirement.

CH E 392: Foreign Study Program
Cr. 4. SS.
Prereq: CH E 358, CH E 382, CH E 391
Study of chemical engineering including laboratories and lectures at collaborating international universities. Comparative study of U.S. and international manufacturing facilities. Expenses required. Meets International Perspectives Requirement.

CH E 396: Summer Internship
Cr. R. Repeatable. SS.
Prereq: Permission of department and Engineering Career Services
Professional work period of at least 10 weeks during the summer. Students must register for this course prior to commencing work. Offered on a satisfactory-fail basis only.

CH E 398: Cooperative Education
Cr. R. Repeatable. F.S.
Prereq: Permission of department and Engineering Career Services
Professional work period. One semester per academic or calendar year. Students must register for this course before commencing work. Offered on a satisfactory-fail basis only.

CH E 406: Environmental Chemodynamics
(Dual-listed with CH E 506). (3-0) Cr. 3.
Prereq: CHE 357, CH E 381
Examines the mechanisms and rates of chemical transport across air, water, and soil interfaces. Applications of transport and thermodynamic fundamentals to movement of chemicals in the environment.

CH E 408: Surface and Colloid Chemistry
(Dual-listed with CH E 508). (3-0) Cr. 3.
Prereq: CH E 381
Examines the factors underlying interfacial phenomena, with an emphasis on the thermodynamics of surfaces, structural aspects, and electrical phenomena. Application areas include emulsification, foaming, detergency, sedimentation, fluidization, nucleation, wetting, adhesion, flotation, and electrophoresis.

CH E 410: Electrochemical Engineering
(Dual-listed with CH E 510). (3-0) Cr. 3. F.
Prereq: CH E 357, CH E 381, CH E 382
Electrochemical engineering principles in thermodynamics, electrode kinetics, charge and mass transport; modeling and simulation; electrocatalysis; electrochemical reactions; applications of electrochemical engineering in fuel cells, batteries and electrolyzers.

CH E 415: Biochemical Engineering
(Dual-listed with CH E 515). (3-0) Cr. 3.
Prereq: CH E 357, CHEM 331; BBMB 301 or BBMB 303 or BBMB 404
Application of basic chemical engineering principles in biochemical and biological process industries such as enzyme technology and fermentation.

CH E 420: Chemical Process Safety
(3-0) Cr. 3. F.S.
Prereq: CH E 357, CH E 381
Application of transport phenomena, thermodynamics, and chemical kinetics to the study of safety, health, and loss prevention. Government regulations, industrial hygiene, relief sizing, runaway reactions, toxic release, and dispersion models will be used. Fires, explosions, risk assessment, hazard identification, case studies, accident investigations, and design considerations will be studied.
CH E 421: Process Control
(3-0) Cr. 3. F.S.
Prereq: CH E 358, CH E 382, Math 267
Control of industrial chemical processes. Device applications and limitations. Dynamics of chemical process components and process control systems.

CH E 426: Chemical Engineering Laboratory II
(0-4) Cr. 2. F.S.
Prereq: CH E 325, CH E 358, CH E 382
Experiments in heat and mass transfer, staged operations, chemical reactor performance, unit processes. Computer applications. Only one of CH E 426 or 427 may count toward graduation.

CH E 427: Biological Engineering Laboratory
(0-4) Cr. 2. S.
Prereq: CH E 325, CH E 358, CH E 382; BBMB 301 or BBMB 303 or BBMB 404
Experiments on biological applications in chemical engineering. Only one of CH E 426 or CH E 427 may count toward graduation.

CH E 430: Process and Plant Design
(2-4) Cr. 4. F.S.
Prereq: CH E 358, CH E 382
Synthesis of chemical engineering processes, equipment and plants. Cost estimation and feasibility analysis.

CH E 440: Biomedical Applications of Chemical Engineering
(Dual-listed with CH E 540). (3-0) Cr. 3.
Prereq: CH E 210 or CH E 220, MATH 266 or MATH 267, PHYS 232
Applications of material and energy balances, transport phenomena, chemical reaction engineering, and thermodynamics to problems in biomedical engineering and applied physiology; survey of biomedical engineering; biomaterials; biomedical imaging.

CH E 447: Polymers and Polymer Engineering
(Dual-listed with CH E 547). (3-0) Cr. 3.
Prereq: CHEM 331; CH E 382 or MAT E 351
Chemistry of polymers, addition and condensation polymerization. Physical and mechanical properties, polymer rheology, production methods. Applications of polymers in the chemical industry.

CH E 490: Undergraduate Research/Independent Study
(0-18) Cr. 1-6. Repeatable, maximum of 6 credits.
Prereq: Permission of department
Investigation of topics of special interest to student and faculty with a final written report or presentation. Election of course and topic must be approved in advance by Department with completion of Study Proposal. No more than 6 credits of ChE 490 may be counted towards technical electives.

CH E 490H: Undergraduate Research/Independent Study, Honors
(0-18) Cr. 1-6. Repeatable, maximum of 6 credits.
Prereq: Permission of Department
Investigation of topics of special interest to student and faculty with a final written report or presentation. Election of course and topic must be approved in advance by Department with completion of Study Proposal. No more than 6 credits of ChE 490 may be counted towards technical electives.

Courses primarily for graduate students, open to qualified undergraduates:

CH E 506: Environmental Chemodynamics
(Dual-listed with CH E 406). (3-0) Cr. 3.
Prereq: CHE 357, CH E 381
Examines the mechanisms and rates of chemical transport across air, water, and soil interfaces. Applications of transport and thermodynamic fundamentals to movement of chemicals in the environment.

CH E 508: Surface and Colloid Chemistry
(Dual-listed with CH E 408). (3-0) Cr. 3.
Prereq: CH E 381
Examines the factors underlying interfacial phenomena, with an emphasis on the thermodynamics of surfaces, structural aspects, and electrical phenomena. Application areas include emulsification, foaming, detergency, sedimentation, fluidization, nucleation, wetting, adhesion, flotation, and electrophoresis.

CH E 510: Electrochemical Engineering
(Dual-listed with CH E 410). (3-0) Cr. 3. F.
Prereq: CH E 357, CH E 381, CH E 382
Electrochemical engineering principles in thermodynamics, electrode kinetics, charge and mass transport; modeling and simulation; electrocatalysis; electrochemical reactions; applications of electrochemical engineering in fuel cells, batteries and electrolyzers.

CH E 515: Biochemical Engineering
(Dual-listed with CH E 415). (3-0) Cr. 3.
Prereq: CH E 357, CHEM 331; BBMB 301 or BBMB 303 or BBMB 404
Application of basic chemical engineering principles in biochemical and biological process industries such as enzyme technology and fermentation.

CH E 540: Biomedical Applications of Chemical Engineering
(Dual-listed with CH E 440). (3-0) Cr. 3.
Prereq: CH E 210 or CH E 220, MATH 266 or MATH 267, PHYS 232
Applications of material and energy balances, transport phenomena, chemical reaction engineering, and thermodynamics to problems in biomedical engineering and applied physiology; survey of biomedical engineering; biomaterials; biomedical imaging.
CH E 542: Polymeric Biomaterials
(3-0) Cr. 3.
Prereq: CHEM 331 or a polymers class
Polymeric biomaterials, overview of biomaterial requirements, different classes of polymers used as biomaterials, specific bioapplications of polymers.

CH E 545: Analytical and Numerical Methods
(3-0) Cr. 3. F.
Prereq: CH E 358, MATH 267
Analysis of equipment and processes by analytic and/or numerical solution of descriptive differential equations. Operational and series techniques, boundary value problems, numerical interpolation and approximation, integration techniques.

CH E 547: Polymers and Polymer Engineering
(Dual-listed with CH E 447). (3-0) Cr. 3.
Prereq: CHEM 331; CH E 382 or MAT E 351
Chemistry of polymers, addition and condensation polymerization. Physical and mechanical properties, polymer rheology, production methods. Applications of polymers in the chemical industry.

CH E 554: Integrated Transport Phenomena
(4-0) Cr. 4. F.
Prereq: CH E 357, CH E 381, Math 267, credit or enrollment in CH E 545
Conservation equations governing diffusive and convective transport of momentum, thermal energy and chemical species. Transport during laminar flow in conduits, boundary layer flow, creeping flow. Heat and mass transport coupled with chemical reactions and phase change. Scaling and approximation methods for mathematical solution of transport models. Diffusive fluxes; conservation equations for heat and mass transfer; scaling and approximation techniques; fundamentals of fluid mechanics; unidirectional flow; creeping flow; laminar flow at high Reynolds number; forced-convection heat and mass transfer in confined and unconfined laminar flows.

CH E 562: Bioseparations
(3-0) Cr. 3.
Prereq: CH E 357 or advanced standing in a science major
Principles and techniques for separation and recovery of biologically-produced molecules, especially proteins. Relationship between the chemistry of biological molecules and efficient separation and preservation of biological activity. Includes centrifugation and filtration, membrane processing, extraction, precipitation and crystallization, chromatography, and electrophoresis.

CH E 572: Turbulence
(Cross-listed with AER E). (3-0) Cr. 3.
Prereq: AER E 541 or M E 538

CH E 583: Advanced Thermodynamics
(3-0) Cr. 3. F.
Prereq: CH E 381
Application of thermodynamic principles to chemical engineering problems. Thermodynamic properties of non-ideal fluids and solutions; phase and chemical-reaction equilibria/stability.

CH E 587: Advanced Chemical Reactor Design
(3-0) Cr. 3. S.
Prereq: CH E 382
Analysis of complex reactions and kinetics. Fixed bed, fluidized bed, and other industrial reactors. Analysis and design of non-ideal flow mixing, and residence times. Heterogeneous reactors.

CH E 590: Independent Study
Cr. 2-6. Repeatable.
Investigation of an approved topic on an individual basis.

CH E 595: Special Topics
Cr. 2-3. Repeatable.
CH E 595A: Special Topics: Separations
Cr. 2-3. Repeatable.
CH E 595B: Special Topics: Advanced Control Theory
Cr. 2-3. Repeatable.
CH E 595C: Special Topics: Crystallization
Cr. 2-3. Repeatable.
CH E 595D: Special Topics: Thermodynamics
Cr. 2-3. Repeatable.
CH E 595E: Special Topics: Protein Engineering/Bioseparations
Cr. 2-3. Repeatable.
CH E 595F: Special Topics: Biological Engineering
Cr. 2-3. Repeatable.
CH E 595G: Special Topics: Materials and Biomaterials
Cr. 2-3. Repeatable.
CH E 595H: Special Topics: Surfaces
Cr. 2-3. Repeatable.
CH E 595I: Special Topics: Combinatorial Design
Cr. 2-3. Repeatable.

CH E 599: Creative Component
Cr. arr. Repeatable.

Courses for graduate students:

CH E 601: Seminar
Cr. R. Repeatable. F.S.
Offered on a satisfactory-fail basis only.

CH E 625: Metabolic Engineering
(3-0) Cr. 3.
Prereq: CH E 382, CHEM 331
Principles of metabolic engineering. Emphasis on emerging examples in biorenewables and plant metabolic engineering. Overview of biochemical pathways, determination of flux distributions by stoichiometric and labeling techniques; kinetics and thermodynamics of metabolic networks; metabolic control analysis; genetic engineering for overexpression, deregulation, or inhibition of enzymes; directed evolution; application of bioinformatics, genomics, and proteomics.

CH E 632: Multiphase Flow
(Cross-listed with M E). (3-0) Cr. 3. Alt. S., offered even-numbered years.
Prereq: M E 538
Single particle, multiparticle and two-phase fluid flow phenomena (gas-solid, liquid-solid and gas-liquid mixtures); particle interactions, transport phenomena, wall effects; bubbles, equations of multiphase flow. Dense phase (fluidized and packed beds) and ducted flows; momentum, heat and mass transfer. Computer solutions.

CH E 642: Principles and Applications of Molecular Simulation
(3-0) Cr. 3.
Prereq: CH E 545

CH E 692: Independent Study
Cr. 2-6. Repeatable.
Investigation of an approved topic on an individual basis. Election of course and topic must be approved in advance by Program of Study Committee.

CH E 695: Advanced Topics
Cr. arr. Repeatable.

CH E 695A: Advanced Topics: Separations
Cr. arr. Repeatable.

CH E 695B: Advanced Topics: Advanced Statistical Modeling and Control
Cr. arr. Repeatable.

CH E 695C: Advanced Topics: Crystallization
Cr. arr. Repeatable.

CH E 695D: Advanced Topics: Thermodynamics
Cr. arr. Repeatable.

CH E 695E: Advanced Topics: Protein Engineering/Bioseparations
Cr. arr. Repeatable.

CH E 695F: Advanced Topics: Biological Engineering
Cr. arr. Repeatable.

CH E 695G: Advanced Topics: Materials and Biomaterials
Cr. arr. Repeatable.

CH E 695H: Advanced Topics: Surfaces
Cr. arr. Repeatable.

CH E 695I: Advanced Topics: Combinatorial Design
Cr. arr. Repeatable.

CH E 695J: Advanced Topics: Polymeric and Nanostructured Materials
Cr. arr. Repeatable.

CH E 695K: Advanced Topics: Biomaterials and Tissue Engineering
Cr. arr. Repeatable.

CH E 695L: Advanced Topics: Catalysis, Reaction Engineering, and Renewable Energy
Cr. arr. Repeatable.

CH E 697: Engineering Internship
Cr. R. Repeatable. F.S.SS.
Prereq: Permission of major professor, graduate classification
One semester and one summer maximum per academic year professional work period.

CH E 698: Chemical Engineering Teaching Practicum
(1-0) Cr. 1. F.S.SS.
Prereq: Graduate student classification and permission of instructor
Offered on a satisfactory-fail basis only.

CH E 698A: Chemical Engineering Teaching Practicum: Teaching Practicum
(1-0) Cr. 1. F.
Prereq: Graduate student classification and permission of instructor
Discussions intended to foster the development of graduate students as teaching assistants and future chemical engineering instructors. Topics include classroom and laboratory instruction, grading, and developing a teaching philosophy. Offered on a satisfactory-fail basis only.
CH E 698B: Chemical Engineering Teaching Practicum: Teaching Experience
(1-0) Cr. 1. Repeatable. F.S.S.
Prereq: CH E 698A
Participation in the instruction of a CH E course under the mentorship of a CBE faculty member. Typical activities may include lecture preparation and delivery, laboratory instruction, design of assessments, problem-solving sessions, office hours, and grading. Offered on a satisfactory-fail basis only.

CH E 699: Research
Cr. arr. Repeatable.