The undergraduate curriculum in Computer Science leading to the Bachelor of Science degree is accredited by the Computing Accreditation Commission of ABET, http://www.abet.org. This degree equips students with a sound knowledge of the foundations of Computer Science as well as problem solving and system design skills necessary to create robust, efficient, reliable, scalable, and flexible software systems. The B.S. degree in Computer Science prepares students for graduate study in Computer Science and for various business, industry, and government positions including computer scientists, information technologists, and software developers. The main educational objectives of the Computer Science program at Iowa State University are that its graduates demonstrate expertise, engagement, and learning within three to five years after graduation.

- Expertise: Graduated students should have the ability to establish peer-recognized expertise in the discipline. They should have the ability to articulate this expertise by formulating and solving problems of interest, by creating or deriving value through the application of technology, and by using mathematical foundations, algorithmic principles, and computer science theory in designing, implementing, and evaluating computer-based systems and processes which meet the desired needs of their employers.

- Engagement: Graduated students should have the ability to be engaged in the profession through the practice of computer science in industry, academia, or the public sector. They should demonstrate effective teaming and commitment to working with others by applying communications skills and professional knowledge.

- Learning: Graduated students should have the ability to engage in sustained learning through graduate work, professional improvement opportunities, and self study so that they can adapt to the role played by information processing in ever-changing areas of science, technology, and society.

Curriculum in Computer Science

A student seeking a B.S. degree in Computer Science must satisfy the requirements of the University and College of Liberal Arts and Sciences (see Liberal Arts and Sciences, Curriculum) and the departmental requirements.

The departmental requirements consist of a minimum of 50 credits in Computer Science and satisfaction of written and oral requirements. Students must earn at least a C- in Math 165, Math 166, and each Computer Science course taken to fulfill the Degree Program. The LAS College requires the major must contain at least 8 credits in courses taken at Iowa State University that are numbered 300 or above and in which the student’s grade is C or higher.

The following courses are required:

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>COM S 101</td>
<td>Orientation</td>
<td>R</td>
</tr>
<tr>
<td>COM S 127</td>
<td>Introduction to Computer Programming</td>
<td>4</td>
</tr>
<tr>
<td>COM S 227</td>
<td>Object-oriented Programming</td>
<td>4</td>
</tr>
<tr>
<td>COM S 228</td>
<td>Introduction to Data Structures</td>
<td>3</td>
</tr>
<tr>
<td>COM S 309</td>
<td>Software Development Practices</td>
<td>3</td>
</tr>
<tr>
<td>COM S 311</td>
<td>Introduction to the Design and Analysis of Algorithms</td>
<td>3</td>
</tr>
<tr>
<td>COM S 321</td>
<td>Introduction to Computer Architecture and Machine-Level Programming</td>
<td>3</td>
</tr>
<tr>
<td>COM S 327</td>
<td>Advanced Programming Techniques</td>
<td>3</td>
</tr>
<tr>
<td>COM S 331</td>
<td>Theory of Computing</td>
<td>3</td>
</tr>
<tr>
<td>COM S 342</td>
<td>Principles of Programming Languages</td>
<td>3</td>
</tr>
<tr>
<td>COM S 352</td>
<td>Introduction to Operating Systems</td>
<td>3</td>
</tr>
<tr>
<td>COM S 402</td>
<td>Computer Science Senior Project</td>
<td>3</td>
</tr>
<tr>
<td>COM S 319</td>
<td>Construction of User Interfaces</td>
<td>3</td>
</tr>
<tr>
<td>COM S 336</td>
<td>Introduction to Computer Graphics</td>
<td>3</td>
</tr>
<tr>
<td>COM S 362</td>
<td>Object-Oriented Analysis and Design</td>
<td>3</td>
</tr>
<tr>
<td>COM S 363</td>
<td>Introduction to Database Management Systems</td>
<td>3</td>
</tr>
<tr>
<td>COM S 409</td>
<td>Software Requirements Engineering</td>
<td>3</td>
</tr>
<tr>
<td>COM S 410</td>
<td>Distributed Development of Software</td>
<td>3</td>
</tr>
<tr>
<td>COM S 412</td>
<td>Formal Methods in Software Engineering</td>
<td>3</td>
</tr>
<tr>
<td>COM S 413</td>
<td>Foundations and Applications of Program Analysis</td>
<td>3</td>
</tr>
<tr>
<td>COM S 415</td>
<td>Software System Safety</td>
<td>3</td>
</tr>
<tr>
<td>COM S 417</td>
<td>Software Testing</td>
<td>3</td>
</tr>
<tr>
<td>COM S 418</td>
<td>Introduction to Computational Geometry</td>
<td>3</td>
</tr>
<tr>
<td>COM S 421</td>
<td>Logic for Mathematics and Computer Science</td>
<td>3</td>
</tr>
<tr>
<td>COM S 424</td>
<td>Introduction to High Performance Computing</td>
<td>3</td>
</tr>
<tr>
<td>COM S 425</td>
<td>High Performance Computing for Scientific and Engineering Applications</td>
<td>3</td>
</tr>
<tr>
<td>COM S 426</td>
<td>Introduction to Parallel Algorithms and Programming</td>
<td>4</td>
</tr>
<tr>
<td>COM S 430</td>
<td>Concurrent Programming in Practice</td>
<td>3</td>
</tr>
<tr>
<td>COM S 433</td>
<td>Molecular Programming of Nanoscale Devices and Processes</td>
<td>3</td>
</tr>
<tr>
<td>COM S 435</td>
<td>Algorithms for Large Data Sets: Theory and Practice</td>
<td>3</td>
</tr>
<tr>
<td>COM S 437</td>
<td>Computer Game and Media Programming</td>
<td>3</td>
</tr>
<tr>
<td>COM S 440</td>
<td>Principles and Practice of Compiling</td>
<td>3</td>
</tr>
</tbody>
</table>
Com S 441 Programming Languages 3
COM S 453 Privacy Preserving Algorithms and Data Security 3
COM S 454 Distributed Systems 3
COM S 455 Simulation: Algorithms and Implementation 3
COM S 461 Principles and Internals of Database Systems 3
COM S 472 Principles of Artificial Intelligence 3
COM S 474 Introduction to Machine Learning 3
COM S 476 Motion Strategy Algorithms and Applications 3
COM S 477 Problem Solving Techniques for Applied Computer Science 3
COM S 481 Numerical Methods for Differential Equations 3
COM S 486 Fundamental Concepts in Computer Networking 3
COM S 487 Network Programming, Applications, and Research Issues 3
CPR E 430 Network Protocols and Security 3
CPR E 431 Basics of Information System Security 3
CPR E 458 Real Time Systems 3
CPR E 489 Computer Networking and Data Communications 4

Com S 414 may not be applied towards fulfilling the 400-level electives.

Toward satisfying requirements of the College of Liberal Arts and Sciences, the following courses should be included:

PHIL 343 Philosophy of Technology 3
SP CM 212 Fundamentals of Public Speaking 3
At least 17 credits of Math and Statistics 17
MATH 165 Calculus I 4
MATH 166 Calculus II 4
COM S 230 Discrete Computational Structures 3
One Statistics course from:
STAT 305 Engineering Statistics 3
STAT 330 Probability and Statistics for Computer Science 3
STAT 341 Introduction to the Theory of Probability and Statistics I 4
At least one Math course from:
MATH 207 Matrices and Linear Algebra 3
MATH 265 Calculus III 4
MATH 266 Elementary Differential Equations 3
MATH 267 Elementary Differential Equations and Laplace Transforms 4
MATH 304 Combinatorics 3
MATH 314 Graph Theory 3
MATH 317 Theory of Linear Algebra 4

One of the following 2-course Natural Science sequences (with labs):
BIOL 211 & 211L Principles of Biology I and Principles of Biology Laboratory I 4
BIOL 212 & 212L Principles of Biology II and Principles of Biology Laboratory II 4
BIOL 255 & 255L Fundamentals of Human Anatomy and Fundamentals of Human Anatomy Laboratory 4
BIOL 256 & 256L Fundamentals of Human Physiology and Fundamentals of Human Physiology Laboratory 4
CHEM 177 & 177L General Chemistry I and Laboratory in General Chemistry I 5
CHEM 178 & 178L General Chemistry II and Laboratory in General Chemistry II 4
GEOL 100 & 100L How the Earth Works and How the Earth Works: Laboratory 4
GEOL 102 & 102L History of the Earth and History of the Earth: Laboratory 4
PHYS 221 & 221L Introduction to Classical Physics I and Introduction to Classical Physics I Laboratory 5
or PHYS 241 Principles and Symmetries in Classical Physics I 5
PHYS 232 & 232L Introduction to Classical Physics II and Introduction to Classical Physics II Laboratory 5
or PHYS 242 Principles and Symmetries in Classical Physics II 5

The following courses meet the communication proficiency requirement:
LIB 160 Information Literacy 1
ENGL 150 Critical Thinking and Communication 3
ENGL 250 Written, Oral, Visual, and Electronic Composition 3
One of the following
ENGL 302 Business Communication 3
ENGL 305 Creative Writing: Nonfiction 3
ENGL 309 Proposal and Report Writing 3
ENGL 314 Technical Communication 3

According to the university-wide Communication Proficiency Grade Requirement, students must demonstrate their communication proficiency by earning a grade of C or better in ENGL 250. The Department requires a C or higher in the upper-level ENGL course (302, 305, 309, 314).

To obtain a bachelor’s degree from the College of Liberal Arts and Sciences, curriculum in liberal arts and sciences, a student must earn at least 45 credits at the 300 level or above taken at a four-year college. All such credits, including courses taken on a pass/not pass basis, may be used to meet this requirement.

Students must take at least 15 credits of Computer Science courses at the 300 level or higher at Iowa State University while resident here.
Computer Science transfer courses need to be a minimum grade of C or higher to be considered for course substitution.

Students must earn a C- or better in each Computer Science course which is a prerequisite to a course listed in the student’s degree program.

Undergraduate Minor in Computer Science

The Department of Computer Science offers an undergraduate minor in Computer Science. The minor requires at least 16 credits in computer science courses. Com S 414 cannot be used to fulfill minor requirements.

A minimum grade of C is required in Com S 227 and Com S 228. A minimum grade of C is required in both Com S 311 and the three credits of 300-level Computer Science courses and above. Students must meet all prerequisites for Computer Science courses taken to fulfill the minor. At least 6 credits of the minor must be in courses numbered 300 and above and taken at ISU with a grade of C or higher. The minor must include at least 9 credits that are not used to meet any other department, college, or university requirement.

COM S 227 Object-oriented Programming 4
COM S 228 Introduction to Data Structures 3
COM S 230 Discrete Computational Structures 3
COM S 311 Introduction to the Design and Analysis of Algorithms 3

3 credits in ComS courses at the 300 level or above 3

Undergraduate Curriculum in Software Engineering

The Department of Computer Science, together with the Department of Electrical and Computer Engineering, also offer a curriculum leading to an undergraduate degree in Software Engineering. The Software Engineering curriculum offers emphasis areas in Software Engineering principles, process, and practice. Students may also take elective courses in Computer Engineering and Computer Science.

See Index, Software Engineering. For curriculum information, see also College of Engineering and College of Liberal Arts and Sciences.

Computer Science, B.S.

Freshman

Fall Credits Spring Credits
COM S 101 R COM S 227 4
COM S 127 4 MATH 166 4
MATH 165 4 ENGL 250 3
ENGL 150 3 LIB 160 1
SOCIAL SCIENCE 3 ARTS & HUMANITIES 3

14 15

Sophomore

Fall Credits Spring Credits
COM S 228 3 COM S 321 3
COM S 230 3 COM S 311 3
SCIENCE SEQUENCE PART 1 4 COM S 300/400 ELECTIVE 3
SOCIAL SCIENCE 3 SCIENCE SEQUENCE PART 2 4
WORLD LANGUAGE 101/ ELECTIVE 16-17

16-17

Junior

Fall Credits Spring Credits
COM S 309 3 COM S 327 3
COM S 300/400 ELECTIVE 3 COM S 331 3
MATH ELECTIVE 3 STAT 300 ELECTIVE 3
SP CM 212 3 ENGL 300 ELECTIVE 3
ARTS & HUMANITIES 3 PHIL 343 3

15 15

Senior

Fall Credits Spring Credits
COM S 342 3 COM S 402 3
COM S 300/400 ELECTIVE 3 COM S 352 3
COM S 400 ELECTIVE 3 COM S 400 ELECTIVE 3
SOCIAL SCIENCE & USD/IP 3 ARTS & HUMANITIES & USD/IP 3
ELECTIVE 3 ELECTIVE 3

15 15

Graduate Study

The department offers graduate programs leading to degrees of Master of Science (MS) and Doctor of Philosophy (PhD) with a major in Computer Science. The Doctor of Philosophy degree may also be earned with computer science as a co-major with some other discipline. Additionally, the department offers a minor for the students majoring in other disciplines.

Established research areas include algorithms, artificial intelligence, computational complexity, computer architecture, bioinformatics, computational biology, computer networks, database systems, formal methods, information assurance, machine learning and neural networks, multimedia, operating systems, parallel and distributed computing, programming languages, robotics, and software engineering. There are also numerous opportunities for interdisciplinary research.

Typically, students beginning graduate work in Computer Science have completed a bachelor’s degree or equivalent in Computer Science. However, some students with undergraduate majors in other areas, such
as Mathematical, physical, or biological science or engineering become successful graduate students in Computer Science.

For the degree Master of Science, a minimum of 31 semester credits is required. A thesis or a creative component demonstrating research and the ability to organize and express significant ideas in computer science is required.

The purpose of the doctoral program is to train students to do original research in Computer Science. Each student is also required to attain knowledge and proficiency commensurate with a leadership role in the field. The PhD requirements are governed by the student’s program of study committee within established guidelines of the department and the graduate college. They include coursework (demonstrating breadth and depth of knowledge), a research skills requirement, a preliminary examination, and a doctoral dissertation and final oral examination. The department recommends that all graduate students majoring in Computer Science teach as part of their training for an advanced degree.

Courses primarily for undergraduates:

COM S 101: Orientation
Cr. R. F.S.
Introduction to the computer science discipline and code of ethics, Com S courses, research and networking opportunities, procedures, policies, help and computing resources, extra-curricular activities offered by the Department of Computer Science and Iowa State University. Discussion of issues relevant to student adjustment to college life. Offered on a satisfactory-fail basis only. Offered on a satisfactory-fail basis only.

COM S 103: Computer Literacy and Applications
Cr. 4. F.S.S.
Introduction to computer literacy and applications. Literacy: Impact of computer technology in today’s societies, hardware, software, software programming, database and information systems, communication and networks, digital media technology, computer security and safety, ethics and privacy. Applications: In-depth hands-on experience with the operating systems, Microsoft word processing, spreadsheets, database management and presentation software. No prior computer experience necessary. Offered online only. Attendance required at an orientation session the first week of class.

COM S 104: Brief Introduction to Computer Programming for Non-Majors
(1.5-1) Cr. 2. F.S.
Offered first 8 weeks and last 8 weeks. Use of personal computer and workstation operating systems and beginning programming. Project-oriented approach to computer operation and programming, including use of tools to aid in programming. Topics from computer history, using basic Windows and Unix tools, program structure, expression, variables, decision and logic, and iteration. No prior computer experience necessary.

COM S 105: Short Course in Computer Programming
Cr. 2.
Prereq: Com S 104
8-week course in programming, including instruction in syntax and semantics, of the following current programming languages.

COM S 105A: Short Course in Computer Programming: Perl
(1-2) Cr. 2.
Prereq: Com S 104
8-week course in programming using Perl.

COM S 105B: Short Course in Computer Programming: MATLAB
(2-0) Cr. 2.
Prereq: Com S 104
8-week course in programming using MATLAB.

COM S 106: Introduction to Web Programming
(3-0) Cr. 3. F.S.
Introduction to web programming basics. Fundamentals of developing web pages using a comprehensive web development life cycle. Learn to design and code practical real-world homepage programs and earn adequate experience with current web design techniques such as HTML5 and cascading style sheets. Students also learn additional programming languages including JavaScript, jQuery, PHP, SQL, and MySQL. Strategies for accessibility, usability and search engine optimization. No prior computer programming experience necessary.

COM S 107: Windows Application Programming
(3-0) Cr. 3. F.S.
Introduction to computer programming for non-majors using a language such as the Visual Basic language. Basics of good programming and algorithm development. Graphical user interfaces.
COM S 108: Applied Computer Programming for Non-Majors
(3-0) Cr. 3.
Prereq: Com S 107 or equivalent
Advanced programming applications in Visual Basic for non-majors. Emphasis on programming projects including sorting, file processing, database processing, web programming, and graphics and animation. Students will learn problem solving techniques and advanced programming skills to build real-world applications.

COM S 113: Introduction to Spreadsheets and Databases
(2-2) Cr. 3. F.S.SS.
Using Microsoft Excel spreadsheets and Microsoft Access databases to input, store, process, manipulate, query, and analyze data for business and industrial applications. Credit in Com S 113 may not be applied toward graduation in the COM S, S E, and CPR E majors.

COM S 127: Introduction to Computer Programming
(3-2) Cr. 4. F.S.
Prereq: Credit or Enrollment in MATH 140 or higher
Introduction to computer programming with an emphasis on problem solving. Topics include: program structures, expressions, variables, decision and logic, iteration, collections, input and output. Program construction and testing. Programming assignments including games and applications. No prior programming experience necessary. This course is intended for Computer Science majors.

COM S 203: Careers in Computer Science
Cr. R. F.S.
Computer science as a profession. Introduction to career fields open to computer science majors. Relationship of coursework to careers. Presentations by computer science professionals. Offered on a satisfactory-fail basis only.

COM S 207: Fundamentals of Computer Programming
(Cross-listed with MIS). (3-1) Cr. 3. F.S.SS.
Prereq: MATH 150 or placement into MATH 140 or higher
An introduction to computer programming using an object-oriented programming language. Emphasis on the basics of good programming techniques and style. Extensive practice in designing, implementing, and debugging small programs. Use of abstract data types. Interactive and file I/O. This course is not designed for computer science, software engineering, and computer engineering majors. Credit may not be applied toward graduation for both Com S 207/MIS 207 and Com S 227.

COM S 208: Intermediate Computer Programming
(3-1) Cr. 3.
Prereq: MIS/COM S 207, credit or enrollment in MATH 151, MATH 160, or MATH 165
Intermediate-level programming techniques. Emphasis on designing, writing, testing, debugging, and documenting medium-sized programs. Data structures and their uses. Dynamic memory usage. Inheritance and polymorphism. Algorithm design and efficiency: recursion, searching, and sorting. Event-driven and GUI programming. The software development process. This course is not designed for computer science, software engineering and computer engineering majors. Credit may not be applied toward the major in computer science, software engineering, or computer engineering.

COM S 227: Object-oriented Programming
(3-2) Cr. 4. F.S.SS.
Prereq: Credit or Enrollment in MATH 143 or higher; recommended: a previous high school or college course in programming or equivalent experience.
Computer programming using objects as the mechanism for modularity, abstraction, and code reuse. Instance variables, methods, and encapsulation. Review of control structures for conditionals and iteration. Developing algorithms on strings, arrays, and lists. Recursion, searching, and sorting. Text parsing and file I/O. Interfaces, inheritance, polymorphism, and abstract classes. Exception handling. Tools for unit testing and debugging. Emphasis on a disciplined approach to specification, code development, and testing. Course intended for Com S majors. Credit may not be applied toward graduation for both Com S 207 and 227.

COM S 228: Introduction to Data Structures
(3-1) Cr. 3. F.S.SS.
Prereq: Minimum of C- in COM S 227, credit or enrollment in MATH 165
An object-oriented approach to data structures and algorithms. Object-oriented analysis, design, and programming, with emphasis on data abstraction, inheritance and subtype polymorphism, and generics. Abstract data type specification and correctness. Collections including lists, stacks, queues, trees, heaps, maps, hash tables, and graphs. Big-O notation and algorithm analysis. Searching and sorting. Graph search and shortest path algorithms. Emphasis on object-oriented design, writing and documenting medium-sized programs. This course is designed for majors.

COM S 230: Discrete Computational Structures
(Cross-listed with MATH). (3-1) Cr. 3. F.S.SS.
Prereq: Minimum of C- in COM S 227 and MATH 165; ENGL 150
Concepts in discrete mathematics as applied to computer science. Logic, set theory, functions, relations, combinatorics, discrete probability, graph theory and number theory. Proof techniques, induction and recursion.
COM S 252: Linux Operating System Essentials
(3-0) Cr. 3. F.
Prereq: CPR E 185 or S E 185 or COM S 127 or COM S 207 or COM S 227
Introduction to installation, utilization, and administration of Linux systems. Topics include open-source software, package installation and management, shell programming and command-line utilities, process and service management, account management, network configuration, file sharing, interoperation with other computers and operating systems, automation, and system security.

COM S 290: Independent Study
Cr. arr. Repeatable, maximum of 6 credits. F.S.S.
Prereq: Permission of instructor
No more than 6 credits of Com S 290 or Com S 290H may be counted toward graduation.

COM S 290H: Independent Study: Honors
Cr. arr. Repeatable, maximum of 6 credits. F.S.
Prereq: Permission of instructor
No more than 6 credits of Com S 290 or Com S 290H may be counted toward graduation.

COM S 295: Programming-based problem solving practices
Cr. 1. Repeatable, maximum of 3 times. F.S.
Prereq: COM S 207 or COM S 227
Basics of problem solving using programming techniques. Development and implementation of simple to advanced data structures and algorithms, evaluation of problem difficulty, design and implementation of solutions, debugging, and working under time pressure. Offered on a satisfactory-fail basis only.

COM S 309: Software Development Practices
(Cross-listed with S E). (3-1) Cr. 3. F.S.
Prereq: Minimum of C- in COM S 228 and MATH 165
A practical introduction to methods for managing software development. Process models, requirements analysis, structured and object-oriented design, coding, testing, maintenance, cost and schedule estimation, metrics. Programming projects.

COM S 311: Introduction to the Design and Analysis of Algorithms
(3-1) Cr. 3. F.S.S.
Prereq: Minimum of C- in COM S 228; MATH 166, ENGL 150; COM S 230 or CPR E 310
Basic techniques for design and analysis of algorithms. Sorting, searching, graph algorithms, string matching, and NP-completeness. Design techniques such as dynamic programming, divide and conquer, greedy method, and approximation. Asymptotic, worst-case, average-case and amortized analyses. Topics from advanced data structures such as balanced trees and hashing. Programming projects.

COM S 319: Construction of User Interfaces
(Cross-listed with S E). (3-0) Cr. 3. F.S.
Prereq: COM S 228

COM S 321: Introduction to Computer Architecture and Machine-Level Programming
(3-1) Cr. 3. F.S.
Prereq: Minimum of C- in COM S 228 and MATH 165; COM S 230 or CPR E 281; ENGL 250
Introduction to computer architecture and organization. Emphasis on evaluation of performance, instruction set architecture, datapath and control, memory-hierarchy design, and pipelining. Assembly language programming.

COM S 326: C for Programmers
Cr. 1. F.S.
Prereq: Minimum of C- in COM S 228; COM S 230 or CPR E 310
Half-semester course. Design and implementation of libraries and applications in C, for students with prior programming background. Emphasis on differences between C and other languages, including file I/O, string processing, memory management, and buffer overruns. Using build systems, debuggers, and other development tools. Programming projects.

COM S 327: Advanced Programming Techniques
(3-0) Cr. 3. F.S.
Prereq: Minimum of C- in COM S 228 and MATH 165
Object-oriented programming experience using a language suitable for exploring advanced topics in programming. Topics include memory management, parameter passing, inheritance, compiling, debugging, and maintaining programs. Significant programming projects.

COM S 331: Theory of Computing
(Cross-listed with LING). (3-1) Cr. 3. F.S.
Prereq: Minimum of C- in COM S 228, MATH 166, and in COM S 230 or CPR E 310; ENGL 250
COM S 336: Introduction to Computer Graphics
(3-0) Cr. 3. F.
Prereq: COM S 327, CoReq MATH 207 or MATH 317
Programming interactive computer graphics systems using standard low-level libraries (such as OpenGL or DirectX) with an emphasis on 3D rendering. The graphics pipeline and programmable shaders. Coordinate systems and transformations in two and three dimensions. Homogeneous coordinates, viewing transformations and perspective. Euler angles and quaternions. Visible surface algorithms. Lighting models and shading. Texture mapping, bump mapping, reflection, elementary ray tracing. Offscreen buffers, render-to-texture and related techniques.

COM S 342: Principles of Programming Languages
(Cross-listed with S E). (3-1) Cr. 3. F.S.
Prereq: Minimum of C- in COM S 228 and MATH 165; COM S 230 or CPR E 310

COM S 350: Number Theory
(Cross-listed with MATH). (3-0) Cr. 3. S.
Prereq: MATH 201 or COM S 230
Divisibility, integer representations, primes and divisors, linear diophantine equations, congruences, and multiplicative functions. Applications to cryptography. Additional topics, chosen at the discretion of the instructor.

COM S 352: Introduction to Operating Systems
(3-1) Cr. 3. F.S.
Prereq: COM S 321 or CPR E 381; COM S 327 or CPR E 288; ENGL 250
Survey of operating system, networking and parallel programming issues. Introduction of processes, threads, process synchronization, deadlocks, memory, file systems, networking, security threats and encryption. Programming projects.

COM S 362: Object-Oriented Analysis and Design
(Cross-listed with S E). (3-0) Cr. 3. F.S.
Prereq: Minimum of C- in COM S 228 and MATH 165; ENGL 250
Object-oriented requirements analysis and systems design. Design notations such as the Unified Modeling Language. Design Patterns. Group design and programming with large programming projects.

COM S 363: Introduction to Database Management Systems
(3-0) Cr. 3. F.S.
Prereq: Minimum of C- in COM S 228 and MATH 165; ENGL 250
Relational, object-oriented, semistructured and query languages. SQL, XML, and NO-SQL. Database design using entity-relationship model, data dependencies, and relational database design. Application development in SQL-like languages and general purpose host languages with application program interfaces and a commonly used Object Relational Mapping framework. Web application development. Programming Projects.

COM S 398: Cooperative Education
Cr. R. Repeatable. F.S.SS.
Prereq: Permission of department chair
Required of all cooperative education students. Students must register for this course prior to commencing each work period.

COM S 401: Fundamentals of Bioinformatics and Computational Biology
(Cross-listed with BCBIO, BIOL, GEN). (4-0) Cr. 4. F.
Prereq: BCBIO 322, basic programming experience (e.g. COM S 127, COM S 227 or permission of instructor). MATH 160 or MATH 165; and STAT 101 or STAT 104; and MATH 166 or STAT 301.
Application of computer science and statistics to molecular biology with a significant problem-solving component, including hands-on programming using Python to solve a variety of biological problems. String algorithms, sequence alignments, homology search, pattern discovery, genotyping, genome assembly, genome annotation, comparative genomics, protein structure.

COM S 402: Computer Science Senior Project
Cr. 2-3. Repeatable, maximum of 6 credits. F.S.
Prereq: COM S 309, COM S 311, COM S 321, COM S 331, ENGL 250, SP CM 212, and Senior Classification
Students work as individuals and teams to complete the planning, design, and implementation of a significant project in the topic area. Oral and written reports. No more than 6 credits of 402A, 402B, and 402C may be used toward graduation.

COM S 402A: Computer Science Senior Project: Multimedia and Computer Gaming I
Cr. 2-3. Repeatable, maximum of 6 credits. F.
Prereq: COM S 309, COM S 311, COM S 321, and COM S 437, Senior Classification
Students conceive, plan, architect and design a computer game. Student registered in this course will work with students in ARTIS 409. Oral and written reports. No more than 6 credits of 402A, 402B, and 402C may be used toward graduation.
COM S 402B: Computer Science Senior Project: Multimedia and Computer Gaming II
Cr. 2-3. Repeatable, maximum of 6 credits. S.
Prereq: COM S 402A, Senior Classification
Students implement, test, and present a completed production computer game. Students in this class will work with students in ARTIS 409. Oral and written reports. No more than 6 credits of 402A, 402B, and 402C may be used toward graduation.

COM S 402C: Computer Science Senior Project: Project in Computer Science
(0-6) Cr. 2-3. Repeatable, maximum of 6 credits. F.S.
Prereq: COM S 309, COM S 311, COM S 321, and COM S 331, Senior Classification
Students work as individuals and teams to complete the planning, design, and implementation of a significant project in the topic area. Oral and written reports. No more than 6 credits of 402A, 402B, and 402C may be used toward graduation.

COM S 407: Applied Formal Methods
(Dual-listed with COM S 507). (Cross-listed with AER E). Cr. 3. S.
Prereq: AER E 361 for AER E majors. COM S 311 for COM S majors. AER E 361 or COM S 311, or an equivalent course, plus instructor permission for other majors.
Introduction to the fundamentals of formal methods, a set of mathematically rigorous techniques for the formal specification, validation, and verification of safety- and security-critical systems. Tools, techniques, and applications of formal methods with an emphasis on real-world use-cases such as enabling autonomous operation. Build experience in writing mathematically analyzable specifications from English operational concepts for real cyberphysical systems, such as aircraft and spacecraft. Review capabilities and limitations of formal methods in the design, verification, and system health management of today's complex systems.

COM S 409: Software Requirements Engineering
(Dual-listed with COM S 509). (3-0) Cr. 3.
Prereq: COM S 309; for graduate credit: graduate standing or permission of instructor
The requirements engineering process including elicitation, requirements analysis fundamentals, requirements specification and communication, and requirements evaluation. Modeling of functional and nonfunctional requirements, traceability, and requirements change management. Case studies and software projects.

COM S 410: Distributed Development of Software
(Dual-listed with COM S 510). (3-0) Cr. 3.
Prereq: COM S 228, COM S 309, COM S 327 or CPR E 288; for graduate credit: graduate standing or permission of instructor
Teams of students develop software applications in a modern software engineering environment. Importance, effective processes pertaining to team organization, management and communication, and cultural issues of distributed development. Graduate credit requires in-depth study of concepts and oral presentations.

COM S 412: Formal Methods in Software Engineering
(Dual-listed with COM S 512). (Cross-listed with CPR E, S E). (3-0) Cr. 3.
Prereq: COM S 311; STAT 305 or STAT 330 or STAT 341; for graduate credit: graduate standing or permission of instructor
A study of formal techniques for model-based specification and verification of software systems. Topics include logics, formalisms, graph theory, numerical computations, algorithms and tools for automatic analysis of systems. Graduate credit requires in-depth study of concepts.

COM S 413: Foundations and Applications of Program Analysis
(Dual-listed with COM S 513). Cr. 3.
Prereq: COM S 327 or CPR E 288; COM S 342
Algorithms and tools for automatically reasoning about code and program executions to predict software behavior. Theory and foundations related to control flow analysis, dataflow analysis, abstract interpretation and symbolic execution. Applications of program analysis to improve software security, performance and testing. Concepts, algorithms, tools, benchmarks, methodologies for solving problems using program analysis and for preparing research in program analysis.

COM S 414: Gerontechnology in Smart Home Environments
(Dual-listed with COM S 514). (3-0) Cr. 3.
Prereq: COM S 227 or COM S 207 or GERON 377 or ARTGR 271 or equivalent; for graduate credit: graduate standing or permission of instructor
Interdisciplinary course designed for students interested in assistive technology, pervasive computing, mobile computing and principles of universal and inclusive design for end users, in particular, the elderly population. Students work in semester-long projects as interdisciplinary teams to apply knowledge obtained from lectures and mutual presentations. Research report and oral presentation required for graduate credit.
COM S 415: Software System Safety
(Dual-listed with COM S 515). (3-0) Cr. 3.
Prereq: COM S 309 or COM S 311; for graduate credit: graduate standing or permission of instructor
An introduction to the hazard analysis, safety requirements, design, and testing of software for safety-critical and high-dependability systems. Safety analysis techniques, fault identification and recovery, and certification issues. Emphasizes a case-based and systematic approach to software’s role in safe systems.

COM S 417: Software Testing
(Cross-listed with S E). (3-0) Cr. 3.
Prereq: COM S 309, COM S 230 or CPR E 310, ENGL 250
An introduction to software testing principles and techniques. Test models, test design, test adequacy criteria; regression, integration, and system testing; and software testing tools.

COM S 418: Introduction to Computational Geometry
(Dual-listed with COM S 518). (3-0) Cr. 3.
Prereq: COM S 311; for graduate credit: graduate standing or permission of instructor
Introduction to data structures, algorithms, and analysis techniques for computational problems that involve geometry. Convex hulls, line segment intersection, polygon triangulation, 2D linear programming, range queries, point location, arrangements and duality, Voronoi diagrams, Delaunay triangulations, geometric data structures, robot motion planning, visibility graphs. Other selected topics. Programming assignments. Scholarly report required for graduate credit.

COM S 421: Logic for Mathematics and Computer Science
(Cross-listed with MATH). (3-0) Cr. 3.
Prereq: MATH 301 or MATH 207 or MATH 317 or COM S 230 or CPR E 310
Propositional and predicate logic. Topics selected from Horn logic, equational logic, resolution and unification, foundations of logic programming, reasoning about programs, program specification and verification, model checking and binary decision diagrams, temporal logic and modal logic.

COM S 424: Introduction to High Performance Computing
(Cross-listed with CPR E, MATH). (3-2) Cr. 4. F.
Prereq: CPR E 308 or COM S 311, CPR E 315 or COM S 311
Models of parallel computation, performance measures, basic parallel constructs and communication primitives, parallel programming using MPI, parallel algorithms for selected problems including sorting, matrix, tree and graph problems, fast Fourier transforms.

COM S 425: High Performance Computing for Scientific and Engineering Applications
(Cross-listed with CPR E). (2-2) Cr. 3.
Prereq: COM S 311, ENGL 250, SP CM 212
Introduction to high performance computing platforms including parallel computers and workstation clusters. Discussion of parallel architectures, performance, programming models, and software development issues. Sample applications from science and engineering. Practical issues in high performance computing will be emphasized via a number of programming projects using a variety of programming models and case studies. Oral and written reports.

COM S 426: Introduction to Parallel Algorithms and Programming
(Dual-listed with COM S 526). (Cross-listed with CPR E). (3-2) Cr. 4. F.
Prereq: CPR E 308 or COM S 321, CPR E 315 or COM S 311
Models of parallel computation, performance measures, basic parallel constructs and communication primitives, parallel programming using MPI, parallel algorithms for selected problems including sorting, matrix, tree and graph problems, fast Fourier transforms.

COM S 430: Concurrent Programming in Practice
(3-1) Cr. 3.
Prereq: COM S 311, COM S 362 or COM S 363, ENGL 250, SP CM 212
A practical course in concepts, techniques, languages, and frameworks for concurrent and asynchronous systems. Concurrency fundamentals: threads, synchronization locks, waiting and notification, memory visibility. Immutability and thread confinement. Concurrent data structures and utilities, thread pools. Asynchronous programming with callbacks, futures, and message passing. Issues of aliasing, ownership and borrowing. Transactional memory, immutable and versioned data structures. Alternatives to threads and locks: event-driven systems, the actor model, CSP, coroutines. Students will investigate several non-mainstream languages supporting different concurrency models. Oral and written reports.

COM S 433: Molecular Programming of Nanoscale Devices and Processes
(Dual-listed with COM S 533). (3-0) Cr. 3.
Prereq: Minimum of C- in COM S 331 or permission of instructor; for graduate credit: graduate standing or permission of instructor
Programming, modeling, and analysis of natural and engineered systems at the nanoscale. Topics include chemical reaction networks, strand displacement systems, models of self-assembly, biomolecular origami, and molecular robotics. Emphasis on mathematical methods of describing, simulating, programming, and assessing the computational power of such systems. Graduate credit requires a written or oral report on current research.
COM S 435: Algorithms for Large Data Sets: Theory and Practice
(Dual-listed with COM S 535). (3-0) Cr. 3.
Prereq: COM S 311 or equivalent; for graduate credit: graduate standing or permission of instructor
Algorithmic challenges involved in solving computational problems on massive data sets. Probabilistic data structures, Curse of Dimensionality and dimensionality reduction, locality sensitive hashing, similarity measures, matrix decompositions. Optimization problems in massive data analysis. Computational problems that arise in the context of web search, social network analysis, online advertising etc. Practical aspects include implementation and performance evaluation of the algorithms on real world data sets. Graduate credit requires a written report on current research.

COM S 437: Computer Game and Media Programming
(3-0) Cr. 3.
Prereq: COM S 336
Video game programming using current game engine interfaces with real hardware. Particular attention is paid to the development environment, tool chains, 2D graphics, 3D graphics, controllers, memory management, and audio systems.

COM S 440: Principles and Practice of Compiling
(Dual-listed with COM S 540). (3-1) Cr. 3.
Prereq: COM S 331 or COM S 342, COM S 309, ENGL 250; for graduate credit: graduate standing or permission of instructor
Theory of compiling and implementation issues of programming languages. Programming projects leading to the construction of a compiler. Projects with different difficulty levels will be given for 440 and 540. Topics include: lexical, syntactic and semantic analyses, syntax-directed translation, code generation, runtime environment and library support.

COM S 441: Programming Languages
(Dual-listed with COM S 541). (3-1) Cr. 3.
Prereq: COM S 342 or COM S 440; for graduate credit: graduate standing or permission of instructor
Survey of the goals and problems of language design. Formal and informal studies of a wide variety of programming language features including type systems. Creative use of functional and declarative programming paradigms.

COM S 453: Privacy Preserving Algorithms and Data Security
Cr. 3.
Prereq: COM S 311
Fundamentals of privacy preserving algorithms, data security, anonymization, and techniques and mechanisms to minimize disclosure of sensitive information while maintaining availability. Theory and fundamentals underpinning measures to evaluate the privacy and availability of data; implementation and deployment of privacy-preserving data operations including pre- and post-randomization techniques, homomorphisms, and secure function evaluation protocols. Theory and practice of the algorithmic limits on data privacy, including the cost in terms of time and space complexity.

COM S 454: Distributed Systems
(Dual-listed with COM S 554). (Cross-listed with CPR E). (3-1) Cr. 3.
Prereq: COM S 311; COM S 352 or CPR E 308; for graduate credit: graduate standing or permission of instructor
Theoretical and practical issues of design and implementation of distributed systems. The client server paradigm, inter-process communications, synchronization and concurrency control, naming, consistency and replication, fault tolerance, and distributed file systems. Graduate credit requires additional in-depth study of concepts. Programming projects and written reports.

COM S 455: Simulation: Algorithms and Implementation
(Dual-listed with COM S 555). (3-0) Cr. 3.
Prereq: COM S 311, STAT 305 or STAT 330 or STAT 341, ENGL 250; for graduate credit: graduate standing or permission of instructor
Introduction to discrete-event simulation with a focus on computer science applications, including performance evaluation of networks and distributed systems. Overview of algorithms and data structures necessary to implement simulation software. Discrete and continuous stochastic models, random number generation, elementary statistics, simulation of queuing and inventory systems, Monte Carlo simulation, point and interval parameter estimation. Graduate credit requires additional in-depth study of concepts.

COM S 461: Principles and Internals of Database Systems
(3-1) Cr. 3.
Prereq: COM S 311, ENGL 250, SP CM 212
Database design including entity-relationship model, relational data model, and non-relational data models, data dependency, and normalization. Database management including physical storage, access methods, query processing, and transaction management. Database systems of special purposes such as spatial databases, mobile object databases, and multimedia databases. Introduction to current database research such as cloud data management and Internet information retrieval.
COM S 472: Principles of Artificial Intelligence
(Dual-listed with COM S 572). (3-1) Cr. 3.
Prereq: COM S 311, STAT 330 or STAT 305 or STAT 341, ENGL 250; for graduate credit: graduate standing or permission of instructor
Basic principles, techniques, and applications of artificial intelligence. Specification, design, implementation, and applications of intelligent agents. Computational models of intelligent behavior, including problem solving, knowledge representation and reasoning, planning, decision making, learning, perception, and communication. Artificial intelligence programming. Term project and written report for graduate credit.

COM S 474: Introduction to Machine Learning
(Dual-listed with COM S 574). (3-1) Cr. 3.
Prereq: COM S 311, STAT 330 or STAT 305 or STAT 341, MATH 165, ENGL 250; for graduate credit: graduate standing or permission of instructor
Introduction to concepts, tools and techniques of machine learning for applications. Selected machine learning algorithms in practical data mining tasks such as classification, regression, and clustering, e.g., association rules, decision trees, linear models, Bayesian learning, support vector machines, artificial neural networks, instance-based learning, probabilistic graphical models, ensemble learning, and clustering algorithms. Selected applications in data mining and pattern recognition.

COM S 476: Motion Strategy Algorithms and Applications
(Dual-listed with COM S 576). Cr. 3.
Prereq: COM S 311, ENGL 250

COM S 477: Problem Solving Techniques for Applied Computer Science
(Dual-listed with COM S 577). (3-0) Cr. 3.
Prereq: COM S 228; COM S 230 or CPR E 310, MATH 166, MATH 207 or MATH 317, or consent of the instructor; for graduate credit: graduate standing or permission of instructor
Selected topics in applied mathematics, algorithms, and geometry that have found applications in areas such as geometric modeling, graphics, robotics, vision, human machine interface, speech recognition, computer animation, etc. Homogeneous coordinates and transformations, perspective projection, rotations in space, quaternions, polynomial interpolation, roots of polynomials and polynomial systems, solution of linear and nonlinear equations, parametric and algebraic curves, curvature, torsion, Frenet formulas, surfaces, principal curvatures, Gaussian and mean curvatures, geodesics, approximation, Fourier series and fast Fourier transform, linear programming, data fitting, least squares, simplex method, nonlinear optimization, Lagrange multipliers, calculus of variations. Programming components. Scholarly report required for graduate credit.

COM S 481: Numerical Methods for Differential Equations
(Cross-listed with MATH). (3-0) Cr. 3. S.
Prereq: MATH 265 and either MATH 266 or MATH 267

COM S 486: Fundamental Concepts in Computer Networking
(3-0) Cr. 3.
Prereq: COM S 352 or CPR E 308
An introduction to fundamental concepts in the design and implementation of computer communication in both wired and wireless networks, their protocols, and applications. Layered network architecture in the Internet, applications, transport, network, and data link layers and their protocols, Socket API, software-defined networking, and network security.
COM S 487: Network Programming, Applications, and Research Issues
(Dual-listed with COM S 587). (3-0) Cr. 3.
Prereq: Com S 352 or CPR E 489 or equivalent; for graduate credit: graduate standing or permission of instructor
Programming paradigms for building distributed and networking applications, including multithreaded client-server programming, socket programming, distributed object frameworks and programming suites, and web computing and security. Introduction to some on-going research issues in distributed and networking applications, including peer-to-peer computing, multimedia communications, and mobile computing and networking. Written report and oral presentation required for graduate credit.

COM S 490: Independent Study
Cr. arr. Repeatable, maximum of 9 credits. F.S.SS.
Prereq: 6 credits in computer science, permission of instructor
No more than 9 credits of Com S 490 or Com S 490H may be counted toward graduation.

COM S 490H: Independent Study: Honors
Cr. arr. Repeatable, maximum of 9 credits. F.S.
Prereq: 6 credits in computer science, permission of instructor
No more than 9 credits of Com S 490 or Com S 490H may be counted toward graduation.

Courses primarily for graduate students, open to qualified undergraduates:

COM S 507: Applied Formal Methods
(Dual-listed with COM S 407). (Cross-listed with AER E). Cr. 3. S.
Prereq: AER E 361 for AER E majors. Com S 311 for Com S majors. AER E 361 or Com S 311, or an equivalent course, plus instructor permission for other majors.
Introduction to the fundamentals of formal methods, a set of mathematically rigorous techniques for the formal specification, validation, and verification of safety- and security-critical systems. Tools, techniques, and applications of formal methods with an emphasis on real-world use-cases such as enabling autonomous operation. Build experience in writing mathematically analyzable specifications from English operational concepts for real cyberphysical systems, such as aircraft and spacecraft. Review capabilities and limitations of formal methods in the design, verification, and system health management of today's complex systems.

COM S 509: Software Requirements Engineering
(Dual-listed with COM S 409). (3-0) Cr. 3.
Prereq: COM S 309; for graduate credit: graduate standing or permission of instructor
The requirements engineering process including elicitation, requirements analysis fundamentals, requirements specification and communication, and requirements evaluation. Modeling of functional and nonfunctional requirements, traceability, and requirements change management. Case studies and software projects.

COM S 510: Distributed Development of Software
(Dual-listed with COM S 410). (3-0) Cr. 3.
Prereq: COM S 228, COM S 309, COM S 327 or CPR E 288; for graduate credit: graduate standing or permission of instructor
Teams of students develop software applications in a modern software engineering environment. Importance, effective processes pertaining to team organization, management and communication, and cultural issues of distributed development. Graduate credit requires in-depth study of concepts and oral presentations.

COM S 511: Design and Analysis of Algorithms
(Cross-listed with CPR E). (3-0) Cr. 3.
Prereq: COM S 311

COM S 512: Formal Methods in Software Engineering
(Dual-listed with COM S 412). (3-0) Cr. 3.
Prereq: COM S 311; STAT 305 or STAT 330 or STAT 341; for graduate credit: graduate standing or permission of instructor
A study of formal techniques for model-based specification and verification of software systems. Topics include logics, formalisms, graph theory, numerical computations, algorithms and tools for automatic analysis of systems. Graduate credit requires in-depth study of concepts.

COM S 513: Foundations and Applications of Program Analysis
(Dual-listed with COM S 413). (Cross-listed with CPR E). Cr. 3.
Prereq: COM S 327 or CPR E 288; COM S 342
Algorithms and tools for automatically reasoning about code and program executions to predict software behavior. Theory and foundations related to control flow analysis, dataflow analysis, abstract interpretation and symbolic execution. Applications of program analysis to improve software security, performance and testing. Concepts, algorithms, tools, benchmarks, methodologies for solving problems using program analysis and for preparing research in program analysis.
COM S 514: Gerontechnology in Smart Home Environments
(Dual-listed with COM S 414). (3-0) Cr. 3.
Prereq: COM S 227 or COM S 207 or GERON 377 or ARTGR 271 or equivalent; for graduate credit: graduate standing or permission of instructor
Interdisciplinary course designed for students interested in assistive technology, pervasive computing, mobile computing and principles of universal and inclusive design for end users, in particular, the elderly population. Students work in semester-long projects as interdisciplinary teams to apply knowledge obtained from lectures and mutual presentations. Research report and oral presentation required for graduate credit.

COM S 515: Software System Safety
(Dual-listed with COM S 415). (3-0) Cr. 3.
Prereq: COM S 309 or COM S 311; for graduate credit: graduate standing or permission of instructor
An introduction to the hazard analysis, safety requirements, design, and testing of software for safety-critical and high-dependability systems. Safety analysis techniques, fault identification and recovery, and certification issues. Emphasizes a case-based and systematic approach to software's role in safe systems.

COM S 518: Introduction to Computational Geometry
(Dual-listed with COM S 418). (3-0) Cr. 3.
Prereq: COM S 311; for graduate credit: graduate standing or permission of instructor
Introduction to data structures, algorithms, and analysis techniques for computational problems that involve geometry. Convex hulls, line segment intersection, polygon triangulation, 2D linear programming, range queries, point location, arrangements and duality, Voronoi diagrams, Delaunay triangulations, geometric data structures, robot motion planning, visibility graphs. Other selected topics. Programming assignments. Scholarly report required for graduate credit.

COM S 525: Numerical Analysis of High Performance Computing
(Cross-listed with CPR E, MATH). (3-0) Cr. 3. S.
Prereq: CPR E 308 or MATH 481; experience in scientific programming; knowledge of FORTRAN or C
Introduction to parallelization techniques and numerical methods for distributed memory high performance computers. A semester project in an area related to each student's research interests is required.

COM S 526: Introduction to Parallel Algorithms and Programming
(Dual-listed with COM S 426). (Cross-listed with CPR E). (3-2) Cr. 4. F.
Prereq: CPR E 308 or COM S 321, CPR E 315 or COM S 311
Models of parallel computation, performance measures, basic parallel constructs and communication primitives, parallel programming using MPI, parallel algorithms for selected problems including sorting, matrix, tree and graph problems, fast Fourier transforms.

COM S 527: Concurrent Systems
(Cross-listed with CPR E). Cr. 3.
Prereq: COM S 352 or CPR E 308
Fundamentals and advances in concurrent systems in the context of GPUs, TPUs, multicore and HPC systems with specific focus on parallel programming models. Discussion of high-performance computing, GPGPU, scaling deep neural network training and machine learning algorithms, high-performance deep learning, engineering parallel software and and parallel design patterns.

COM S 531: Theory of Computation
(3-0) Cr. 3.
Prereq: COM S 331
A systematic study of the fundamental models and analytical methods of theoretical computer science. Computability, the Church-Turing thesis, decidable and undecidable problems. Computational resources such as time, space, and nonuniformity. Complexity classes, computational intractability and completeness. Selected topics from randomness, algorithmic information theory, and logic.

COM S 533: Molecular Programming of Nanoscale Devices and Processes
(Dual-listed with COM S 433). (3-0) Cr. 3.
Prereq: Minimum of C- in COM S 331 or permission of instructor; for graduate credit: graduate standing or permission of instructor
Programming, modeling, and analysis of natural and engineered systems at the nanoscale. Topics include chemical reaction networks, strand displacement systems, models of self-assembly, biomolecular origami, and molecular robotics. Emphasis on mathematical methods of describing, simulating, programming, and assessing the computational power of such systems. Graduate credit requires a written or oral report on current research.

COM S 535: Algorithms for Large Data Sets: Theory and Practice
(Dual-listed with COM S 435). (3-0) Cr. 3.
Prereq: COM S 311 or equivalent; for graduate credit: graduate standing or permission of instructor
Algorithmic challenges involved in solving computational problems on massive data sets. Probabilistic data structures, Curse of Dimensionality and dimensionality reduction, locality sensitive hashing, similarity measures, matrix decompositions. Optimization problems in massive data analysis. Computational problems that arise in the context of web search, social network analysis, online advertising etc. Practical aspects include implementation and performance evaluation of the algorithms on real world data sets. Graduate credit requires a written report on current research.
COM S 540: Principles and Practice of Compiling
(Dual-listed with COM S 440). (3-1) Cr. 3.
Prereq: COM S 331 or COM S 342, COM S 309, ENGL 250; for graduate credit: graduate standing or permission of instructor
Theory of compiling and implementation issues of programming languages. Programming projects leading to the construction of a compiler. Projects with different difficulty levels will be given for 440 and 540. Topics include: lexical, syntactic and semantic analyses, syntax-directed translation, code generation, runtime environment and library support.

COM S 541: Programming Languages
(Dual-listed with COM S 441). (3-1) Cr. 3.
Prereq: COM S 342 or COM S 440; for graduate credit: graduate standing or permission of instructor
Survey of the goals and problems of language design. Formal and informal studies of a wide variety of programming language features including type systems. Creative use of functional and declarative programming paradigms.

COM S 544: Fundamentals of Bioinformatics
(Cross-listed with BCB, CPR E, GDCB). (4-0) Cr. 4. Alt. F., offered odd-numbered years.
Prereq: MATH 165 or STAT 401 or equivalent
A practical, hands-on overview of how to apply bioinformatics to biological research. Recommended for biologists desiring to gain computational molecular biology skills. Topics include: sequence analysis, genomics, proteomics, phylogenetic analyses, ontology enrichment, systems biology, data visualization and emergent technologies.

COM S 549: Advanced Algorithms in Computational Biology
(Cross-listed with CPR E). (3-0) Cr. 3.
Prereq: COM S 311 and either COM S 228 or COM S 208
Design and analysis of algorithms for applications in computational biology, pairwise and multiple sequence alignments, approximation algorithms, string algorithms including in-depth coverage of suffix trees, semi-numerical string algorithms, algorithms for selected problems in fragment assembly, phylogenetic trees and protein folding. No background in biology is assumed. Also useful as an advanced algorithms course in string processing.

COM S 551: Computational Techniques for Genome Assembly and Analysis
(3-0) Cr. 3.
Prereq: COM S 311 and some knowledge of programming
Introduction to a big data research area in bioinformatics. Focus on applying computational techniques to huge genomic sequence data. These techniques include finding optimal sequence alignments, generating genome assemblies, finding genes in genomic sequences, mapping short sequences onto a genome assembly, finding single-nucleotide and structural variations, building phylogenetic trees from genome sequences, and performing genome-wide association studies.

COM S 552: Principles of Operating Systems
(3-0) Cr. 3.
Prereq: For graduate credit: graduate standing or permission of instructor
A comparative study of high-level language facilities for process synchronization and communication. Analysis of deadlock, concurrency control and recovery. Protection issues including capability-based systems, access and flow control, encryption, and authentication. Additional topics chosen from distributed operating systems, soft real-time operating systems, and advanced security issues. Programming and research projects.

COM S 554: Distributed Systems
(Dual-listed with COM S 454). (Cross-listed with CPR E). (3-1) Cr. 3.
Prereq: COM S 311; COM S 352 or CPR E 308; for graduate credit: graduate standing or permission of instructor
Theoretical and practical issues of design and implementation of distributed systems. The client server paradigm, inter-process communications, synchronization and concurrency control, naming, consistency and replication, fault tolerance, and distributed file systems. Graduate credit requires additional in-depth study of concepts. Programming projects and written reports.

COM S 555: Simulation: Algorithms and Implementation
(Dual-listed with COM S 455). (3-0) Cr. 3.
Prereq: COM S 311, STAT 305 or STAT 330 or STAT 341, ENGL 250; for graduate credit: graduate standing or permission of instructor
Introduction to discrete-event simulation with a focus on computer science applications, including performance evaluation of networks and distributed systems. Overview of algorithms and data structures necessary to implement simulation software. Discrete and continuous stochastic models, random number generation, elementary statistics, simulation of queuing and inventory systems, Monte Carlo simulation, point and interval parameter estimation. Graduate credit requires additional in-depth study of concepts.
COM S 556: Analysis Algorithms for Stochastic Models
(3-0) Cr. 3.
Prereq: Graduate standing or permission of instructor
Advanced techniques to specify and study the correctness and timing properties of complex systems and software, with a particular focus on concurrent and distributed behavior. Petri nets and related formalisms to describe discrete-state systems. Decision diagram algorithms for state-space and reachability graph generation, symbolic model checking, and timing analysis. Markov models for exact and approximate probabilistic verification.

COM S 557: Computer Graphics and Geometric Modeling
(Cross-listed with CPR E, M E). (3-0) Cr. 3. Alt. F., offered odd-numbered years.
Prereq: M E 421 or instructor permission

COM S 558: Introduction to the 3D Visualization of Scientific Data
(Cross-listed with GEOL, HCI). (2-2) Cr. 3. Alt. F., offered even-numbered years.
Prereq: Graduate-student standing in the mathematical or natural sciences or engineering; basic programming knowledge
Introduction to visualizing scientific information with 3D computer graphics and their foundation in human perception. Overview of different visualization techniques and examples of 3D visualization projects from different disciplines (natural sciences, medicine, and engineering). Class project in interactive 3D visualization using the ParaView, Mayavi, TVTK, VTK or a similar system.

COM S 559: Security and Privacy in Cloud Computing
(Cross-listed with CPR E). Cr. 3.
Prereq: COM S 352 or CPR E 308, and COM S 486 or CPR E 489 or CPR E 530
Introduction to cloud computing concepts and systems. Security and privacy threats in cloud computing. Practical techniques for cloud computing security. Theoretical and practical solutions for secure outsourcing of data and computation. Oral presentations and research projects.

COM S 560: Data-Driven Security and Privacy
(Cross-listed with CPR E, CYBSC). Cr. 3. Alt. S., offered irregularly.
Prereq: CPR E 531; COM S 474 or COM S 573
Examination of applications of machine learning and big data techniques to various security and privacy problems, as well as secure and privacy-preserving machine learning algorithms.

COM S 561: Database Design, Management, and Research
(3-0) Cr. 3.
Prereq: COM S 311 or permission of instructor
Database design including entity-relationship model, relational data model, and non-relational data models, data dependency, and normalization. Database management including physical storage, access methods, query processing, and transaction management. Database systems of special purposes such as spatial databases, mobile object databases, and multimedia databases. Introduction to current database research such as cloud data management and Internet information retrieval. Significant work on reading and presentation of research publications.

COM S 567: Bioinformatics Algorithms
(Cross-listed with BCB, CPR E). (3-0) Cr. 3.
Prereq: COM S 228; COM S 330; credit or enrollment in BIOL 315, STAT 430
Biology as an information science. A review of the algorithmic principles that are driving the advances in bioinformatics and computational biology.

COM S 568: Statistical Bioinformatics
(Cross-listed with BCB, GDCB, STAT). (3-0) Cr. 3. S.
Prereq: BCB 567 or (BIOL 315 and one of STAT 430 or STAT 483 or STAT 583), credit or enrollment in GEN 409
Statistical models for sequence data, including applications in genome annotation, motif discovery, variant discovery, molecular phylogeny, gene expression analysis, and metagenomics. Statistical topics include model building, inference, hypothesis testing, and simple experimental design, including for big data/complex models.

COM S 569: Structural Bioinformatics
(Cross-listed with BBMB, BCB, CPR E, GDCB). (3-0) Cr. 3. F.
Prereq: BCB 567, BBMB 316, GEN 409, STAT 430
COM S 570: Systems Biology
(Cross-listed with BCB, CPR E, GDCB, STAT). (3-0) Cr. 3. S.
Prereq: BCB 567 or COM S 311, COM S 228, GEN 409, STAT 430 or STAT 483 or STAT 583

COM S 572: Principles of Artificial Intelligence
(Dual-listed with COM S 472). (3-1) Cr. 3.
Prereq: COM S 311, STAT 330 or STAT 305 or STAT 341, ENGL 250; for graduate credit: graduate standing or permission of instructor
Basic principles, techniques, and applications of artificial intelligence. Specification, design, implementation, and applications of intelligent agents. Computational models of intelligent behavior, including problem solving, knowledge representation and reasoning, planning, decision making, learning, perception, and communication. Artificial intelligence programming. Term project and written report for graduate credit.

COM S 573: Machine Learning
(3-1) Cr. 3.
Prereq: Graduate standing or permission of instructor
Basic principles, techniques, and applications of machine learning. Design, analysis, theoretical foundation, implementation, and applications of learning algorithms. Selected machine learning techniques in supervised learning, unsupervised learning, and reinforcement learning, including Bayesian decision theory, computational learning theory, decision trees, linear models, support vector machines, artificial neural networks, instance-based learning, probabilistic graphical models, ensemble learning, clustering algorithms, dimensionality reduction and feature selection. Selected applications in data mining and pattern recognition.

COM S 574: Introduction to Machine Learning
(Dual-listed with COM S 474). (3-1) Cr. 3.
Prereq: COM S 311, STAT 330 or STAT 305 or STAT 341, MATH 165, ENGL 250; for graduate credit: graduate standing or permission of instructor
Introduction to concepts, tools and techniques of machine learning for applications. Selected machine learning algorithms in practical data mining tasks such as classification, regression, and clustering, e.g., association rules, decision trees, linear models, Bayesian learning, support vector machines, artificial neural networks, instance-based learning, probabilistic graphical models, ensemble learning, and clustering algorithms. Selected applications in data mining and pattern recognition.

COM S 575: Computational Perception
(Cross-listed with CPR E, HCI). (3-0) Cr. 3. S.
Prereq: Graduate standing or permission of instructor
Statistical and algorithmic methods for sensing, recognizing, and interpreting the activities of people by a computer. Focuses on machine perception techniques that facilitate and augment human-computer interaction. Introduce computational perception on both theoretical and practical levels. Participation in small groups to design, implement, and evaluate a prototype of a human-computer interaction system that uses one or more of the techniques covered in the lectures.

COM S 576: Motion Strategy Algorithms and Applications
(Dual-listed with COM S 476). Cr. 3.
Prereq: COM S 311, ENGL 250
COM S 577: Problem Solving Techniques for Applied Computer Science
(Dual-listed with COM S 477). (3-0) Cr. 3.
Prereq: COM S 228; COM S 230 or CPR E 310, MATH 166, MATH 207 or MATH 317, or consent of the instructor; for graduate credit: graduate standing or permission of instructor.
Selected topics in applied mathematics, algorithms, and geometry that have found applications in areas such as geometric modeling, graphics, robotics, vision, human machine interface, speech recognition, computer animation, etc. Homogeneous coordinates and transformations, perspective projection, rotations in space, quaternions, polynomial interpolation, roots of polynomials and polynomial systems, solution of linear and nonlinear equations, parametric and algebraic curves, curvature, torsion, Frenet formulas, surfaces, principal curvatures, Gaussian and mean curvatures, geodesics, approximation, Fourier series and fast Fourier transform, linear programming, data fitting, least squares, simplex method, nonlinear optimization, Lagrange multipliers, calculus of variations. Programming components. Scholarly report required for graduate credit.

COM S 578: Optimization for Machine Learning
Cr. 3.
Prereq: Com S 472, Com S 474, or instructor permission.
Advances in optimization theory and algorithms with evolving applications for machine learning. Theoretical foundations at the intersection of optimization and machine learning to conduct advanced research in machine learning and related fields. Emphasis on proof techniques for optimization algorithms in machine learning.

COM S 581: Computer Systems Architecture
(Cross-listed with CPR E). (3-0) Cr. 3. F.
Prereq: CPR E 381
Quantitative principles of computer architecture design, instruction set design, processor architecture: pipelining and superscalar design, instruction level parallelism, memory organization: cache and virtual memory systems, multiprocessor architecture, cache coherency, interconnection networks and message routing, I/O devices and peripherals.

COM S 583: Reconfigurable Computing Systems
(Cross-listed with CPR E). (3-0) Cr. 3.
Prereq: Background in computer architecture, design, and organization
Introduction to reconfigurable computing, FPGA technology and architectures, spatial computing architectures such as systolic and bit serial adaptive network architectures, static and dynamic rearrangeable interconnection architectures, processor architectures incorporating reconfigurability.

COM S 586: Computer Network Architectures
(3-0) Cr. 3.
Prereq: COM S 511, COM S 552 or CPR E 489
Design and implementation of computer communication networks: layered network architectures, local area networks, data link protocols, distributed routing, transport services, network programming interfaces, network applications, error control, flow/congestion control, interconnection of heterogeneous networks, TCP/IP, software-defined networking and network security.

COM S 587: Network Programming, Applications, and Research Issues
(Dual-listed with COM S 487). (3-0) Cr. 3.
Prereq: Com S 352 or CPR E 489 or equivalent; for graduate credit: graduate standing or permission of instructor
Programming paradigms for building distributed and networking applications, including multithreaded client-server programming, socket programming, distributed object frameworks and programming suites, and web computing and security. Introduction to some on-going research issues in distributed and networking applications, including peer-to-peer computing, multimedia communications, and mobile computing and networking. Written report and oral presentation required for graduate credit.

COM S 590: Special Topics
Cr. arr. Repeatable.
Prereq: Permission of instructor
Special Topics in Computer Science.

COM S 592: Research Colloquia
Cr. 1.
Prereq: Graduate classification
Attend Computer Science Research Colloquia. Written summary is required. Offered on a satisfactory-fail basis only.

COM S 598: Graduate Internship
Cr. R. Repeatable.
Prereq: Graduate Classification
Supervised internship working in professional settings appropriate to the student’s degree program. Academic work under faculty supervision.

COM S 599: Creative Component
Cr. 1-3.
Creative component for nonthesis option of Master of Science degree. Offered on a satisfactory-fail basis only.

Courses for graduate students:

COM S 610: Seminar
Cr. arr.
Seminar in Computer Science. Offered on a satisfactory-fail basis only.
COM S 611: Advanced Topics in Analysis of Algorithms
(3-0) Cr. 3. Repeatable.
Prereq: COM S 511, COM S 531
Advanced algorithm analysis and design techniques. Topics include, but
are not limited to, graph algorithms, geometric algorithms, approximation
algorithms, fixed-parameter algorithms, randomized algorithms and
advanced data structures. Content varies by semester.

COM S 612: Distributed Algorithms
(3-0) Cr. 3.
Prereq: COM S 511 or COM S 531
The theory of distributed computation. Algorithms, lower bounds and
impossibility results. Fundamental problems including consensus, leader
election, mutual exclusion and clock synchronization. Synchronous,
asynchronous and partially synchronous distributed systems models.
Shared memory and message passing systems. Fault-tolerance and
randomization. Wait-free object simulations. Distributed shared memory.
Special topics vary from year to year.

COM S 626: Parallel Algorithms for Scientific Applications
(Cross-listed with CPR E). (3-0) Cr. 3.
Prereq: CPR E 526
Algorithm design for high-performance computing. Parallel algorithms
for multidimensional tree data structures, space-filling curves, random
number generation, graph partitioning and load balancing. Applications to
grid and particle-based methods and computational biology.

COM S 631: Advanced Topics in Computational Complexity
(3-0) Cr. 3. Repeatable.
Prereq: COM S 531
Advanced study in the quantitative theory of computation. Time and
space complexity of algorithmic problems. The structure of P, NP, PH,
PSPACE, and other complexity classes, especially with respect to
resource-bounded reducibilities and complete problems. Complexity
relative to auxiliary information, including oracle computation and
relativized classes, randomized algorithms, advice machines, Boolean
circuits. Kolmogorov complexity and randomness. Novel models of
computation emerging in a rapidly changing field.

COM S 633: Advanced Topics in Computational Randomness
(3-0) Cr. 3. Repeatable.
Prereq: COM S 531
Advanced study of the role of randomness in computation. Randomized
algorithms, derandomization, and probabilistic complexity classes.
Kolmogorov complexity, algorithmic information theory, and algorithmic
randomness. Applications chosen from cryptography, interactive proof
systems, computational learning, lower bound arguments, mathematical
logic, and the organization of complex systems. Novel models of
computation emerging in a rapidly changing field.

COM S 634: Theory of Games, Knowledge and Uncertainty
(3-0) Cr. 3.
Prereq: COM S 230
Fundamentals of Game Theory: individual decision making, strategic
and extensive games, mixed strategies, backward induction, Nash and
other equilibrium concepts. Discussion of Auctions and Bargaining.
Repeated, Bayesian and evolutionary games. Interactive Epistemology:
reasoning about knowledge in multiagent environment, properties of
knowledge, agreements, and common knowledge. Reasoning about
and representing uncertainty, probabilities, and beliefs. Uncertainty in
multiagent environments. Aspects and applications of game theory,
knowledge, and uncertainty in other areas, especially Artificial Intelligence
and Economics, will be discussed.

COM S 641: Advanced Topics in Programming Language Semantics
(3-0) Cr. 3. Repeatable.
Prereq: COM S 531, COM S 541
Operational and other mathematical models of programming language
semantics. Type systems and their soundness. Applications of semantics
on areas such as program correctness, language design or translation.

COM S 652: Advanced Topics in Distributed Operating Systems
(3-0) Cr. 3. Repeatable.
Prereq: COM S 552
Concepts and techniques for network and distributed operating systems:
communications protocols, processes and threads, name and object
management, synchronization, consistency and replications for
consistent distributed data, fault tolerance, protection and security, and
distributed file systems. Research project.

COM S 657: Advanced Topics in Computer Graphics
(3-0) Cr. 3. Repeatable, maximum of 2 times.
Prereq: COM S 228, I E 557/M E 557/CPR E 557/COM S 557
Modern lighting models: Rendering Equation, Spherical Harmonics,
Lafortune, Cook-Torrance. Non-polygonal primitives: volumes, points,
particles. Textures: filtering, reflections creation. Graphics hardware:
pipeline, performance issues, programmability in vertex and fragment
path. Per-pixel lighting. Nonphotorealistic rendering. Radiosity; Ray
tracing.

COM S 661: Advanced Topics in Database Systems
(3-0) Cr. 3. Repeatable.
Prereq: COM S 461 or COM S 561
Advanced topics chosen from the following: database design, data
models, query systems, query optimization, incomplete information,
logic and databases, multimedia databases; temporal, spatial and
belief databases, semistructured data, concurrency control, parallel and
distributed databases, information retrieval, data warehouses, wrappers,
mediators, and data mining.
COM S 665: Advanced Topics in Software Engineering
Prereq: COM S 511
Advanced topics on software repository analysis, data mining and software engineering, software engineering for context-aware and situation-aware computing, distributed development, product lines, safety, security, and reliability, and traceability. Content varies by semester. Maximum 6 credits of COM S 665 may apply toward graduation.

Prereq: COM S 511
Advanced topics on theoretical and technical foundations in Software Engineering. Content varies by semester. Maximum 6 credits of COM S 665 may apply toward graduation.

COM S 665B: Advanced Topics in Software Engineering: Empirical
Cr. 3. Repeatable, maximum of 6 credits.
Prereq: COM S 511
Advanced topics on empirical studies on human factors and other software engineering topics. Content varies by semester. Maximum 6 credits of COM S 665 may apply toward graduation.

COM S 672: Advanced Topics in Computational Intelligence
(3-0) Cr. 3. Repeatable.
Prereq: COM S 572 or COM S 573 or COM S 472 or COM S 474
Selected topics in probabilistic graphical models, causal inference, semantic web, information retrieval, natural language processing, knowledge representation and reasoning, deep learning, embedding, distributed learning, incremental learning, multi-task learning, multi-strategy learning, multi-relational learning, modeling the internet and the web, automated scientific discovery, neural and cognitive modeling. Advanced applications of artificial intelligence in bioinformatics, distributed systems, natural language, multimedia data, decision making, robotics, and more.

COM S 673: Advanced Topics in Computational Models of Learning
(3-0) Cr. 3. Repeatable.
Prereq: COM S 572 or COM S 573 or COM S 472 or COM S 474
Advanced topics in machine learning. Selected topics in computational learning theory, Bayesian and information theoretic models (ML, MAP, MDL, MML), probabilistic graphical models, statistical relational learning, reinforcement learning, and deep learning.

COM S 681: Advanced Topics in Computer Architecture
(Cross-listed with CPR E). (3-0) Cr. 3. Alt. S., offered odd-numbered years.
Prereq: CPR E 581. Repeatable with Instructor permission
Current topics in computer architecture design and implementation. Advanced pipelining, cache and memory design techniques. Interaction of algorithms with architecture models and implementations. Tradeoffs in architecture models and implementations.

COM S 699: Research
Cr. arr. Repeatable.
Prereq: Approval of instructor
Research. Offered on a satisfactory-fail basis only.