Search Results

Materials Science and Engineering

The Materials Science and Engineering Department offers three graduate degree programs representing a range of opportunities for advanced study. While they share several common features, the programs are designed to serve students with a variety of academic backgrounds, technical interests, and career aspirations. In all three programs, it is expected that our graduate students will acquire fundamental understanding of the structure, properties, processing, and performance of materials, underpinned by the foundational pillars of thermodynamics and kinetics and manifested by the immense landscape of engineered materials and the broad range of physical, chemical, and mechanical functionalities that may be realized in them. Our degree programs include diverse combinations of classroom instruction, seminars, laboratory training, guided teaching experiences, individually mentored independent study, and various forms of materials research experiences, all intended to serve students with a wide range of educational goals. Students are admitted with undergraduate or prior graduate qualifications in a variety of technical areas, and each program of study is tailored to meet the needs of the individual student. The accomplishments of our alumni demonstrate that our graduate training enables a wide range of career paths, but specific types of technical employment opportunities are targeted by the program components contained within each of our degree programs, as summarized below. 


...Linguistics and M.A. in...materials by e-mail to...credits (including 510) can count...

E M 510: Continuum Mechanics

(3-0) Cr. 3. F.

Prereq: MATH 385
Introduction to Cartesian tensors as linear vector transformations. Kinematics of continuous deformations, Lagrangian and Eulerian descriptions of motion. Fundamental equations or balance laws of continuous media, linear and angular momentum balance. Conservation laws of momentum and energy. Introduction to constitutive equations of classical elastic solids and simple fluids. Formulations and solutions of some canonical problems.

M E 510: Economics and Policy of Engineered Energy Systems

Cr. 3. Alt. F., offered even-numbered years.

Prereq: Graduate standing.
Economics and policy for U.S. energy systems, with an emphasis on connections to engineering. Topics include: economic analysis of conventional energy commodity markets and technologies, deregulated electricity markets, and emerging energy technologies; demand forecasting; economic and environmental policy in energy; integrated assessment; and semester-specific contemporary issues. Economics majors may not apply this course towards graduation.

M S E 510: Fundamentals of Structure and Chemistry of Materials

(3-0) Cr. 3. F.

Prereq: MATH 165, PHYS 221, and CHEM 167
Geometric and algebraic representations of symmetry. Pair distribution function. Structure, chemistry, and basic properties of covalent, ionic, and metallic solids, glasses and liquids, and polymers. Interactions of materials with particles and waves. Relationships between direct and reciprocal spaces. The kinematical theory of diffraction, with an introduction to the dynamical theory.