Search

Genetics, Development and Cell Biology

This is an archived copy of the 2011-12 Catalog. To access the most recent version of the catalog, please visit http://catalog.iastate.edu.
http://www.gdcb.iastate.edu/

The Department of Genetics, Development and Cell Biology (GDCB) is dedicated to biological discovery and excellence in undergraduate and graduate education. The research and teaching mission of the department is to achieve a greater understanding of fundamental principles of life by focusing on basic cellular and subcellular processes, including genome dynamics, cell structure and function, cellular response to environmental and developmental signals, and molecular mechanisms of development. Recognizing that student education is of paramount importance, GDCB strives for excellence in teaching and research. GDCB plays a leading role in undergraduate and graduate training through a variety of activities including traditional courses, undergraduate internships in research laboratories, and advanced graduate seminar and literature-based courses. Innovative approaches to learning are emphasized throughout the curriculum.

Undergraduate Study

The GDCB Department offers undergraduate majors in conjunction with other departments. Students interested in the areas of genetics, development and cell biology should major in Biology, Genetics or Bioinformatics and Computational Biology (BCBio). The Biology Major is administered and offered jointly by the GDCB and EEOB departments. The GDCB faculty, together with those in EEOB and BBMB, administer and offer the Genetics Major. Each of these majors is available through the College of Liberal Arts and Sciences or through the College of Agriculture and Life Sciences. BCBio is administered by GDCB and the Departments of Computer Science, GDCB, and mathematics Mathematics, and is available through the college of Liberal Arts and Sciences.

The Biology Major and the Genetics Major prepare students for a wide range of careers in biological sciences. Training in Biology or Genetics may lead to employment in teaching, research, or any of a variety of health-related professions. Some of these careers include biotechnology, human and veterinary medicine, agricultural sciences and life science education. BCBio majors are prepared for careers at the interfaces of biological, informational and computational sciences in the above fields. These majors are also excellent preparation for graduate study in bioinformatics, molecular genetics, cell and developmental biology, neuroscience and related fields. Faculty members in GDCB contribute to the undergraduate courses listed below. The full descriptions of these courses can be found in the Biology, Genetics and BCBio sections of the catalog.

BIOL 101Introductory Biology3
BIOL 110Introduction to Biology1
BIOL 111Opportunities in Biology0.5
BIOL 155Human Biology3
BIOL 211Principles of Biology I3
BIOL 211LPrinciples of Biology Laboratory I1
BIOL 212Principles of Biology II3
BIOL 212LPrinciples of Biology Laboratory II1
BIOL 255Fundamentals of Human Anatomy3
BIOL 255LFundamentals of Human Anatomy Laboratory1
BIOL 256Fundamentals of Human Physiology3
BIOL 256LFundamentals of Human Physiology Laboratory1
BIOL 258Human Reproduction3
BIOL 313Principles of Genetics3
BIOL 313LGenetics Laboratory1
BIOL 314Principles of Molecular Cell Biology3
BIOL 328Cell Physiology of Human Diseases3
BIOL 330Principles of Plant Physiology3
BIOL 352Vertebrate Histology4
BIOL 394International Field Trips in Biology1-4
BIOL 423Developmental Biology3
BIOL 423LDevelopmental Biology Laboratory1
BIOL 428Topics in Cell Biology3
BIOL 436Neurobiology3
BIOL 444Introduction to Bioinformatics4
BIOL 490Independent Study1-6
BIOL 494Biology Internship1-3
BIOL 495Undergraduate Seminar1-3
GEN 110Genetics Orientation1
GEN 260Human Heredity and Society3
GEN 308Biotechnology in Agriculture, Food, and Human Health3
GEN 409Molecular Genetics3
GEN 410Analytical Genetics3
GEN 490Independent Studyarr †
GEN 491Undergraduate Seminar1
BCBIO 110BCBIO Orientation0.5
BCBIO 211Introduction to Bioinformatics and Computational Biology3
BCBIO 401Fundamentals of Bioinformatics and Computational Biology I3
BCBIO 402Fundamentals of Bioinformatics and Computational Biology II3
BCBIO 444Introduction to Bioinformatics4
† Arranged with instructor.

Graduate Study

Understanding the genetic blueprint and the functions of cells is critical to virtually all aspects of biology. The basic mission of the Department of Genetics, Development and Cell Biology is to achieve a greater understanding of fundamental principles of life. The GDCB faculty and students conduct hypothesis-driven research into the biology of animals, plants and microbes. While research in GDCB is often based on discovery and analysis of molecular mechanisms of life processes, a true understanding of living organisms will ultimately require the integration of molecular mechanisms in the context of dynamic structural components of the living cell. Thus, research efforts within GDCB use molecular, genetic, biochemical, computational and imaging techniques to study systems at increasingly complex levels of organization.

GDCB faculty contribute to a broad but integrated array of cutting-edge research topics, implementing interactive and multidisciplinary approaches that bridge conventional boundaries, and incorporating experimental and computational biology as complementary approaches. Examples include using genetics and molecular biology to investigate the cellular basis of development, or combining biochemical and computational approaches to study basic subcellular functions, signal transduction or metabolism.

The faculty in the GDCB department train graduate students in several interdepartmental majors/programs including Bioinformatics and Computational Biology, Ecology and Evolutionary Biology, Genetics, Immunobiology, Plant Physiology, Interdisciplinary Graduate Studies, Microbiology, Molecular, Cellular and Developmental Biology, Neuroscience and Toxicology. Graduate work leading to both Master of Science (M.S.) and Doctor of Philosophy (Ph.D.) degrees are available.

Prospective graduate students need a sound background in the physical and biological sciences, as well as Mathematics and English. Interested students should check the links on the GDCB web site ( www.gdcb.iastate.edu/ ) for specific admissions procedures and the latest information about individual faculty and their research programs. The interdepartmental majors and programs require submission of Graduate Record Examination (GRE) aptitude test scores. Advanced GRE scores are recommended. International students whose native language is other than English must also submit TOEFL scores with their application.

Students who are enrolled in the interdepartmental graduate majors with who have affiliations with GDCB are required to actively participate in seminars, research activities, and to show adequate progress and professional development while pursuing their degree. For both the M.S. and Ph.D. degrees, it is expected that research conducted by the student will culminate in the writing and presentation of a thesis or dissertation. The Graduate College, the GDCB Faculty, and the individual student’s major professor and Program of Study Committee provide requirements and guidelines for study. General information about graduate study requirements can be found at the web site for the Graduate College ( www.grad-college.iastate.edu/ ) and requirements for the interdepartmental majors can be found by following the links from the GDCB web site above. Although not a formal requirement, the GDCB faculty recommends that students pursuing the Ph.D. include teaching experience in their graduate training.

Courses primarily for graduate students, open to qualified undergraduate students

GDCB 505. Entrepreneurship in Science and Technology.

(3-0) Cr. 3. F.
High level success at modern science requires entrepreneurship both in and outside the laboratory. Scientists are in a unique position to not only think, but to thrive, "outside of the box" and take unorthodox approaches to research that lead to positive paradigm shifts in our lives. Exploration of many facets of science, technology, industry and commerce, with frequent guest lectures from entrepreneurs.

GDCB 508. Biotechnology in Agriculture, Food, and Human Health.

(3-0) Cr. 3. Prereq: BIOL 211 and 212
Scientific principles and techniques in biotechnology. Products and applications in agriculture, food, and human health. Ethical, legal, and social implications of biotechnology. A research paper is required for graduate credit.

GDCB 510. Transmission Genetics.

(3-0) Cr. 3. F. Prereq: GEN 410 or graduate standing
An in-depth investigation of the modern research practices of transmission genetics. Designed for students interested in genetic research. Topics include: Mendelian genetic analysis, analysis of genetic pathways, mutational analysis of gene function, chromosomal mechanics, gene mapping, extranuclear inheritance, human genetic analysis.

GDCB 511. Molecular Genetics.

(Cross-listed with MCDB). (3-0) Cr. 3. S. Prereq: BIOL 313 and BBMB 405
The principles of molecular genetics: gene structure and function at the molecular level, including regulation of gene expression, genetic rearrangement, and the organization of genetic information in prokaryotes and eukaryotes.

GDCB 512. Plant Growth and Development.

(Cross-listed with MCDB, PLBIO). (2-0) Cr. 2. S. Prereq: BIOL 330 or a course in developmental biology; GDCB 545 or BBMB 404, 405 or GDCB 520
Plant growth and development and its molecular genetic regulation. Hormone biosynthesis, metabolism, and action. Signal transduction in plants.

GDCB 513. Plant Metabolism.

(Cross-listed with PLBIO). (2-0) Cr. 2. F. Prereq: BIOL 330, PHYS 111, CHEM 331; one semester of biochemistry recommended
Photosynthesis, respiration, and other aspects of plant metabolism.

GDCB 520. Genetic Engineering.

(Cross-listed with BBMB, MCDB). (3-0) Cr. 3. Alt. S., offered 2012. Prereq: Gen 411 or BBMB 405
Strategies and rationale of recombinant DNA technologies. The methodology of genetic engineering in basic research and implications for applied research will be considered. Topics include: basic tools of molecular cloning, targeted mutagenesis, fluorescent proteins, protein expression systems, and transgenic model systems.

GDCB 528. Advances in Molecular Cell Biology.

(Cross-listed with MCDB). (3-0) Cr. 3. Alt. F., offered 2012. Prereq: Courses in general cell biology and biochemistry
Cell biological processes including cell signaling, cell division, intracellular trafficking, biogenesis of organelles, cell adhesion and motility.

GDCB 529. Plant Cell Biology.

(Cross-listed with MCDB). (2-0) Cr. 2. Alt. F., offered 2011. Prereq: BIOL 313, 314, 330 or BBMB 405
Organization, function, and development of plant cells and subcellular structures.

GDCB 533. Principles of Developmental Biology.

(Cross-listed with MCDB). (3-0) Cr. 3. Alt. F., offered 2011. Prereq: BIOL 314
Fundamental principles in multicellular development. Emphasis on cellular and molecular regulation of developmental processes, and experimental approaches as illustrated in classical studies and current literature.

GDCB 536. Statistical Genetics.

(Cross-listed with STAT). (3-0) Cr. 3. Alt. F., offered 2012. Prereq: STAT 401, 447; GEN 320 or BIOL 313
Statistical models and methods for genetics covering models of population processes: selection, mutation, migration, population structure, and linkage disequilibrium, and inference techniques: genetic mapping, linkage analysis, and quantitative trait analysis. Applications include genetic map construction, gene mapping, genome-wide association studies (GWAS), inference about population structure, phylogenetic tree reconstruction, and forensic and paternity identification.

GDCB 542. Introduction to Molecular Biology Techniques.

(Cross-listed with B M S, BBMB, EEOB, FS HN, HORT, NREM, NUTRS, V MPM, VDPAM). Cr. 1. Repeatable. F.S.SS. Prereq: Graduate classification
Sessions in basic molecular biology techniques and related procedures. Offered on a satisfactory-fail basis only.

A. DNA Techniques. Includes genetic engineering procedures, sequencing, PCR, and genotyping. (F.S.SS.)
B. Protein Techniques. Includes fermentation, protein isolation, protein purification, SDS-PAGE, Western blotting, NMR, confocal microscopy and laser microdissection, immunophenotyping, and monoclonol antibody production. (S.SS.)
C. Cell Techniques. Includes immunophenotyping, ELISA, flow cytometry, microscopic techniques, and image analysis. (F.S.)
D. Plant Transformation. Includes Agrobacterium and particle gun-mediated transformation of tobacco, Arabidopsis, and maize, and analysis of transformants. (S.)
E. Proteomics. Includes two-dimensional electrophoresis, laser scanning, mass spectrometry, and database searching.
F. Techniques in Metabolomics. metabolomics and the techniques involved in metabolite profiling. For non-chemistry majoring students who are seeking analytical aspects into their biological research projects
G. Genomic Techniques

GDCB 544. Introduction to Bioinformatics.

(Cross-listed with BCB, CPR E, COM S). (4-0) Cr. 4. F. Prereq: MATH 165 or STAT 401 or equivalent
Broad overview of bioinformatics with a significant problem-solving component, including hands-on practice using computational tools to solve a variety of biological problems. Topics include: database searching, sequence alignment, gene prediction, RNA and protein structure prediction, construction of phylogenetic trees, comparative, functional genomics, and systems biology.

GDCB 545. Plant Molecular Biology.

(Cross-listed with MCDB, PLBIO). (3-0) Cr. 3. Alt. F., offered 2011. Prereq: BIOL 314, 330
Organization and function of plant nuclear and organelle DNA; regulation of gene expression. Methods of generating novel genetic variation. Impact of plant biotechnology on agriculture.

GDCB 556. Cellular, Molecular and Developmental Neuroscience.

(Cross-listed with NEURO, B M S). (3-0) Cr. 3. F. Prereq: BIOL 335 or BIOL 436; physics recommended
Fundamental principles of neuroscience including cellular and molecular neuroscience, nervous system development, sensory, motor and regulatory systems.

GDCB 557. Advanced Neuroscience Techniques.

(Cross-listed with NEURO). (2-0) Cr. 2. Alt. S., offered 2013. Prereq: NEURO 556 or equivalent course
Research methods and techniques; exercises and/or demonstrations representing individual faculty specialties.

GDCB 568. Bioinformatics II (Advanced Genome Informatics).

(Cross-listed with BCB, STAT, COM S). (3-0) Cr. 3. S. Prereq: BCB 567, BBMB 301, BIOL 315, STAT 430, credit or enrollment in Gen 411
Advanced sequence models. Basic methods in molecular phylogeny. Hidden Markov models. Genome annotation. DNA and protein motifs. Introduction to gene expression analysis.

GDCB 570. Bioinformatics IV (Computational Functional Genomics and Systems Biology).

(Cross-listed with COM S, BCB, STAT, CPR E). (3-0) Cr. 3. S. Prereq: BCB 567, BIOL 315, COM S 311 and either 208 or 228, Gen 411, STAT 430
Algorithmic and statistical approaches in computational functional genomics and systems biology. Elements of experiment design. Analysis of high throughput gene expression, proteomics, and other datasets obtained using system-wide measurements. Topological analysis, module discovery, and comparative analysis of gene and protein networks. Modeling, analysis, simulation and inference of transcriptional regulatory modules and networks, protein-protein interaction networks, metabolic networks, cells and systems: Dynamic systems, Boolean, and probabilistic models. Multi-scale, multi-granularity models. Ontology-driven, network based, and probabilistic approaches to information integration.

GDCB 590. Special Topics.

Cr. arr. Repeatable. Prereq: Permission of instructor

GDCB 596. Genomic Data Processing.

(Cross-listed with COM S, BCB). (3-0) Cr. 3. F. Prereq: Some experience in computation
Study the practical aspects of genomic data processing with an emphasis on hands-on projects. Topics include base-calling, sequence cleaning and contaminant removal; fragment assembly procedures and EST clustering methods; genome closure strategies and practices; sequence homology search and function prediction; and annotation and submission of GenBank reports. Next-generation sequencing topics like model genome resequencing, short-read assembly and transcriptome abundance measurement will also be covered.

 

Courses for graduate students

GDCB 661. Current Topics in Neuroscience.

(Cross-listed with NEURO, BBMB). (2-0) Cr. 2-3. Repeatable. Alt. S., offered 2012. Prereq: NEURO 556 (or comparable course) or permission of instructor
Topics may include molecular and cellular neuroscience, neurodevelopment, neuroplasticity, neurodegenerative diseases, sensory biology, neural integration, membrane biophysics, neuroethology, techniques in neurobiology and behavior.

GDCB 679. Light Microscopy.

(Cross-listed with MICRO, EEOB). (2-9) Cr. 5. Prereq: Permission of instructor
Current theories encompassing light optics and their applications for specimen preservation, paraffin and resin sectioning, general staining, histochemistry, cytophotometry, immunocytochemistry, autoradiography, image digitization, processing and presentation, and digital macro- and micrography. Limit of 10 students.

GDCB 680. Scanning Electron Microscopy.

(Cross-listed with MICRO, EEOB). (2-9) Cr. 5. Prereq: Permission of instructor
Current theories encompassing scanning electron optics and their applications for high and low vacuum microscopy, specimen chemical and cryopreservation methods, x-ray microanalysis, backscattered and topographic imaging, image digitization, processing and presentation. Limit of 10 students.

GDCB 681. Transmission Electron Microscopy.

(Cross-listed with MICRO, EEOB). (2-9) Cr. 5. Prereq: GDCB 679 and permission of instructor
Current theories encompassing electron optics and their applications for chemical and physical specimen preservation, ultramicrotomy, general staining and cytochemistry, immunocytochemistry, autoradiography, negative staining and shadowing, x-ray microanalysis, image digitization, processing and presentation.

GDCB 690. Seminar in GDCB.

Cr. 1. Repeatable.
Research seminars by faculty, invited speakers, and graduate students. Offered on a satisfactory-fail basis only.

GDCB 691. Faculty Seminar.

Cr. 1. Repeatable.
Faculty research series.

GDCB 696. Research Seminar.

(Cross-listed with AGRON, BBMB, PLBIO, HORT, FOR). Cr. 1. Repeatable.
Research seminars by faculty and graduate students. Offered on a satisfactory-fail basis only.

GDCB 698. Seminar in Molecular, Cellular, and Developmental Biology.

(Cross-listed with MCDB, BBMB, MICRO, V MPM). (2-0) Cr. 1-2. Repeatable. F.S.
Student and faculty presentations.

GDCB 699. Research.

Cr. arr. Repeatable.
Research for thesis or dissertation. Offered on a satisfactory-fail basis only.

I. Research

GDCB 699I. Research.

(Cross-listed with IA LL, A ECL, ANTHR, EEOB). Cr. 1-4. Repeatable.