COMS 5730: Machine Learning
Credits: 3. Contact Hours: Lecture 4.
Prereq: Graduate classification or Permission of Instructor
Basic principles, techniques, and applications of machine learning. Design, analysis, theoretical foundation, implementation, and applications of learning algorithms. Selected machine learning techniques in supervised learning, unsupervised learning, and reinforcement learning, including Bayesian decision theory, computational learning theory, decision trees, linear models, support vector machines, artificial neural networks, instance-based learning, probabilistic graphical models, ensemble learning, clustering algorithms, dimensionality reduction and feature selection. Selected applications in data mining and pattern recognition.