Biochemistry, Biophysics, and Molecular Biology (BBMB)

This is an archived copy of the 2018-2019 catalog. To access the most recent version of the catalog, please visit http://catalog.iastate.edu.

View PDF

Expand all courses

Courses

Courses primarily for undergraduates:

(1-0) Cr. 1. F.


Research activities, career opportunities in biochemistry and biophysics, and an introduction to the structure of biologically important compounds. For students majoring in biochemistry, agricultural biochemistry or biophysics or considering one of these majors.

(0-2) Cr. 1. S.

Prereq: Credit or enrollment in CHEM 177 and CHEM 177L or CHEM 201 and CHEM 201L
Topics in the scientific background of biochemistry, such as macromolecules, metabolism, and catalysis. Laboratory experimentation covers biochemical concepts and the study of bio-molecules including proteins, lipids and nucleic acids. A significant component is practice in scientific communication. For students majoring in biochemistry, agricultural biochemistry or biophysics or considering one of these majors.

Cr. 1. F.

Prereq: Co-enrollment with BBMB 101 highly recommended.
Overview of the program of study, academic planning, resources on campus for the successful transition to Iowa State, team‐building, leadership, and community‐focused activities. For members of the Biochemistry & Biophysics Learning Community. Offered on a satisfactory-fail basis only.

Cr. 1. S.

Prereq: Enrollment in BBMB102 is highly recommended.
Overview of career-building and research resources within BBMB and across ISU, including internships, lab skills, independent research, and leadership opportunities. For members of the Biochemistry & Biophysics Learning Community. Offered on a satisfactory-fail basis only.

(Cross-listed with FS HN). (2-0) Cr. 2. F.


An introduction to the major classes of biomolecules, basic biochemical concepts, enzymology, metabolism and genetic engineering as they apply to the production and flavor of beer. All aspects of the biochemistry of beer will be covered, including the malting of barley, starch conversion, yeast fermentation and the chemical changes that occur during the aging of beer. Intended for non-majors. Natural science majors are limited to elective credit only.

Cr. 2. S.

Prereq: One year of high school chemistry or CHEM 50 and biology.
An introduction to how medicines treat disease, what drug molecules look like, how they function, how they can be toxic, modern therapeutics ranging from over-the-counter pain relievers, antibiotics and anti-depressants, to anti-cancer chemotherapies, a discussion of illegal drugs from toxicity to mechanism of action and potential therapeutic benefits. Intended for students of all majors.

(2-0) Cr. 2. S.

Prereq: Credit or enrollment in CHEM 332
Survey of chemical principles as they apply in biological systems including: water, organic chemistry of functional groups in biomolecules and biochemical cofactors, weak bonds and their contribution to biomolecular structure, oxidation-reduction reactions and redox potential, thermodynamic laws and bioenergetics, chemical equilibria and kinetics, inorganic chemistry in biological systems, data presentation. The subjects will be taught using molecules from biological systems as examples. Intended for majors in biochemistry, biophysics or agricultural biochemistry.

(3-0) Cr. 3. F.S.

Prereq: CHEM 163, CHEM 167, or CHEM 177
Fundamentals necessary for an understanding of biochemical processes. Primarily for students in agriculture. Not acceptable for credit toward a major in biochemistry, biophysics, or agricultural biochemistry. Credit for both BBMB 221 and Chem 231 may not be applied toward graduation.

(3-0) Cr. 3. S.SS.

Prereq: CHEM 231 or CHEM 331
A survey of biochemistry: structure and function of amino acids, proteins, carbohydrates, lipids, and nucleic acids; enzymology; metabolism; biosynthesis; and selected topics. Course offered online. Not acceptable for credit toward a major in biochemistry, biophysics, or agricultural biochemistry.

(3-0) Cr. 3. F.

Prereq: CHEM 231 or CHEM 331; BIOL 212; BIOL 313 and BIOL 314 strongly recommended.
Understanding biological systems at the molecular level; chemistry of biological macromolecules, enzyme function and regulation, metabolic pathways; integration of metabolism in diverse living systems. For students in biology and related majors who do not require the more rigorous treatment of biochemistry found in BBMB 404/405. Course offered online. Not acceptable for credit toward a major in biochemistry, biophysics, or agricultural biochemistry.

(3-0) Cr. 3. F.

Prereq: CHEM 332
A general overview for graduate and advanced undergraduate students in agricultural, biological, chemical and nutritional sciences. Chemistry of amino acids, proteins, carbohydrates, and lipids, vitamins; protein structure; enzymology; carbohydrate metabolism. Course offered online. Credit for both BBMB 420 and the BBMB 404 - 405 sequence may not be applied toward graduation.

(3-0) Cr. 3. S.

Prereq: BBMB 404
A general overview for graduate and advanced undergraduate students in agricultural, biological, chemical, and nutritional sciences. Metabolism of carbohydrates, amino acids, nucleotides and lipids; formation, turnover, and molecular relationships among DNA, RNA, and proteins; genetic code; regulation of gene expression; selected topics in the molecular physiology of plants and animals. Course available online. Credit for both BBMB 420 and the BBMB 404 - BBMB 405 sequence may not be applied toward graduation.

(2-8) Cr. 4. F.

Prereq: Credit or enrollment in BBMB 404 or BBMB 504 and BBMB 505; CHEM 211
Laboratory experimentation and techniques for studying biochemistry, including: chromatographic methods; electrophoresis; spectrophotometry; enzyme purification; enzyme kinetics; and characterization of carbohydrates, proteins, lipids, and nucleic acids. Scientific communication and technical writing are emphasized.

(3-0) Cr. 3. F.

Prereq: CHEM 332, BIOL 314
Structure and function of proteins; enzymology; biological oxidation; chemistry and metabolism of carbohydrates, lipids, amino acids and nucleic acids; protein synthesis and the genetic code; relationship of biochemistry to selected animal diseases. Biochemistry of higher animals emphasized. Not acceptable for credit toward a major in agricultural biochemistry or biochemistry. Acceptable for credit toward a major in biophysics. Credit for both BBMB 420 and the BBMB 404 - 405 sequence may not be applied toward graduation.

(Dual-listed with BBMB 530). (Cross-listed with MICRO). (3-0) Cr. 3. Alt. S., offered odd-numbered years.

Prereq: MICRO 302, MICRO 302L
Survey of the diverse groups of procaryotes emphasizing important and distinguishing metabolic, phylogenetic, morphological, and ecological features of members of those groups.

(Cross-listed with MICRO). (2-6) Cr. 4. F.S.

Prereq: MICRO 302, MICRO 302L, CHEM 332, BIOL 313L
Fundamental techniques and theory for studying the cellular mechanisms, genetic processes and diversity of microbial life. Experimental techniques will include isolation and physiological characterization of bacteria that inhabit different environments as well as an emphasis on genetic and molecular techniques to understand antibiotic resistance processes and mechanisms. Also included are techniques for phylogenetic characterization, measuring gene expression, and genetic manipulation of bacteria. Essential components for the effective communication of scientific results are also emphasized.

(Dual-listed with BBMB 561). (2-0) Cr. 2. S.

Prereq: Credit or enrollment in MATH 166 and CHEM 178 and PHYS 222 or PHYS 112.
Physical methods for the study of molecular structure and organization of biological materials. X-ray diffraction, nuclear magnetic resonance, hydrodynamics and fluorescence spectroscopy. Registration for the graduate credit commits the student to graduate-level examinations, which differ from undergraduate-level examinations in the number and/or difficulty of questions.

Cr. 1-3. Repeatable. F.S.SS.

Prereq: College of Agriculture: junior or senior classification and permission of instructor; College of Liberal Arts and Sciences: permission of instructor.
Independent study with a faculty mentor. No more than 9 credits of BBMB 490 may count toward graduation.

Cr. 1-3. Repeatable. F.S.SS.

Prereq: College of Agriculture: junior or senior classification and permission of instructor; College of Liberal Arts and Sciences: permission of instructor
Independent study with a faculty mentor. No more than 9 credits of BBMB 490 may count toward graduation.

Cr. 1-5. Repeatable. F.S.SS.

Prereq: Permission of faculty member with whom student proposes to work.
Independent research under faculty guidance.

Courses primarily for graduate students, open to qualified undergraduates:

(2-0) Cr. 2. F.

Prereq: CHEM 332 or equivalent
Review of amino acids and proteins, including atomic interactions, thermodynamics, structure and properties of amino acids, post-translational modifications, protein expression, purification and analysis, protein secondary, tertiary and quaternary structure, protein folding, oxygen transport and hemoglobin, models for equilibrium binding, elementary reactions and enzyme kinetics, biosynthesis of amino acids: pathways and mechanisms.

(2-0) Cr. 2. F.

Prereq: CHEM 211, CHEM 332; a previous course in biochemistry is strongly recommended
Examination of catabolic pathways involved in the oxidation of organic and inorganic molecules, and energy metabolism involving inputs from light or other non-light sources. Central metabolism and glycolysis, fermentation, aerobic and anaerobic respiration, photosynthesis.

(2-0) Cr. 2.

Prereq: CHEM 332 or equivalent
Analysis of the structure, function, and synthesis of membranes. Bacterial and eukaryotic membrane characteristics. Membrane transport and signaling mechanisms. Analysis of the structure and function of lipids and membrane proteins.

(2-0) Cr. 2. S.

Prereq: CHEM 332 or equivalent
Analysis of the chemical structure, function, synthesis, and metabolism of nucleic acids. Chemical characterization of nucleotides, polynucleotides, DNA, and RNA. Analysis of transcription, translation, and the genetic code.

(2-0) Cr. 2. F.

Prereq: BIOL 313, BBMB 405, BBMB 502, BBMB 506 and 507 or GEN 409, or equivalent
Biochemical processes that define structure and function of nucleic acids. Emphasis on the molecular processes that take place during synthesis, processing, and function of different RNA species; review of recent advances in RNA research.

(Dual-listed with BBMB 430). (Cross-listed with MICRO). (3-0) Cr. 3. Alt. S., offered odd-numbered years.

Prereq: MICRO 302, MICRO 302L
Survey of the diverse groups of procaryotes emphasizing important and distinguishing metabolic, phylogenetic, morphological, and ecological features of members of those groups.

Cr. 2. Alt. S., offered odd-numbered years.

Prereq: BBMB 504
Advanced concepts of enzyme kinetics and catalysis. Experimental methods for determining kinetic and chemical reaction mechanisms. Enzyme structure/function relationships and the role of dynamics in catalysis.

(Cross-listed with B M S, EEOB, FS HN, GDCB, HORT, NREM, NUTRS, V MPM, VDPAM). Cr. 1. Repeatable. F.S.


Includes genetic engineering procedures, sequencing, PCR, and genotyping. Offered on a satisfactory-fail basis only.

(Cross-listed with B M S, EEOB, FS HN, GDCB, HORT, NREM, NUTRS, VDPAM). Cr. 1. Repeatable. S.SS.

Prereq: Graduate classification
Techniques. Includes: fermentation, protein isolation, protein purification, SDS-PAGE, Western blotting, NMR, confocal microscopy and laser microdissection, Immunophenotyping, and monoclonal antibody production. Sessions in basic molecular biology techniques and related procedures. Offered on a satisfactory-fail basis only.

(Cross-listed with B M S, EEOB, FS HN, GDCB, HORT, NREM, NUTRS, V MPM, VDPAM). Cr. 1. Repeatable. F.S.


Includes: immunophenotyping, ELISA, flow cytometry, microscopic techniques, image analysis, confocal, multiphoton and laser capture microdissection. Offered on a satisfactory-fail basis only.

(Cross-listed with B M S, EEOB, FS HN, GDCB, HORT, NREM, NUTRS, V MPM, VDPAM). Cr. 1. Repeatable. S.


Includes: Agrobacterium and particle gun-mediated transformation of tobacco, Arabidopsis, and maize, and analysis of tranformants. Offered on a satisfactory-fail basis only.

(Cross-listed with B M S, EEOB, FS HN, GDCB, HORT, NREM, NUTRS, V MPM, VDPAM). Cr. 1. Repeatable. F.


Includes: two-dimensional electrophoresis, laser scanning, mass spectrometry, and database searching. Offered on a satisfactory-fail basis only.

(Cross-listed with B M S, EEOB, FS HN, GDCB, HORT, NREM, NUTRS, V MPM, VDPAM). Cr. 1. Repeatable. F.


Includes: metabolomics and the techniques involved in metabolite profiling. For non-chemistry majoring students who are seeking analytical aspects into their biological research projects. Offered on a satisfactory-fail basis only.

(Cross-listed with B M S, EEOB, FS HN, GDCB, HORT, NREM, NUTRS, V MPM, VDPAM). Cr. 1. Repeatable. S.


Offered on a satisfactory-fail basis only.

(Dual-listed with BBMB 461). (2-0) Cr. 2. S.

Prereq: Credit or enrollment in MATH 166 and CHEM 178 and PHYS 222 or PHYS 112.
Physical methods for the study of molecular structure and organization of biological materials. X-ray diffraction, nuclear magnetic resonance, hydrodynamics and fluorescence spectroscopy. Registration for the graduate credit commits the student to graduate-level examinations, which differ from undergraduate-level examinations in the number and/or difficulty of questions.

(1-3) Cr. 2. S.

Prereq: Credit or enrollment in BBMB 461/BBMB 561
Practice in methods of X-ray diffraction, nuclear magnetic resonance, hydrodynamics and fluorescence spectroscopy as applied to macromolecules.

(Cross-listed with BCB, COM S, CPR E, GDCB). (3-0) Cr. 3. F.

Prereq: BCB 567, BBMB 316, GEN 409, STAT 430
Molecular structures including genes and gene products: protein, DNA and RNA structure. Structure determination methods, structural refinement, structure representation, comparison of structures, visualization, and modeling. Molecular and cellular structure from imaging. Analysis and prediction of protein secondary, tertiary, and higher order structure, disorder, protein-protein and protein-nucleic acid interactions, protein localization and function, bridging between molecular and cellular structures. Molecular evolution.

Cr. arr.


By arrangement.

Cr. 1. Repeatable. F.S.

Prereq: Permission and signature of course administrator required.
Workshops in selected topics in biochemistry and biophysics. Credit in this course does not meet the requirement for advanced graduate electives in Biochemistry. Spring only: BBMB Undergraduate Research Symposium participation. Scheduled class meetings are required in addition to attending the symposium.

Courses for graduate students:

(Cross-listed with MICRO, V MPM). (3-0) Cr. 3. Alt. F., offered odd-numbered years.

Prereq: BBMB 405 or BBMB 506 and BBMB 507
Current topics in molecular aspects of immunology: T and B cell receptors; major histocompatibility complex; antibody structure; immunosuppressive drugs and viruses; and intracellular signaling pathways leading to expression of genes that control and activate immune function.

(2-0) Cr. 2. Alt. S., offered odd-numbered years.

Prereq: BBMB 405 or BBMB 420; or BBMB 506 and BBMB 507
Molecular mechanisms of cellular signaling including receptor activation, desensitization and cross talk, signal transduction pathways, and nuclear receptors. Discussion includes a variety of cell surface receptors and their hormone; growth factor and extracellular matrix activators; protein kinases; caspase and transcription factor downstream signals; lipids, gases and cyclic nucleotides as regulators of cell signaling. Course content includes current literature, student and instructor presentations and research proposal writing.

(Cross-listed with GDCB, NEURO). (2-0) Cr. 2-3. Repeatable. Alt. S., offered even-numbered years.

Prereq: NEURO 556 (or comparable course) or permission of instructor
Topics may include molecular and cellular neuroscience, neurodevelopment, neuroplasticity, neurodegenerative diseases, cognitive neuroscience, sensory biology, neural integration, membrane biophysics, neuroethology, techniques in neurobiology and behavior.

(2-0) Cr. 2. Alt. F., offered even-numbered years.

Prereq: BBMB 405 or BBMB 506 and BBMB 507
In-depth discussion of nucleic acid properties, structures and structure/function relationships. Interactions between nucleic acids and proteins will be emphasized.

(Cross-listed with MCDB). (2-0) Cr. 2. Alt. S., offered even-numbered years.

Prereq: BBMB 404 and BBMB 504; and BBMB 506 and BBMB 507; or BBMB 405 or BBMB 505 and or GDCB 511
Analysis of the biochemical processes involved in expression of eucaryotic genes and the regulation thereof, including RNA polymerase, transcriptional regulatory proteins, enhancers and silencers, chromosome structure, termination, RNA processing, RNA transport, RNA turnover, small RNAs, translational regulation, protein turnover.

Cr. 1. Repeatable. F.S.

Prereq: Permission of instructor
Student presentations.

Cr. R. F.S.

Prereq: Permission of instructor
Faculty, staff and invited guest research seminar.

(Cross-listed with AGRON, FOR, GDCB, HORT, PLBIO). Cr. 1. Repeatable.


Research seminars by faculty and graduate students. Offered on a satisfactory-fail basis only.

(Cross-listed with GDCB, MCDB, MICRO, V MPM). (2-0) Cr. 1-2. Repeatable. F.S.


Student and faculty presentations.

Cr. arr. Repeatable. F.S.

Prereq: Permission of instructor