your adventure in

Agricultural Systems Technology

This is an archived copy of the 2017-2018 catalog. To access the most recent version of the catalog, please visit http://catalog.iastate.edu.

View PDF

The Department of Agricultural and Biosystems Engineering offers a bachelor of science degree in agricultural systems technology (AST). 

AST graduates have the ability to apply science and technology to problems related to agriculture; they manage complex agricultural systems for sustainability. They find careers within a variety of agriculturally-related industries, businesses, and organizations, including: agricultural machinery, environment, government, farm builders, grain, feed, seed, fertilizer, chemical, food, biorenewable resources, and production agriculture.

Students majoring in AST B.S. degree choose between two options: Agricultural and Biosystems Management; or Machine Systems. Required AST courses are taught under the course designator TSM (Technology Systems Management).

For more information about the AST degree: http://www.abe.iastate.edu/undergraduate-students/agricultural-systems-technology/

Total Degree Requirement: 120 cr.

Only 65 cr. from a two-year institution may apply which may include up to 16 technical cr.; 9 P-NP cr. of free electives; 2.00 minimum GPA.

Communications Proficiency:

6 cr. of English composition with a C or better and 3 cr. of speech fundamentals with a C or better.

Communication/Library: 13 cr.
ENGL 150Critical Thinking and Communication3
ENGL 250Written, Oral, Visual, and Electronic Composition3
One of the following:3
Business Communication
Proposal and Report Writing
Technical Communication
Advanced Communications for Agriculture and Life Sciences
One of the following:3
Fundamentals of Public Speaking
Professional Communication
Presentation and Sales Strategies for Agricultural Audiences
LIB 160Information Literacy1
Total Credits13
Mathematical, Physical, and Life Sciences: 25 cr.
MATH 151Calculus for Business and Social Sciences3
MATH 145Applied Trigonometry3
STAT 104Introduction to Statistics3
PHYS 111General Physics5
CHEM 163College Chemistry4
CHEM 163LLaboratory in College Chemistry1
BIOL 101Introductory Biology3
or BIOL 211 Principles of Biology I
Plus 3 life sciences credits from approved College of Agriculture and Life Sciences list3
Total Credits25
Business, Humanities, Ethics, and Social Sciences: 18 cr.
ACCT 284Financial Accounting3
ECON 101Principles of Microeconomics3
Ethics Course3
Occupational Safety
Humanities course from College of Agriculture and Life Sciences list3
International Perspectives course from University list3
U.S. Diversity course from University list3
Total Credits18
Technical Core: 30 cr.
TSM 110Introduction to Technology1
TSM 111Experiencing Technology1
TSM 115Solving Technology Problems3
TSM 116Introduction to Design in Technology3
TSM 201Preparing for Workplace Seminar1
TSM 210Fundamentals of Technology3
TSM 214Managing Technology Projects1
TSM 270Principles of Injury Prevention3
TSM 310Total Quality Improvement3
TSM 363Electric Power and Electronics for Agriculture and Industry4
TSM 397Internship in TechnologyR
TSM 399Work Experience in Technology2
TSM 415Applied Project Management in Technology2
TSM 416Technology Capstone3
Total Credits30
No more than 4 cr. of TSM 397 may count toward graduation. 
Agricultural and Biosystems Management Option: 34 cr.
TSM 322Preservation of Grain Quality2
TSM 322LPreservation of Grain Quality Laboratory1
TSM 324Soil and Water Conservation Management3
TSM 325Biorenewable Systems3
TSM 327Animal Production Systems3
TSM 330Agricultural Machinery and Power Management3
TSM 433Precision Agriculture3
ECON 230Farm Business Management3
13 credits of free electives13
Total Credits34
Machine Systems option: 34 cr.
TSM 216Advanced Technical Graphics, Interpretation, and CAD2
A B E 271, A B E 272, or A B E 2731
TSM 240Introduction to Manufacturing Processes3
TSM 330Agricultural Machinery and Power Management3
TSM 335Tractor Power4
TSM 337Fluid Power Systems Technology3
TSM 433Precision Agriculture3
TSM 443Statics and Strength of Materials for Technology3
TSM 465Automation Systems3
9 credits of free electives9
Total Credits34

Agricultural Systems Technology, B.S. - Machine Systems

First Year
FallCreditsSpringCredits 
TSM 1101TSM 1111 
TSM 1163TSM 1153 
ENGL 1503MATH 1513 
LIB 1601PHYS 1115 
MATH 1453US Diversity - see list*3 
CHEM 1634  
CHEM 163L1  
 16 15
Second Year
FallCreditsSpringCredits 
TSM 2011TSM 2162 
TSM 2103A B E 271, A B E 272, or A B E 2731 
TSM 2141TSM 2403 
TSM 2703STAT 1043 
ACCT 2843BIOL 101 or BIOL 2113 
ECON 1013SP CM 212, COMST 214, or AGEDS 3113 
ENGL 2503  
 17 15
Third Year
FallCreditsSpringCreditsSummerCredits
TSM 3354TSM 3103TSM 3970
TSM 3634TSM 3303 
TSM 4333TSM 3373 
ENGL 302, ENGL 309, ENGL 314, or AGEDS 3273Humanities - See list*3 
 Life Science - See list*3 
 14 15 0
Fourth Year
FallCreditsSpringCredits 
TSM 3992TSM 3703 
TSM 4152TSM 4163 
Elective9TSM 4433 
International Perspective - see list*3TSM 4653 
 16 12
*

See list - Speak with an academic adviser for options for each list.

Agricultural Systems Technology, B.S. - Agricultural & Biosystems Management

First Year
FallCreditsSpringCredits 
TSM 1101TSM 1111 
TSM 1163TSM 1153 
ENGL 1503MATH 1513 
LIB 1601PHYS 1115 
MATH 1453ECON 1013 
CHEM 1634  
CHEM 163L1  
 16 15
Second Year
FallCreditsSpringCredits 
TSM 2011TSM 3222 
TSM 2103TSM 322L1 
TSM 2141BIOL 101 or 2113 
TSM 2703ECON 2303 
ACCT 2843STAT 1043 
ENGL 2503SP CM 212, COMST 214, or AGEDS 3113 
 14 15
Third Year
FallCreditsSpringCreditsSummerCredits
TSM 3253TSM 3103TSM 3970
TSM 3273TSM 3243 
TSM 3634TSM 3303 
ENGL 302, ENGL 309, ENGL 314, or AGEDS 3273TSM 3703 
US Diversity - see list*3Life Science - see list*3 
 16 15 0
Fourth Year
FallCreditsSpringCredits 
TSM 3992TSM 4163 
TSM 4152International Perspective - see list*3 
TSM 4333Elective10 
Humanities - see list*3  
Elective3  
 13 16
*

See list - Speak with an academic adviser for options for each list. 

Minor in agricultural systems technology

The Department of Agricultural and Biosystems Engineering offers a minor in agricultural systems technology which may be earned by completing a minimum of 15 credits of technology systems management courses, which includes:

TSM 115Solving Technology Problems3
TSM 210Fundamentals of Technology3
9 credits from:9
Total Quality Improvement
Preservation of Grain Quality
Preservation of Grain Quality Laboratory
Soil and Water Conservation Management
Biorenewable Systems
Animal Production Systems
Agricultural Machinery and Power Management
Tractor Power
Fluid Power Systems Technology
Electric Power and Electronics for Agriculture and Industry
Topics in Technology: Chemical Application Systems
Topics in Technology: Agricultural Safety and Health
Precision Agriculture
• At least six (6) credits of 300-level or higher TSM classes (from the classes listed above)
• At least nine (9) credits that are not used to meet any other department, college, or university requirement.
Total Credits15

Expand all courses

Courses

Courses primarily for undergraduates:

(1-0) Cr. 1. F.

Prereq: AST or I Tec majors only or permission of instructor
Team-oriented introduction to agricultural systems technology and industrial technology. Internships, careers, competencies, academic success strategies, transition to academic life.

(0-2) Cr. 1. S.

Prereq: AST or I Tec majors only or permission of instructor
Laboratory-based, team-oriented experiences in a spectrum of topics common to the practice of technology. Internships, competencies, industry visits.

(2-2) Cr. 3. F.S.

Prereq: Credit or enrollment for credit in MATH 140 or higher
Solving technology problems and presenting solutions through data analysis and technical report writing. Problem solving cycle, unit conversion, unit factor method, SI units, significant digits, graphing, curve fitting and computer programming. Use of modern hardware and software tools for applied data-driven problem solving.

(2-2) Cr. 3. F.S.


Use of parametric solid modeling software to create three dimensional solid models and document parts and assemblies. Includes national and international standards for documentation, design projects, and teamwork. Rapid prototyping design creation, 3D printing, assemblies, rendering, and detailing technical drawings.

(Cross-listed with A B E). (1-0) Cr. 1. F.S.

Prereq: Prereq: Sophomore classification in AE, AST, BSE, or I TEC
8 week course. Professionalism in the context of the engineering/technical workplace. Development and demonstration of key workplace competencies: teamwork, initiative, communication, and engineering/technical knowledge. Resumes; Cover Letters; Behavioral Based Interviewing; Industry Speakers; Preparation for internships experiences.

(3-0) Cr. 3. F.S.

Prereq: TSM 115 or equivalent; and MATH 140 or higher
Introduction to problem solving related to fundamental agricultural and/or industrial technology systems and mathematical tools needed for data analysis. Basic laws of energy, force, and mass applied to technology systems such as: mechanical power transmission; heating, ventilation and air conditioning; electrical circuits. Introduction to engineering economics: using the time value of money to make economic decisions.

(2-0) Cr. 1. F.S.

Prereq: TSM 201 or A B E 201; and sophomore classification in A E, AST, BSE, or ITEC.
8 week course. Introduction to project management principles. Use of project management in technology-based projects for academic, industry, and personal use.

(1-2) Cr. 2. F.S.

Prereq: TSM 116
Advanced computer-aided-design topics incorporating 3D design and documentation used in manufacturing settings. Topics include: geometric dimensioning and tolerancing, weldments, sheet metal parts, advanced visualization, feature based design of parts and assemblies.

(1-4) Cr. 3. F.S.


A study of selected materials and related processes used in manufacturing. Lecture and laboratory activities focus on materials, properties, and processes. This includes plastics and metals.

(3-0) Cr. 3. F.


Basic foundations of injury causation and prevention in home, motor vehicle, public, and work environments. Offered online only.

(3-0) Cr. 3. S.

Prereq: STAT 101 or STAT 104, junior classification
Introduction to the fundamental concepts of TQM - Deming style of management, statistical studies to understand the behavior of products, processes, or services, and how to define and document processes and customer focus. Introduction to continuous improvement tools and methods - emphasis on team work and problem solving skills.

(2-0) Cr. 2. S.

Prereq: MATH 140 or higher
Principles and management for grain quality preservation. Quality measurement. Drying and storage. Fans and airflow through grain. Handling methods.

(0-3) Cr. 1. S.

Prereq: Credit or enrollment for credit in TSM 322
Hands-on experiences in the principles and management for grain quality preservation. Quality measurement. Drying and storage. Fans and airflow through grain. Handling methods. System planning. Industry tour.

(2-2) Cr. 3. S.

Prereq: MATH 140 or MATH 151
Introduction to engineering and conservation principles applied to the planning of erosion control systems, water control structures, water quality management, and drainage and irrigation systems.

(Cross-listed with A B E). (3-0) Cr. 3. F.

Prereq: ECON 101; CHEM 163 or higher; and MATH 140 or higher
Converting biorenewable resources into bioenergy and biobased products. Biorenewable concepts as they relate to drivers of change, feedstock production, processes, products, co-products, economics, and transportation/logistics.

(3-0) Cr. 3. F.

Prereq: TSM 210
Confined animal feeding operations. Environmental controls for animal production. Response of animals to the environment. Heat and moisture balance in animal housing. Ventilation, water, feed handling, air pollution, odor and waste management systems.

(2-3) Cr. 3. S.

Prereq: MATH 145 or MATH 151; and TSM 210
Selection, sizing, and operational principles of tractors and machinery systems. Cost analysis and computer techniques applied to planning and management of agricultural machine systems. Principles, operation, and application of agricultural machinery.

(3-3) Cr. 4. F.

Prereq: TSM 210, MATH 145
Theory and construction of tractor engines, mechanical power trains and hydraulic systems. Introduction to traction, chassis mechanics, and hydraulic power.

(2-2) Cr. 3. S.

Prereq: TSM 210
Fundamental fluid power principles. Fluid properties. Function and performance of components such as pumps, valves, actuators, hydrostatic transmission. Analysis of fluid power circuits and systems. Introduction to electrohydraulics. Course includes lab using fluid power trainers.

(2-2) Cr. 3. F.

Prereq: TSM 216, TSM 240, MATH 151
NC programming operations for CNC mills and lathes. Transfer of parts descriptions into detailed process plans, tool selection, and NC codes. Computer assisted CAD/CAM NC programming for 2D/3D machining and machining of student programmed NC code in lab.

(3-3) Cr. 4. F.

Prereq: TSM 210
Basic electricity. Electrical safety, wiring, 3-phase service, controls, and motors for agricultural and industrial applications. Planning building lighting and electrical systems. Electronics to sense, monitor, and control mechanical processes.

(3-0) Cr. 3. S.

Prereq: TSM 270, junior standing
Identifies safety and health risks in industrial work environments. Focus on how managers and supervisors meet their responsibilities for providing a safe workplace for their employees. Includes the identification and remediation of workplace hazards.

(2-0) Cr. 2. S.


Introduction to occupational safety and health administration and management. Focus on development and management of safety programs and obtaining employee involvement in occupational safety programs.

(2-0) Cr. 2. Alt. F., offered odd-numbered years.

Prereq: TSM 371
A review of the common legal issues facing safety practitioners in the workplace. Includes OSHA, EPA and DOT regulations; workers' compensation, as well as common liability issues.

(3-0) Cr. 3. Alt. F., offered even-numbered years.


An overview of the current problems and technology in the fields of fire protection and fire prevention, with emphasis on industrial needs, focusing on the individual with industrial safety responsibilities.

Cr. 1-4. F.S.SS.


Offered as demand warrants. Web-based instruction.

Cr. 1-4. F.S.SS.


Offered as demand warrants. Web-based instruction.

Cr. 1-4. F.S.SS.


Offered as demand warrants. Web-based instruction.

Cr. 1-4. F.S.SS.


Offered as demand warrants. Web-based instruction.

Cr. 1-4. F.S.SS.


Offered as demand warrants. Web-based instruction.

Cr. 1-4. F.S.SS.


Offered as demand warrants. Web-based instruction.

Cr. 1-4. F.S.SS.


Offered as demand warrants. Web-based instruction.

Cr. 1-4. F.S.SS.


Offered as demand warrants. Web-based instruction.

Cr. 1-4. F.S.SS.


Offered as demand warrants. Web-based instruction.

Cr. 1-4. F.S.SS.


Offered as demand warrants. Web-based instruction.

Cr. R. Repeatable. F.S.SS.

Prereq: At least 45 credits of coursework, AST or I Tec major, and approval of internship coordinator
A supervised work experience in an approved learning setting with application to technology practices and principles. Reporting during work experience and self and employer evaluation required. Minimum GPA requirement.

Cr. 2. Repeatable, maximum of 4 credits. F.S.SS.

Prereq: TSM 397 in the preceding semester and approval of internship coordinator
Written reports and reflection on work experience. A maximum of 4 credits of TSM 399 maybe be used toward the total credits required for graduation.

(3-0) Cr. 3.

Prereq: Junior or senior classification
Use of the Theory of Constraints as a way of approaching problem solving, win-win negotiation, project planning and effective delegation in the context of engineering/business systems. Team projects aimed at improving design outcomes.

(3-0) Cr. 3.

Prereq: Junior or senior classification
Focus on functions that determine the effectiveness of an entire organization. Generic Theory of Constraints solutions to production, distribution, and project management are compared to traditional solutions. Strategy for improvements discovered using simulations.

(2-0) Cr. 2. F.S.

Prereq: Senior classification with less than 32 credits remaining; TSM 214; and credit or enrollment for credit in TSM 310.
Implementation of project management principles using case studies and teamwork; problem definition in a technology context; development of charter for technology capstone project.

(1-4) Cr. 3. F.S.

Prereq: TSM 415 in previous semester
Application of project management tools to a technology capstone project; development and evaluation of potential project solutions using tools from the technology curriculum; problem resolution emphasizing communication, critical analysis, and planning techniques; presentation of project through oral presentation and written reports with input from client, faculty, and other stakeholders.

(Dual-listed with TSM 533). (2-2) Cr. 3. F.

Prereq: MATH 140 or higher
Geographic information systems (GIS) and global positioning systems (GPS). Hardware systems for precision farming emphasized. Autosteering and automatic implement control systems. Collection and management of yield data. Sampling strategies for precision farming. Introduction to building fertilizer prescriptions and recommendations. Economic benefits of precision farming systems.

(2-2) Cr. 3. F.

Prereq: TSM 310
Introduction to lean tools and techniques that reduce costs and improve business performance: JIT, VSM, SMED, Kaizen, Standard Work, Cycle Time Reduction, Takt Time, A3, etc. Emphasis on lean thinking and competency development through application: simulations, case studies, industry guests and mentors, teamwork and industry-related lean projects.

(2-2) Cr. 3. S.

Prereq: PHYS 111; and MATH 145 or MATH 151
Application of standard analytic and computer based techniques of solving problems related to force and moments. The properties of materials and how to select appropriate materials for a particular design is reviewed.

(3-0) Cr. 3. F.

Prereq: TSM 216; TSM 240; and STAT 101 or STAT 104
Fundamental principles and practices in designing, evaluating, and organizing new or existing facilities. Emphasis on CAD-based facility design, production flow analysis, activity relationship analysis, materials handling, office layout, supporting services design, and facility cost analysis.

(2-2) Cr. 3. S.

Prereq: TSM 363
Theory and applications of automation systems. Emphasizes features, capabilities, design and programming skills of Programmable Logic Controller (PLC) based industrial control systems. Introduction to industrial robots and sensors.

(3-0) Cr. 3. Alt. F., offered odd-numbered years.

Prereq: MATH 151 or higher
A qualitative and quantitative introduction to health effects of chemical, biological, and physical hazards in a workplace.

(0-2) Cr. 1. Alt. F., offered odd-numbered years.

Prereq: Credit or enrollment for credit in TSM 470
Introduction to equipment, methods, and strategies to measure, evaluate, control, and research hazards and risk in the workplaces.

(Dual-listed with TSM 577). (3-0) Cr. 3. Alt. F., offered even-numbered years.

Prereq: MATH 151; and STAT 101 or STAT 104
Risk analysis and management focuses on developing a risk oriented pattern of thinking that is appropriate for today's complex world. The tools that will be gained in this course will be helpful in recognizing, understanding, and analyzing hazards and risks in modern complex systems.

Cr. 1-4. Repeatable.

Prereq: Junior or senior classification, permission of instructor, and completion of an independent study contract and approval by department
A maximum of 4 credits of TSM 490 may be used toward the total credits required for graduation.

Cr. 1-4. Repeatable.

Prereq: Junior or senior classification, permission of instructor, and completion of an independent study contract and approval by department
A maximum of 4 credits of TSM 490 may be used toward the total credits required for graduation.

Cr. 1-4. Repeatable.

Prereq: Junior or senior classification, permission of instructor, and completion of an independent study contract and approval by department
A maximum of 4 credits of TSM 490 may be used toward the total credits required for graduation.

Cr. 1-4. Repeatable.

Prereq: Junior or senior classification, permission of instructor, and completion of an independent study contract and approval by department
A maximum of 4 credits of TSM 490 may be used toward the total credits required for graduation.

Cr. 1-4. Repeatable.

Prereq: Junior or senior classification, permission of instructor, and completion of an independent study contract and approval by department
A maximum of 4 credits of TSM 490 may be used toward the total credits required for graduation.

Cr. 1-4. Repeatable.

Prereq: Junior or senior classification, permission of instructor, and completion of an independent study contract and approval by department
A maximum of 4 credits of TSM 490 may be used toward the total credits required for graduation.

Cr. 1-4. Repeatable.


Offered as demand warrants.

Cr. 1-4. Repeatable.


Offered as demand warrants.

Cr. 1-4. Repeatable.


Offered as demand warrants.

Cr. 1-4. Repeatable.


Offered as demand warrants.

Cr. 1-4. Repeatable.


Offered as demand warrants.

(Cross-listed with A B E). Cr. 1-2. Repeatable. F.S.SS.

Prereq: Permission of instructor
Preparation for, or follow-up of, study abroad experience (496). For preparation, course focuses on understanding the tour destination through readings, discussions, and research on topics such as the regional industries, climate, crops, culture, economics, food, geography, government, history, natural resources, and public policies. For follow-up, course focuses on presentations by students, report writing, and reflection. Students enrolled in this course intend to register for 496 the following term or have had taken 496 the previous term.
Meets International Perspectives Requirement.

(Cross-listed with A B E). Cr. 1-4. Repeatable. F.S.SS.

Prereq: Permission of instructor
Tour and study at international sites relevant to disciplines of industrial technology, biological systems engineering, agricultural systems technology, and agricultural engineering. Location and duration of tours will vary. Trip expenses paid by students. Pre-trip preparation and/or post-trip reflection and reports arranged through 495.
Meets International Perspectives Requirement.

Courses primarily for graduate students, open to qualified undergraduates:

(Dual-listed with TSM 433). (2-2) Cr. 3. F.

Prereq: MATH 140 or higher
Geographic information systems (GIS) and global positioning systems (GPS). Hardware systems for precision farming emphasized. Autosteering and automatic implement control systems. Collection and management of yield data. Sampling strategies for precision farming. Introduction to building fertilizer prescriptions and recommendations. Economic benefits of precision farming systems.

(3-0) Cr. 3. S.

Prereq: Permission of instructor
Application of six sigma philosophy to advance product design and process control. Application of value steam mapping to the existing manufacturing system to develop future continuous improvement plans. Application of Taguchi Parameter design methodologies for optimizing the performance of manufacturing processes. Application of Taguchi Tolerance Design methodologies for product design.

(2-0) Cr. 2. Repeatable, maximum of 2 times.


Exploration and analysis of current safety and public health issues impacting society. The focus will be on topics that impact individuals in work, public, and home environments.

(Dual-listed with TSM 477). (3-0) Cr. 3. Alt. F., offered even-numbered years.

Prereq: MATH 151; and STAT 101 or STAT 104
Risk analysis and management focuses on developing a risk oriented pattern of thinking that is appropriate for today's complex world. The tools that will be gained in this course will be helpful in recognizing, understanding, and analyzing hazards and risks in modern complex systems.

Cr. 1-4. Repeatable, maximum of 4 credits.

Prereq: Graduate classification in industrial and agricultural technology, permission of instructor, and completion of an independent study contract approved by major professor

Cr. 1-4. Repeatable, maximum of 4 credits.

Prereq: Graduate classification in industrial and agricultural technology, permission of instructor, and completion of an independent study contract approved by major professor

Cr. 1-4. Repeatable, maximum of 4 credits.

Prereq: Graduate classification in industrial and agricultural technology, permission of instructor, and completion of an independent study contract approved by major professor

Cr. 1-4. Repeatable, maximum of 4 credits.

Prereq: Graduate classification in industrial and agricultural technology, permission of instructor, and completion of an independent study contract approved by major professor

Cr. 1-4. Repeatable, maximum of 4 credits.

Prereq: Graduate classification in industrial and agricultural technology, permission of instructor, and completion of an independent study contract approved by major professor

Cr. 1-3. Repeatable.

Prereq: Permission of instructor

(Cross-listed with A B E). Cr. 1. F.S.SS.


A technical paper draft based on the M.S. thesis or creative component is required of all master's students. This paper must be in a form that satisfies the requirements of some specific journal and be ready for submission. A technical presentation based on M.S. thesis or creative component is required of all master's students. This presentation must be in a form that satisfies the normal presentation requirements of a professional society. The presentation itself (oral or poster) may be made at a professional society meeting or at any international, regional, state, or university conference/event as long as the presentation content and form conforms to normal expectations. Offered on a satisfactory-fail basis only.

Cr. 1-3. Repeatable, maximum of 6 credits.


A discipline-related problem to be identified and completed under the direction of the program adviser. Three credits required for all nonthesis master's degree students.

Courses for graduate students:

(Cross-listed with A B E). (1-0) Cr. 1. F.


Keys to starting a good MS thesis or PhD dissertation project. Learning how to begin formulating research questions. Review of literature, research hypotheses, objectives, methods, making figures and tables, and discussing results. Discussion of appropriate outlets including peer-reviewed journals, patents and intellectual property rights, responsible conduct, plagiarism, authorship, and reproducible research. Using peer review, conducting a peer review, and responding to feedback. Other topics may include on-campus library resources, data management, and time management.

(3-0) Cr. 3.

Prereq: STAT 401 or equivalent
Techniques for evaluating learners, facilities, programs, and staff utilizing theories for developing measurement instruments. Outcomes assessment is emphasized.

(3-0) Cr. 3.

Prereq: Permission of instructor
A definition of the faculty role in technology and engineering disciplines, including strategies for dealing with programs, personnel, and constituencies are presented. Leadership skills involving team formation, team operation, and conflict resolution are addressed.

(3-0) Cr. 3.

Prereq: Permission of instructor
Basic concepts, trends, practices, and factors influencing curriculum development, techniques, organization and procedures. Emphasis will be given to course development using the backward design process.

(Cross-listed with A B E). Cr. 1-3. Repeatable. F.S.SS.

Prereq: Graduate classification and permission of instructor
Graduate student experience in the agricultural and biosystems engineering departmental teaching program.

Cr. R.

Prereq: permission of major professor and approval by department chair, graduate classification
One semester and one summer maximum per academic year professional work period. Offered on a satisfactory-fail basis only.

(Cross-listed with A B E). Cr. 1. F.S.SS.


A technical paper draft based on the dissertation is required of all Ph.D. students. This paper must be in a form that satisfies the requirements of some specific journal and be ready for submission. A technical presentation based on the dissertation is required of all Ph.D. students. This presentation must be in a form that satisfies the normal presentation requirements of a professional society. The presentation itself (oral or poster) may be made at a professional society meeting or at any international, regional, state, or university conference/event as long as the presentation content and form conforms to normal expectations. Offered on a satisfactory-fail basis only.