your adventure in

Civil Engineering

This is an archived copy of the 2019-2020 catalog. To access the most recent version of the catalog, please visit http://catalog.iastate.edu.

View PDF

http://www.ccee.iastate.edu/

Administered by the Department of Civil, Construction and Environmental Engineering

For undergraduate curriculum in civil engineering leading to the degree bachelor of science. The Civil Engineering program is accredited by the Engineering Accreditation Commission of ABET, http://www.abet.org.

Civil engineers apply principles of motion and materials to plan, design, construct, maintain, and operate public and private facilities, while working under economic, social, and environmental constraints. Commonly included are transportation systems; bridges and buildings; water supply, pollution control, waste management, irrigation, and drainage systems; river and harbor improvements; dams and reservoirs. Civil engineering also includes planning, designing, and executing surveying operations and locating, delimitating, and delineating physical and cultural features on the earth's surface. Research, testing, sales, management, and related functions are also a part of civil engineering. Work on campus is supplemented by inspection trips, which furnish an opportunity for firsthand study of engineering systems in operation, as well as projects under construction.

Environmental engineering, as a specialty area in civil engineering, is concerned with protecting the public and natural health; providing an ample safe water supply; managing solid and hazardous waste; treating and disposing of domestic and industrial wastewaters and waste; resource recovery; providing adequate drainage of urban and rural areas for sanitation; and controlling water quality, soil contamination, and air pollution. The environmental option for the civil engineering degree replaces some of the courses and electives in the general curriculum with further courses in chemistry, biology, and microbiology as well as specific topics in environmental engineering and design.

The civil engineering curriculum equips students with a broad education that includes technical skills in analysis and design and professional practices such as communication, teamwork, leadership, and ethics.

Program educational objectives:  By three to five years after graduation, graduates of the civil engineering program will have:

  1. Pursued successful careers and expertise in civil engineering or a related profession. 
  2. Collaborated effectively on multi-disciplinary teams to address the needs of society and the environment. 
  3. Pursued lifelong learning, professional development, and licensure as appropriate for their career goals. 

The faculty encourages the students to develop their professional skills by participating in cooperative education, internships, or progressive summer engineering employment and study abroad programs. Qualified juniors and seniors interested in graduate studies may apply to the Graduate College to concurrently pursue the bachelor degree and either a master of science in Civil Engineering or a master of business administration in the College of Business Administration.  These students would have an the opportunity to graduate in five years with both degrees.

Curriculum in Civil Engineering (General)

Administered by the Department of Civil, Construction and Environmental Engineering.

Leading to the degree bachelor of science.

Total credits required: 129. Any transfer credit courses applied to the degree program require a grade of C or better (but will not be calculated into the ISU cumulative GPA, Basic Program GPA or Core GPA). See also Basic Program and Special Programs.  Note: Department does not allow Pass/Not Pass credits to be used to meet graduation requirements.
International Perspectives: 3 cr.1
U.S. Diversity: 3 cr.1
Communication Proficiency/Library requirement
ENGL 150Critical Thinking and Communication (Must have a C or better in this course)3
ENGL 250Written, Oral, Visual, and Electronic Composition (Must have a C or better in this course)3
LIB 160Information Literacy1
Social Sciences and Humanities: 12 cr.2

Complete 12 cr. with 6 cr. at 200-level or above.

Basic Program: 27 cr.3

A minimum GPA of 2.00 required for this set of courses, including any transfer courses (please note that transfer course grades will not be calculated into the Basic Program GPA). See Requirement for Entry into Professional Program in College of Engineering Overview section.

CHEM 177General Chemistry I4
ENGL 150Critical Thinking and Communication (Must have a C or better in this course)3
ENGL 250Written, Oral, Visual, and Electronic Composition (Must have a C or better in this course)3
ENGR 101Engineering OrientationR
C E 160Engineering Problems with Computational Laboratory 33
LIB 160Information Literacy1
MATH 165Calculus I4
MATH 166Calculus II4
PHYS 221Introduction to Classical Physics I5
Total Credits27
Math and Physical Science: 18 cr.
CHEM 177LLaboratory in General Chemistry I1
CHEM 178
178L
General Chemistry II
and Laboratory in College Chemistry II 4
4-5
or PHYS 222 Introduction to Classical Physics II
GEOL 201Geology for Engineers and Environmental Scientists3
MATH 265Calculus III4
MATH 266Elementary Differential Equations3
Statistics Elective 23
Total Credits18-19
Civil Engineering Core: 30 cr. Minimum GPA of 2.00 required for this set of courses to graduate (including transfer courses; please note that transfer course grades will not be calculated into the Core GPA).
E M 274Engineering Statics3
E M 324Mechanics of Materials3
E M 345Engineering Dynamics3
E M 378Mechanics of Fluids3
C E 206Engineering Economic Analysis and Professional Issues in Civil Engineering3
C E 326Principles of Environmental Engineering3
C E 332Structural Analysis I3
C E 355Principles of Transportation Engineering3
C E 360Geotechnical Engineering3
C E 372Engineering Hydrology and Hydraulics3
Total Credits30
Other Remaining Courses: 42 cr.
C E 105Introduction to the Civil Engineering Profession1
C E 111Fundamentals of Surveying I3
C E 170Graphics for Civil Engineering2
C E 306Project Management for Civil Engineers3
Any two of the following three courses:6
Structural Steel Design I
Reinforced Concrete Design I
Foundation Engineering
C E 382Design of Concretes3
C E 485Civil Engineering Design3
E M 327Mechanics of Materials Laboratory1
SP CM 212Fundamentals of Public Speaking3
Civil Engineering Design Elective 23
Technical Communication Elective 23
Engineering Topics Electives 211
Total Credits42
Seminar/Co-op/Internships: R cr.
C E 403Program and Outcome AssessmentR
Notes.
  1. These university requirements will add to the minimum credits of the program unless the university-approved courses are also approved by the department to meet other course requirements within the degree program. U.S. diversity and international perspectives courses may not be taken Pass/Not Pass.
  2. Choose from department approved list. At least six of eleven credits must be C E or Con E courses for the Engineering Topics Electives.
  3. See Basic Program for Professional Engineering Curricula for accepted substitutions for curriculum designated courses in the Basic Program.
  4.  Students who transfer in with CHEM 167/CHEM 167L will be able to take CHEM 178/CHEM 178L to complete the program's Chemistry requirement.  

See also: A 4-year plan of study grid showing course template by semester for Civil Engineering

Curriculum in Civil Engineering with Environmental Option

Administered by the Department of Civil, Construction and Environmental Engineering.

Leading to the degree bachelor of science.

Total credits required: 130. Any transfer credit courses applied to the degree program require a grade of C or better (but will not be calculated into the ISU cumulative GPA, Basic Program GPA or Core GPA). See also Basic Program and Special Programs.
International Perspectives: 3 cr.1
U.S. Diversity: 3 cr.1
Communication Proficiency/Library requirement:
ENGL 150Critical Thinking and Communication (Must have a C or better in this course)3
ENGL 250Written, Oral, Visual, and Electronic Composition (Must have a C or better in this course)3
LIB 160Information Literacy1
Social Sciences and Humanities: 12 cr.2

Complete 12 cr. with 6 cr. at 200-level or above.

Basic Program: 27 cr3. Minimum GPA of 2.00 required for this set of courses to graduate, including any transfer courses (please note that transfer course grades will not be calculated into the Basic Program GPA).
CHEM 177General Chemistry I4
ENGL 150Critical Thinking and Communication (Must have a C or better in this course)3
ENGL 250Written, Oral, Visual, and Electronic Composition (Must have a C or better in this course)3
ENGR 101Engineering OrientationR
C E 160Engineering Problems with Computational Laboratory 33
LIB 160Information Literacy1
MATH 165Calculus I4
MATH 166Calculus II4
PHYS 221Introduction to Classical Physics I5
Total Credits27
Math and Physical Science: 27 cr.
CHEM 177LLaboratory in General Chemistry I1
CHEM 178General Chemistry II 43
CHEM 178LLaboratory in College Chemistry II 41
BIOL 173Environmental Biology3
or BIOL 211 Principles of Biology I
CHEM 231Elementary Organic Chemistry3
CHEM 231LLaboratory in Elementary Organic Chemistry1
GEOL 201Geology for Engineers and Environmental Scientists3
MATH 265Calculus III4
MATH 266Elementary Differential Equations3
MICRO 201Introduction to Microbiology2
Statistics Elective 23
Total Credits27
Civil/Env Engineering Core: 27 cr. Minimum GPA of 2.00 required for this set of courses to graduate (including transfer courses; please note that transfer course grades will not be calculated into the Core GPA).
E M 274Engineering Statics3
E M 324Mechanics of Materials3
E M 378Mechanics of Fluids3
C E 206Engineering Economic Analysis and Professional Issues in Civil Engineering3
C E 326Principles of Environmental Engineering3
C E 332Structural Analysis I3
C E 355Principles of Transportation Engineering3
C E 360Geotechnical Engineering3
C E 372Engineering Hydrology and Hydraulics3
Total Credits27
Other Remaining Courses: 37 cr.
C E 105Introduction to the Civil Engineering Profession1
C E 111Fundamentals of Surveying I3
C E 170Graphics for Civil Engineering2
C E 306Project Management for Civil Engineers3
C E 334Reinforced Concrete Design I3
C E 382Design of Concretes3
C E 420Environmental Engineering Chemistry3
C E 421Environmental Biotechnology3
C E 428Water and Wastewater Treatment Plant Design3
C E 485Civil Engineering Design3
E M 327Mechanics of Materials Laboratory1
SP CM 212Fundamentals of Public Speaking3
Civil Engineering Design Elective 23
Technical Communication Elective 23
Total Credits37
Seminar/Co-op/Internships: R cr.
C E 403Program and Outcome AssessmentR
Co-op/Internship optional.
Notes.
  1. These university requirements will add to the minimum credits of the program unless the university-approved courses are also approved by the department to meet other course requirements within the degree program. U.S. diversity and international perspectives courses may not be taken Pass/Not Pass.
  2. Choose from department approved list. At least six of eleven credits must be C E or Con E courses for the Engineering Topics Electives.
  3. See Basic Program for Professional Engineering Curricula for accepted substitutions for curriculum designated courses in the Basic Program.
  4. Students who transfer in with CHEM 167 General Chemistry for Engineering Students/CHEM 167L Laboratory in General Chemistry for Engineering will be able to take CHEM 178 General Chemistry II/CHEM 178L Laboratory in College Chemistry II to complete the program's Chemistry requirement.

See also: A 4-year plan of study grid showing course template by semester for Civil Engineering

Civil Engineering, B.S. - environmental specialization

First Year
FallCreditsSpringCredits
C E 1603C E 1051
CHEM 1774C E 1113
CHEM 177L1C E 1702
ENGL 1503PHYS 2215
LIB 1601MATH 1664
MATH 1654SSH Elective3
ENGR 101RC E 120 (optional)R
C E 120 (optional)R 
 16 18
Second Year
FallCreditsSpringCredits
CHEM 1783C E 2063
CHEM 178L1CHEM 2313
E M 2743CHEM 231L1
ENGL 2503E M 3243
MATH 2654Statistics Elective3
GEOL 2013MATH 2663
 17 16
Third Year
FallCreditsSpringCredits
C E 3323C E 3063
C E 3603C E 3343
E M 3783BIOL 173 or 2113
Technical Communications Elective3C E 3553
C E 3263C E 3723
E M 3271C E 3823
 16 18
Fourth Year
FallCreditsSpringCredits
C E 4203C E 403R
C E 4213C E 4283
MICRO 2012C E 4853
CE Design Elective3SSH Electives6
SSH Elective3 
SP CM 2123 
 17 12

Civil Engineering, B.S. - GENERAL Program

First Year
FallCreditsSpringCredits
C E 1603C E 1051
CHEM 1774C E 1113
CHEM 177L1C E 1702
ENGL 1503MATH 1664
MATH 1654PHYS 2215
LIB 1601SP CM 2123
ENGR 101RC E 120 (optional)R
C E 120 (optional)R 
 16 18
Second Year
FallCreditsSpringCredits
ENGL 2503C E 2063
CHEM 1783E M 3243
CHEM 178L1E M 3453
E M 2743E M 3783
MATH 2654MATH 2663
GEOL 2013Statistics Elective3
 17 18
Third Year
FallCreditsSpringCredits
C E 3263C E 334 (CE 460 may be substituted for CE 333 or CE 334)3
C E 3323C E 3723
C E 3603C E 3823
E M 3271C E 3063
C E 3553Engr Topic Elective3
Technical Communication3SSH Elective3
 16 18
Fourth Year
FallCreditsSpringCredits
C E 333 (CE 460 may be substituted for CE 333 or CE 334)3C E 403R
Engr Topic Elective5C E 4853
SSH Elective6CE Design Elective3
 Engr Topic Elective3
 SSH Elective3
 14 12

Graduate Study

The Department of Civil, Construction and Environmental Engineering offers graduate programs for the degrees of master of engineering, master of science, and doctor of philosophy with a major in civil engineering with areas of specialization in structural engineering, environmental engineering, construction engineering and management, geotechnical engineering, civil engineering materials, transportation engineering, and intelligent infrastructure engineering. The department also offers graduate minors of 9 to 15 credits of coursework to students from other engineering departments.

Candidates for the degrees of master of engineering and master of science are required to complete a total of 30 acceptable graduate credits. The master of engineering degree involves all course work. The master of science degree requires the preparation of a thesis or creative component.

Candidates for the doctor of philosophy degree are required to complete a minimum of 72 acceptable graduate credits. Normal prerequisite for major graduate work in civil engineering is the completion of an undergraduate curriculum substantially equivalent to that required of engineering students at this university. Due to the diversity of interests within the graduate programs in civil engineering, a student may qualify for graduate study even though undergraduate or prior graduate training has been in a discipline other than engineering. Supporting work will be required depending upon the student’s background and area of interest. The department participates in the interdepartmental graduate programs in transportation, environmental science, wind energy science, engineering and policy and biorenewable resources and technology.

The department also offers graduate certificates in construction management, environmental engineering, and environmental systems. The construction management certificate requires 12 graduate credits (nine credits of “core courses” and three credits of approved “elective courses”).

The environmental engineering or environmental systems certificate requires 12 graduate credits (six credits of "core courses", six credits of approved "elective courses") and a seminar course or an approved equivalent.

Additional information about graduate programs, research and admission criteria are available on the department's website http://www.ccee.iastate.edu/academics/graduate/.

Expand all courses

Courses

Courses primarily for undergraduates:

(1-0) Cr. 1. F.S.


Overview of the civil engineering profession in regards to its nature and scope. Exploration of the various specialty areas within civil engineering through team activities. Review and guidance in relation to academic degree options, career avenues and professional practices involving communication, teamwork, leadership, ethics, networking, life-long-learning goals, and mentoring.

(2-3) Cr. 3. F.S.

Prereq: MATH 165, C E 160, credit or enrollment in C E 170
Introduction to error theory. Fundamentals of observing distances, elevations, and angles. Traversing. Irregular areas. Circular and parabolic curves. Earthwork including mass diagrams. Construction staking. Computer applications and introduction to photogrammetry, geographic information systems and global positioning systems technology.

Cr. R. Repeatable.


Integration of first-year students into the Civil Engineering program. Assignments and activities involving teamwork, academic preparation, study skills, and preparation for entry into the Civil Engineering profession. Completed both individually and in learning teams under the direction of faculty and peer mentors. Offered on a satisfactory-fail basis only.

(2-2) Cr. 3. F.S.

Prereq: Credit or enrollment in MATH 165
Formulation of engineering problems using spreadsheets and Visual Basic for Application for solution. Presenting results using word processing, tables, and graphs. Introduction to engineering economics and statics. Civil engineering examples. Only one of ENGR 160, A B E 160, AER E 160, C E 160, CH E 160, CPR E 185, E E 185, I E 148, M E 160 and S E 185 may count towards graduation.

(0-4) Cr. 2. F.S.


Fundamental graphics. Introduction to computer aided drafting and modeling. Civil engineering applications.

(3-0) Cr. 3. F.S.

Prereq: MATH 166, ENGL 250; C E 105; ECON 101 recommended
Engineering/managerial analysis of the economic aspects of project proposals. Alternative sources of funds; time value of money; expenditure of capital funds and methods of evaluating alternative projects. Professionalism, licensure, liability, ethics, leadership, social responsibility, creative and critical thinking, and applications/impacts of regulations in civil engineering.

(2-3) Cr. 3. F.S.

Prereq: ENGL 250, C E 105
Project management, including work breakdown structures, cost estimating, scheduling, and project control. Civil engineering project life cycle, including planning, design, construction, and maintenance processes. Techniques in interpretation of contract documents, plan reading, and in estimating quantities.

(2-2) Cr. 3. F.S.

Prereq: CHEM 177 or CHEM 178, MATH 166, credit or enrollment in E M 378
Introduction to environmental problems, water quality indicators and requirements, potable water quality and quantity objectives, water sources and treatment methods; water pollution control objectives and treatment methods; survey of solid and hazardous waste management and air pollution control.

(2-2) Cr. 3. F.S.

Prereq: E M 324
Loads, shear, moment, and deflected shape diagrams for beams and framed structures. Deformation calculations. Approximate methods. Application of consistent deformation methods to continuous beams and frames. Application of displacement or slope deflection methods to continuous beams and frames without sway. Influence lines for determinate and indeterminate structures. Computer applications to analyze beams and frames. Validation of computer results.

(3-1) Cr. 3. F.S.

Prereq: C E 332, E M 327
AISC design methods for structural steel buildings. Design of steel tension members. Design of steel members for flexure. Design of members for compression. Beam-Column member design. Introduction to steel building systems. Steel moment frames and concentrically braced frames. Design of commonly used connections in steel buildings.

(2-2) Cr. 3. F.S.

Prereq: C E 332, E M 327
ACI design methods for structural concrete members. Emphasis on the analysis and design for flexure of singly reinforced and doubly reinforced sections, T-section, one-way slabs, short columns, and isolated footings. Analysis and design for shear, and serviceability. Bond, anchorage, and development of reinforcement.

(3-0) Cr. 3. F.S.

Prereq: C E 111
Introduction to planning, design, and operations of transportation facilities. Road user, vehicle and roadway characteristics. Technological, economic and environmental factors. Asset management, transportation planning, capacity analysis, traffic control, geometric design, traffic safety.

(2-3) Cr. 3. F.S.

Prereq: E M 324, credit or enrollment in GEOL 201
Introduction to geotechnical engineering and testing. Identification and classification tests, soil water systems, principles of settlement, stresses in soils, and shear strength testing; slope stability, retaining walls, bearing capacity.

(3-0) Cr. 3. F.S.

Prereq: E M 378, a course in statistics from the approved department list
The hydrologic cycle: precipitation, infiltration, runoff, evapotranspiration, groundwater, and streamflow. Hydrograph analysis, flood routing, frequency analysis and urban hydrology. Applied hydraulics including pipe and channel flow with design applications in culverts, pumping, water distribution, storm and sanitary sewer systems. Design project required.

(2-3) Cr. 3. F.S.

Prereq: E M 274
Physical and chemical properties of bituminous, portland, and other cements; aggregate properties and blending; mix design and testing of concretes; admixtures, mixing, handling, placing and curing; principles of pavement thickness design.

(0-2) Cr. 1. F.S.

Prereq: E M 274
For Con E students only. Physical and chemical properties of portland cement and p.c. concrete. Mix design and testing of p.c. concrete. Credit for both C E 382 and C E 383 may not be applied for graduation.

(Cross-listed with A B E, E E). (2-2) Cr. 3. F.

Prereq: Junior classification in engineering
Multi-disciplinary approach to sustainable engineering and international development, sustainable development, appropriate design and engineering, feasibility analysis, international aid, business development, philosophy and politics of technology, and ethics in engineering. Engineering-based projects from problem formulation through implementation. Interactions with partner community organizations or international partners such as nongovernment organizations (NGOs). Course readings, final project/design report.
Meets International Perspectives Requirement.

Cr. 3. Repeatable, maximum of 2 times. S.

Prereq: CE 355 or equivalent
Background on historical civil engineering design and construction. Impacts of historical, cultural, social, economic, ethical, environmental, and political conditions on the design and construction of various infrastructure projects outside the United States. Global road safety and intermodal operations. Addressing transportation problems in a large metropolitan area.
Meets International Perspectives Requirement.

Cr. R. Repeatable. SS.

Prereq: Permission of department and Engineering Career Services
Summer professional work period. Students must register for this course prior to commencing work. Offered on a satisfactory-fail basis only.

Cr. R. Repeatable. F.S.

Prereq: Permission of department and Engineering Career Services
Professional work period. One semester per academic or calendar year. Students must register for this course before commencing work. Offered on a satisfactory-fail basis only.

Cr. R. F.S.

Prereq: Verification of undergraduate application for graduation by the end of the first week of class. Permission of instructor for students who are scheduled for summer graduation
Assessment of C E Curriculum and educational objectives. Assessments to be reviewed by the CE Department to incorporate potential improvements. Offered on a satisfactory-fail basis only.

(Dual-listed with C E 513). (Cross-listed with ENSCI, GEOL). (2-2) Cr. 3. Alt. S., offered odd-numbered years.

Prereq: GEOL 100 or GEOL 201, algebra and trigonometry
Seismic, gravity, magnetic, resistivity, electromagnetic, and ground-penetrating radar techniques for shallow subsurface investigations and imaging. Data interpretation methods. Lab emphasizes computer interpretation packages. Field work with seismic - and resistivity-imaging systems and radar.

(2-3) Cr. 3. S.

Prereq: C E 111
Legal principles affecting the determination of land boundaries, public domain survey systems. Locating sequential and simultaneous conveyances. Record research, plat preparation, and land description. Study of selected court cases.

(Dual-listed with C E 520). (Cross-listed with ENSCI). (2-3) Cr. 3. F.

Prereq: C E 326, CHEM 178
Principles of chemical and physical phenomena applicable to the treatment of water and wastewater and natural waters; including chemical equilbria, reaction kinetics, acid-base equilibria, chemical precipitation, redox reactions, and mass transfer principles. Individual laboratory practicals and group projects required.

(Dual-listed with C E 521). (2-2) Cr. 3. F.

Prereq: C E 326
Fundamentals of biochemical and microbial processes applied to environmental engineering processes, role of microorganisms in wastewater treatment and bioremediation, bioenergetics and kinetics, metabolism of xenobiotic compounds, waterborne pathogens and parasites, and disinfection. Term paper and oral presentation.

(Dual-listed with C E 524). (Cross-listed with A B E, ENSCI). (1-0) Cr. 1.

Prereq: Either PHYS 221 or CHEM 178 and either MATH 166 or 3 credits in statistics. Senior classification or above
1 cr. per module. Module A prereq for all modules; module B prereq for D and E.

(Dual-listed with C E 524A). (Cross-listed with A B E, ENSCI). (1-0) Cr. 1.

Prereq: Either PHYS 221 or CHEM 178 and either MATH 166 or 3 credits in statistics. Senior classification or above
1 cr. per module. Module A prereq for all modules; module B prereq for D and E.

(Dual-listed with C E 524B). (Cross-listed with A B E, ENSCI). (1-0) Cr. 1.

Prereq: Either PHYS 221 or CHEM 178 and either MATH 166 or 3 credits in statistics. Senior classification or above
1 cr. per module. Module A prereq for all modules; module B prereq for D and E.

(Dual-listed with C E 524C). (Cross-listed with A B E, ENSCI). (1-0) Cr. 1.

Prereq: C E 524A; PHYS 221 or CHEM 178; MATH 166 or 3 credits in statistics. Senior classification or above.

(Dual-listed with C E 524D). (Cross-listed with A B E, ENSCI). (1-0) Cr. 1.

Prereq: C E 524A, C E 524B; Either PHYS 221 or CHEM 178 and either MATH 166 or 3 credits in statistics. Senior classification or above

(Dual-listed with C E 524E). (Cross-listed with A B E, ENSCI). (1-0) Cr. 1.

Prereq: Either PHYS 221 or CHEM 178 and either MATH 166 or 3 credits in statistics. Senior classification or above
1 cr. per module. Module A prereq for all modules; module B prereq for D and E.

(2-2) Cr. 3. S.

Prereq: C E 326
Physical, chemical and biological processes for the treatment of water and wastewater including coagulation and flocculation, sedimentation, filtration, adsorption, chemical oxidation/disinfection, fixed film and suspended growth biological processes and sludge management.

(Dual-listed with C E 539). (Cross-listed with GEOL). (2-2) Cr. 3. Alt. S., offered even-numbered years.

Prereq: GEOL 100 or GEOL 201, algebra and trigonometry
Physics of elastic-wave propagation. Seismic surveys in environmental imaging, engineering, and petroleum exploration. Reflection and refraction techniques. Data collection, processing, and geological interpretation. Field work with state-of-the-art equipment.

(Dual-listed with C E 546). (2-2) Cr. 3. Alt. S., offered odd-numbered years.

Prereq: C E 333, C E 334
Bridge design in structural steel and reinforced concrete. Application of AASHTO Bridge Design Specifications. Analysis techniques for complex structures. Preliminary designs include investigating alternative structural systems and materials. Final designs include preparation of design calculations and sketches.

(Dual-listed with C E 548). (2-2) Cr. 3. Alt. S., offered even-numbered years.

Prereq: C E 333, C E 334
Building design in structural steel and reinforced concrete. Investigation of structural behavior. Gravity and lateral load resisting systems. Application of current building codes and design specifications. In-depth analysis of gravity and wind loads on buildings. Review of building designs. Preliminary designs include investigating alternative structural systems. Approximate methods of structural analysis for gravity and lateral loads. Final designs include preparation of design calculations and sketches.

(Dual-listed with C E 549). (3-0) Cr. 3.

Prereq: Senior classification in Engineering or permission of instructor
Introductory and advanced topics in structural health monitoring (SHM) of aeronautical, civil, and mechanical systems. Topics include sensors, signal processing in time and frequency domains, data acquisition and transmission systems, design of integrated SHM solutions, nondestructive evaluation techniques, feature extraction methods, and cutting-edge research in the field of SHM. Graduate students will have a supervisory role to assist students in 449 and an additional design project or more in-depth analysis and design.

(Dual-listed with C E 551). (3-0) Cr. 3. F.

Prereq: C E 355, STAT 101 or STAT 105
Urban transportation planning context and process. Project planning and programming. Congestion, mitigation, and air quality issues. Transportation data sources. Travel demand and network modeling. Use of popular travel demand software and applications of geographic information systems.

(2-2) Cr. 3. F.

Prereq: C E 306, C E 355
Introduction to highway planning and design. Design, construction, and maintenance of highway facilities. Level-of-service, stopping sight distance, highway alignment, earthwork and pavement design. Design project, oral reports and written reports. Computer applications.

(3-0) Cr. 3. F.S.

Prereq: C E 360
Fundamentals of foundation engineering. Exploration, sampling, and in-situ tests. Shallow and deep foundations. Settlement and bearing capacity analyses. Stability of excavations and earth retaining structures.

(Dual-listed with C E 567). (2-2) Cr. 3. S.

Prereq: C E 360, C E 382 or C E 383
Soil and aggregate physical, chemical and biological stabilization procedures. Stabilization analysis and design. Ground modification and compaction methods. Geosynthetics application and design.

(Dual-listed with C E 573). (3-0) Cr. 3. F.

Prereq: C E 372
Principles of groundwater flow, hydraulics of wells, superposition, slug and pumping tests, streamlines and flownets, and regional groundwater flow. Contaminant transport. Computer modeling. Design project. Extra assignments required for graduate students.

(Dual-listed with C E 583). (3-0) Cr. 3. S.

Prereq: C E 360 and C E 382
Analysis, behavior, performance, and structural design of pavement systems. Topics include climate factors, rehabilitation, life cycle design economics, material and system response, pavement foundations and traffic loadings. Development of models for and analysis of pavement systems. Use of transfer functions relating pavement response to pavement performance. Evaluation and application of current and evolving pavement design practices and procedures. Mechanistic-based pavement design techniques and concepts. Analysis of the effects of maintenance activities on pavement performance and economic evaluation of pavement systems.

(Dual-listed with C E 584). (2-3) Cr. 3.

Prereq: C E 382
Asphalt binder characterization, fundamentals of asphalt rheology, asphalt materials behavior under loading and temperature effects. High-strength, lightweight, fiber-reinforced, and self-consolidating portland cement concretes, mix design, properties, advanced performance testing. A term project is required for graduate level only.

(2-2) Cr. 3. F.S.

Prereq: C E 206, C E 306, C E 326, C E 333 or C E 334, C E 355, C E 360, C E 372, C E 382, SP CM 212. Course enrollment limited to final graduating semester.
The civil engineering design process, interacting with the client, identification of the engineering problems, development of a technical proposal, identification of design criteria, cost estimating, planning and scheduling, codes and standards, development of feasible alternatives, selection of best alternative, and oral presentation.

(Dual-listed with C E 588). (3-0) Cr. 3. F.

Prereq: Junior or higher classification in engineering or science
Sustainable planning, life cycle analysis, appropriate engineering design, investment levels and overall rating of civil engineering infrastructure systems, including highway, bridge, airport, rail, dam, power and port facilities. Complementary assessment of future civil infrastructure sustainability impacts and challenges in relation to autonomous and electric vehicle development. Overview regarding US and global availability and supply of critical infrastructure commodities (e.g., cement, stone, metals, phosphorus, uranium, etc.). Directed course readings and multiple project/design reports.

(Dual-listed with C E 589). Cr. 3. F.S.

Prereq: C E 382
Overview of pavement preservation and pavement rehabilitation techniques. Overview and selection of materials used in pavement preservation and rehabilitation strategies. Evaluating suitability of pavement preservation and pavement rehabilitation strategies based on existing structure, pavement distresses and non-condition factors. Use of recycled pavement materials in pavement reconstruction techniques.

Cr. 1-3. Repeatable. F.S.SS.

Prereq: Permission of instructor
Independent study in any phase of civil engineering. Pre-enrollment contract required. No more than 6 credits of C E 490 may be counted towards engineering topics electives.

Cr. 1-3. Repeatable. F.S.SS.

Prereq: Permission of instructor
Independent study in any phase of civil engineering. Pre-enrollment contract required. No more than 6 credits of C E 490H may be counted towards engineering topics electives.

Courses primarily for graduate students, open to qualified undergraduates:

(3-0) Cr. 3. F.

Prereq: Credit or enrollment in CON E 422 or C E 306 or graduate standing
Application of engineering and management control techniques to construction project development from conceptualization to notice to proceed. Emphasis is on managing complex projects using 5-dimensional project management theory.

(3-0) Cr. 3. S.

Prereq: Credit or enrollment in CON E 422 or C E 594A or permission of instructor
Application of engineering and management control techniques to complex construction projects. Construction project control techniques, project administration, construction process simulation, quality management, and productivity improvement programs.

(3-0) Cr. 3. S.

Prereq: Credit or enrollment in CON E 422 or C E 594A or permission of instructor
Fundamental theories and applied methods for financial management of construction projects and companies. Construction accounting, cash flow analysis, financial planning and management, and risk analysis. Case studies.

(3-0) Cr. 3. F.

Prereq: C E 333, C E 360, CON E 322, CON E 340 or graduate standing
Advanced design of concrete formwork and falsework systems. Design for excavation and marine construction including temporary retaining structures and cofferdams. Aggregate production operations, including blasting, crushing, and conveying systems. Rigging system design.

(3-0) Cr. 3.

Prereq: Graduate standing or permission of instructor
Study of cases involving disputes, claims, and responsibilities encountered by management in construction contract documents. Analysis of methods of resolving differences among the owner, architect, engineer, and construction contractor for a project.

(3-0) Cr. 3.

Prereq: Graduate standing or permission of instructor
Information technologies including microcomputer based systems, management information systems, automation technologies, computer-aided design, and expert systems and their application in the construction industry. Overview of systems acquisition, communications, and networking.

(Dual-listed with C E 413). (Cross-listed with ENSCI, GEOL). (2-2) Cr. 3. Alt. S., offered odd-numbered years.

Prereq: GEOL 100 or GEOL 201, algebra and trigonometry
Seismic, gravity, magnetic, resistivity, electromagnetic, and ground-penetrating radar techniques for shallow subsurface investigations and imaging. Data interpretation methods. Lab emphasizes computer interpretation packages. Field work with seismic - and resistivity-imaging systems and radar.

(Dual-listed with C E 420). (Cross-listed with ENSCI). (2-3) Cr. 3. F.

Prereq: C E 326, CHEM 178
Principles of chemical and physical phenomena applicable to the treatment of water and wastewater and natural waters; including chemical equilbria, reaction kinetics, acid-base equilibria, chemical precipitation, redox reactions, and mass transfer principles. Individual laboratory practicals and group projects required.

(Dual-listed with C E 421). (Cross-listed with ENSCI). (2-2) Cr. 3. F.

Prereq: C E 326
Fundamentals of biochemical and microbial processes applied to environmental engineering processes, role of microorganisms in wastewater treatment and bioremediation, bioenergetics and kinetics, metabolism of xenobiotic compounds, waterborne pathogens and parasites, and disinfection. Term paper and oral presentation.

(Cross-listed with ENSCI). (2-2) Cr. 3.

Prereq: C E 421 or C E 521
Fundamentals of biochemical processes, aerobic growth in a single CSTR, multiple events in complex systems, and techniques for evaluating kinetic parameters; unit processes of activated sludge system, attached growth systems, stabilization and aerated lagoon systems, biosolids digestion and disposal, nutrient removal, and anaerobic treatment systems.

(Cross-listed with ENSCI). (2-2) Cr. 3.

Prereq: C E 520
Material and energy balances. Principles and design of physical-chemical unit processes; including screening, coagulation, flocculation, chemical precipitation, sedimentation, filtration, lime softening and stabilization, oxidation, adsorption, membrane processes, ion exchange and disinfection; recovery of resources from residuals and sludges; laboratory exercises and demonstrations; case studies in mineral processing and secondary industries.

(Dual-listed with C E 424). (Cross-listed with A B E, ENSCI). (1-0) Cr. 1.

Prereq: Either PHYS 221 or CHEM 178 and either MATH 166 or 3 credits in statistics. Senior classification or above
1 cr. per module. Module A prereq for all modules; module B prereq for D and E.

(Dual-listed with C E 424A). (Cross-listed with A B E, ENSCI). (1-0) Cr. 1.

Prereq: Either PHYS 221 or CHEM 178 and either MATH 166 or 3 credits in statistics. Senior classification or above
1 cr. per module. Module A prereq for all modules; module B prereq for D and E.

(Dual-listed with C E 424B). (Cross-listed with A B E, ENSCI). (1-0) Cr. 1.

Prereq: Either PHYS 221 or CHEM 178 and either MATH 166 or 3 credits in statistics. Senior classification or above
1 cr. per module. Module A prereq for all modules; module B prereq for D and E.

(Dual-listed with C E 424C). (Cross-listed with A B E, ENSCI). (1-0) Cr. 1.

Prereq: C E 524A; PHYS 221 or CHEM 178; MATH 166 or 3 credits in statistics. Senior classification or above.

(Dual-listed with C E 424D). (Cross-listed with A B E, ENSCI). (1-0) Cr. 1.

Prereq: C E 524A, C E 524B; Either PHYS 221 or CHEM 178 and either MATH 166 or 3 credits in statistics. Senior classification or above

(Dual-listed with C E 424E). (Cross-listed with A B E, ENSCI). (1-0) Cr. 1.

Prereq: Either PHYS 221 or CHEM 178 and either MATH 166 or 3 credits in statistics. Senior classification or above
1 cr. per module. Module A prereq for all modules; module B prereq for D and E.

(Cross-listed with ENSCI). (3-0) Cr. 3.

Prereq: C E 326 or background courses in both environmental chemistry and microbiology; junior or higher standing
Evaluation, characterization, assessment, planning and design of solid and hazardous waste management systems, regulatory requirements, material characterization and collection, minimization and recycling, energy and materials recovery, composting, off-gas treatment, incineration, stabilization, and landfill design. Design of treatment and disposal systems, including physical, chemical, and biological treatment, solidification, incineration, secure landfill design, and final disposal site closure plus restoration.

(3-0) Cr. 3. F.

Prereq: C E 332
Analysis of indeterminate structural problems by the consistent deformation and generalized direct displacement methods. Direct stiffness method for 2-D frames, grids, 3-D frames. Special topics for the stiffness method.

(3-0) Cr. 3.

Prereq: C E 333
Theoretical background and development of AISC Specification equations. In-depth analysis and design of tension members, columns, beams, beam-columns, and plate girders. Emphasis on Load and Resistance Factor Design. Elastic and inelastic buckling of members and member elements. Investigation of amplification factors for members subject to combined bending and axial load and to combined bending and torsion. Effective Length Method and Direct Analysis Method of design. Approximate Second-Order Analysis. Biaxial bending. Torsion and combined bendin and torsion of W-shapes.

(2-2) Cr. 3.

Prereq: C E 334
Advanced topics in reinforced concrete analysis and design. Moment-curvature and load-deflection behavior. Design of reinforced concrete long columns, two-way floor slabs, and isolated and combined footings. Design and behavior considerations for torsion, biaxial bending, and structural joints. Strut-and-tie modeling.

(3-0) Cr. 3.

Prereq: C E 334
Design of prestressed concrete structures, review of hardware, stress calculations, prestress losses, section proportioning, flexural design, shear design, deflections, and statically indeterminate structures.

(Dual-listed with C E 439). (Cross-listed with GEOL). (2-2) Cr. 3. Alt. S., offered even-numbered years.

Prereq: GEOL 100 or GEOL 201, algebra and trigonometry
Physics of elastic-wave propagation. Seismic surveys in environmental imaging, engineering, and petroleum exploration. Reflection and refraction techniques. Data collection, processing, and geological interpretation. Field work with state-of-the-art equipment.

(3-0) Cr. 3.

Prereq: E M 345 and credit or enrollment in C E 532
Single and multi-degree-of-freedom systems. Free and forced vibrations. Linear and nonlinear response. Modal analysis. Response spectra. Seismic analysis.

(3-0) Cr. 3.

Prereq: C E 532
Use of the finite element method for the analysis of complex structural configurations. Plane stress, solid, Axisymmetric and plate elements. Numerical integration. Use of general purpose finite element programs.

(3-0) Cr. 3.

Prereq: C E 333, C E 334
Seismic hazard in the United States. Engineering characteristics of ground motions. Structural damage in past earthquakes. Capacity design philosophy for seismic resistant design. Conceptual design of structures. Capacity design process including design of structural members.

(Dual-listed with C E 446). (2-2) Cr. 3. Alt. S., offered odd-numbered years.

Prereq: C E 333, C E 334
Bridge design in structural steel and reinforced concrete. Application of AASHTO Bridge Design Specifications. Analysis techniques for complex structures. Preliminary designs include investigating alternative structural systems and materials. Final designs include preparation of design calculations and sketches.

(3-0) Cr. 3.

Prereq: C E 334, E M 514, MATH 266
Bending and buckling of thin plate components in structures utilizing classical and energy methods. Analysis of shell roofs by membrane and bending theories.

(Dual-listed with C E 448). (2-2) Cr. 3. Alt. S., offered even-numbered years.

Prereq: C E 333, C E 334
Building design in structural steel and reinforced concrete. Investigation of structural behavior. Gravity and lateral load resisting systems. Application of current building codes and design specifications. In-depth analysis of gravity and wind loads on buildings. Review of building designs. Preliminary designs include investigating alternative structural systems. Approximate methods of structural analysis for gravity and lateral loads. Final designs include preparation of design calculations and sketches.

(Dual-listed with C E 449). (3-0) Cr. 3.

Prereq: Senior classification in Engineering or permission of instructor
Introductory and advanced topics in structural health monitoring (SHM) of aeronautical, civil, and mechanical systems. Topics include sensors, signal processing in time and frequency domains, data acquisition and transmission systems, design of integrated SHM solutions, nondestructive evaluation techniques, feature extraction methods, and cutting-edge research in the field of SHM. Graduate students will have a supervisory role to assist students in 449 and an additional design project or more in-depth analysis and design.

(Dual-listed with C E 451). (3-0) Cr. 3. F.

Prereq: C E 355, STAT 101 or STAT 105
Urban transportation planning context and process. Project planning and programming. Congestion, mitigation, and air quality issues. Transportation data sources. Travel demand and network modeling. Use of popular travel demand software and applications of geographic information systems.

(3-0) Cr. 3. Alt. S., offered even-numbered years.

Prereq: C E 355
Engineering aspects of highway traffic safety. Reduction of crash incidence and severity through highway design and traffic control. Accident analysis. Safety in highway design, maintenance, and operation.

(3-0) Cr. 3. F.

Prereq: C E 355
Driver, pedestrian, and vehicular characteristics. Traffic characteristics; highway capacity; traffic studies and analyses. Principles of traffic control for improved highway traffic service. Application of appropriate computing software and tools.

(3-0) Cr. 3.

Prereq: C E 355, a Statistics course at the 300 level or higher
Analysis of transportation data, identification of data sources and limitations. Static and dynamic data elements such as infrastructure characteristics, flow and operations-related data elements. Spatial and temporal extents data for planning, design, operations, and management of transportation systems. Summarizing, analyzing, modeling, and interpreting data. Use of information technologies for highways, transit, and aviation systems.

(3-0) Cr. 3. Alt. S., offered odd-numbered years.

Prereq: C E 355, 3 credits in statistics or probability
Travel studies and analysis of data. Transportation systems forecasts and analyses. Statewide, regional, and local transportation system planning. Network level systems planning and operations. Optimization of systems.

(3-0) Cr. 3. Alt. F., offered odd-numbered years.

Prereq: C E 355
Study of designated problems in traffic engineering, transportation planning, and development. Forecasting and evaluation of social, economic, and environmental impacts of proposed solutions; considerations of alternatives. Formulation of recommendations and publication of a report. Presentation of recommendations in the host community.

(3-0) Cr. 3. Alt. F., offered even-numbered years.

Prereq: C E 355
Engineering management techniques for maintaining and managing infrastructure assets. Systematic approach to management through value engineering, engineering economics, and life cycle cost analysis. Selection and scheduling of maintenance activities. Analysis of network-wide resource needs. Project level analysis.

(3-0) Cr. 3.

Prereq: C E 360
Nature of soil deposits, seepage, settlement and secondary compression, consolidation theories and analysis, failure theories, stress paths, introduction to critical state soil mechanics, constitutive models, soil strength under various drainage conditions, liquefaction of soil, pore pressure parameters, selection of soil parameters.

(3-0) Cr. 3.

Prereq: C E 460
Analysis and design of shallow and deep foundations, lateral earth pressure theories and retaining structures, field investigations, in-situ testing, and foundations on problematic soils. Foundation engineering reports.

(2-3) Cr. 3. Alt. F., offered even-numbered years.

Prereq: C E 360
Identification and mapping of engineering soils from aerial photos, maps, and soil surveys. Planning subsurface investigations, geomaterials prospecting, geotechnical hazards, geomorphology, in situ testing and sampling, geophysical site characterization, instrumentation and monitoring, interpretation of engineering parameter values for design.

(2-2) Cr. 3. Alt. F., offered odd-numbered years.

Prereq: C E 360
Principles of geo-engineering laboratory testing including the conduct, analysis, and interpretation of permeability, consolidation, triaxial, direct and ring shear, and direct simple shear tests. Issues regarding laboratory testing versus field testing and acquisition, transport, storage, and preparation of samples for geotechnical testing. Field and laboratory geotechnical monitoring techniques, including the measurements of deformation, strain, total stress and pore water pressure.

(3-0) Cr. 3.

Prereq: C E 560
Application of numerical methods to analysis and design of foundations, underground structures, and soil-structure interaction. Application of slope stability software. Layered soils, bearing capacity and settlement for complex geometries, wave equation for piles, and foundation vibrations.

(2-3) Cr. 3. S.

Prereq: C E 382
Atoms and molecules, crystal chemistry, clay minerals, structure of solids, phase transformations and phase equilibria. Surfaces and interfacial phenomena, colloid chemistry, mechanical properties. Applications to soils and civil engineering materials. Overview of state-of-the-art instrumental techniques for analysis of the physicochemical properties of soils and civil engineering materials.

(Dual-listed with C E 467). (2-2) Cr. 3. S.

Prereq: C E 360, C E 382 or C E 383
Soil and aggregate physical, chemical and biological stabilization procedures. Stabilization analysis and design. Ground modification and compaction methods. Geosynthetics application and design.

(3-0) Cr. 3. Alt. F., offered odd-numbered years.

Prereq: C E 360, E M 345
Dynamic soil properties and their measurement. Foundation dynamics and soil-structure interaction. Sources and characteristics of dynamic loads. Vibration of single- and multi-degree-of-freedom systems. Vibration of continuous systems; 1D, 2D, and 3D analyses, wave propagation. Liquefaction concepts and analysis methods. Introduction to geotechnical earthquake engineering.

(3-0) Cr. 3.

Prereq: C E 360
Classification of ground improvement methods. Dynamic compaction, vibrocompaction, preloading using fill surcharge, vacuum or a combination of both and prefabricated vertical drains, vibro replacement or stone columns, dynamic replacement, sand compaction piles, geotextile confined columns, rigid inclusion, column supported embankment, microbial methods, particulate and chemical grouting, lime and cement columns, jet grouting, and deep cement mixing.

(2-2) Cr. 3. Alt. F., offered odd-numbered years.

Prereq: C E 372
Flow characteristics in natural and constructed channels; principles of hydraulic design of culverts, bridge waterway openings, spillways, hydraulic gates and gated structures, pumping stations, and miscellaneous water control structures; pipe networks, mathematical modeling. Design project.

(Cross-listed with ENSCI). (3-0) Cr. 3. S.

Prereq: C E 372
Analysis of hydrologic data including precipitation, infiltration, evapotranspiration, direct runoff and streamflow; theory and use of frequency analysis; theory of streamflow and reservoir routing; use of deterministic and statistical hydrologic models. Fundamentals of surface water quality modeling, point and non-point sources of contamination.

(Cross-listed with ENSCI). (3-0) Cr. 3. Alt. F., offered even-numbered years.

Prereq: C E 372
Principles of surface water flows and mixing. Introduction to hydrologic transport and water quality simulation in natural water systems. Advection, diffusion and dispersion, chemical and biologic kinetics, and water quality dynamics. Applications to temperature, dissolved oxygen, primary productivity, and other water quality problems in rivers, lakes and reservoirs. Deterministic vs. stochastic models.

(Dual-listed with C E 473). (3-0) Cr. 3. F.

Prereq: C E 372
Principles of groundwater flow, hydraulics of wells, superposition, slug and pumping tests, streamlines and flownets, and regional groundwater flow. Contaminant transport. Computer modeling. Design project. Extra assignments required for graduate students.

(3-0) Cr. 3.

Prereq: E M 378 or equivalent
Analysis and applications of flows in civil engineering, environmental engineering, and water resources. Primary topics include conservation laws, laminar flow, turbulence, mixing, diffusion, dispersion, water waves, and boundary layers. Associated applications include particle settling, transfer at air-water and water-sediment boundaries, flow and friction in pipes and open channels, contaminant transport, waves in lakes, jets, plumes, and salt wedges.

Cr. R. Repeatable.

Prereq: Graduate classification
(1-0) Students and outside/invited speakers give weekly presentations about the ongoing research work and Geotechnical and Materials Engineering issues. Offered on a satisfactory-fail basis only.

(Dual-listed with C E 483). (3-0) Cr. 3. S.

Prereq: C E 360 and C E 382
Analysis, behavior, performance, and structural design of pavement systems. Topics include climate factors, rehabilitation, life cycle design economics, material and system response, pavement foundations and traffic loadings. Development of models for and analysis of pavement systems. Use of transfer functions relating pavement response to pavement performance. Evaluation and application of current and evolving pavement design practices and procedures. Mechanistic-based pavement design techniques and concepts. Analysis of the effects of maintenance activities on pavement performance and economic evaluation of pavement systems.

(Dual-listed with C E 484). (2-3) Cr. 3.

Prereq: C E 382
Asphalt binder characterization, fundamentals of asphalt rheology, asphalt materials behavior under loading and temperature effects. High-strength, lightweight, fiber-reinforced, and self-consolidating portland cement concretes, mix design, properties, advanced performance testing. A term project is required for graduate level only.

(2-3) Cr. 3.

Prereq: C E 382
Advanced asphalt concrete (SUPERPAVE) mix designs. Aggregates. Admixtures. Production and construction, quality control and inspection. Nondestructive testing. Pavement thickness design. Materials engineering reports.

(2-3) Cr. 3.

Prereq: C E 382 or C E 383
Hydraulic cements, aggregates, admixtures, and concrete mix design; cement hydration and microstructure development; fresh, early-age, and mechanical properties of concrete; concrete distress examination, damage mechanism, and prevention.

(Dual-listed with C E 488). (3-0) Cr. 3. F.

Prereq: Junior or higher classification in engineering or science
Sustainable planning, life cycle analysis, appropriate engineering design, investment levels and overall rating of civil engineering infrastructure systems, including highway, bridge, airport, rail, dam, power and port facilities. Complementary assessment of future civil infrastructure sustainability impacts and challenges in relation to autonomous and electric vehicle development. Overview regarding US and global availability and supply of critical infrastructure commodities (e.g., cement, stone, metals, phosphorus, uranium, etc.). Directed course readings and multiple project/design reports.

(Dual-listed with C E 489). Cr. 3. F.S.

Prereq: C E 382
Overview of pavement preservation and pavement rehabilitation techniques. Overview and selection of materials used in pavement preservation and rehabilitation strategies. Evaluating suitability of pavement preservation and pavement rehabilitation strategies based on existing structure, pavement distresses and non-condition factors. Use of recycled pavement materials in pavement reconstruction techniques.

Cr. 1-5. Repeatable. F.S.SS.


Pre-enrollment contract required.

Cr. R. Repeatable. F.S.

Prereq: Graduate classification
(1-0) Contemporary environmental engineering issues. Outside speakers. Review of ongoing research in environmental engineering. Offered on a satisfactory-fail basis only.

Cr. 1-3. Repeatable.

Prereq: Permission of instructor
Some topics have a set number of credits and some topics have the number of credits vary. Emphasis for a particular offering will be selected from the following topics:.

Cr. 3. F.

Prereq: C E 306 or graduate standing
Studies in planning and scheduling including scheduling and estimating. Credit may not be applied for graduation for Construction Engineering undergraduate students.

Cr. 1-3. Repeatable.

Prereq: Permission of instructor
Studies in computer applications for planning and scheduling.

Cr. 1-3. Repeatable.

Prereq: Permission of instructor
Studies in cost estimating.

Cr. 1-3. Repeatable.

Prereq: Permission of instructor
Studies in computer applications for cost estimating.

Cr. 1-3. Repeatable.

Prereq: Permission of instructor
Studies in project controls.

Cr. 1-3. Repeatable.

Prereq: Permission of instructor
Studies in computer applications for project controls.

Cr. 1-3. Repeatable.

Prereq: Permission of instructor
Studies in integration of planning, scheduling and project controls.

Cr. 1-3. Repeatable.

Prereq: Permission of instructor
Studies in trenchless technologies.

Cr. 1-3. Repeatable.

Prereq: Permission of instructor
Studies in electrical and mechanical construction.

Cr. 3. SS.

Prereq: CON E 352 or C E 306 or graduate standing or permission of instructor
Studies in advanced building construction topics including LEED.

Cr. 1-3. Repeatable.

Prereq: Permission of instructor
Studies in design build construction.

Cr. 3.

Prereq: Graduate standing or permission of instructor
Studies in industrial construction.

Cr. 3.

Prereq: CON E 322 or C E 306 or graduate standing
Studies in highway and heavy construction.

Cr. 3. F.

Prereq: CON E 352 or graduate standing or permission of instructor
Studies in advanced building technologies including building energy modeling, building energy performance and efficiency assessments, and demand side management for smart grid applications.

Cr. 1-3. Repeatable.

Prereq: Permission of instructor
Studies in construction quality control.

Cr. 1-3. Repeatable.

Prereq: Permission of instructor
Studies in risk management.

Cr. 1-3. Repeatable.

Prereq: Permission of instructor
Studies in building information modeling.

(1-0) Cr. 1.

Prereq: Graduate standing or permission of instructor
Assigned readings and reports on research methods to solve construction engineering and management problems such as alternative project delivery methods, asset management, data mining, construction procurement, robotics, project controls, automation, construction visualization, etc. Identification of research methods and priorities, selection and development of research design, and critique of research in construction engineering and management.

(1-0) Cr. 1.

Prereq: Graduate standing or permission of instructor
Assigned readings and reports on qualitative research methods to assess and solve construction engineering and management problems.

(1-0) Cr. 1.

Prereq: Graduate standing or permission of instructor
Assigned readings and reports on quantitative research methods to assess and solve construction engineering and management problems.

(1-0) Cr. 1.

Prereq: Graduate standing or permission of instructor
Assigned readings and reports on research methods for planning and preparation of technical reports with construction engineering and management projects.

Cr. 1-3. Repeatable.


Pre-enrollment contract required. Advanced topic for creative component report in lieu of thesis.

Courses for graduate students:

(2-0) Cr. 2. Repeatable.

Prereq: Permission of environmental engineering graduate faculty
Advanced concepts in environmental engineering. Emphasis for a particular offering will be selected from the following topics:.

(2-0) Cr. 2. Repeatable.

Prereq: Permission of environmental engineering graduate faculty
Advanced concepts in environmental engineering. Emphasis for a particular offering will be selected from the following topics:.

(2-0) Cr. 2. Repeatable.

Prereq: Permission of environmental engineering graduate faculty
Advanced concepts in environmental engineering. Emphasis for a particular offering will be selected from the following topics:.

(2-0) Cr. 2. Repeatable.

Prereq: Permission of environmental engineering graduate faculty
Advanced concepts in environmental engineering. Emphasis for a particular offering will be selected from the following topics:.

(2-0) Cr. 2. Repeatable.

Prereq: Permission of environmental engineering graduate faculty
Advanced concepts in environmental engineering. Emphasis for a particular offering will be selected from the following topics:.

(2-0) Cr. 2. Repeatable.

Prereq: Permission of environmental engineering graduate faculty
Advanced concepts in environmental engineering.

(3-0) Cr. 3. Repeatable.

Prereq: Permission of Transportation Engineering graduate faculty

(3-0) Cr. 3. Repeatable.

Prereq: Permission of Transportation Engineering graduate faculty

(3-0) Cr. 3. Repeatable.

Prereq: Permission of Transportation Engineering graduate faculty

(3-0) Cr. 3. Repeatable.

Prereq: Permission of Transportation Engineering graduate faculty
Topics in transportation engineering related to data analysis.

Cr. 1-3. Repeatable. F.S.SS.


Pre-enrollment contract required.

Cr. R. Repeatable.

Prereq: Permission of coop advisor, graduate classification
One semester and one summer maximum per academic year professional work period. Offered on a satisfactory-fail basis only.

Cr. 1-30. Repeatable.

Prereq: Pre-enrollment contract required
Advanced topic for thesis/dissertation.