your adventure in

Materials Science and Engineering

This is an archived copy of the 2022-2023 catalog. To access the most recent version of the catalog, please visit http://catalog.iastate.edu.

View PDF

Graduate Studies

The Materials Science and Engineering Department offers three graduate degree programs representing a range of opportunities for advanced study. While they share several common features, the programs are designed to serve students with a variety of academic backgrounds, technical interests, and career aspirations. In all three programs, it is expected that our graduate students will acquire fundamental understanding of the structure, properties, processing, and performance of materials, underpinned by the foundational pillars of thermodynamics and kinetics and manifested by the immense landscape of engineered materials and the broad range of physical, chemical, and mechanical functionalities that may be realized in them. Our degree programs include diverse combinations of classroom instruction, seminars, laboratory training, guided teaching experiences, individually mentored independent study, and various forms of materials research experiences, all intended to serve students with a wide range of educational goals. Students are admitted with undergraduate or prior graduate qualifications in a variety of technical areas, and each program of study is tailored to meet the needs of the individual student. The accomplishments of our alumni demonstrate that our graduate training enables a wide range of career paths, but specific types of technical employment opportunities are targeted by the program components contained within each of our degree programs, as summarized below. 

The Master of Engineering (M. Eng.) program in Materials Science and Engineering is a coursework-only degree program intended to provide broad knowledge related to materials processing, structure, properties, and performance, coupled with an understanding of the various materials challenges associated with existing and emerging technologies and industry/business sectors. The program is delivered mainly through classroom-based instruction but may also include laboratory-based courses and/or online courses. The curriculum combines a core of fundamental coursework with a highly flexible set of electives, which may include MSE courses and courses from other fields of study. This flexible coursework-only degree option is intended to provide advanced knowledge of fundamental and contemporary issues in Materials Science and Engineering relevant to a broad range of career paths. 

The Master of Science (M.S.) program in Materials Science and Engineering is an intensive advanced degree program combining graduate coursework and project-based research. The program is intended to provide broad-based knowledge related to materials processing, structure, properties, and performance, coupled with an understanding of the various materials challenges associated with existing and emerging technologies and industry sectors. The program is delivered mainly through classroom-based instruction but may also include laboratory-based courses and/or online courses. The curriculum combines a core of fundamental coursework and a complement of MSE and non-MSE electives.

Two program options are available, and students enrolled in the MS degree program will select either the Research Thesis track or the Research Portfolio track. Both tracks include a substantial research component but with different focus. 

  • The Research Thesis track provides an opportunity for the student to complete a full-scale research project from beginning to end, including literature review, project design, planning, laboratory and/or computational investigation, data analysis, decision-making, formulation of conclusions, and appropriate reporting of outcomes. The research, culminating in a thesis document, will be conducted under the supervision of a major professor. In this track, the research efforts are aimed at making an identifiable contribution toward solving a relevant problem in a selected area of science and/or engineering. Project success is judged on the scientific soundness of the contribution and the quality with which it is presented in the Thesis document and in a final oral presentation/examination. 

  • The Research Portfolio track provides an opportunity for the student to complete several separate research projects involving multiple selected topics and methods of experimental and/or computational investigation in accord with their interests. In this track, research is conducted through a sequence of three 3-credit project-based courses, each supervised by a specific faculty member and focused on a different area of research and related methods and analysis techniques. Each project has specific scientific objectives, but the focus of the overall portfolio is for the student to develop expertise in a targeted set of laboratory and/or computational research skills. Assessment is based on practical examinations and documented research results associated with each project. The program also requires a comprehensive presentation and oral examination covering all of the student’s project work. Each student’s overall program is overseen by a major professor.  

The Doctor of Philosophy (Ph.D.) degree is the highest academic credential in the field. ISU’s robust multi-faceted program is intended to develop state-of-the-art competencies in academic scholarship, enabling graduates to make high-level career-based contributions in fields related to Materials Science and Engineering. The Ph.D. program combines graduate coursework with intensive and specialized project-based research expected to result in significant reportable scientific contributions in one or more selected areas, as evidenced by publication in peer-reviewed journals, industry standards, patents, or other forms of recognizable technical contributions. 

The MSE department boasts excellent facilities for academic materials research, maintaining a wide range of faculty laboratories across the ISU campus. In addition, departmental research is highly integrated with the operation of several Research Centers, such as the Ames Laboratory, the Center for Nondestructive Evaluation, the Microelectronics Research Center, the Center for Advanced Nonferrous Structural Materials, the Caloric Materials Consortium, the Critical Materials Institute, and the Sensitive Instruments Facility. These laboratories provide excellent resources for our graduate students in advanced materials research.