Any experimental courses offered by CHEM can be found at: registrar.iastate.edu/faculty-staff/courses/explistings/
Courses
Courses primarily for undergraduates:
(3-0) Cr. 0. F.S.
Prereq: 1 year high school algebra
An in-depth active learning experience designed to impart the fundamental concepts and principles of chemistry, with an emphasis on mathematics skills and logical thinking. For students intending to enroll in general chemistry and who have not taken high school chemistry or who have not had a high school college preparatory chemistry course who need a review of chemical problem solving and chemical concepts.
Credit for Chem 50 does not count toward graduation.
(1-0) Cr. 1. F.S.
Prereq: Member of the Chemistry Learning Community.
Integration of first year and transfer students into the chemistry program. Introduction and overview of degree requirements and support services on campus, assistance with transition to college and community life, and team-building and leadership activities.
Offered on a satisfactory-fail basis only.
(1-0) Cr. 1. F.
Prereq: Member of the Chemistry Learning Community.
Integration of first year and transfer students into the chemistry program. Introduction and overview of degree requirements and support services on campus, assistance with transition to college and community life, and team-building and leadership activities.
Offered on a satisfactory-fail basis only.
(1-0) Cr. 1. S.
Prereq: Member of the Chemistry Learning Community.
Integration of first year and transfer students into the chemistry program. Introduction and overview of degree requirements and support services on campus, assistance with transition to college and community life, and team-building and leadership activities.
Offered on a satisfactory-fail basis only.
(Cross-listed with PHYS). (1-4) Cr. 3. F.S.
Prereq: MATH 195 or MATH 140
Physical science principles for future elementary teachers. Emphasis on experiments that address current elementary science education standards and that are appropriate for their future students to do, such as measurements of mass, length, time, light from atoms, charge and current, motion due to forces, energy and work, heat, waves, optics, building bridges and making musical instruments, studying states of matter and chemical reactions.
(1-0) Cr. 1. F.
Overview of careers in chemistry: industrial, governmental, and academic careers; literature and compound search instruction; professional ethics; and an introduction to joining a research lab. For students majoring or minoring in chemistry or chemistry-related fields.
Offered on a satisfactory-fail basis only.
(3-0) Cr. 3. F.S.
Aspects of chemistry visible to a non-scientist in our society. A survey of selected areas of chemistry with emphasis on the interface between chemistry and other fields of human activity.
(4-0) Cr. 4. F.S.SS.
Prereq: 1 year of high school algebra and geometry and Chem 50 or 1 year of high school chemistry; and credit or enrollment in CHEM 163L
A general survey of chemistry with an emphasis on conceptual problems for those who are not physical and biological science or engineering majors. Nomenclature, chemical reactions, stoichiometry, atomic structure, periodic properties, chemical bonding, states of matter, solutions, thermochemistry, acid-base theory, oxidation-reduction reactions, basic chemical kinetics, and chemical equilibrium.
Only one of Chem 163, 167, 177, or 201 may count toward graduation.
(4-0) Cr. 4. F.S.
Prereq: 1 year of high school chemistry or CHEM 50 and MATH 140 or high school equivalent.
Principles of chemistry and properties of matter explained in terms of modern chemical theory with emphasis on topics of general interest to the engineer.
Only one of Chem 163, 167, 177, or 201 may count toward graduation.
(0-3) Cr. 1. F.S.
Prereq: Credit or enrollment for credit in CHEM 167
Laboratory to accompany 167.
Only one of Chem 163L, 167L, and 177L may count toward graduation.
(4-0) Cr. 4. F.S.SS.
Prereq: MATH 140 or high school equivalent, and CHEM 50 or 1 year high school chemistry, and credit or enrollment in CHEM 177L. Chemistry and biochemistry majors may consider taking CHEM 201
The first semester of a two semester sequence which explores chemistry at a greater depth and with more emphasis on concepts, problems, and calculations than 163. Recommended for physical and biological science majors, chemical engineering majors, and all others intending to take 300-level chemistry courses. Principles and quantitative relationships, stoichiometry, chemical equilibrium, acid-base chemistry, thermochemistry, rates and mechanism of reactions, changes of state, solution behavior, atomic structure, periodic relationships, chemical bonding.
Only one of Chem 163, 167, 177, or 201 may count toward graduation.
(0-3) Cr. 1. F.S.SS.
Prereq: Credit or enrollment for credit in CHEM 177
Laboratory to accompany 177. 177L must be taken with 177.
Only one of Chem 163L, 167L, and 177L may count toward graduation.
(5-0) Cr. 5. F.
Prereq: Co-enrollment in MATH 165 or credit, one year of high school chemistry, and one year high school physics or advanced chemistry. Co-enrollment in CHEM 201L.
A one-semester course in general chemistry designed to give students an in-depth, broad-based view of modern chemistry, and, in part, to facilitate participation in independent undergraduate research. Topics include stoichiometry, atomic and molecular structure, chemical bonding, kinetics, chemical equilibria, and thermodynamics. Discussion of current trends in various chemical disciplines, which may be given by guest experts in chemistry, biochemistry, and chemical engineering, will help the student appreciate the scope of the chemical sciences and how research is carried out.
Only one of Chem 163, 167, 177, or 201 may count toward graduation.
(0-3) Cr. 1. F.
Prereq: Credit or enrollment for credit in CHEM 201
Laboratory to accompany 201. Introductory lab experience in synthesis and analysis to prepare students for research activities. 201L must be taken with 201.
Only one of 163L, 167L, 177L, 177N or 201L may count toward graduation.
(2-0) Cr. 2. F.S.
Prereq: CHEM 163 and CHEM 163L, CHEM 201 and CHEM 201L; or credit or enrollment in CHEM 178; and concurrent enrollment in CHEM 211L
Theory and practice of elementary volumetric, chromatographic, electrochemical and spectrometric methods of analysis. Chemical equilibrium, sampling, and data evaluation. Emphasis on environmental analytical chemistry; the same methods are widely used in biological and materials sciences as well.
(0-6) Cr. 2. F.S.
Prereq: Credit or enrollment for credit in CHEM 211
Introductory laboratory experience in volumetric, spectrometric, electrochemical and chromatographic methods of chemical analysis.
(3-0) Cr. 3. F.S.SS.
Prereq: CHEM 163, CHEM 163L, or CHEM 177, CHEM 177L or CHEM 167; credit or enrollment in CHEM 231L
A survey of modern organic chemistry including nomenclature, structure and bonding, and reactions of hydrocarbons and important classes of natural and synthetic organic compounds. For students desiring only an elementary course in organic chemistry. Students in physical or biological sciences and premedical or preveterinary curricula should take the full year sequence 331 and 332 (with the accompanying laboratories 331L and 332L).
Only one of Chem 231 and 331 or BBMB 221 may count toward graduation.
Cr. R. Repeatable. F.S.SS.
Prereq: Permission of the Department cooperative education coordinator; sophomore classification
Required of all cooperative education students. Students must register for this course prior to commencing each work period.
Cr. arr. Repeatable, maximum of 6 credits.
Prereq: Permission of staff member with whom student proposes to work
(2-0) Cr. 2. S.
Prereq: CHEM 324
Atomic and molecular structure and bonding principles; molecular shapes and symmetry; acids and bases; solid-state structures and properties; inorganic chemistry of H, B, C.
(2-0) Cr. 2. F.
Prereq: CHEM 211, CHEM 211L, MATH 166, and concurrent enrollment in CHEM 316L; PHYS 222 recommended
Quantitative and qualitative instrumental analysis. Operational theory of instruments, atomic and molecular absorption and emission spectroscopy, electroanalysis, mass spectrometry, liquid and gas chromatography, electrophoresis, literature of chemical analysis.
(0-6) Cr. 2. F.
Prereq: Credit or enrollment in CHEM 316
Advanced laboratory experience in UV-visible spectrophotometry, atomic absorption and emission spectrometry, electrochemistry, gas and liquid chromatography, electrophoresis, mass spectrometry, and other instrumental methods.
(1-3) Cr. 2. S.
Prereq: Credit or enrollment in CHEM 324 or CHEM 325.
Error analysis; use of computers for interfacing to experiments and for data analysis; thermodynamics, infrared and optical spectroscopy, lasers. Not applicable towards the B.S. degree in Chemistry.
Only one of Chem 321L and 322L may count toward graduation.
(3-0) Cr. 3. F.S.
Prereq: CHEM 178, MATH 166; PHYS 222 recommended
Classical thermodynamics 1st, 2nd, and 3rd laws with applications to gases and interfacial systems, multicomponent, multiphase equilibrium of reacting systems, surface chemistry, and electrochemical cells. Students taking a two-semester physical chemistry sequence are advised to take 324 first; in the spring semester, a molecular-based section of this course, stressing statistical thermodynamics, is offered for which knowledge of 324 is useful.
(3-0) Cr. 3. F.S.SS.
Prereq: CHEM 178 or CHEM 201, enrollment in CHEM 331L highly recommended
The first half of a two semester sequence. Modern organic chemistry including nomenclature, synthesis, structure and bonding, reaction mechanisms. For students majoring in physical and biological sciences, premedical and pre-veterinary curricula, chemistry and biochemistry. Students desiring only one semester of organic chemistry should take 231 and 231L, not 331.
Only one of Chem 231 and 331 may count toward graduation.
(3-0) Cr. 3. F.S.SS.
Prereq: CHEM 331; enrollment in CHEM 332L highly recommended
Continuation of 331. Modern organic chemistry including nomenclature, synthesis, structure and bonding, reaction mechanisms, natural products, carbohydrates and proteins. For students majoring in physical and biological sciences, premedical and pre-veterinary curricula, chemistry and biochemistry.
(0-6) Cr. 2. F.
Prereq: Credit or enrollment for credit in CHEM 331
Laboratory to accompany 331 for chemistry and biochemistry majors.
Cr. R. Repeatable. F.S.SS.
Prereq: Permission of the Department cooperative education coordinator; junior classification
Required of all cooperative education students. Students must register for this course prior to commencing each work period.
Cr. arr.
Prereq: Permission of instructor with whom student proposes to work and junior or senior classification
A comprehensive research report, describing the work performed, the justification or purpose of the research work, the results obtained, and including appropriate literature references/citations must be submitted to the undergraduate chemistry office and the research faculty member. Reports must contain a title, abstract, introduction, procedural details (experimental, computational, or theoretical), results, discussion, and references.
No more than six total credits of Chem 399 and Chem 499 may count toward graduation. Credits earned in 399/499/490 may only be use to meet one of the advanced course requirements for the B.S. degree.
(0-3) Cr. 1. S.
Prereq: CHEM 402
Preparation and characterization of inorganic and organometallic compounds by modern techniques. For students majoring in chemistry or biochemistry.
Cr. arr.
Prereq: Completion of 6 credits in chemistry at the 300 level or higher and permission of instructor
No more than 9 credits of Chem 490 may count toward graduation.
Cr. R. F.S.SS.
Prereq: Permission of the Department cooperative education coordinator; senior classification
Required of all cooperative education students. Students must register for this course prior to commencing each work period.
Cr. 2-3. Repeatable, maximum of 6 credits.
Prereq: Permission of instructor with whom student proposes to work; B average in all chemistry, physics, and mathematics courses
Research in chosen area of chemistry. This course should be elected for two consecutive semesters. For students majoring in chemistry. A comprehensive and formal research report/senior thesis, describing the work performed, the justification or purpose of the research work, the results obtained, and including appropriate literature references/citations must be submitted to the undergraduate chemistry office and the research faculty member. Reports must contain a title, abstract, introduction, procedural details (experimental, computational, or theoretical), results, discussion, and references.
No more than six total credits for Chem 399 and 499 may count toward graduation.
Courses primarily for graduate students, open to qualified undergraduates:
(0-3) Cr. 1. F.
Prereq: CHEM 402
Preparation and characterization of inorganic and organometallic compounds by modern research techniques.
(3-0) Cr. 3. F.
Prereq: CHEM 316 and CHEM 316L
General methods of quantitative inorganic and organic analysis. Aqueous and nonaqueous titrimetry; selective reagents; sampling and sample dissolution; modern instrumentation; sensors; atomic and molecular microscopy; bioanalytical methods; data evaluation; chemometrics; and analytical literature.
(3-0) Cr. 3. F.
Prereq: CHEM 316 and CHEM 316L; Recommended but not Required CHEM 324, and CHEM 322L
Principles of convective-diffusional mass transport in electroanalysis. Applications of potentiometry, voltammetry, and coulometry. Introduction to heterogeneous and homogeneous kinetics in electroanalysis. Analog and digital circuitry. Interfacing.
(3-0) Cr. 3. S.
Prereq: CHEM 316 and CHEM 316L, CHEM 324, CHEM 322L
Introduction to physical optics and design of photometric instruments. Principles of absorption, emission, fluorescence, and Raman spectroscopy. Error and precision of optical methods. Ultraviolet, visible, and infrared methods of qualitative and quantitative organic and inorganic analysis.
(3-0) Cr. 3. S.
Prereq: CHEM 332
Survey of organic functional group transformations.
(2-0) Cr. 2. F.
Prereq: CHEM 531
Synthesis of complex organic compounds including natural products.
(3-0) Cr. 3. F.
Prereq: CHEM 332
Survey of reactive intermediates including cations, anions, carbenes, and radicals.
(3-0) Cr. 3. S.
Prereq: CHEM 537
Molecular structure, stereochemistry, introduction to reaction mechanisms, thermodynamic and kinetic data, linear free energy relationships, isotope effects, orbital symmetry.
(1-0) Cr. 1. S.
Prereq: CHEM 332L
Introduction to laboratory safety and chemical hygiene. Use of engineering controls and personal protective equipment. Chemical storage and waste disposal practices. Handling hazardous chemicals. Radiation safety and laser safety.
Offered on a satisfactory-fail basis only.
(2-0) Cr. 2. Alt. S., offered even-numbered years.
Prereq: Graduate or senior classification.
Methods of instruction, strategies and techniques for effective teaching and learning along with practice teaching in undergraduate chemistry recitation and laboratory courses. Cooperative learning, guided-inquiry, learning cycles, conceptual change, models and modeling, concept maps, visualization, computer simulations, web-based delivery systems, and learning theories.
(4-0) Cr. 4. F.
Prereq: CHEM 324
Schroedinger equation and exact solutions; square wells and barriers; harmonic oscillator; the hydrogen atom; atomic orbitals; operators including angular momenta; time-independent and time-dependent perturbation theory; Schroedinger and Heisenberg representations; unitary operators; interaction picture, density matrix.
(3-0) Cr. 3. S.
Prereq: CHEM 561, credit or enrollment in CHEM 583
Variational method, many electron atoms; addition of angular momentum, self-consistent field method for open and closed shells, linear combinations of atomic orbitals, origin of chemical bonding, many-electron diatomic and polyatomic molecules, treatments of electron correlation, approximation methods.
(3-0) Cr. 3. S.
Prereq: CHEM 325
Microscopic and macroscopic properties, laws of thermodynamics, ensembles and distribution functions, applications to gases, solids, and chemical equilibrium.
(3-0) Cr. 3. Alt. S., offered even-numbered years.
Prereq: CHEM 505 or CHEM 562
Maxwell's field equations, interaction of light with matter including time-dependent perturbation theory, microwave, vibrational (infra-red, Raman) and electronic spectroscopies, symmetry derived selection rules, special lineshapes and introduction to nonlinear and coherent laser spectroscopies.
(2-0) Cr. 2. Alt. S., offered even-numbered years.
Prereq: CHEM 301, CHEM 324
Structural principles, synthetic strategies, analytical methods, and chemical bonding issues applied to solids. Atomic packings and networks, short-range vs. long-range order, defects; phase diagrams, reactive fluxes, chemical transport; diffraction, spectroscopy; energy bands and their bonding interpretations.
(2-3) Cr. 3. F.
Prereq: CHEM 332
Principles of infrared, ultraviolet, nuclear magnetic resonance, and mass spectroscopy as applied to organic chemistry.
(2-0) Cr. 2. Alt. S., offered odd-numbered years.
Prereq: CHEM 301, CHEM 324
Synthesis, characterization, properties and applications of nanoscale materials (≈ 0.5-500 nm), relationship with molecular, meso and bulk compounds. Chemistry of solid surfaces, zero-, one- and two-dimensional (0D, 1D, 2D) nanostructures , semiconductor quantum dots, plasmonic nanoparticles, carbon nanomaterials, porous nanomaterials, potential health and safety impacts.
(3-0) Cr. 3. Alt. S., offered odd-numbered years.
Prereq: CHEM 324
Fundamentals of structure determination for single crystals emphasizing symmetry, diffraction geometry and instrumentation, sample preparation and handling, data collection strategies, methods of structure solution and refinement, presentation of results, and crystallographic databases.
(3-0) Cr. 3. Alt. F., offered even-numbered years.
Prereq: CHEM 324
Gas-surface interactions and techniques of characterization. Idealized surface lattices, surface tension, Wulff plots, work function, adsorbate-adsorbate interactions, 2D phase diagrams, diffusion, thin film growth, adsorption and desorption mechanisms/energetics/kinetics, adsorption isotherms, vacuum techniques, electron- and ion-based spectroscopies for surface analysis (including AES, FIM, XPS, UPS, EXAFS, EELS, SIMS, LEED and STM).
(3-0) Cr. 3. S.
Basic physics, instrumentation, chemical and biological applications of mass spectrometry.
(2-0) Cr. 2. Alt. S., offered even-numbered years.
Prereq: CHEM 324
Rates and mechanisms; reversible, consecutive, and competing reactions; chain mechanisms; kinetic isotope effects; very rapid reactions; acid-base catalysis, theories of unimolecular reactions; transition state and Marcus theories.
Cr. R. F.
Introduction to the various areas of research in chemistry at Iowa State University.
(3-0) Cr. 3. Alt. F., offered odd-numbered years.
Prereq: CHEM 324
Basic principles of quantum mechanics, schrodinger equation. Hartree-Fock/molecular orbital theory, introduction to group theory, introduction to modern methods of computational chemistry; applications include molecular structure, potential energy surfaces and their relation to chemical reactions; molecular spectroscopy, photochemistry, solvent effects and surface chemistry.
(1-0) Cr. 1. F.
Prereq: CHEM 324
Basic concepts and theorems, representation theory; point groups, molecular orbitals, molecular states, molecular vibrations, rotation group and angular momenta; space groups and crystals; permutation group, antisymmetry, and spin states.
Cr. arr.
Prereq: Permission of instructor concerned
Courses for graduate students:
(1-0) Cr. 1. Repeatable, maximum of 3 times. F.S.
Prereq: Permission of instructor
(2-0) Cr. 1-2. F.S.
Prereq: Permission of instructor
Topics such as molecular structure and bonding; organometallic compounds; physical techniques of structure determination; nonaqueous solutions; Zintl phases; transition-metal oxides; free-radical reactions; electron transfer reactions; metal-metal bonding; and bioinorganic chemistry of nucleic acids.
(1-0) Cr. 1. Repeatable. F.S.
Prereq: Permission of instructor
(2-0) Cr. 1-2. Repeatable. F.S.
Prereq: Permission of instructor
Raman spectroscopy, sensors, spectroelectrochemistry, capillary electrophoresis, analytical plasmas, chemometrics and bioanalytical chemistry.
(1-0) Cr. 1. Repeatable. F.S.
Prereq: Permission of instructor
(2-0) Cr. 1-2. Repeatable. F.S.
Prereq: CHEM 537
Topics of current interest in organic chemistry such as spectroscopy, physical organic chemistry, photochemistry, organometallic chemistry, mechanisms of oxidations and reductions, modern organic synthesis, reactive intermediates, bioorganic chemistry, and polymers.
(1-0) Cr. 1. Repeatable. S.
Prereq: Permission of instructor
(2-0) Cr. 1-2. F.S.
Prereq: Permission of instructor
Advanced and recent developments in physical chemistry are selected for each offering.
Cr. arr. Repeatable.
Prereq: Permission of instructor