Courses
Courses primarily for undergraduates:
(0-2) Cr. 1. S.
Laboratory-based, team-oriented experiences in a spectrum of topics common to the practice of agricultural and biosystems engineering. Report writing, co-ops, internships, careers, registration planning.
(2-2) Cr. 3. S.
Prereq: Credit or enrollment in MATH 143 or MATH 165
Engineering approach to problem solution and presentation in the context of real world problems. Introduction to basic principles from statics, projectile motion, conservation of mass and energy and electricity and magnetism. Use of spreadsheet programs and computer programming language(s) to solve and present engineering problems. Introduction to interfacing computers to sensor systems for data collection.
(2-2) Cr. 3.
Prereq: Satisfactory scores in math placement assessments; credit or enrollment in MATH 142.
Applications of multi-view drawings and dimensioning. Techniques for visualizing, analyzing, and communicating 3-D geometries. Application of the design process including written and oral reports.
(Cross-listed with TSM). (1-0) Cr. 1. F.S.
Prereq: Prereq: Sophomore classification in AE, AST, BSE, or I TEC
8 week course. Professionalism in the context of the engineering/technical workplace. Development and demonstration of key workplace competencies: teamwork, initiative, communication, and engineering/technical knowledge. Resumes; Cover Letters; Behavioral Based Interviewing; Industry Speakers; Preparation for internships experiences.
(2-2) Cr. 3. F.
Prereq: A B E 160 or permission of the instructor
Application of mathematics and engineering sciences to mass and energy balances in agricultural and biological systems. Emphasis is on solving engineering problems in the areas of heat and mass transfer, air and water vapor systems; animal production systems, grain systems; food systems, hydrologic systems, and bioprocessing.
(1-2) Cr. 2. S.
Prereq: A B E 216
Project management - critical path, Gantt charts, resource allocations, basic project budgeting, and project management software. Engineering design approaches. Open-ended design projects to demonstrate the preceding principles through application of technical concepts taught in prerequisite coursework.
(1-2) Cr. 1. F.S.
Prereq: A B E 170 or TSM 116 or equivalent
8 week-course. Applications of Creo Parametric software. Create solid models of parts and assemblies. Utilize the solid models to create design documentation (standard drawing views, dimensions, and notes) and for the geometric analysis of parts and assemblies.
(1-2) Cr. 1.
Prereq: ENGR 170 or TSM 116 or equivalent. 8-week course.
8-week course. Application of 2-D AutoCAD software to create and interpret 2-D drawings and 3-D models of facilities. Topics include geometric construction, design documentation: (using views, dimension, notes), and AutoCAD specific features (i.e. Layers, Blocks, Standards, Styles).
Cr. R. F.S.SS.
Prereq: A B E 218 and permission from Engineering Career Services
First professional work period in the cooperative education program. Students must register for this course before commencing work.
(Cross-listed with TSM). (3-0) Cr. 3. F.
Prereq: ECON 101, CHEM 163 or higher, MATH 140 or higher
Converting biorenewable resources into bioenergy and biobased products. Biorenewable concepts as they relate to drivers of change, feedstock production, processes, products, co-products, economics, and transportation/logistics.
(2-2) Cr. 3. F.
Prereq: A B E 110, A B E 216
Principles of operation, design, selection, testing and evaluation of agricultural field machinery and systems. Functional and mechanical performances. Crop and soil interaction with machines. Machine systems, including land preparation, crop establishment, crop protection, harvesting and post-harvest, materials handling systems.
(3-2) Cr. 4. F.S.
Prereq: PHYS 222
Single phase and three phase circuit design. Electrical safety. Electric motors and controls. Programmable logic controllers. Digital logic, instrumentation and sensors.
(2-2) Cr. 3. S.
Prereq: A B E 316
Unit-operation analysis of biological systems, through the study of mass, energy, and information transport in bioresource production and conversion systems. Quantification and modeling of biomass production, ecological interactions, and bioreactor operations.
(Cross-listed with C E, E E). (2-2) Cr. 3. F.
Prereq: Junior classification in engineering
Multi-disciplinary approach to sustainable engineering and international development, sustainable development, appropriate design and engineering, feasibility analysis, international aid, business development, philosophy and politics of technology, and ethics in engineering. Engineering-based projects from problem formulation through implementation. Interactions with partner community organizations or international partners such as nongovernment organizations (NGOs). Course readings, final project/design report.
Meets International Perspectives Requirement.
Cr. R. Repeatable. SS.
Prereq: Permission of department and Engineering Career Services
Summer professional work period.
Cr. R. Repeatable. F.S.
Prereq: A B E 218 and permission of department and Engineering Career Services
One semester maximum per academic year professional work period.
Cr. R. F.S.SS.
Prereq: A B E 298, permission of department and Engineering Career Services
Second professional work period in the cooperative education program. Students must register for this course before commencing work.
(Dual-listed with A B E 503). (2-2) Cr. 3. Alt. S., offered odd-numbered years.
Prereq: A B E 316, and A B E 363, and MATH 266 or MATH 267
Modeling dynamic systems with ordinary differential equations. Introduction to state variable methods of system analysis. Analysis of mechanical, electrical, and fluid power systems. Analytical and numerical solutions of differential equations. Introduction to classical control theory. Feedback and stability examined in the s domain. Frequency response as an analytical and experimental tool. MATLAB will be used throughout the course for modeling. Individual and/or group projects required for graduate credit.
(Dual-listed with A B E 504). (2-2) Cr. 3. F.
Prereq: A B E 316 and A B E 363 or CPR E 281
Interfacing techniques for computer-based data acquisition and control systems. Basic interfacing components including A/D and D/A conversion, signal filtering, multiplexing, and process control. Sensors and theory of operation applied to practical monitoring and control problems. Individual and group projects required for graduate credit.
(Dual-listed with A B E 508). (Cross-listed with ENSCI). (2-2) Cr. 3. F.
Prereq: Working knowledge of computers and Windows environment
Introduction to fundamental concepts and applications of GIS in natural resources management with specific focus on watersheds. Topics include: basic GIS technology, data structures, database management, spatial analysis, and modeling; visualization and display of natural resource data. Case studies in watershed and natural resource management using ArcView GIS.
(Dual-listed with A B E 510). Cr. 3. Alt. S., offered odd-numbered years.
Prereq: A B E 363
System architecture and design of electronics used in agricultural machinery and production systems. Emphasis on information technology and systems integration for automated agriculture processes. Design of Controller Area Network (CAN BUS) communication systems and discussion of relevant standards (ISO 11783 and SAE J1939). Application of technologies for sensing, distribution control, and automation of agricultural machinery will be emphasized.
(Cross-listed with M E). (2-2) Cr. 3. F.
Prereq: Credit or enrollment in E M 378 or M E 335, A B E 216 or M E 270
Properties of hydraulic fluids. Performance parameters of fixed and variable displacement pumps and motors. Hydraulic circuits and systems. Hydrostatic transmissions. Characteristics of control valves. Analysis and design of hydraulic systems for power and control functions.
(1-2) Cr. 2. F.S.
Prereq: A B E 316 (majors only)
Identification of current design problems in ag & biosystems engineering. Development of alternate solutions using creativity and engineering analysis and synthesis techniques.
(1-2) Cr. 2. F.S.
Prereq: A B E 415 (majors only)
Selection of promising solutions to design problems identified in 415 for development by design teams. Presentation of designs through oral and written reports and prototypes.
(1-0) Cr. 1.
Prereq: senior classification.
8 week course. Review of core concepts covered in the Fundamentals of Engineering examination with emphasis on statics, dynamics, fluid mechanics, heat transfer, electric circuits, and engineering economics. Open to all College of Engineering seniors, however focus is on the general exam, not discipline specific exams.
(Dual-listed with A B E 531). (Cross-listed with ENSCI). (2-2) Cr. 3. F.
Prereq: E M 378 or CH E 356
Hydrology and hydraulics in agricultural and urbanizing watersheds. Design and evaluation of systems for the conservation and quality preservation of soil and water resources. Use and analysis of hydrologic data in engineering design; relationship of topography, soils, crops, climate, and cultural practices in conservation and quality preservation of soil and water for agriculture. Small watershed hydrology, water movement and utilization in the soil-plant-atmosphere system, agricultural water management, best management practices, and agricultural water quality.
(Dual-listed with A B E 532). (3-0) Cr. 3.
Prereq: A B E 431 or C E 372 or instructor permission
Characteristics and courses of non-point source (NPS) pollution in agricultural and urban watersheds, computer modeling and NPS pollution for terrestrial and aquatic systems, strategies to control and manage NPS pollution of water bodies, total maximum daily loads (TMDLs) and integrated watershed management. Graduate students are required to review research papers and develop/deliver lecture models on assigned topics.
(Dual-listed with A B E 536). (2-3) Cr. 3. Alt. S., offered even-numbered years.
Prereq: A B E 431/A B E 531
Development of monitoring systems that support effective planning, performance evaluation, modeling, or environmental impact assessment of soil-, water-, and waste-management systems. Typical soil and water pollutants and physical, chemical, and biological characteristics that affect sample location and timing. Sample collection, documentation, chain-of-custody, and quality assurance procedures. In addition to other assignments, graduate students will prepare several research literature reviews on topics covered in the class and develop monitoring plans.
(Dual-listed with A B E 551). (3-0) Cr. 3. F.
Prereq: A B E 216 and M E 436 or CH E 357, or FS HN 351 and MATH 266 or MATH 267
Application of engineering principles and mathematical modeling to the quantitative analysis of food and bioprocessing systems. Physical/chemical characteristics of foods and biological systems, flow processes, thermal processes and separation processes. Term paper required for graduate credit.
(Cross-listed with AER E, B M E, CPR E, E E, ENGR, I E, M E, MAT E). (1-4) Cr. 3. Repeatable. F.S.
Prereq: Student must be within two semesters of graduation and permission of instructor.
Application of team design concepts to projects of a multidisciplinary nature. Concurrent treatment of design, manufacturing and life cycle considerations. Application of design tools such as CAD, CAM and FEM. Design methodologies, project scheduling, cost estimating, quality control, manufacturing processes. Development of a prototype and appropriate documentation in the form of written reports, oral presentations, computer models and engineering drawings.
(Dual-listed with A B E 569). (2-3) Cr. 3. S.
Prereq: A B E 216
Cereal grain and oilseed properties, quality measurement, processing, and end-use value. Design of drying systems using computer simulation. Corn wet and dry milling. Soybean oil extraction. Grain handling systems.
(Dual-listed with A B E 572). (3-0) Cr. 3. Alt. S., offered even-numbered years.
Prereq: A B E 216, M E 231
Principles and design of animal environmental control systems. Insulation, heat and mass transfer, fans, ventilation, air distribution, heating and cooling equipment, and controls. Individual and group projects required for graduate credit.
(2-0) Cr. 2. F.S.
Prereq: A B E 271 or A B E 272, E M 324 and enrollment in APSE option of AE program.
Application of engineering fundamentals to the independent solution of an animal production systems engineering problem with well defined criteria and constraints in either environmental control, structural design, manure management, or air quality/mitigation.
(Dual-listed with A B E 578). (3-0) Cr. 3. Alt. S., offered odd-numbered years.
Prereq: A B E 216, E M 324
Design of light-framed wood structures using LRFD and ASD design procedures. Includes analysis of wind, snow, dead, and live loads. Applications include animal housing and machine storage. Fasteners, laminated posts, truss design and use of National Design Specifications.
(Cross-listed with ENSCI). (2-2) Cr. 3. F.
Prereq: A B E 380 or permission of the instructor
Systems-level engineering analysis of biological systems. Economic and life-cycle analysis of bioresource production and conversion systems. Global energy and resource issues and the role of biologically derived materials in addressing these issues.
Cr. 1-5. Repeatable.
Independent Study.
Cr. 1-5. Repeatable.
Independent Study.
Cr. 1-5. Repeatable. F.S.SS.
Independent study.
Cr. 1-5. Repeatable. F.S.SS.
Independent study in environmental bioprocessing engineering.
Cr. 1-5. Repeatable. F.S.SS.
Independent study in food engineering.
Cr. 1-5. Repeatable. F.S.SS.
Independent study in general A B E topics.
Cr. 1-5. Repeatable.
Guided instructing in agricultural and biosystems engineering for honors students.
Cr. 1-5. Repeatable.
Guided instruction in land and water resources engineering.
Cr. 1-5. Repeatable.
Guided instruction in advance machinery systems engineering.
(Cross-listed with TSM). Cr. 1-2. Repeatable. F.S.SS.
Prereq: Permission of instructor
Preparation for, or follow-up of, study abroad experience (496). For preparation, course focuses on understanding the tour destination through readings, discussions, and research on topics such as the regional industries, climate, crops, culture, economics, food, geography, government, history, natural resources, and public policies. For follow-up, course focuses on presentations by students, report writing, and reflection. Students enrolled in this course intend to register for 496 the following term or have had taken 496 the previous term.
Meets International Perspectives Requirement.
(Cross-listed with TSM). Cr. 1-4. Repeatable. F.S.SS.
Prereq: Permission of instructor
Tour and study at international sites relevant to disciplines of industrial technology, biological systems engineering, agricultural systems technology, and agricultural engineering. Location and duration of tours will vary. Trip expenses paid by students. Pre-trip preparation and/or post-trip reflection and reports arranged through 495.
Meets International Perspectives Requirement.
Cr. R. Repeatable. F.S.SS.
Prereq: A B E 398, permission of department and Engineering Career Services
Third and subsequent professional work periods in the cooperative education program. Students must register for this course before commencing work.
Courses primarily for graduate students, open to qualified undergraduates:
(3-0) Cr. 3. S.
Prereq: Undergraduate training in an engineering or physical or biological discipline or degrees in agriculture or economics
Introduction to the science and engineering of converting biorenewable resources into bioenergy and biobased products. Survey of biorenewable resource base and properties; description of biobased products; methods of biorenewable resource production; processing technologies for fuels, chemicals, materials, and energy; environmental impacts; economics of biobased products and bioenergy.
(Dual-listed with A B E 403). (2-2) Cr. 3. Alt. S., offered odd-numbered years.
Prereq: A B E 316, and A B E 363, and MATH 266 or MATH 267
Modeling dynamic systems with ordinary differential equations. Introduction to state variable methods of system analysis. Analysis of mechanical, electrical, and fluid power systems. Analytical and numerical solutions of differential equations. Introduction to classical control theory. Feedback and stability examined in the s domain. Frequency response as an analytical and experimental tool. MATLAB will be used throughout the course for modeling. Individual and/or group projects required for graduate credit.
(Dual-listed with A B E 404). (2-2) Cr. 3. F.
Prereq: A B E 316 and A B E 363 or CPR E 281
Interfacing techniques for computer-based data acquisition and control systems. Basic interfacing components including A/D and D/A conversion, signal filtering, multiplexing, and process control. Sensors and theory of operation applied to practical monitoring and control problems. Individual and group projects required for graduate credit.
(2-2) Cr. 3. Alt. F., offered even-numbered years.
Prereq: A B E 316 or equivalent, MATH 166, STAT 305
Applications of biologically inspired computational intelligence tools for data mining, system modeling, and optimization for agricultural, biological and other engineered systems. Introduction to Artificial Neural Networks, Support Vector Machines, Fuzzy Logic, Genetic Algorithms, Bayesian and Decision Tree learning. Fundamental Machine Vision techniques will be introduced in the first part of course and be integrated into the lab exercises for learning different computational intelligence techniques. MATLAB will be used throughout the course for algorithm implementation.
(Dual-listed with A B E 408). (Cross-listed with ENSCI). (2-2) Cr. 3. F.
Prereq: Working knowledge of computers and Windows environment
Introduction to fundamental concepts and applications of GIS in natural resources management with specific focus on watersheds. Topics include: basic GIS technology, data structures, database management, spatial analysis, and modeling; visualization and display of natural resource data. Case studies in watershed and natural resource management using ArcView GIS.
(Dual-listed with A B E 410). Cr. 3. Alt. S., offered odd-numbered years.
Prereq: A B E 363
System architecture and design of electronics used in agricultural machinery and production systems. Emphasis on information technology and systems integration for automated agriculture processes. Design of Controller Area Network (CAN BUS) communication systems and discussion of relevant standards (ISO 11783 and SAE J1939). Application of technologies for sensing, distribution control, and automation of agricultural machinery will be emphasized.
(Cross-listed with AGRON, AN S, SUSAG). (3-0) Cr. 3. Alt. F., offered odd-numbered years.
Prereq: SUSAG 509
Methods to maintain productivity and minimize the negative ecological effects of agricultural systems by understanding nutrient cycles, managing manure and crop residue, and utilizing multispecies interactions. Crop and livestock production within landscapes and watersheds is also considered. Course includes a significant field component, with student teams analyzing Iowa farms.
(Dual-listed with A B E 431). (Cross-listed with ENSCI). (2-2) Cr. 3. F.
Prereq: E M 378 or CH E 356
Hydrology and hydraulics in agricultural and urbanizing watersheds. Design and evaluation of systems for the conservation and quality preservation of soil and water resources. Use and analysis of hydrologic data in engineering design; relationship of topography, soils, crops, climate, and cultural practices in conservation and quality preservation of soil and water for agriculture. Small watershed hydrology, water movement and utilization in the soil-plant-atmosphere system, agricultural water management, best management practices, and agricultural water quality.
(Dual-listed with A B E 432). (Cross-listed with ENSCI). (3-0) Cr. 3.
Prereq: A B E 431 or C E 372 or instructor permission
Characteristics and courses of non-point source (NPS) pollution in agricultural and urban watersheds, computer modeling and NPS pollution for terrestrial and aquatic systems, strategies to control and manage NPS pollution of water bodies, total maximum daily loads (TMDLs) and integrated watershed management. Graduate students are required to review research papers and develop/deliver lecture models on assigned topics.
(Cross-listed with ENSCI, NREM). (2-3) Cr. 3. F.
Prereq: C E 372 or GEOL/ENSCI/MTEOR 402, MATH 266 or equivalent
Soil erosion processes, soil loss equations and their application to conservation planning, sediment properties, initiation of sediment motion and over land flow, flow in alluvial channels and theory of sediment transport, channel stability, reservoir sedimentation, wind erosion, BMPs for controlling erosion.
(Dual-listed with A B E 436). (Cross-listed with ENSCI). (2-3) Cr. 3. Alt. S., offered even-numbered years.
Prereq: A B E 431/A B E 531
Development of monitoring systems that support effective planning, performance evaluation, modeling, or environmental impact assessment of soil-, water-, and waste-management systems. Typical soil and water pollutants and physical, chemical, and biological characteristics that affect sample location and timing. Sample collection, documentation, chain-of-custody, and quality assurance procedures. In addition to other assignments, graduate students will prepare several research literature reviews on topics covered in the class and develop monitoring plans.
(Cross-listed with ENSCI). (2-2) Cr. 3. Alt. F., offered odd-numbered years.
Prereq: CE 372 or equivalent
A project-based course to develop a water quality improvement plan. The legislative and judicial basis of the Total Maximum Daily Load (TMDL) program, different approaches for TMDL development, data needs and sources, SWAT modeling, and principles and techniques for implementation of water quality improvement plans.
(Dual-listed with A B E 451). (3-0) Cr. 3. F.
Prereq: A B E 216 and M E 436 or CH E 357, or FS HN 351 and MATH 266 or MATH 267
Application of engineering principles and mathematical modeling to the quantitative analysis of food and bioprocessing systems. Physical/chemical characteristics of foods and biological systems, flow processes, thermal processes and separation processes. Term paper required for graduate credit.
(Dual-listed with A B E 469). (2-3) Cr. 3. S.
Prereq: A B E 216
Cereal grain and oilseed preservation, quality measurement, and end-use value. Design of drying systems using computer simulation. Corn wet and dry milling. Soybean oil extraction. Grain handling systems. Individual and group projects required for graduate credit.
(Dual-listed with A B E 472). (3-0) Cr. 3. Alt. S., offered even-numbered years.
Prereq: A B E 216, M E 231
Principles and design of animal environmental control systems. Insulation, heat and mass transfer, fans, ventilation, air distribution, heating and cooling equipment, and controls. Individual and group projects required for graduate credit.
(Dual-listed with A B E 478). (3-0) Cr. 3. Alt. S., offered odd-numbered years.
Prereq: A B E 216, E M 324
Design of light-framed wood structures using LRFD and ASD design procedures. Includes analysis of wind, snow, dead, and live loads. Applications include animal housing and machine storage. Fasteners, laminated posts, truss design and use of National Design Specifications.
(2-2) Cr. 3. F.
Prereq: A B E 216; MATH 266; BIOL 211 or BIOL 212; M E 231
Systems-level engineering analysis of biological systems. Economic and life-cycle analysis of bioresource production and conversion systems. Global energy and resource issues and the role of biologically derived materials in addressing these issues. Students enrolled in ABE 580 will be required to answer additional exam questions and report on two journal articles.
Cr. 1-3. Repeatable.
Guided instruction and self-study on special topics relevant to agricultural and biosystems engineering.
(Cross-listed with TSM). Cr. 1. F.S.SS.
A technical paper draft based on the M.S. thesis or creative component is required of all master's students. This paper must be in a form that satisfies the requirements of some specific journal and be ready for submission. A technical presentation based on M.S. thesis or creative component is required of all master's students. This presentation must be in a form that satisfies the normal presentation requirements of a professional society. The presentation itself (oral or poster) may be made at a professional society meeting or at any international, regional, state, or university conference/event as long as the presentation content and form conforms to normal expectations.
Offered on a satisfactory-fail basis only.
Cr. arr. Repeatable.
Creative Component.
Courses for graduate students:
(Cross-listed with TSM). (1-0) Cr. 1. F.
Keys to starting a good MS thesis or PhD dissertation project. Learning how to formulate research problems. Discussion of broader impact, review of literature, identifying knowledge gaps and needs, long-term goals, research hypotheses, objectives, rationale and significance, and approaches for accomplishing research objectives. Preparation and communication of research proposal and project in different formats. Using peer review and responding to feedback.
(Cross-listed with AGRON, ANTHR, SOC, SUSAG). (3-0) Cr. 3. F.
Prereq: Graduate classification, permission of instructor
Historical, biophysical, socioeconomic, and ethical dimensions of agricultural sustainability. Strategies for evaluating existing and emerging agricultural systems in terms of the core concepts of sustainability and their theoretical contexts.
Cr. arr. Repeatable.
Advanced topics.
(Cross-listed with TSM). Cr. 1-3. Repeatable. F.S.SS.
Prereq: Graduate classification and permission of instructor
Graduate student experience in the agricultural and biosystems engineering departmental teaching program.
Cr. R. Repeatable.
Prereq: Permission of department chair, graduate classification
One semester and one summer maximum per academic year professional work period.
(Cross-listed with TSM). Cr. 1. F.S.SS.
A technical paper draft based on the dissertation is required of all Ph.D. students. This paper must be in a form that satisfies the requirements of some specific journal and be ready for submission. A technical presentation based on the dissertation is required of all Ph.D. students. This presentation must be in a form that satisfies the normal presentation requirements of a professional society. The presentation itself (oral or poster) may be made at a professional society meeting or at any international, regional, state, or university conference/event as long as the presentation content and form conforms to normal expectations.
Offered on a satisfactory-fail basis only.
Cr. arr. Repeatable.
Research.
Cr. arr. Repeatable.
Guided graduate research in biosystems engineering.
Cr. arr. Repeatable.
Guided graduate research in computer-aided design.
Cr. arr. Repeatable.
Guided graduate research in environmental systems.
Cr. arr. Repeatable.
Guided graduate research in food engineering.
Cr. arr. Repeatable.
Guided graduate research in occupational safety.
Cr. arr. Repeatable.
Guided graduate research in power and machinery engineering.
Cr. arr. Repeatable.
Guided graduate research in structures.
Cr. arr. Repeatable.
Guided graduate research in process engineering.
Cr. arr. Repeatable.
Guided graduate research in environment and natural resources.
Cr. arr. Repeatable.
Guided graduate research in waste management.