Genetics, Development and Cell Biology (GDCB)
Courses
Courses primarily for graduate students, open to qualified undergraduates:
GDCB 505. Entrepreneurship in Science and Technology.
(3-0) Cr. 3.
Alt. F., offered even-numbered years.
High level success at modern science requires entrepreneurship both in and outside the laboratory. Scientists are in a unique position to not only think, but to thrive, "outside of the box" and take unorthodox approaches to research that lead to positive paradigm shifts in our lives. Exploration of many facets of science, technology, industry and commerce, with frequent guest lectures from entrepreneurs.
GDCB 508. Biotechnology in Agriculture, Food, and Human Health.
(3-0) Cr. 3.
Prereq: BIOL 211 and BIOL 212
Scientific principles and techniques in biotechnology. Products and applications in agriculture, food, and human health. Ethical, legal, and social implications of biotechnology. A research paper is required for graduate credit.
GDCB 510. Transmission Genetics.
(3-0) Cr. 3.
F.
Prereq: GEN 410 or graduate standing
In-depth investigations of modern research practices of transmission genetics. Designed for students interested in genetic research. Topics include: Mendelian genetic analysis, analysis of genetic pathways, mutational analysis of gene function, chromosomal mechanics, genetic mapping, epigenetic inheritance, human genetic analysis.
GDCB 511. Molecular Genetics.
(Cross-listed with MCDB). (3-0) Cr. 3.
S.
Prereq: BIOL 313 and BBMB 405
The principles of molecular genetics: gene structure and function at the molecular level, including regulation of gene expression, genetic rearrangement, and the organization of genetic information in prokaryotes and eukaryotes.
GDCB 513. Plant Metabolism.
(Cross-listed with PLBIO). (2-0) Cr. 2.
Alt. F., offered even-numbered years.
Prereq: BIOL 330, PHYS 111, CHEM 331; one semester of biochemistry recommended
Photosynthesis, respiration, and other aspects of plant metabolism.
GDCB 520. Genetic Engineering.
(Cross-listed with BBMB, MCDB). (3-0) Cr. 3.
Alt. S., offered even-numbered years.
Prereq: GEN 411 or BBMB 405
Strategies and rationale of recombinant DNA technologies. The methodology of genetic engineering in basic research and implications for applied research will be considered. Topics include: basic tools of molecular cloning, targeted mutagenesis, fluorescent proteins, protein expression systems, and transgenic model systems.
GDCB 528. Advances in Molecular Cell Biology.
(Cross-listed with MCDB). (3-0) Cr. 3.
Alt. F., offered even-numbered years.
Prereq: Courses in general cell biology and biochemistry
Cell biological processes including cell signaling, cell division, intracellular trafficking, biogenesis of organelles, cell adhesion and motility.
GDCB 533. Advances in Developmental Biology.
(Cross-listed with MCDB). (3-0) Cr. 3.
Alt. F., offered odd-numbered years.
Prereq: BIOL 314 or BIOL 423
Fundamental principles in multicellular development. Emphasis on cellular and molecular regulation of developmental processes, and experimental approaches as illustrated in the current literature.
GDCB 536. Statistical Genetics.
(Cross-listed with STAT). (3-0) Cr. 3.
Alt. F., offered even-numbered years.
Prereq: STAT 401, STAT 447; GEN 320 or BIOL 313
Statistical models and methods for genetics covering models of population processes: selection, mutation, migration, population structure, and linkage disequilibrium, and inference techniques: genetic mapping, linkage analysis, and quantitative trait analysis. Applications include genetic map construction, gene mapping, genome-wide association studies (GWAS), inference about population structure, phylogenetic tree construction, and forensic and paternity identification.
GDCB 542. Introduction to Molecular Biology Techniques.
(Cross-listed with B M S, EEOB, FS HN, HORT, NREM, NUTRS, V MPM, VDPAM). Cr. 1.
Repeatable. F.S.SS.
Prereq: Graduate classification
Sessions in basic molecular biology techniques and related procedures.
Offered on a satisfactory-fail basis only.
GDCB 542A. Introduction to Molecular Biology Techniques: DNA Techniques.
(Cross-listed with B M S, BBMB, EEOB, FS HN, HORT, NREM, NUTRS, V MPM, VDPAM). Cr. 1.
Repeatable. F.S.SS.
Prereq: Graduate classification
Includes genetic engineering procedures, sequencing, PCR, and genotyping.
Offered on a satisfactory-fail basis only.
GDCB 542C. Introduction to Molecular Biology Techniques: Cell Techniques.
(Cross-listed with B M S, BBMB, EEOB, FS HN, HORT, NREM, NUTRS, V MPM, VDPAM). Cr. 1.
Repeatable. F.S.
Prereq: Graduate classification
Includes immunophenotyping, ELISA, flow cytometry, microscopic techniques, image analysis, confocal, multiphoton and laser capture microdissection.
Offered on a satisfactory-fail basis only.
GDCB 542D. Introduction to Molecular Biology Techniques: Plant Transformation.
(Cross-listed with B M S, EEOB, FS HN, HORT, NREM, NUTRS, V MPM, VDPAM). Cr. 1.
Repeatable. S.
Prereq: Graduate classification
Includes Agrobacterium and particle gun-mediated transformation of tobacco, Arabidopsis, and maize, and analysis of tranformants.
Offered on a satisfactory-fail basis only.
GDCB 542E. Introduction to Molecular Biology Techniques: Proteomics.
(Cross-listed with B M S, BBMB, EEOB, FS HN, HORT, NREM, NUTRS, V MPM, VDPAM). Cr. 1.
Repeatable. F.
Prereq: Graduate classification
Includes two-dimensional electrophoresis, laser scanning, mass spectrometry, and database searching.
Offered on a satisfactory-fail basis only.
GDCB 542F. Introduction to Molecular Biology Techniques: Metabolomics.
(Cross-listed with B M S, BBMB, EEOB, FS HN, HORT, NREM, NUTRS, V MPM, VDPAM). Cr. 1.
Repeatable. F.
Prereq: Graduate classification
Includes metabolomics and the techniques involved in metabolite profiling. For non-chemistry majoring students who are seeking analytical aspects into their biological research projects.
Offered on a satisfactory-fail basis only.
GDCB 542G. Introduction to Molecular Biology Techniques: Genomic.
(Cross-listed with B M S, EEOB, FS HN, HORT, NREM, NUTRS, V MPM, VDPAM). Cr. 1.
Repeatable. S.
Prereq: Graduate classification
Offered on a satisfactory-fail basis only.
GDCB 544. Introduction to Bioinformatics.
(Cross-listed with BCB, COM S, CPR E). (4-0) Cr. 4.
F.
Prereq: MATH 165 or STAT 401 or equivalent
Broad overview of bioinformatics with a significant problem-solving component, including hands-on practice using computational tools to solve a variety of biological problems. Topics include: database searching, sequence alignment, gene prediction, RNA and protein structure prediction, construction of phylogenetic trees, comparative, functional genomics, and systems biology.
GDCB 545. Plant Molecular, Cell and Developmental Biology.
(Cross-listed with MCDB, PLBIO). (3-0) Cr. 3.
Alt. F., offered odd-numbered years.
Prereq: BIOL 313, BIOL 314, BIOL 330 or BBMB 405
Plant nuclear and organelle genomes; regulation of gene expression; hormone signaling; organization, function, and development of plant cells and subcellular structures; regulation of plant growth and development.
GDCB 556. Cellular, Molecular and Developmental Neuroscience.
(Cross-listed with B M S, NEURO). (3-0) Cr. 3.
F.
Prereq: BIOL 335 or BIOL 436; physics recommended
Fundamental principles of neuroscience including cellular and molecular neuroscience, nervous system development, sensory, motor and regulatory systems.
GDCB 557. Advanced Neuroscience Techniques.
(Cross-listed with NEURO). (3-0) Cr. 3.
Alt. S., offered odd-numbered years.
Prereq: NEURO 556 or equivalent course
Research methods and techniques; lectures, laboratory exercises and/or demonstrations representing individual faculty specialties.
GDCB 568. Bioinformatics II (Advanced Genome Informatics).
(Cross-listed with BCB, COM S, STAT). (3-0) Cr. 3.
S.
Prereq: BCB 567, BBMB 301, BIOL 315, STAT 430, credit or enrollment in GEN 411
Advanced sequence models. Basic methods in molecular phylogeny. Hidden Markov models. Genome annotation. DNA and protein motifs. Introduction to gene expression analysis.
GDCB 570. Bioinformatics IV (Computational Functional Genomics and Systems Biology).
(Cross-listed with BCB, COM S, CPR E, STAT). (3-0) Cr. 3.
S.
Prereq: BCB 567, BIOL 315, COM S 311 and either 208 or 228, GEN 411, STAT 430
Algorithmic and statistical approaches in computational functional genomics and systems biology. Elements of experiment design. Analysis of high throughput gene expression, proteomics, and other datasets obtained using system-wide measurements. Topological analysis, module discovery, and comparative analysis of gene and protein networks. Modeling, analysis, simulation and inference of transcriptional regulatory modules and networks, protein-protein interaction networks, metabolic networks, cells and systems: Dynamic systems, Boolean, and probabilistic models. Multi-scale, multi-granularity models. Ontology-driven, network based, and probabilistic approaches to information integration.
GDCB 590. Special Topics.
Cr. arr.
Repeatable.
Prereq: Permission of instructor
GDCB 596. Genomic Data Processing.
(Cross-listed with BCB, COM S). (3-0) Cr. 3.
F.
Prereq: Some experience in computation
Study the practical aspects of genomic data processing with an emphasis on hands-on projects. Topics include base-calling, sequence cleaning and contaminant removal; fragment assembly procedures and EST clustering methods; genome closure strategies and practices; sequence homology search and function prediction; and annotation and submission of GenBank reports. Next-generation sequencing topics like model genome resequencing, short-read assembly and transcriptome abundance measurement will also be covered.
Courses for graduate students:
GDCB 661. Current Topics in Neuroscience.
(Cross-listed with BBMB, NEURO). (2-0) Cr. 2-3.
Repeatable. Alt. S., offered even-numbered years.
Prereq: NEURO 556 (or comparable course) or permission of instructor
Topics may include molecular and cellular neuroscience, neurodevelopment, neuroplasticity, neurodegenerative diseases, cognitive neuroscience, sensory biology, neural integration, membrane biophysics, neuroethology, techniques in neurobiology and behavior.
GDCB 679. Light Microscopy.
(Cross-listed with EEOB, MICRO). (2-9) Cr. 5.
Prereq: Permission of instructor
Current theories encompassing light optics and their applications for specimen preservation, paraffin and resin sectioning, general staining, histochemistry, cytophotometry, immunocytochemistry, autoradiography, image digitization, processing and presentation, and digital macro- and micrography. Limit of 10 students.
GDCB 680. Scanning Electron Microscopy.
(Cross-listed with EEOB, MICRO). (2-9) Cr. 5.
Prereq: Permission of instructor
Current theories encompassing scanning electron optics and their applications for high and low vacuum microscopy, specimen chemical and cryopreservation methods, x-ray microanalysis, backscattered and topographic imaging, image digitization, processing and presentation. Limit of 10 students.
GDCB 681. Transmission Electron Microscopy.
(Cross-listed with EEOB, MICRO). (2-9) Cr. 5.
Prereq: GDCB 679 and permission of instructor
Current theories encompassing electron optics and their applications for chemical and physical specimen preservation, ultramicrotomy, general staining and cytochemistry, immunocytochemistry, autoradiography, negative staining and shadowing, x-ray microanalysis, image digitization, processing and presentation.
GDCB 690. Seminar in GDCB.
Cr. 1.
Repeatable.
Research seminars by faculty, invited speakers, and graduate students.
Offered on a satisfactory-fail basis only.
GDCB 691. Faculty Seminar.
Cr. 1.
Repeatable.
Faculty research series.
GDCB 696. Research Seminar.
(Cross-listed with AGRON, BBMB, FOR, HORT, PLBIO). Cr. 1.
Repeatable. F.S.
Research seminars by faculty and graduate students.
Offered on a satisfactory-fail basis only.
GDCB 698. Seminar in Molecular, Cellular, and Developmental Biology.
(Cross-listed with BBMB, MCDB, MICRO, V MPM). (2-0) Cr. 1-2.
Repeatable. F.S.
Student and faculty presentations.
GDCB 699. Research.
Cr. arr.
Repeatable.
Research for thesis or dissertation.
Offered on a satisfactory-fail basis only.
GDCB 699I. Research.
(Cross-listed with A ECL, ANTHR, EEOB, IA LL). Cr. 1-4.
Repeatable.