your adventure in

Biochemistry (AGLS)

This is an archived copy of the 2021-2022 catalog. To access the most recent version of the catalog, please visit http://catalog.iastate.edu.

View PDF

The department of Biochemistry, Biophysics & Molecular Biology offers majors in biochemistry or biophysics in the College of Liberal Arts and Sciences and a major in biochemistry in the College of Agriculture and Life Sciences.

Biochemists and biophysicists seek to understand life processes in terms of chemical and physical principles. They conduct research in the frontiers of biology such as metabolic networking; structure and function of enzymes, membranes, and hormones; computational approaches; genomic and proteomic technology; protein engineering; plant biotechnology; muscle structure and function; and the design and evaluation of drugs for the treatment of disease. Biochemistry, biophysics and molecular biology provide the basis for much of modern biotechnology. Graduates have opportunities in industry, especially the biotechnology sector, in universities, veterinary and medical schools, and government laboratories. Students who meet the necessary high scholastic standards have the opportunity to continue their education to pursue advanced degrees in graduate school, medicine, pharmacy or veterinary medicine.

Graduates of biochemistry, biochemistry and biophysics understand the chemical principles of biological systems including molecular biology. They have developed laboratory expertise in modern biochemical techniques, including the ability to analyze data and prepare scientific reports. Most have participated in undergraduate research and have developed the skills necessary for both written and oral presentations at a level that will serve the student both within the university and in postgraduate professional life. Graduates have the experience of interacting with persons of different disciplines and cultures. Students have the training in biological and physical science and mathematics to solve problems of broad scope in biological, biomedical and environmental sciences and to provide leadership in diverse scientific and technological arenas.

A program that combines a bachelor of science and masters of science in biochemistry or biophysics is offered.

Biochemistry Major in the College of Agriculture and Life Sciences

For the undergraduate curriculum leading to the degree bachelor of science, see College of Agriculture and Life Sciences, Curricula. Biochemistry is recommended to students interested in the areas of agriculture requiring strong preparation in biochemistry, chemistry, physics, and mathematics, or in preparation for the study of veterinary medicine. Employment opportunities exist in agrochemical industries, and animal and plant biotechnology.

Biochemistry program of study
BBMB 101Introduction to Biochemistry1
BBMB 102Introduction to Biochemistry Laboratory1
BBMB 201Chemical Principles in Biological Systems2
BBMB 312Experimental Research Skills in Biochemistry2
or CHEM 211
211L
Quantitative and Environmental Analysis
and Quantitative and Environmental Analysis Laboratory
BBMB 404Biochemistry I3
or (4 credits)
Amino Acids and Proteins
Bioenergetics and Metabolism
BBMB 405Biochemistry II3
or (4 credits)
Membrane Biochemistry
Biochemistry of Nucleic Acids
BBMB 411Techniques in Biochemical Research4
BBMB 490Independent Study (Elective) max. 9 cr. can be appliedarr †
BBMB 499Undergraduate Research (Elective) highly encouragedarr †
Take one of the following:5-7
Advanced General Chemistry
General Chemistry I
and General Chemistry II
Take one of the following:1
Laboratory in Advanced General Chemistry
Laboratory in General Chemistry I
Laboratory in General Chemistry I
Take one of the following:3-4
Laboratory in Physical Chemistry
Molecular Biophysics
and Laboratory in Molecular Biophysics
CHEM 324Introductory Quantum Mechanics3
CHEM 325Chemical Thermodynamics3
CHEM 331
CHEM 332
Organic Chemistry I
and Organic Chemistry II
6
CHEM 333LLaboratory in Organic Chemistry I (for Chemistry and Biochemistry Majors)1-2
or CHEM 331L Laboratory in Organic Chemistry I
MATH 165Calculus I4
MATH 166Calculus II4
MATH 265Calculus III3-4
or MATH 266 Elementary Differential Equations
or MATH 267 Elementary Differential Equations and Laplace Transforms
PHYS 221Introduction to Classical Physics I5
PHYS 232Introduction to Classical Physics II4
PHYS 232LIntroduction to Classical Physics II Laboratory1
BIOL 211
BIOL 212
Principles of Biology I
and Principles of Biology II
6
BIOL 211LPrinciples of Biology Laboratory I1
or BIOL 212L Principles of Biology Laboratory II
or BIOL 313L Genetics Laboratory
BIOL 313Principles of Genetics3
BIOL 314Principles of Molecular Cell Biology3
Agricultural Sciences from approved list9
Total Credits81-86 †
† Arranged with instructor.

The College of Agriculture and Life Sciences requires the following:

University Requirements: Select approved courses to meet U.S. Diversity 3 cr. and International Perspectives 3 cr.  Credits can dual assign with Humanities and Social Science choices.
Communications Proficiency
ENGL 150Critical Thinking and Communication (C or better)3
ENGL 250Written, Oral, Visual, and Electronic Composition (C or better)3
SP CM 212Fundamentals of Public Speaking3
LIB 160Information Literacy1
Total Credits10
 Ethics
Courses from an approved list.3
Humanities and Social Sciences: select from approved lists
Humanities course 3
Social Science course3
Total Credits6
Agricultural Sciences
Courses from an approved list9

Biochemistry, B.S. - option 1

Freshman
FallCreditsSpringCredits
CHEM 1774CHEM 1783
CHEM 177N1MATH 1664
MATH 1654ENGL 2503
ENGL 1503BBMB 1021
BIOL 2113BIOL 2123
BIOL 211L*1Student choice3
BBMB 1011 
LIB 1601 
 18 17
Sophomore
FallCreditsSpringCredits
BBMB 3122BBMB 2012
BIOL 3133MATH 265 or 2663-4
PHYS 2215CHEM 3323
CHEM 3313PHYS 2324
CHEM 331L1PHYS 232L1
 BIOL 3143
 14 16-17
Junior
FallCreditsSpringCredits
BBMB 4043BBMB 4053
SP CM 2123Student choice3
Student choice3Student choice3
Student choice3Student choice3
Student choice3Student choice3
 15 15
Senior
FallCreditsSpringCredits
BBMB 4114CHEM 3253
CHEM 3243BBMB 4612
Student choice3and BBMB 561L2
Student choice3or CHEM 322L3
Student choice3Student choice3
 Student choice3
 Student choice3
 16 19

Biochemistry, B.S. - option 2

Freshman
FallCreditsSpringCredits
CHEM 2015MATH 1664
CHEM 201L1ENGL 2503
MATH 1654BBMB 1021
BIOL 2113BIOL 2123
BIOL 211L*1LIB 1601
BBMB 1011CHEM 2112
 CHEM 211L2
 15 16
Sophomore
FallCreditsSpringCredits
PHYS 2215PHYS 2324
CHEM 3313PHYS 232L1
CHEM 331L1CHEM 3323
BIOL 3133BIOL 3143
Student choice3BBMB 2012
Student choice3MATH 265 or 2663-4
 18 16-17
Junior
FallCreditsSpringCredits
BBMB 4043BBMB 4053
SP CM 2123Student choice3
Student choice3Student choice3
Student choice3Student choice3
Student choice3Student choice3
 15 15
Senior
FallCreditsSpringCredits
BBMB 4114CHEM 3253
CHEM 3243BBMB 4612
Student choice3and 
Student choice3BBMB 561L2
Student choice3or CHEM 322L3
 Student choice3
 Student choice3
 Student choice3
 16 19

Expand all courses

Courses

Courses primarily for undergraduates:

(1-0) Cr. 1. F.


Basic structure and function of biological molecules: protein, lipids, nucleic acids, and carbohydrates. Introduction to frontier technologies in the biosciences, and a survey of careers and research in biotechnology. For students majoring in Biochemistry or Biophysics or considering one of these majors.

(0-2) Cr. 1. S.

Prereq: Credit or enrollment in CHEM 177 and CHEM 177L or CHEM 201 and CHEM 201L
Topics in the scientific background of biochemistry, such as macromolecules, metabolism, and catalysis. Laboratory experimentation covers biochemical concepts and the study of bio-molecules including proteins, lipids and nucleic acids. A significant component is practice in scientific communication. For students majoring in biochemistry, agricultural biochemistry or biophysics or considering one of these majors.

Cr. 1. F.

Prereq: Co-enrollment with BBMB 101 highly recommended.
Overview of the program of study, academic planning, resources on campus for the successful transition to Iowa State, team‐building, leadership, and community‐focused activities. For members of the Biochemistry & Biophysics Learning Community. Offered on a satisfactory-fail basis only.

Cr. 1. S.

Prereq: Enrollment in BBMB102 is highly recommended.
Overview of career-building and research resources within BBMB and across ISU, including internships, lab skills, independent research, and leadership opportunities. For members of the Biochemistry & Biophysics Learning Community. Offered on a satisfactory-fail basis only.

(Cross-listed with FS HN). (2-0) Cr. 2. F.


An introduction to the major classes of biomolecules, basic biochemical concepts, enzymology, metabolism and genetic engineering as they apply to the production and flavor of beer. All aspects of the biochemistry of beer will be covered, including the malting of barley, starch conversion, yeast fermentation and the chemical changes that occur during the aging of beer. Intended for non-majors. Natural science majors are limited to elective credit only.

(Cross-listed with FS HN). Cr. 1.

Prereq: Credit or enrollment for credit in BBMB 120
An introduction to biochemical methods related to the production of beer. Laboratory exercises related to water chemistry, mash enzymology, hop compound extraction and analysis, and yeast biology will be performed. Closely follows the material being taught in BBMB 120. Natural science majors are limited to elective credit only.

Cr. 2. S.

Prereq: One year of high school chemistry or CHEM 50 and biology.
An introduction to how medicines treat disease, what drug molecules look like, how they function, how they can be toxic, modern therapeutics ranging from over-the-counter pain relievers, antibiotics and anti-depressants, to anti-cancer chemotherapies, a discussion of illegal drugs from toxicity to mechanism of action and potential therapeutic benefits. Intended for students of all majors.

(2-0) Cr. 2. S.

Prereq: Credit or enrollment in CHEM 332
Survey of chemical principles as they apply to biological systems including: water, organic chemistry of functional groups in biomolecules and biochemical cofactors, weak bonds and their contribution to biomolecular structure, oxidation-reduction reactions and redox potential, thermodynamic laws and bioenergetics, chemical equilibria and kinetics, inorganic chemistry in biological systems, data presentation. The subjects will be taught using molecules from biological systems as examples. Intended for majors in biochemistry, biophysics or agricultural biochemistry.

(3-0) Cr. 3. F.S.

Prereq: CHEM 163, CHEM 167, or CHEM 177
Fundamentals necessary for an understanding of biochemical processes. Primarily for students in agriculture. Not acceptable for credit toward a major in biochemistry, biophysics, or agricultural biochemistry. Credit for both BBMB 221 and Chem 231 may not be applied toward graduation.

(3-0) Cr. 3. S.SS.

Prereq: CHEM 231 or CHEM 331
A survey of biochemistry: structure and function of amino acids, proteins, carbohydrates, lipids, and nucleic acids; enzymology; metabolism; biosynthesis; and selected topics. Course offered online. Not acceptable for credit toward a major in biochemistry, biophysics, or agricultural biochemistry.

Cr. 3. F.

Prereq: CHEM 331 or equivalent
Survey of biochemistry: structure and function of amino acids, proteins, carbohydrates, lipids and nucleic acids; enzyme activity; metabolism; DNA replication; RNA transcription; protein translation; with case studies examining industrial uses. Not acceptable for a credit towards a major in biochemistry, biophysics or agricultural biochemistry. Only one of 301, 303(X), or 316 may count toward graduation.

Cr. 2. F.S.

Prereq: BBMB 102; credit or concurrent enrollment in CHEM 178 or CHEM 201
Inquiry-based introduction to biochemical techniques such as protein purification, enzymatic assays, solution preparation, hypothesis formation and testing, data analysis, high-throughput methodology, research record keeping, technical writing and scientific communication.

(3-0) Cr. 3. F.S.

Prereq: CHEM 231 or CHEM 331; BIOL 212; BIOL 313 and BIOL 314 strongly recommended.
Understanding biological systems at the molecular level; chemistry of biological macromolecules, enzyme function and regulation, metabolic pathways; integration of metabolism in diverse living systems. For students in biology and related majors who do not require the more rigorous treatment of biochemistry found in BBMB 404/405. Course offered online. Not acceptable for credit toward a major in biochemistry, biophysics, or agricultural biochemistry.

(3-0) Cr. 3. F.

Prereq: CHEM 331
A general overview for graduate and advanced undergraduate students in agricultural, biological, chemical and nutritional sciences. Chemistry of amino acids, proteins, carbohydrates, and lipids, vitamins; protein structure; enzymology; carbohydrate metabolism. Credit for both BBMB 420 and the BBMB 404 - 405 sequence may not be applied toward graduation.

(3-0) Cr. 3. S.

Prereq: BBMB 404
A general overview for graduate and advanced undergraduate students in agricultural, biological, chemical, and nutritional sciences. Metabolism of carbohydrates, amino acids, nucleotides and lipids; formation, turnover, and molecular relationships among DNA, RNA, and proteins; genetic code; regulation of gene expression; selected topics in the molecular physiology of plants and animals. Course available online. Credit for both BBMB 420 and the BBMB 404 - BBMB 405 sequence may not be applied toward graduation.

(2-8) Cr. 4. F.

Prereq: Credit or enrollment in BBMB 404 or BBMB 504 and BBMB 505; CHEM 211
Laboratory experimentation and techniques for studying biochemistry, including: chromatographic methods; electrophoresis; spectrophotometry; enzyme purification; enzyme kinetics; and characterization of carbohydrates, proteins, lipids, and nucleic acids. Scientific communication and technical writing are emphasized.

(3-0) Cr. 3. F.

Prereq: CHEM 332, BIOL 314
Structure and function of proteins; enzymology; biological oxidation; chemistry and metabolism of carbohydrates, lipids, amino acids and nucleic acids; protein synthesis and the genetic code; relationship of biochemistry to selected animal diseases. Biochemistry of higher animals emphasized. Not acceptable for credit toward a major in agricultural biochemistry or biochemistry. Acceptable for credit toward a major in biophysics. Credit for both BBMB 420 and the BBMB 404 - 405 sequence may not be applied toward graduation.

(Dual-listed with BBMB 530). (Cross-listed with MICRO). (3-0) Cr. 3. Alt. S., offered odd-numbered years.

Prereq: MICRO 302, MICRO 302L
Survey of the diverse groups of procaryotes emphasizing important and distinguishing metabolic, phylogenetic, morphological, and ecological features of members of those groups.

(Cross-listed with MICRO). (2-6) Cr. 4. F.S.

Prereq: MICRO 302, MICRO 302L, CHEM 332, BIOL 313L
Fundamental techniques and theory for studying the cellular mechanisms, genetic processes and diversity of microbial life. Experimental techniques will include isolation and physiological characterization of bacteria that inhabit different environments as well as an emphasis on genetic and molecular techniques to understand antibiotic resistance processes and mechanisms. Also included are techniques for phylogenetic characterization, measuring gene expression, and genetic manipulation of bacteria. Essential components for the effective communication of scientific results are also emphasized.

(Dual-listed with BBMB 561). (2-0) Cr. 2. S.

Prereq: Credit or enrollment in MATH 166, CHEM 178, PHYS 232 or PHYS 112.
Physical methods for the study of molecular structure and organization of biological materials. X-ray diffraction, nuclear magnetic resonance, hydrodynamics and fluorescence spectroscopy. Registration for the graduate credit commits the student to graduate-level examinations, which differ from undergraduate-level examinations in the number and/or difficulty of questions.

Cr. 1-3. Repeatable. F.S.SS.

Prereq: College of Agriculture: junior or senior classification and permission of instructor; College of Liberal Arts and Sciences: permission of instructor.
Independent study with a faculty mentor. No more than 9 credits of BBMB 490 may count toward graduation.

Cr. 1-3. Repeatable. F.S.SS.

Prereq: College of Agriculture: junior or senior classification and permission of instructor; College of Liberal Arts and Sciences: permission of instructor
Independent study with a faculty mentor. No more than 9 credits of BBMB 490 may count toward graduation.

Cr. 1-5. Repeatable. F.S.SS.

Prereq: Permission of faculty member with whom student proposes to work.
Independent research under faculty guidance.

Courses primarily for graduate students, open to qualified undergraduates:

(2-0) Cr. 2. F.

Prereq: CHEM 332 or equivalent
Review of amino acids and proteins, including atomic interactions, thermodynamics, structure and properties of amino acids, post-translational modifications, protein expression, purification and analysis, protein secondary, tertiary and quaternary structure, protein folding, oxygen transport and hemoglobin, models for equilibrium binding, elementary reactions and enzyme kinetics, biosynthesis of amino acids: pathways and mechanisms.

(2-0) Cr. 2. F.

Prereq: CHEM 211, CHEM 332; a previous course in biochemistry is strongly recommended
Examination of catabolic pathways involved in the oxidation of organic and inorganic molecules, and energy metabolism involving inputs from light or other non-light sources. Central metabolism and glycolysis, fermentation, aerobic and anaerobic respiration, photosynthesis.

(2-0) Cr. 2.

Prereq: CHEM 332 or equivalent
Analysis of the structure, function, and synthesis of membranes. Bacterial and eukaryotic membrane characteristics. Membrane transport and signaling mechanisms. Analysis of the structure and function of lipids and membrane proteins.

(2-0) Cr. 2. S.

Prereq: CHEM 332 or equivalent
Analysis of the chemical structure, function, synthesis, and metabolism of nucleic acids. Chemical characterization of nucleotides, polynucleotides, DNA, and RNA. Analysis of transcription, translation, and the genetic code.

(2-0) Cr. 2. F.

Prereq: BIOL 313, BBMB 405, BBMB 502, BBMB 506 and 507 or GEN 409, or equivalent
Biochemical processes that define structure and function of nucleic acids. Emphasis on the molecular processes that take place during synthesis, processing, and function of different RNA species; review of recent advances in RNA research.

(Dual-listed with BBMB 430). (Cross-listed with MICRO). (3-0) Cr. 3. Alt. S., offered odd-numbered years.

Prereq: MICRO 302, MICRO 302L
Survey of the diverse groups of procaryotes emphasizing important and distinguishing metabolic, phylogenetic, morphological, and ecological features of members of those groups.

Cr. 2. Alt. S., offered odd-numbered years.

Prereq: BBMB 504
Advanced concepts of enzyme kinetics and catalysis. Experimental methods for determining kinetic and chemical reaction mechanisms. Enzyme structure/function relationships and the role of dynamics in catalysis.

(Cross-listed with B M S, EEOB, FS HN, GDCB, HORT, NREM, NUTRS, V MPM, VDPAM). Cr. 1. Repeatable. F.S.


Includes genetic engineering procedures, sequencing, PCR, and genotyping. Offered on a satisfactory-fail basis only.

(Cross-listed with B M S, EEOB, FS HN, GDCB, HORT, NREM, NUTRS, VDPAM). Cr. 1. Repeatable. S.SS.

Prereq: Graduate classification
Techniques. Includes: fermentation, protein isolation, protein purification, SDS-PAGE, Western blotting, NMR, confocal microscopy and laser microdissection, Immunophenotyping, and monoclonal antibody production. Sessions in basic molecular biology techniques and related procedures. Offered on a satisfactory-fail basis only.

(Cross-listed with B M S, EEOB, FS HN, GDCB, HORT, NREM, NUTRS, V MPM, VDPAM). Cr. 1. Repeatable. F.S.


Includes: immunophenotyping, ELISA, flow cytometry, microscopic techniques, image analysis, confocal, multiphoton and laser capture microdissection. Offered on a satisfactory-fail basis only.

(Cross-listed with B M S, EEOB, FS HN, GDCB, HORT, NREM, NUTRS, V MPM, VDPAM). Cr. 1. Repeatable. S.


Includes: Agrobacterium and particle gun-mediated transformation of tobacco, Arabidopsis, and maize, and analysis of tranformants. Offered on a satisfactory-fail basis only.

(Cross-listed with B M S, EEOB, FS HN, GDCB, HORT, NREM, NUTRS, V MPM, VDPAM). Cr. 1. Repeatable. F.


Includes: two-dimensional electrophoresis, laser scanning, mass spectrometry, and database searching. Offered on a satisfactory-fail basis only.

(Cross-listed with B M S, EEOB, FS HN, GDCB, HORT, NREM, NUTRS, V MPM, VDPAM). Cr. 1. Repeatable. F.


Includes: metabolomics and the techniques involved in metabolite profiling. For non-chemistry majoring students who are seeking analytical aspects into their biological research projects. Offered on a satisfactory-fail basis only.

(Cross-listed with B M S, EEOB, FS HN, GDCB, HORT, NREM, NUTRS, V MPM, VDPAM). Cr. 1. Repeatable. S.


Offered on a satisfactory-fail basis only.

(Dual-listed with BBMB 461). (2-0) Cr. 2. S.

Prereq: Credit or enrollment in MATH 166, CHEM 178, PHYS 232 or PHYS 112.
Physical methods for the study of molecular structure and organization of biological materials. X-ray diffraction, nuclear magnetic resonance, hydrodynamics and fluorescence spectroscopy. Registration for the graduate credit commits the student to graduate-level examinations, which differ from undergraduate-level examinations in the number and/or difficulty of questions.

(1-3) Cr. 2. S.

Prereq: Credit or enrollment in BBMB 461/BBMB 561
Practice in methods of X-ray diffraction, nuclear magnetic resonance, hydrodynamics and fluorescence spectroscopy as applied to macromolecules.

(Cross-listed with BCB, COM S, CPR E, GDCB). (3-0) Cr. 3. F.

Prereq: BCB 567, BBMB 316, GEN 409, STAT 430
Molecular structures including genes and gene products: protein, DNA and RNA structure. Structure determination methods, structural refinement, structure representation, comparison of structures, visualization, and modeling. Molecular and cellular structure from imaging. Analysis and prediction of protein secondary, tertiary, and higher order structure, disorder, protein-protein and protein-nucleic acid interactions, protein localization and function, bridging between molecular and cellular structures. Molecular evolution.

Cr. arr.


By arrangement.

Cr. 1. Repeatable. F.S.

Prereq: Permission and signature of course administrator required.
Workshops in selected topics in biochemistry and biophysics. Credit in this course does not meet the requirement for advanced graduate electives in Biochemistry. Spring only: BBMB Undergraduate Research Symposium participation. Scheduled class meetings are required in addition to attending the symposium.

Courses for graduate students:

(Cross-listed with MICRO, V MPM). (3-0) Cr. 3. Alt. F., offered odd-numbered years.

Prereq: BBMB 405 or BBMB 506 and BBMB 507
Current topics in molecular aspects of immunology: T and B cell receptors; major histocompatibility complex; antibody structure; immunosuppressive drugs and viruses; and intracellular signaling pathways leading to expression of genes that control and activate immune function.

(2-0) Cr. 2. Alt. S., offered odd-numbered years.

Prereq: BBMB 405 or BBMB 420; or BBMB 506 and BBMB 507
Molecular mechanisms of cellular signaling including receptor activation, desensitization and cross talk, signal transduction pathways, and nuclear receptors. Discussion includes a variety of cell surface receptors and their hormone; growth factor and extracellular matrix activators; protein kinases; caspase and transcription factor downstream signals; lipids, gases and cyclic nucleotides as regulators of cell signaling. Course content includes current literature, student and instructor presentations and research proposal writing.

(Cross-listed with GDCB, NEURO). (3-0) Cr. 3. Repeatable. Alt. S., offered even-numbered years.

Prereq: NEURO 556 (or comparable course) or permission of instructor
Students will present three journal articles and two overview lectures on topics in neuroscience that are related but outside of their own research interest.

(2-0) Cr. 2. Alt. F., offered even-numbered years.

Prereq: BBMB 405 or BBMB 506 and BBMB 507
In-depth discussion of nucleic acid properties, structures and structure/function relationships. Interactions between nucleic acids and proteins will be emphasized.

(Cross-listed with MCDB). (2-0) Cr. 2. Alt. S., offered even-numbered years.

Prereq: BBMB 404 and BBMB 504; and BBMB 506 and BBMB 507; or BBMB 405 or BBMB 505 and or GDCB 511
Analysis of the biochemical processes involved in expression of eucaryotic genes and the regulation thereof, including RNA polymerase, transcriptional regulatory proteins, enhancers and silencers, chromosome structure, termination, RNA processing, RNA transport, RNA turnover, small RNAs, translational regulation, protein turnover.

Cr. 1. Repeatable. F.S.

Prereq: Permission of instructor
Student presentations.

Cr. R. F.S.

Prereq: Permission of instructor
Faculty, staff and invited guest research seminar.

(Cross-listed with AGRON, FOR, GDCB, HORT, PLBIO). Cr. 1. Repeatable.


Research seminars by faculty and graduate students. Offered on a satisfactory-fail basis only.

(Cross-listed with GDCB, MCDB, MICRO, V MPM). (2-0) Cr. 1-2. Repeatable. S.


Student and faculty presentations.

Cr. arr. Repeatable. F.S.

Prereq: Permission of instructor