your adventure in

Mechanical Engineering

View PDF

For the undergraduate curriculum in mechanical engineering leading to the degree Bachelor of Science. The Mechanical Engineering Program is accredited by the Engineering Accreditation Commission of ABET, https://www.abet.org, under the commission’s General Criteria and Program Criteria for Mechanical and Similarly Named Engineering Programs.

Mechanical engineers apply the principles of motion, energy, and force to create mechanical solutions to technological problems, thereby realizing devices and systems that make life better. About one-fifth of all engineers practicing today are mechanical engineers. Their skills are used in research, development, design, testing, production, technical sales, technical management, as well as medicine, law, and business. Mechanical engineers are characterized by personal creativity, breadth of knowledge, and versatility. For these reasons they are found to function and thrive as valuable members and leaders of multidisciplinary teams. Mechanical engineers are employed in a wide range of industries; examples include agricultural/heavy equipment, biomedical, consulting, energy and power, manufacturing, product design and transportation.

Student Learning Outcomes:

Graduates of the Mechanical Engineering curriculum should have at the time of graduation:

  1. An ability to identify, formulate, and solve complex engineering problems by applying principles of engineering, science, and mathematics.
  2. An ability to apply engineering design to produce solutions that meet specified needs with consideration of public health, safety, and welfare, as well as global, cultural, social, environmental, and economic factors.
  3. An ability to communicate effectively with a range of audiences.
  4. An ability to recognize ethical and professional responsibilities in engineering situations and make informed judgments, which must consider the impact of engineering solutions in global, economic, environmental, and societal contexts.
  5. An ability to function effectively on a team whose members together provide leadership, create a collaborative and inclusive environment, establish goals, plan tasks, and meet objectives.
  6. An ability to develop and conduct appropriate experimentation, analyze and interpret data, and use engineering judgment to draw conclusions.
  7. An ability to acquire and apply new knowledge as needed, using appropriate learning strategies.

Program Educational Objectives:

The mechanical engineering curriculum is organized to provide students with a broad foundation in mathematics, science, engineering, social science and humanities. Areas emphasized in the curriculum are design and optimization, dynamic systems and control, materials processing and mechanics, and thermo-fluid sciences. Elective courses provide additional emphasis in terms of the student’s unique educational goals, whether they include immediate entry into industry or further professional or graduate study.

The mechanical engineering curriculum at Iowa State University is dedicated to preparing students for productive careers in the state, nation, and the world and has the following objectives:

  1. Graduates will have utilized a foundation in engineering and science to improve lives and livelihoods through a successful career in mechanical engineering or other fields.
  2. Graduates will have become effective leaders, collaborators, and innovators solving social, technical, business, and global challenges. 
  3. Graduates will have engaged in life-long learning and professional development through self-study, continuing education, or graduate and professional studies in engineering, business, law, medicine, or other fields. 
  4. Graduates will have fostered inclusive and diverse environments and functioned effectively in inclusive and diverse environments.

A major focus throughout the mechanical engineering curriculum is a series of experiences that emphasize engineering design, culminating in a capstone design experience in the senior year. Students will develop engineering judgment through open-ended problems that require establishment of reasonable engineering assumptions and realistic constraints. Development of skills needed to be independent, creative thinkers, effective communicators, and contributing team members is integrated throughout the curriculum. Students also develop an understanding of the societal context in which they will practice engineering, including environmental, legal, aesthetic, and human aspects.

Students are encouraged to participate in the cooperative education program or to obtain engineering internships, both domestically and abroad. Study abroad is encouraged, and the department has exchange programs with several universities around the world. These experiences help students to round out their education and to better prepare for careers in the increasingly global practice of engineering.